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Abstract
We describe an exponential Fermi accelerator in a two-dimensional billiard 
with moving slits. We have found a mechanism of trapping regions which 
provides the exponential acceleration for almost all initial conditions with 
sufficiently high initial energy. Under an additional hyperbolicity assumption, 
we estimate the waiting time after which most high-energy orbits start to gain 
energy exponentially fast.
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1. Introduction

In an attempt to explain the existence of high energy particles in cosmic rays, Fermi [10] in 
1949 proposed a model in which charged particles undergo repeated reflections in moving 
magnetic fields. Later in 1961 Ulam [30] proposed that a similar mechanism should appear in 
finite degree of freedom systems. He described a toy model where a particle bounces elasti-
cally between two walls, one fixed and the other moving periodically. Ulam [30] performed 
numerical experiments on a piecewise linear model and conjectured that there exist escaping 
orbits whose energy tend to infinity with time. Since then extensive efforts have been made by 
both mathematicians and physicists to locate escaping orbits in various settings (see [7, 12, 20]  
for surveys on this subject).

Notably the KAM theory has eliminated the possibility of such escaping orbits in one-
dimensional (1D) Fermi–Ulam model for sufficiently smooth wall motions [18, 27, 28], as the 
prevalence of invariant curves forces all orbits to be bounded. However, unbounded solution 
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can still be obtained in nonsmooth case. For example, Zharnitsky [33] has found a type of 
unbounded orbits in the Ulam’s piecewise linear case, which grows linearly with time. In a 
1D Fermi–Ulam model with one discontinuity, de Simoi and Dolgopyat [4] have showed that 
there exists a parameter that completely shapes the large energy behavior of the system: in 
the hyperbolic regime the escaping set has zero measure but full Hausdorff dimension while 
in some elliptic cases the escaping orbits have infinite measure. There are many interesting 
question pertaining to Fermi–Ulam model with non-periodic wall motion. We refer the reader 
to [17, 34] for the results in quasi-periodic case. One and a half degree of freedom models 
where the motion between collision is not free but is subjected to a potential are discussed, for 
example in [1, 3, 6, 23, 24, 26].

Two-dimensional (2D) moving billiard models are natural generalization of the 1D Fermi 
acceleration model and can often provide chaotic orbits even in the smooth case. For example, 
unbounded orbits were found in billiard models with the smoothly breathing boundary [15, 
16, 19]. In a Lorentz gas model [21], the average velocity of particles grows linearly in time 
for stochastic perturbation of scatterer boundaries and quadratically for periodic perturba-
tion. Exponential growing orbits for non-autonomous billiards were constructed in [14] but 
in general it remains challenging to detect a positive measure set of exponentially growing 
orbits. Exponential acceleration is also conjectured to be generic for oscillating mushrooms 
[13]. The models which are closest to our setting are the following. Shah et al [29] investi-
gated a rectangular billiard model with a moving slit. They [29] proposed a random process 
approximation, i.e. the probability of jumping or down is proportional to the length of open-
ings. They numerically verified the expected exponential growth rate for a large ensemble of 
initial conditions in the non-resonant case and they also numerically observed that the growth 
rate in the resonant case was significantly higher [29]. Later they generalized the idea to 
higher-dimensional time-dependent billiards and obtained a new class of numerically robust 
exponential accelerators [11]. The model presented in this paper was inspired by their work. 
To our best knowledge, our paper provides the first example where robust exponential accel-
eration is established rigorously.

We study a rectangular billiard with two moving slits. In our model, the billiard table is 
a unit square. Two slits are moving vertically in the table with the length of left slit λ and 
the length of the right slit 1 − λ, where λ ∈ (0, 1) is a constant. The motion of the two slits 
are described by two C2 2-periodic functions f L(t) and f R(t) respectively. A massless ball 
bounces elastically against the moving slits as well as the boundary of the rectangular table 
(c.f. figure 1).

