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Abstract—Building performance discrepancies between build-
ing design and operation are one of the causes that lead many
new designs fail to achieve their goals and objectives. A main
factor contributing to the discrepancy is occupant behaviors.
Occupants responding to a new design are influenced by several
factors. Existing building performance models (BPMs) ignore or
partially address those factors (called contextual factors) while
developing BPMs. To potentially reduce the discrepancies and
improve the prediction accuracy of BPMs, this paper proposes a
computational framework for learning mixture models by using
Generative Adversarial Networks (GANs) that appropriately
combining existing BPMs with knowledge on occupant behaviors
to contextual factors in new designs. Immersive virtual envi-
ronments (IVEs) experiments are used to acquire data on such
behaviors. Performance targets are used to guide appropriate
combination of existing BPMs with knowledge on occupant
behaviors. The resulting model obtained is called an augmented
BPM. Two different experiments related to occupants lighting
behaviors are shown as case study. The results reveal that
augmented BPMs significantly outperformed existing BPMs with
respect to achieving specified performance targets. The case study
confirmed the potential of the computational framework for
improving prediction accuracy of BPMs during design.

Index Terms—occupant behavior, mixture model, building
performance model, generative adversarial network, immersive
virtual reality

I. INTRODUCTION

Building designs define characteristics, functions, and con-
texts of buildings according to objectives and goals of a build-
ing project. Building performance is an important component
during designs that needs designers attention. It reflects how
well buildings perform regarding to many components such
as energy, occupants comforts, and control systems. Building
performance models (BPMs) are tools that support designers to
investigate, predict, and understand the performance of build-
ings and make decisions during design. Several BPMs are used
to optimize building performance during design, e.g., BPMs
for predicting energy consumption (electricity consumption),
BPMs for predicting building performance (heat loss and
air quality), and BPMs for predicting occupants interactions
with building components (light switches, blinds, and win-
dows). For instance, designers use lighting BPMs to estimate

occupants light switch behaviors. Empirical evidences have
shown the existence of significant performance discrepancies
between predictions during design and the actual performance
of building operations [1], [2]. The performance discrepancies
may contribute to undesired buildings performance such as
unexpected energy consumption, building degradation, and
occupants discomfort. Many factors may contribute to the
discrepancies. Occupant behaviors are one of the crucial
contributing factors since they are uncertain, complex, and
difficult to understand and model [3]. Moreover, they may
be influenced by many factors such as ones sense of control,
building characteristics, building services systems and opera-
tions, and climates, which make it challenging to accurately
capture them while developing BPMs [4].

Most BPMs are mathematically developed by finding the
relationships between dependent and independent variables of
interest. Generally, traditional methods, questionnaires [5], [6]
and field studies [7], [8], are used to collect occupant behavior
data (dependent variables) with respect to environmental fac-
tors (independent variables). For instance, Hunt [9] used field
study to observe occupants lighting behaviors in an existing
building for almost a year. He used minimum working area
illuminance as a predictor to predict whether occupants switch
the light on. The main advantage of using traditional methods
in acquiring data on occupant behaviors is that a large pool
of continuous data can be obtained, which is suitable for
developing BPMs. However, capabilities of traditional research
methods for studying occupant behavior are limited in many
aspects. First, such data only represent occupant behaviors in
existing buildings. Contexts of existing buildings may differ
from those of new designs, which may influence occupant
behaviors differently. Second, since the data of occupant
behaviors are obtained from existing buildings, some factors
that influence occupant behaviors in new designs may not be
captured (such as contextual factors). Contextual factors are
generally ignored or partially addressed in existing BPMs.
These limitations result in reduction in the predictive capability
of existing BPMs that in turn gives rise to performance gaps
between predictions made during design and actual buildings.
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IVEs can be alternative tools to support occupant behavior
data collections. They are rich multisensory computer simula-
tions that can mentally immerse users in the simulations. IVEs
have been used in several research areas such as emergency
situations [10], [11], driving behaviors [12], [13], and building
designs [14], [15]. IVEs have been proven to be capable of
simulating physical environments, providing senses of reality,
and capturing users responses.

The paper proposes a computational framework to reduce
performance discrepancy between predictions made during
design and actual building operation by combining knowledge
about occupant behaviors responding to contextual and design-
specific factors of new buildings with existing BPMs. IVEs are
used as tools to capture occupant behaviors. The framework
uses Generative Adversarial Networks (GANs) for learning
mixture models that enable appropriately combining existing
BPMs with knowledge of occupant behaviors obtained from
IVE to produce augmented BPMs with improved predictive
power. Performance targets are used as a guide to achieve
appropriate combination. The computational framework offers
a novel approach for improving the prediction accuracy of
BPMs during design and reduce the performance discrepancy
between predictions during design and the actual performance
during operations.