In this paper we study the simplest resonant case. Namely, we assume that the horizontal 
speed the ball is 1, so the horizontal coordinate of the ball is periodic with period 2. Hence 
we have 1:1 resonance between the period of moving slits and the period the horizontal 
motion of the ball. The ball experiences two jumps between the left and the right parts of 
the table during each period. We denote by x0 the starting horizontal position of the ball. We 
assume without loss of generality that the ball starts from the left part, i.e. 0 ! x0 < λ. The 
ball jumps from the left slit to right one at time t∗1 = λ− x0 and then from right to the left 
at time t∗2 = 2 − λ− x0.

We record the time and the vertical velocity of the ball immediately after each collision 
with the slits. We exclude from our discussion the trajectories having a collision at x = λ. The 
excluded orbits constitute a measure zero set among all the initial conditions.

We describe in this paper a new exponential accelerator. We show that almost all initial con-
ditions with sufficiently high initial velocity produce exponential energy growth in the future, 
provided that the relative positions of the two slits change at the time of the two jumps between 
left and right parts of the table. Moreover, under an additional hyperbolicity assumption we 
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estimate the waiting time after which most high-energy orbits start to accelerate exponentially. 
We observe that the rectangular billiard is pseudo-integrable as long as the ball only interacts 
with one slit, in the sense that the motion can be approximated by an integrable one with 
vanishing error as velocity tends to infinity (see section 4.1 for details). However the passages 
between left and right slit break the pseudo-integrability and could lead to the chaos, in the 
sense that the normal form obtained in section 4.2 can be hyperbolic. Similar mechanisms of 
chaos have been observed in separatrix passages and kicked oscillations [2, 22, 25, 31, 32]. We 
also refer to [8] for discussion of similar phenomena in the piecewise smooth setting.

2. Main results

In this section we describe the exponential accelerator we have found.
For a wide range of choices in λ and x0, the relative positions of the left and right slits 

change when the ball jumps from one slit to the other at time t∗1 and t∗2 (see figure 2). A trap-
ping region is created in this case and the ball starts to gain energy exponentially fast once it 
gets trapped.

Theorem 1. Assume λ and x0 are such that fL(t∗1 ) < fR(t∗1 ) and fL(t∗2 ) > fR(t∗2 ) or 
fL(t∗1 ) > fR(t∗1 ) and fL(t∗2 ) < fR(t∗2 ). Then there exists V∗ ≫ 1, which depends only on f L and 
f R, such that almost every orbit whose initial speed is greater than V∗ eventually gains energy 
exponentially in time. In particular, the set of initial conditions (t0 , v0 ) which do not enjoy 
exponential energy growth has finite measure.

In the presence of a trapping region, with additional hyperbolicity assumptions we estimate 
the waiting time after which most high-energy orbits start to accelerate exponentially.

We define a new function f  as follows

f (t) =
{

fL(t) 0 < t < t∗1 or t∗2 < t < 2
fR(t) t∗1 < t < t∗2 .

We introduce a new quantity Tr . If the lower chamber is trapping, then we define in the 
upper chamber

TrU =

(
1 − f−1
1 − f+1

− a1β

)(
1 − f−2
1 − f+2

− a2α

)
+

(
1 − f+1
1 − f−1

− a1α

)(
1 − f+2
1 − f−2

− a2β

)

− a1a2αβ

0

1

λ 1

fL(t)
fR(t)

Figure 1. Rectangular billiard with moving slits.
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where f±i = f (t∗i ±), ai = ḟ−i (1 − f+i )− ḟ+i (1 − f−i ),

α =

(∫ t∗1

0
+

∫ 2

t∗2

)
d s

(1 − f (s))2
and β =

∫ t∗2

t∗1

d s
(1 − f (s))2

.

If the upper chamber is trapping, then we define in the lower chamber

TrL =

(
f−1
f+1

− a′
1β

′
)(

f−2
f+2

− a′
2α

′
)
+

(
f+1
f−1

− a′
1α

′
)(

f+2
f−2

− a′
2β

′
)
− a′

1a′2α
′β′

where a′
i = ḟ+i f−i − ḟ−i f+i , α′ =

(∫ t∗1
0 +

∫ 2
t∗2

)
ds

f (s)2  and β′ =
∫ t∗2

t∗1
ds

f (s)2 .