The contributions of this paper is:
• We offer a computational framework to combine existing

BPMs with knowledge of occupant behaviors responding
to contextual factors of new building designs obtained
from IVE experiments. The work contributes to the
development of a novel approach for minimizing the
discrepancy in building performances between predic-
tions during designs and the actual performance during
building operations, and thus allowing improved future
building designs.

II. RELATED WORK

A. Building Performance Models (BPMs)

A lot of research has been devoted to developing techniques
for creating BPMs. Examples of how researchers develop and
use BPMs are summarized as follows.

Hunt [9] developed a BPM for predicting manual lighting
control based on a switch-on probability and minimum work-
ing area illuminance. The BPM was developed by using field
study data where sensors were installed in experimental offices
to capture occupant interaction with artificial light switches.
THE BPM was expressed in terms of a statistical Probit model.
Likewise, Nicol [16] developed BPMs to predict occupant
windows, lighting, blinds, heaters, and fans usages based on
outdoor temperature in naturally ventilated buildings from sur-
vey data. Probit analysis was used to determine the relationship
between occupant buildings usages and outdoor temperature.
Newsham [17] developed and improved a computer-based
thermal model FENESTRA by providing an algorithm to
describe manual blind operation with respect to light switching
described by Hunts model. From the results of his model,

he suggested that incorporating algorithms of occupant be-
havior into building thermal models can significantly affect
predictions of building energy consumption. Reinhart [18]
proposed an algorithm called Lightswitch-2002 to determine
electric lighting energy demand of light switches. It was
integrated into many simulation programs, such as design
support tool (Lightswitch Wizard [19]), and whole building
energy simulation tool (ESP-R [20]). The algorithm included
an occupancy model, which considered profiles of occupants
and minimum working area illuminance similar to Hunts
approach, and a dynamic daylight simulation to predict electric
lighting demand. The algorithm considered daytime switch-on
proability in addition to probability of switching the light on
upon arrival. Similary, Gunay et al. [21] formulated BPMs for
an adaptive lighting and blinds control algorithm. Their BPMs
include concurrent solar irradiance as an additional predictor
for occupant lighting preferences, beside minimum working
area illuminance and intermediate occupancy in other works.

Traditionally, BPMs are developed based on data acquired
using occupant behavior study approaches, namely question-
naires, and field study. Most of the existing BPMs are in
form of the correlation between independent variables (envi-
ronments and buildings design-specific factors) and dependent
variable (occupant behaviors). The researchers illustrate the
relationships by using statistical modelling such as regression
models [9], [22].

B. Occupant Behavior Research Methods

Questionnaires are a common method to study occupant
behaviors. Questionnaires can be directed to subjects that
researchers desire to investigate. They can also handle large-
scale experiments. For example, Attia et al. [5] used question-
naires to collect occupant behavior data related to household
device usages in residential apartments in various areas in
Egypt. They applied the data obtained from the questionnaires
to construct benchmarks for building energy simulations.
Similarly, Feng et al. [6] used questionnaires to observe
occupant behaviors related to air conditioning (AC) patterns.
The information acquired from the questionnaires were used
to categorize occupants switching on/off AC behaviors. Ques-
tionnaires are used in research on multiple aspects of interest in
several places simultaneously. For instance, Nicol [16] studied
occupant behavior on windows, lightings, blinds, heat, and
fans usage by using questionnaires in the UK, Pakistan, and
Europe. Even though questionnaires provide various advan-
tages, an important disadvantage is that they are not able to
quantitatively capture the relationship between the contexts
and the occupant behaviors.

The field monitoring method has been used in many studies
such as light switching [23], predicting window opening [24],
energy usage for space and water heating [7], occupants
heating set-point [8], occupant interactions with shading and
lighting [25], and occupant plug-in equipment use [26]. One
of the advantages of this method is that the collected data
are continuous and acquiring large samples is possible since
multiple sensors are deployed. Another advantage is that
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the method is capable of providing quantitative relationships
between the occupant behaviors and the contexts. However,
this method has many limitations, including (1) normally, data
are collected in time intervals, e.g. every 30 minutes, and
some critical events may be missed if they occur during the
intervals, (2) other equipment may interfere with sensors and
distort information of occupant behaviors and contexts, (3)
many assumptions with respect to occupant behaviors and
design contexts such as occupant schedules, variables that
drive behaviors, and purposes of occupant response to building
systems have to be made to derive the BPMs.

C. Immersive Virtual Environment (IVE)

Clearly, the three methods described above typically rely on
observations of occupants in existing buildings. Since occupant
behaviors are context sensitive, findings from such observa-
tions can certainly contain biases and uncertainties. Thus,
applying such findings to new designs may lead to significant
variances in predictions. We suggest an alternative method to
study and observe occupant behaviors during building designs
by using immersive virtual environments (IVEs). There are
several reasons showing that IVEs are good candidate methods
for studying and observing occupant behaviors in buildings.
For instance, IVEs allow users to control confounding and
isolating variables of interest, to be immersed in their settings,
and to constantly maintain variables of interest during conduct-
ing experiments [27]. Previous works that show the abilities
of IVEs as alternative tools to study occupant behaviors are
summarized as follows.

In human behaviors related studies, Heydarian et al. [27]
used IVEs to study occupant behaviors related to lighting and
shade usages. Saeidi et al. [28] evaluated data on occupants
lighting behaviors acquired from IVEs and showed that IVEs
were capable of replicating experiences in physical environ-
ments. A framework for integrating bulding designs with IVEs
was also developed by Niu et al. [15]. The purpose of the
framework was to help building designers capture occupant
preferences and identify context patterns. They concluded that
integrating building designs with IVEs using their framework
facilitated designers in understanding occupant behavior and
identifying design contexts that guide occupants to act in
accordance with design intentions. Another work of Saeidi et
al. [29] conducted an experiment to study occupants lighting
preferences in IVEs and compared the resulting data with
respect to that collected from physical sensors. They found
good agreement between the occupants preferences in IVEs
and those in actual physical environments.

D. Generative Advesarial Networks (GANs)

Deep learning has grown in popularity in recent years [30]–
[34]. Generative Adversarial Networks (GANs) were proposed
in [31]. GANs have been successfully used in various domains
[35], especially image synthesis.

Ledig et al. [36] used GANs to learn and recover photo-
realistic textures from downsampled images. They proposed

super-resolution GANs (SRGANs) that can estimate photo-
realistic super-resolution images with high upscaling factors.
Radford et al. [37] introduced deep convolutional genera-
tive adversarial networks (DCGANs) for generating realistic
and high resolution images. They showed that DCGANs
outperformed other unsupervised algorithms (K-means, Ran-
dom Forest (RF), and Transductive Support Vector Machines
(TSVMs)). Wang and Gupta [38], introduced Style and Struc-
ture Generative Adversarial Networks (S2-GANs). S2-GANs
addressed structure and style in image generation process. S2-
GANs have abilities to produce more realistic high-resolution
images, in addition to having a more robust and stable training
method compared to standard GANs. Apart from 2D image
generation, Wu et al. [39] introduced 3D-GANs that were
capable of generating 3D objects by combining volumetric
convolutional networks with GANs.

From the previous works, we have seen abilities of GANs
to produce synthetic images that are close to real images
from arbitrary image clues (noises). We use GANs to produce
augmented BPMs that are close to the performance targets by
combining existing BPMs with the knowledge on occupant
behaviors responding to contextual factors in new building
designs.

III. FRAMEWORK OF MIXTURE MODEL

Fig. 1. Framework of proposed mixture model.

Due to the lack of ability to accurately model occupant
behaviors in existing BPMs for new designs, we propose
a framework to enhance BPMs by appropriately combining
existing BPMs and with knowledge of occupant behaviors in
new design obtained from IVE experiments (IVE datasets).
There are four major components involved in the framework,
namely an existing BPM, occupant response in a new design,
a performance target, and Generative Adversarial Networks
(GANs). An existing BPM is a BPM that is constructed
from occupant behavior data in an existing building. Occupant
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responses in a new design are occupant behavior data that
obtained from an IVE experiment, which exposes the occupant
with an environment of a new design and considers factors
that are ignored in an existing BPM (contextual factors).
a Performance target is used as a guide for combining an
existing BPM and occupant response in a new design such
as building benchmarks, historically desired occupant data,
and desired building performance. GANs [31] are used to
create mixture models that allow appropriate combination of
an existing BPM and knowledge of occupant behaviors as
obtained from IVE experiments guided by performance targets
(Fig. 1). In the framework, we define the dataset obtained
by sampling IID from an existing BPM as the existing BPM
dataset. A GAN comprises of two major parts: a generator and
a discriminator. The generator is an artificial neural network
(ANN) which uses an existing BPM dataset and the IVE
dataset as input and produces as output a mixture distribution
(called augmented BPM). The performance predicted based on
the resulting mixture distribution is intended to be as close as
possible to the given performance targets. The discriminator
is an ANN that tries to discriminate between the performance
predictions obtained from mixture distribution generated by
the generator and the performance target. During training, the
generator and the discriminator play a minimax game with
each other where the generator tries to produce a mixture
distribution so that the performance targets are met and the
discriminator tries to determine if the generator meets the
performance targets. The trainings continue until a defined
convergence criterion (maximum iterations, discrepancy mea-
sured between the predictions of the generator and the targets
is below a threshold) is reached. Once training converges, the
resulting generator obtained is the augmented BPM.