Theorem 2. Assume λ and x0 are such that the assumption in theorem 1 holds and that 
|Tr| > 2. Then there are K, ζ > 0  such that for any ϵ > 0, there exists V0 = V0(ϵ) and T = T(ϵ) 
such that for each V ! V0 the complement of set

{
(t0 , v0 ) : |v0 | ∈ [V ,V + 1 ]: ∀t ! T |v(t)| ! |v(T)|

K
eζt
}

has measure less than ϵ, i.e. most orbits with initial energy |v0| > V0 start to accelerate expo-
nentially after time T.

Figure 2. Trapping regions. The plot of trapping regions for fL(t) = 0.3 cos(πt) + 0.5, 
fR(t) = 0.3 sin(πt) + 0.5. The blue part indicates the values of λ, x0  for which a trapping 
region exists: the upper rectangle is where the upper chamber is trapping and the lower 
triangle is where the lower chamber is trapping. The shaded part displays where the 
hyperbolicity assumption |Tr| > 2 holds.
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The proof of this result is constructive. In particular, T depends logarithmically on ϵ (see 
equations (12) and (13)). The quantity Tr  is in fact the linear part of the normal forms in sec-
tion 4.2 and the ‘hyperbolicity assumption’ here means |Trace| > 2.

Example 2.1. To illustrate our results, we consider the case where

fL(t) = 0.3 cos(πt) + 0.5, fR(t) = 0.3 sin(πt) + 0.5. (1)

Then

∆(t) := fL(t)− fR(t) = 0.3
√

2 cos
(
πt +

π

4

)
.

A trapping region exists for λ, x0  such that either

∆(λ− x0) > 0, ∆(2 − λ− x0) < 0 or ∆(λ− x0) < 0, ∆(2 − λ− x0) > 0.

The former case is equivalent to λ− x0 < 0.25, 0.75 < λ+ x0 < 1.75; the upper chamber is 
trapping and the hyperbolicity assumption holds if |TrL| > 2.

The latter case is equivalent to λ− x0 > 0.25, λ+ x0 < 0.75; the lower chamber is trap-
ping and the hyperbolicity assumption holds if |TrU| > 2.

Figure 2 demonstrates that for fL, fR defined above by (1) the assumptions of theorems 1 
and 2 hold for a sizable set of parameters.

The structure of the rest of the paper is the following. In section 3 we describe the collision 
map. In section 4 we derive the normal form for the map obtained by considering the next 
collision with the moving wall after the ball switches from left to right chamber or vice versa. 
The proof of theorem 1 is given in section 5 and the proof of theorem 2 is given in section 6. In 
section 7 we summarize the tools developed in the present paper and discuss open problems.

3. Preliminaries

Since the horizontal speed of the ball stays constant, only the vertical speed contributes to the 
energy change of the ball. This is why we only need to record the time t and the vertical veloc-
ity v immediately after each collision. Let us denote by F the collision map.

For i = 1, 2, we denote as Ri the strip in the (t, v)-plane bounded by the singularity line 
Si = {t = t∗i } and its image FSi. Also let R̃i = F−1Ri. We subdivide the singular strips R into 
upper and lower chamber parts R+ and R−.

There are four possible scenarios when the ball makes a jump: the ball always hits the slits 
from above or below, the ball first hits from above then from below and vice versa.

We start with the easiest case when the ball always stays in the same chamber. Then the 
system is effectively equivalent to a Fermi–Ulam model with the motion (height) of the 
wall being the piecewise smooth 2-periodic function f (t) with two jump discontinuities at 
t∗1  and t∗2 .

Suppose that the ball is initially in the upper chamber. We omit the subscript i as the 
formulas for passing through the two singularities are the same. If for (t, v) ∈ R̃ we have 
f (t∗+)− f (t) < v(t∗ − t) < 2 − f (t)− f (t∗), then the ball ends in the upper chamber after 
jumping and the model is equivalent to the one with a fixed ceiling and a moving floor (see 
figure 3 on the left).