IV. CASE STUDY

A. Existing Building Performance Models and Targets

Two experiments related to occupant light switching be-
haviors are conducted. In the first experiment, a model for
predicting occupant light switching behaviors developed by [9]
is used as the existing BPM. For performance targets, we use
the probabilities of switching on as provided by a probit model
described in [22]. In the second experiment, the existing BPM
consisted of a model for predicting occupant light switching
behaviors developed by [21]. The performance targets are the
same as in the first experiment. In the existing BPMs, Probit
regression was used to represent the relationships between
probabilities of an occupant switching on and work area
illuminance as shown below:

p = a+
c

1 + exp(−(dm+ bElux))
(1)

where:
p = probability of switching the light on,
Elux = the working area illuminance (lux),
a, b, c, d,m = constants given in TABLE I.

Independent and identically distributed (IID) samples of the
existing BPMs and the performance targets are generated by

TABLE I. Existing BPMs and Performance Targets

Experiment 1 Experiment 2

Existing
BPM

a = −0.0175 a = 0

b = −4.0835 b = −0.005
c = 1.0361 c = 1

d = −4.0835 d = 1

m = −1.8223 m = −0.170
Elux = log10lux Elux = lux

Performance
Target

a = 0 a = 0

b = −0.003 b = −0.003
c = 1 c = 1

d = 1 d = 1

m = 2.035 m = 2.035

Elux = log10lux Elux = lux

using Monte Carlo simulations. Data of Elux are randomly
sampled using a normal distribution. The data are taken as
inputs to compute outputs (probability of switching on (p)) by
using (1). Data of p and Elux are used in the computational
framework.

B. Occupant Light Switching Behaviors in New Design

Fig. 2. The Virtual Single-Occupancy Office.

Data of occupant behaviors of new designs are retrieved
from a previous study [29]. Saeidi et al. [29] used IVE to
study occupant light switching behaviors in a virtual single-
occupancy office as shown in Fig. 2. The IVE experiments
were setup by manipulating critical events of the data obtained
from the physical environment (e.g., arrival at the office,
intermediate leaving, coming back from intermediate leaving,
and departure; see TABLE II). Each event includes values of
contextual factor variables (e.g., indoor and outdoor illumi-
nance, intermediate leaving status, and occupancy status) in
new-design buildings. The contextual factors (see Table II)
were exposed to an occupant in event based experiments. The
occupants interactions with the light switch were captured.
For instance, the occupant switched the light on when indoor
and outdoor were dark. A total of 180 data points relating
to occupant preferences (lighting) and values of contextual
factor variables (indoor and outdoor illuminance, intermediate
leaving status, and occupancy status) were acquired from the
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IVE experiments; 36 initial events before arrival at the office,
36 events of arrival at the office, 18 events of intermediate
short leave, 18 events of returning from the intermediate short
leave, 18 events of intermediate long leave, 18 events of
returning from the intermediate long leave, and 36 events of
departure.

Due to small sample size of the IVE data and the fact
that the experiment is sequence-events, data augmentation
are performed. A Hidden Markov Model (HMM) Baum-
Welch algorithm is trained on the data obtained from the IVE
experiment which is then used to generate synthetic samples
IID.

In the HMM, the hidden states and the observations of
events are classified. The status of the light switch are classi-
fied as the hidden states. The statuses of the other variables,
namely occupancy status, intermediate leaving, outdoor illumi-
nance, and working area illuminance are classified as observa-
tions. Each observation vector is encoded to an ordinal variable
by combining statuses of factors. For instance, non-occupancy,
short intermediate leaving, bright outdoor illuminance, bright
work area illuminance are combined as no + short + bright
+ bright and encoded by using a single value such as 1. The
transition and observation probabilities are calculated based on
obtained IVE data. The HMM learns the relationship between
the hidden states and observations from the transition and
observation probabilities. After training process finishes, the
IID synthetic sequence of events and observations (the IID
synthetic IVE dataset) are randomly synthesized through the
trained HMM [40].

TABLE II. Statuses of Factors

Contextual Factor Status

Occupancy Non-Occupancy

Occupancy

Outdoor Illuminance
Dark (200 Lux)

Normal (500 Lux)

Bright (700 Lux)

Intermediate Leaving
None

Short leaving

Long leaving

Independent Variable Status

Work Area Illuminance
Dark (200 Lux)

Normal (500 Lux)

Bright (700 Lux)

C. Generative Adversarial Network (GAN)

1) Data Organization: Since the existing BPM and the
target datasets had only working area illuminance as an
independent variable, the missing data for contextual factors
in the existing BPM and the target datasets, e.g., occupancy
and intermediate leaving statuses were randomly generated
from those of the synthetic IVE dataset. For instance, since
occupancy status in the synthetic IVE dataset included non-
occupancy and occupancy, the data of occupancy in the

existing BPM dataset were randomly generated with non-
occupancy and occupancy. Corresponding to the status of
intermediate leaving in the synthetic IVE dataset, the data
for intermediate leaving in the existing BPM were randomly
generated with none, short, and long leaving.

2) Computation: In both experiments, we provided the
generator (G) using an existing BPM and the synthetic IVE
datasets (z) as input. The existing BPM and the synthetic
IVE datasets are combined by concatenating. The generator
is an ANN consisting of a three-layer perceptron network
including an input, two hidden, and an output layer. The
inputs to the input layer are the occupancy status, intermediate
leaving, and working area illuminance. The output in the
output layer is the probability of switching the light on. The
hidden layers of the network comprise 300 hidden neurons
each with rectified linear unit activation function (ReLU) since
it has been shown to have better fitting ability than the sigmoid
function in similar applications [41]. To prevent overfitting,
elastic net regularization (combination of L1 (Laplacian) and
L2 (Gaussian) penalties) was used [42]. The sigmoid activation
function was applied at the output neuron because the outputs
were probabilities. The loss function of the model was binary
cross entropy (logistic regression). The learning rate and
regularization were 10−6.

The discriminator (D) is an ANN used to discriminate the
outputs from the generator and the performance targets. The
discriminator comprises of a three-layer ANN including an
input, two hidden, and an output layer. The setup of the dis-
criminator is similar to the generator except that the activation
functions at the hidden layers are Leaky ReLUs. Two datasets,
i.e., the output of the generator and the targets were combined
by concatenating. The labels of the two datasets were defined
as 0 (the output of the generator) and 1 (the performance
targets).

Based on [31], to learn a generator distribution pg over
the performance target (x), the generator builds a mapping
function from the combination of existing BPM dataset and
synthetic IVE dataset distribution pz(z) to generate data space
G(z;θg). The data space of the discriminator D(x;θd) will
output the probability that x came from the performance
target distribution (pdata) rather than pg . Based on [31], we
train G and D together using backpropagation that minimizes
log(1 − D(G(z))) + logD(x). This is equivalent to playing
a minimax game between G and D with the value function
V (D,G). The combinations of the two datasets were used
as the input and the labels were used as the outputs in the
discriminator.

If we use traditional GANs, the discriminator is confronted
with the difficulty of accurately discriminating outputs of
the generator and the targets since there is only one feature
(probability of switch the light on) as the input for the
discriminator. To solve the problem, we partially adapted the
concept of conditional GANS [43] by using information of
input features of the generator (occupancy status, intermediate
leaving status, and working area illuminance) as additional
inputs to the discriminator model. The scheme of GAN of the
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Fig. 3. Scheme of GAN of The Case Study.

computational framework is shown in Fig. 3. Therefore, the
value function V (D,G) becomes [31]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|z)]+

Ez∼pz(z)[log(1−D(G(z)))]
(2)

For clarity, we summarize the corresponding pseudo-code
of the optimization algorithm of the computational framework
in Algorithm 1 [31].

V. RESULTS

A. Comparisions of Performance of BPMs

The probabilities of switching on are randomly sam-
pled from augmented BPMs, existing BPMs, synthetic IVE
datasets, and the performance target. The probabilities of
switching on are compared among three models. The mean
absolute errors (MAEs) are used to determine the performance
of each BPM against targets by using (5).