J Zhou Nonlinearity 33 (2020) 1542
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Two consecutive collisions (tn, vn) and (tn+1 , vn+1 ) = F(tn, vn) satisfy
{

vn+1 = vn + 2 ḟ (tn+1 )
2 − f (tn)− f (tn+1 ) = vn(tn+1 − tn).

 (2)

Similarly, suppose that the ball is initially in the lower chamber. If for (t, v) ∈ R̃ we have 
f (t)− f (t∗+) < −v(t∗ − t) < f (t) + f (t∗), then the ball ends in the lower chamber after 
jumping and the model is equivalent to the one with a moving ceiling and a fixed floor (see 
figure 3 on the right). Two consecutive collisions satisfy

{
vn+1 = vn + 2 ḟ (tn+1 )
f (tn) + f (tn+1 ) = −vn(tn+1 − tn).

 (3)

Now let us examine the switching cases.
Suppose that the ball is initially in the upper chamber and two consecutive collisions still 

follow equation (2) before the ball jumps from one slit to the other. However, when the ball 
jumps, if the next slit is above the previous one when the ball passes through the singularities, 
then there is a possibility that the ball enters the lower chamber. More precisely, for (t, v) ∈ R̃, 
if v(t∗ − t) > 2 − f (t)− f (t∗+), then the ball collides with the ceiling and then enters the 
lower chamber (see figure  4 on the left); while if v(t∗ − t) < f (t∗+)− f (t), then the ball 
enters the lower chamber immediately after it leaves the previous slit (see figure 4 on the 
right).

Two consecutive collisions satisfy the following equation (4) in the first case
{

vn(tn+1 − tn) = f (tn+1)− f (tn) + 2
vn+1 = −vn + 2ḟ (tn+1)

 (4)

Figure 3. Equivalent Fermi–Ulam models for the upper/lower chambers.

Figure 4. From upper to lower cases.
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and the following equation (5) in the second case
{

vn(tn+1 − t) = f (tn+1 )− f (tn)
vn+1 = −vn + 2 ḟ (tn+1 ).

 (5)

On the other hand, suppose the ball is initially in the lower chamber and two consecutive 
collisions still follow equation (3) before the ball jumps from one slit to the other. When the 
ball jumps, if the next slit is below the previous one when the ball passes through the singu-
larities, then there is a possibility that the ball enters the upper chamber. More precisely, for 
(t, v) ∈ R̃, if −v(t∗ − t) > f (t) + f (t∗−), then the ball collides with the floor and enters the 
upper chamber (see figure 5 on the left); while if −v(t∗ − t) < f (t)− f (t∗−), then the ball 
enters the lower chamber immediately after it leaves the previous slit (see figure 5 on the 
right).

Two consecutive collisions satisfy the following equation (6) in the first case
{

vn(tn+1 − tn) = f (tn+1)− f (tn)− 2
vn+1 = −vn + 2ḟ (tn+1) (6)

and the following equation (7) in the second case
{

vn(tn+1 − t) = f (tn+1 )− f (tn)
vn+1 = −vn + 2 ḟ (tn+1 ). (7)

By differentiating the collision equations, we obtain that detF = wn
wn+1

 where w is the rela-
tive velocity right after collision. Consequently, the collision map F preserves the absolutely 
continuous measure µ = wdtdv.

4. The normal form

In this section we study how the (vertical) velocity of the ball changes after one period ∆t = 2 
given sufficiently large initial energy. We will first approximate the collision map F with 
adiabatic coordinates away from singularities. Then we examine the collision dynamics when 
the ball passes through singularities. The change of coordinates we make is not area preserv-
ing, however, in our argument it is only important that it preserves Lebesgue measure class. 
Moreover, the Jacobian of our coordinate change tends to 1 as velocity tends to infinity.

Figure 5. From lower to upper cases.
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4.1. The adiabatic coordinates

First we suppose that the ball collides with the slit from above and it does not make a jump at 
nearby collisions.

Let us denote l(t) = 1 − f (t) and L∗ =
∫ 2

0 l−2(s)ds.