MAE =

n∑
i=1

|yi − xi|

n
(5)

where:

i = ranges over the list of data points, i.e., work area
illuminances (i = 1, 2, 3, . . . , n),

yi = refers to the probability of switching on at data
point i as specified by the performance targets,

xi = refers to the probability of switching on at data
point i of the augmented BPM (resp. existing BPM,
resp. synthetic IVE dataset).

The results of the experiments are plotted in Fig. 4a and
Fig. 4b to visually distinguish the performance of BPMs.
The MAEs are shown in TABLE III. From TABLE III, the
MAEs measured between probabilities of switching on as

Algorithm 1 The Optimization of The Framework. All exper-
iments in the paper used the default values α = r = 10−6, m
= 2000, n = 2e5.
Require: α, the learning rate. r, regularization. m, the batch

size. n, the number of epochs.
1: for n do
2: Train the discriminator
3: Sample batch of 2m samples, (z(1), . . . ,z(2m)), from

the generator distribution pg(z). To make additional inputs
in the discriminator, samples (z) include inputs of the
generator.

4: Sample batch of 2m samples from performance
target,ptargets(x).

5: Train the discriminator by using backpropagation with
stochastic gradient ascent:

∇θd
1

2m

2m∑
i=1

[logD(x(i)|z(i)) + log(1−D(G(z(i))))]

(3)

6: Train the generator
7: Sample batch of m samples from existing BPMs

dataset.
8: Sample batch of m samples from Synthetic IVE

dataset.
9: Combine samples of existing BPM dataset and IVE

dataset by concatenating, (z(1), . . . ,z(2m)).
10: Train the generator by using backpropagation with

stochastic gradient descent:

∇θd
1

2m

2m∑
i=1

[log(1−D(G(z(i))))] (4)

11: end for
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predicted by the augmented BPMs and that specified by the
performance target are smallest compared to that predicted by
the existing BPM or acquired from the synthetic IVE data in
both experiments. The results can be interpreted as evidence
that the augmented BPMs outperform both existing BPMs and
IVEs.

TABLE III. Results of MAEs

Experiment 1 Experiment 2

A
ug

m
en
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PM
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xi
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nt
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tic
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E

A
ug

m
en

te
d

B
PM

E
xi

st
in

g
B

PM

Sy
nt

he
tic

IV
E

MAE 0.17 0.48 0.47 0.14 0.41 0.47

B. Tests of The Performance of Augmented BPMs

To show that the predictions obtained from the augmented
BPMs produced by the computational framework outperform
the that obtained from existing BPMs and the probabilities
acquired from the synthetic IVE dataset, we apply statistical
analysis to find significant difference of errors measured
between: 1) the performance targets and the existing BPMs,
and 2) the performance targets and the synthetic IVE dataset,
and 3) the performance targets and the augmented BPMs.

The performance of the existing BPMs, the IVE, and the
augmented BPMs are investigated by using absolute errors as
measured values as shown in TABLE IV.

TABLE IV. Comparison of Performance of BPMs

Absolute
error Explanation

E1
|probability of switching the light on obtained from

the existing BPM − the performance target|

E2
|probability of switching the light on obtained from

the IVE − the performance target|

E3
|probability of switching the light on obtained from

the augmented BPM − the performance target|

To statistically test the significance of the performances of
augmented BPMs for both experiments, hypotheses are defined
as follows:

To test the performance of the augmented BPMs and the
existing BPMs, hypothesis 1 is defined as follow:

H0: mean of E1 − mean of E3 = 0
H1: mean of E1 − mean of E3 > 0

To test the performance of the augmented BPMs and the
IVE, hypothesis 2 is defined as follow:

H0: mean of E2 − mean of E3 = 0
H1: mean of E2 − mean of E3 > 0

A one tailed t-test (α = 0.05) was applied to investigate
statistically significant difference between the performance of
the augmented BPMs, and the existing BPMs as well as the
IVE. The results are shown in TABLE V.

TABLE V. Results of the Hypothesis Testing

Experiment 1 Experiment 2
Hypothesis Hypothesis

1 2 1 2
Absolute
T-value 44.300 17.873 53.535 19.377

P-value < 0.05 < 0.05 < 0.05 < 0.05
H0 Reject Reject Reject Reject

From TABLE V, the null hypotheses were rejected for all
cases. Based on the hypotheses testing, we concluded that,
the probabilities of switching the light on estimated by the
augmented BPM are significantly closer to the performance
targets than that estimated by the existing BPMs or the
(synthetic) IVE dataset. This shows a strong potential of
using the computational framework to enhance performance of
BPMs and reduce performance discrepancy between prediction
during designs and operational buildings.

VI. CONCLUSION

The paper presents a computation framework to reduce the
performance discrepancy between predictions during designs
and the actual performance observed when building is oper-
ational. GANs are used to learn a mixture model that allows
appropriate combination of existing BPMs with knowledge of
occupant behaviors responding to contextual factors in new
designs as obtained from IVE experiments.

The results of the experiments show promising potential of
the computational framework for reducing the performance
discrepancy. From the evidence in TABLE V, the augmented
BPMs from both experiments outperform existing BPMs and
IVEs.

In the future work, uncertainties have to be considered
to improve the performance of the framework. There many
factors that may contribute to uncertainties such as quality of
IVE datasets, existing BPMs, and the system of the framework.
More IVE experiments need to be conducted to investigate
and improve the performances of IVEs in occupant behavior
study and enhance accuracy of the framework. Furthermore,
the quality of IVE datasets may be dependent on many
elements such as cues, instrument, and occupants. Study of
cues may need to be explored to enhance the quality of IVE
datasets. Since the data of existing BPMs are obtained from
occupant behaviors in existing buildings, specified constraints
on types and behaviors of occupants may need to be defined
corresponding to occupant in new design. The algorithm of
the framework may need to be further improved to increase
accuracy of augmented BPMs.
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influence in a virtual tunnel fire–influence of conflicting information on
evacuation behavior,” Applied ergonomics, vol. 45, no. 6, pp. 1649–1659,
2014.

[11] M. Kobes, I. Helsloot, B. de Vries, and J. Post, “Exit choice,(pre-)
movement time and (pre-) evacuation behaviour in hotel fire evacua-
tionbehavioural analysis and validation of the use of serious gaming in
experimental research,” Procedia Engineering, vol. 3, pp. 37–51, 2010.

[12] O. A. Osman, J. Codjoe, and S. Ishak, “Impact of time-to-collision
information on driving behavior in connected vehicle environments using
a driving simulator test bed,” Traffic Logist. Eng, vol. 3, no. 1, 2015.

[13] G. Rumschlag, T. Palumbo, A. Martin, D. Head, R. George, and R. L.
Commissaris, “The effects of texting on driving performance in a driving

simulator: The influence of driver age,” Accident Analysis & Prevention,
vol. 74, pp. 145–149, 2015.

[14] A. Heydarian, J. P. Carneiro, D. Gerber, B. Becerik-Gerber, T. Hayes,
and W. Wood, “Immersive virtual environments: experiments on impact-
ing design and human building interaction,” 2014.

[15] S. Niu, W. Pan, and Y. Zhao, “A virtual reality integrated design
approach to improving occupancy information integrity for closing
the building energy performance gap,” Sustainable cities and society,
vol. 27, pp. 275–286, 2016.

[16] J. F. Nicol, “Characterising occupant behaviour in buildings: towards
a stochastic model of occupant use of windows, lights, blinds, heaters
and fans,” in Proceedings of the seventh international IBPSA conference,
Rio, vol. 2, 2001, pp. 1073–1078.

[17] G. Newsham, “Manual control of window blinds and electric lighting:
implications for comfort and energy consumption,” Indoor Environment,
vol. 3, no. 3, pp. 135–144, 1994.

[18] C. F. Reinhart, “Lightswitch-2002: a model for manual and automated
control of electric lighting and blinds,” Solar energy, vol. 77, no. 1, pp.
15–28, 2004.

[19] C. Reinhart, M. Morrison, and F. Dubrous, “The lightswitch wizard-
reliable daylight simulations for initial design investigation,” in 8th
International IBPSA Conference, Eindhoven, The Netherlands, vol. 3,
2003, pp. 1093–1100.

[20] D. Bourgeois, J. Hand, I. Mcdonald, and C. Reinhart, “Adding sub-
hourly occupancy prediction, occupancy-sensing control and manual
environmental control to esp-r,” Proceeding of Esim 2004, Vancouver,
BC, pp. 119–126, 2004.

[21] H. B. Gunay, W. O’Brien, I. Beausoleil-Morrison, and S. Gilani,
“Development and implementation of an adaptive lighting and blinds
control algorithm,” Building and Environment, vol. 113, pp. 185–199,
2017.