Lemma 4.1. For (t, v) /∈ Ri ∪ R̃i (i = 1, 2) and v ≫ 1, there exists an adiabatic coordinate 
(θ, I) = ΨU (t, v) ∈ R/2 Z× R+ such that

θn+1 = θn +
2
In

+O
(
1
I4n

)
, In+1 = In +O

(
1
I3n

)
.

In fact, θ = θ(t) = 2
L∗

∫ t
0

ds
l(s)2 mod 2, I = I(t, v) = L∗

2

(
lv+ ll̇+ l2 l̈

3 v

)
.

Proof. We can check the formula by a direct computation (see lemma 2.2 in [4]), or we can 
derive it in an inductive way (see section 2.2 in [5]). The basic idea is to find higher-order adi-
abatic invariants. For example, observe that

vn+1 − vn ≈ −2 l̇(tn), tn+1 − tn ≈ 2 l(tn)
vn

.

This leads to the Euler scheme of the following ODE

dv
dt
=

−vl̇
l

which in turn gives us the zeroth order adiabatic invariant I = lv. Then we update the scheme 
by replacing v with I and look for the first order adiabatic invariant, etc. This scheme termi-
nates at the second order adiabatic invariant I = lv+ ll̇+ l2̈l

3v .
Next, the formula for θ can be obtained reversely by solving the ODE

θ′
2l
v

=
2
lv

which leads to θ(t) =
∫ t

0 l−2(s)ds.
We observe that only the order v term in I is used to derive the formula for θ and it seems 

to produce an estimate only up to first order

θn+1 − θn = 2 /In +O(I−2n ).

But in fact by noting the Taylor expansion of l−2 and that

tn+1 − tn =
2l(tn)

vn
+

2l(tn)l̇(tn)
v2

n
+

2l(tn)l̇(tn)2 + 2l(tn)2̈l(tn)
v3

n
+O(v−4

n )

J Zhou Nonlinearity 33 (2020) 1542
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we obtain that
∫ tn+1

tn
l−2(s)ds =

tn+1 − tn
l2n

− l̇n
l3n
(tn+1 − tn)2 + (

l̇2n
l4n

− l̈n
3l3n
)(tn+1 − tn)3 +O(v−4

n )

=
2

lnvn
− 2l̇n

tnv2
n
+

2l̇2n − 2
3 ln̈ln

lnv3
n

+O(v−4
n )

=
2
In
+

2l̇n
vnIn

+
2ln̈ln
3v2

nIn
− 2l̇n

lnv2
n
+

2l̇2n − 2
3 ln̈ln

lnv3
n

+O(v−4
n )

=
2
In
+

2l̇2n
v2

nIn
+

2ln̈ln
3v2

nIn
+

2l̇2n − 2
3 ln̈ln

lnv3
n

+O(v−4
n )

=
2
In
+O(v−4

n )

where ln = l(tn) and l̇n = l̇(tn), which produces the desired third order estimate.
Finally, we need to rescale θ (and hence I) to make θ 2 periodic. □ 

Next we assume that the ball collides at the slits from below and it does not make a jump 
at nearby collisions.

We introduce a new function g(t) = f (t) + 1. Then equation (3) becomes the same as equa-
tion (2) with g in place of f  

{
vn+1 = vn + 2 ġ(tn+1 )
2 − g(tn)− g(tn+1 ) = vn(tn+1 − tn)

. (8)

Therefore all the computation above in lemma 4.1 applies with g in the place of f .
We define m (t) = 1 − g(t) = −f (t) and M∗ =

∫ 2
0 m(s)−2ds. We have another adiabatic 

coordinate if the collision occurs in the lower chamber away from singularities

Lemma 4.2. For (t, v) /∈ Ri ∪ R̃i (i = 1, 2) and v ≪ −1, there exists an adiabatic coordi-
nate (ζ, J) = ΨL(t, v) ∈ R/2 Z× R+ such that

ζn+1 = ζn +
2
Jn

+O
(
1
J4n

)
, Jn+1 = Jn +O

(
1
J3n

)
.

In fact, ζ = ζ(t) = 2
M∗

∫ t
0

ds
m(s)2 mod 2, J = J(t, v) = M∗

2

(
mv+ mṁ+ m2 m̈

3 v

)
.