[22] P. C. da Silva, V. Leal, and M. Andersen, “Occupants interaction with
electric lighting and shading systems in real single-occupied offices: Re-
sults from a monitoring campaign,” Building and Environment, vol. 64,
pp. 152–168, 2013.

[23] P. Boyce, “Observations of the manual switching of lighting,” Lighting
Research & Technology, vol. 12, no. 4, pp. 195–205, 1980.

[24] H. B. Rijal, P. Tuohy, M. A. Humphreys, J. F. Nicol, A. Samuel, and
J. Clarke, “Using results from field surveys to predict the effect of open
windows on thermal comfort and energy use in buildings,” Energy and
buildings, vol. 39, no. 7, pp. 823–836, 2007.

[25] S. A. Sadeghi, P. Karava, I. Konstantzos, and A. Tzempelikos, “Occupant
interactions with shading and lighting systems using different control
interfaces: A pilot field study,” Building and Environment, vol. 97, pp.
177–195, 2016.

[26] H. B. Gunay, W. OBrien, I. Beausoleil-Morrison, and S. Gilani, “Mod-

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-20389.pdf- 8 -

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 25,2020 at 18:41:08 UTC from IEEE Xplore.  Restrictions apply. 



eling plug-in equipment load patterns in private office spaces,” Energy
and Buildings, vol. 121, pp. 234–249, 2016.

[27] A. Heydarian, J. P. Carneiro, D. Gerber, and B. Becerik-Gerber, “Immer-
sive virtual environments, understanding the impact of design features
and occupant choice upon lighting for building performance,” Building
and Environment, vol. 89, pp. 217–228, 2015.

[28] S. Saeidi, T. Rizzuto, Y. Zhu, and R. Kooima, “Measuring the ef-
fectiveness of an immersive virtual environment for the modeling
and prediction of occupant behavior,” in Sustainable Human–Building
Ecosystems, 2015, pp. 159–167.

[29] S. Saeidi, C. Chokwitthaya, Y. Zhu, and M. Sun, “Spatial-temporal
event-driven modeling for occupant behavior studies using immersive
virtual environments,” Automation in Construction, vol. 94, pp. 371–
382, 2018.

[30] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[31] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[32] E. Collier, R. DiBiano, and S. Mukhopadhyay, “Cactusnets: Layer
applicability as a metric for transfer learning,” in 2018 International
Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro,
Brazil, July 8-13, 2018, 2018, pp. 1–8.

[33] S. Basu, S. Mukhopadhyay, M. Karki, R. DiBiano, S. Ganguly, R. R.
Nemani, and S. Gayaka, “Deep neural networks for texture classification
- A theoretical analysis,” Neural Networks, vol. 97, pp. 173–182, 2018.

[34] S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and
R. R. Nemani, “Deepsat: a learning framework for satellite imagery,”
in Proceedings of the 23rd SIGSPATIAL International Conference on
Advances in Geographic Information Systems, Bellevue, WA, USA,
November 3-6, 2015, 2015, pp. 37:1–37:10.

[35] E. Collier, K. Duffy, S. Ganguly, G. Madanguit, S. Kalia, S. Gayaka,
R. R. Nemani, A. R. Michaelis, S. Li, A. R. Ganguly, and S. Mukhopad-
hyay, “Progressively growing generative adversarial networks for high
resolution semantic segmentation of satellite images,” in 2018 IEEE
International Conference on Data Mining Workshops, ICDM Workshops,
Singapore, Singapore, November 17-20, 2018, 2018, pp. 763–769.

[36] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4681–4690.

[37] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[38] X. Wang and A. Gupta, “Generative image modeling using style and
structure adversarial networks,” in European Conference on Computer
Vision. Springer, 2016, pp. 318–335.

[39] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a
probabilistic latent space of object shapes via 3d generative-adversarial
modeling,” in Advances in neural information processing systems, 2016,
pp. 82–90.

[40] C. Chokwitthaya, R. Dibiano, S. Saeidi, S. Mukhopadhyay, and Y. Zhu,
“Enhancing the prediction of artificial lighting control behavior using
virtual reality (vr): A pilot study,” in Construction Research Congress
2018, 2017, pp. 216–223.

[41] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from
predicting 10,000 classes,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 1891–1898.

[42] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the royal statistical society: series B (statistical
methodology), vol. 67, no. 2, pp. 301–320, 2005.

[43] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

Improving Prediction Accuracy in Building Performance Models Using Generative Adversarial Networks (...

paper N-20389.pdf- 9 -

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 25,2020 at 18:41:08 UTC from IEEE Xplore.  Restrictions apply. 