4.2. The normal forms

In this section we present the Poincaré map P from one singular strip to the other in four pos-
sible scenarios. We assume the initial energy of the ball is sufficiently large |v0| > V∗ for some 
large V∗ in all the cases.

4.2.1. The upper–upper chamber case. We begin with the upper–upper chamber case, i.e. 
the ball stays in the upper chamber both before and after it makes a jump. Lemma 4.1 already 
depicts the dynamics away from singularities. Now let us scrutinize what occurs near the sin-
gularities t∗i  (i = 1, 2) when the ball makes a jump.

For (t1 , v1 ) ∈ R+
1  with v1 > V∗, we denote (̃t2 , ṽ2 ) = Fn1 (t1 , v1 ) ∈ R̃+

2 , where n1 = [
I1
2 (θ

∗
2 − θ1)]  

and θ∗2 = 2
L∗

∫ t∗2
0

ds
l(s)2 , and (̄t2 , v̄2 ) = F(̃t2 , ṽ2 ) ∈ R+

2 . Similarly, for (t2 , v2 ) ∈ R+
2  with v2 ≫ 1, 

we denote (̃t1 , ṽ1 ) = Fn2 (t2 , v2 ) ∈ R̃+
1 , where n2 = [

I2
2 (2+ θ∗1 − θ2)] and θ∗1 = 2

L∗

∫ t∗1
0

ds
l(s)2 , and 

(̄t1 , v̄1 ) = F(̃t1 , ṽ1 ) ∈ R+
1  (c.f. figure 6). 

J Zhou Nonlinearity 33 (2020) 1542



1551

We introduce a new pair of variables (τ , I) defined on the upper singular strips

τ =

{
I(θ − θ∗1 ) on R+

1
I(θ − θ∗2 ) on R+

2
, I =

I
L∗
on R+

1 , R+
2 .

Now we present the Poincaré maps P12
UU : R+

1 → R+
2  and P21

UU : R+
2 → R+

1  which captures 
the collision dynamics when the ball travels from one singular strips to the other. We need the 
following constants (i = 1, 2):

∆i =
1
2

l(t∗i +)
l(t∗i −)

(
l(t∗i −)l̇(t∗i +)− l(t∗i +)l̇(t

∗
i −)

)
,

∆′
i =

1
8

l(t∗i +)
2
(

l(t∗i −)̈l(t∗i +)− l(t∗i +)̈l(t
∗
i −)

)
,

∆′′
i =

1
24

l(t∗i −)l(t∗i +)
(

l(t∗i −)̈l(t∗i +)− l(t∗i +)̈l(t
∗
i −)

)
.

Proposition 4.3 (Upper–Upper). Suppose that (τ1 , I1 ) ∈ R+
1  and I1 > V∗, and that

f (t∗2 +)− f (t∗2 −) ! l−2 {L∗I1 (θ∗2 − θ∗1 )− τ1 }2 ! 2 − f (t∗2 +)− f (t∗2 −),

where ! means the inequality holds up to an error of order O( 1
I ), and {•}2 = • mod 2. Then the 

Poincaré map P12
UU : R+

1 → R+
2  is given by (τ̄2 , Ī2 ) = G12UU(τ1, I1) + H12

UU(τ1, I1) +O(I−2
1 ) 

where

G12UU(τ1, I1) =
(
− l−2

l+2
{L∗I1(θ∗2 − θ∗1 )− τ1}2 + 1+

l−2
l+2
,

l+2
l−2
I1 +∆2 (τ̄2 − 1)

)

and

H12
UU(τ1, I1) =

(
0,∆′

2 (τ̄2 − 1)2 /I1 +∆′′
2 /I1

)
.

Similarly, suppose that (τ2 , I2 ) ∈ R+
2 , I2 > V∗, and that

f (t∗1 +)− f (t∗1 −) ! l−1 {L∗I2 (2 + θ∗1 − θ∗2 )− τ2 }2 ! 2 − f (t∗1 +)− f (t∗1 −).

Then the Poincaré map P21
UU : R+

2 → R+
1  is given by

(τ̄1 , Ī1 ) = G21UU(τ2, I2) + H21
UU(τ2, I2) +O(I−2

2 )

t

v R̃+
1R

+
1 R̃+

2R
+
2

t∗1 t∗2
V∗

(t1, v1)

(t̃2, ṽ2)

(t̄2, v̄2)
F n1

Figure 6. The Poincaré map P12
UU  on the singular strips.

J Zhou Nonlinearity 33 (2020) 1542



1552

where

G21UU(τ2, I2) =
(
− l−1

l+1
{L∗I2(2+ θ∗1 − θ∗2 )− τ2}2 + 1 +

l−1
l+1
,

l+1
l−1
I2 +∆1 (τ̄1 − 1 )

)
,

H21
UU(τ2, I2) =

(
0,∆′

1 (τ̄1 − 1 )2/I2 +∆′′
1 /I2

)

and l±i = l(t∗i ±).

Proof. We only derive the formula for P12UU . The formula for P21
UU  can be obtained in a 

similar fashion.

For the ease of notation we drop the sub/superscripts whenever they are clear from the 
context. Note that near the jump discontinuity at t∗

l(̃t∗) = l−(t∗) + l̇−(̃t − t∗) +
1
2

l̈−(t∗)(̃t − t∗)2 +O(ṽ−3 ),

l(̃t∗) = l+(t∗) + l̇+(̄t − t∗) +
1
2

l̈+(t∗)(̄t − t∗)2 +O(ṽ−3 ),

l̇(̃t∗) = l̇−(t∗) + l̈−(̃t − t∗) +O(ṽ−2 ),
l̇(̃t∗) = l̇+(t∗) + l̈+(̄t − t∗) +O(ṽ−2 ),
l̈(̃t∗) = l̈−(t∗) +O(ṽ−1 ),
l̈(̃t∗) = l̈+(t∗) +O(ṽ−1 ),

and that

v̄ = ṽ − 2 l̇(̄t), t̄ − t̃ =
l(̄t) + l(̃t)

v̄
.

Hence by solving iteratively the implicit equation we attain

t̄ − t̃ =
l+ + l−

ṽ
+ (l̇+ + l̇−)

t̄ − t∗

ṽ
− l̇−(l+ + l−)

ṽ2
+O(ṽ−3 ).

By a straightforward but tedious computation we arrive at

2 L−1
∗

(
l−
l+

Ī − Ĩ
)
= (l+ l̇− − l− l̇+)−

l+ l̇− − l− l̇+
l+

(̄t − t∗)v̄

+ (l+ l̈− − l− l̈+ +
l−
l+

l̇2+ − l̇− l̇+)(̄t − t∗)

+

(
l−
3
(l+ l̈+ − l− l̈−) +

l̈−
2
(l2− − l2+)

)
1
v̄

− l+ l̈− − l− l̈+
2 l+

(̄t − t∗)2 v̄+O(ṽ−2 )

=
l− l̇+ − l+ l̇−

l+

(
(̄t − t∗)v̄

(
1 +

l̇+
v̄
)
− l+

)

+
l− l̈+ − l+ l̈−
2 l+v̄

(
(
(̄t − t∗)v̄ − l+

)2
+

l−l+(l− l̈− − l+ l̈+)
3 (l− l̈+ − l+ l̈−)

)
+O(ṽ−2 ).
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It can be checked directly by Taylor expanding Ī and θ̄  that

τ̄ = Ī(θ̄ − θ∗2 ) =
1
l+

(
(̄t − t∗)v̄+ l̇+(̄t − t∗)

)
+O(ṽ−2 ).

Thus eventually we have

Ī = (l+/l−)Ĩ +∆(τ̄ − 1 ) + ∆′(τ̄ − 1 )2 /Ĩ +∆′′/Ĩ +O(Ĩ−2 ).

Now we compute τ̄ . Observe that

τ̄ =
v̄+ l̇+

l+
(̄t − t∗) +O(v̄−2 ), Ĩ(θ̃ − θ̃∗2 ) =

ṽ+ l̇−
l−

(̃t − t∗) +O(v̄−2 ).

Therefore

l+τ̄ = ((̄t − t̃) + (̃t − t∗))(ṽ+ l̇− − (l̇− + l̇+)) +O(ṽ−2 )
= (̃t − t∗)(ṽ+ l̇−) + (̄t − t̃)(ṽ+ l̇−)− (̄t − t∗)(l̇− + l̇+) +O(ṽ−2 )

= l− Ĩ(θ̃ − θ̃∗2 ) +
l− + l+

ṽ
(ṽ+ l̇−) + (l̇− + l̇+)(̄t − t∗)

− l̇−(l− + l+)
ṽ

− (̄t − t∗)(l̇− + l̇+) +O(ṽ−2 )

= l− Ĩ(θ̃ − θ̃∗2 ) + l− + l+ +O(ṽ−2 ),

which gives

τ̄ = (l−/l+)Ĩ(θ̃ − θ∗2 ) + 1 + l−/l+ +O(Ĩ−2 ).

But lemma 4.1 implies that

Ĩ = I +O(I−2 ), θ̃ = θ +
2 n1

I
+O(I−3 )

hence we have

Ĩ(θ̃ − θ∗2 ) = τ + 2n1 + I(θ∗1 − θ∗2 ) +O(I−2)

where n1 = [
I1
2 (θ

∗
2 − θ1)].

We hitherto complete the proof of the formula for P12
UU . □ 

4.2.2. The lower–lower chamber case. We present here the mirror case to section 4.2.1, i.e. 
when the ball stays in the lower chamber both before and after it makes a jump.

We need the following constants (i = 1, 2)
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ζ∗i =
2
M∗

∫ t∗i

0
m (s)−2d s

Υi =
1
2
m +
i

m −
i
(m −
i ṁ

+
i − m +

i ṁ
−
i )

Υ′
i =

1
8
m +2
i (m

−
i m̈

+
i − m +

i m̈
−
i )

Υ′′
i =

1
24
m −
i m

+
i (m

−
i m̈

−
i − m +

i m̈
+
i ).

We introduce a new pair of variables (ρ,J ) on the lower singular strips, which is the 
counter part of (τ , I) as follows

ρ =

{
J(ζ − ζ∗1 ) on R−

1
J(ζ − ζ∗2 ) on R−

2
, J =

J
M∗

on R−
1 ,R

−
2 .

Proposition 4.4 (Lower–Lower). Suppose that (ρ1 ,J1 ) ∈ R−
1 , and J1 > V∗, and that

f (t∗2 −)− f (t∗2 +) ! −m −
2 {M∗J1 (ζ∗2 − ζ∗1 )− ρ1}2 ! f (t∗2 −) + f (t∗2 +).

Then the Poincaré map P12
LL : R−

1 → R−
2  is given by

(ρ̄2 , J̄2 ) = G12LL(ρ1,J1) + H12
LL(ρ1,J1) + +O(J−2

1 )

where

G12LL(ρ1,J1) =
(
−m−

2

m+
2
{M∗J1(ζ∗2 − ζ∗1 )− ρ1}2 + 1+

m−
2

m+
2
,

m+
2

m−
2
J1 +Υ2 (ρ̄2 − 1)

)

and

H12
LL(ρ1,J1) =

(
0,Υ′

2 (ρ̄2 − 1)2 /J1 +Υ′′
2 /J1

)
.

Similarly, suppose that (ρ2 ,J2 ) ∈ R−
2  and J2 > V∗, and that

f (t∗1 −)− f (t∗1 +) ! −m −
1 {M∗J2 (2 + ζ∗1 − ζ∗2 )− ρ2}2 ! f (t∗1 −) + f (t∗1 +).

Then the Poincaré map P21
LL : R−

2 → R−
1  is given by

(ρ̄1 , J̄1 ) = G21LL(ρ2,J2) + H21
LL(ρ2,J2) + +O(J−2

2 )

where

G21LL(ρ2,J2) =
(
−m−

1

m+
1
{M∗J2(2+ ζ∗1 − ζ∗2 )− ρ2}2 + 1 +

m−
1

m+
1
,

m+
1

m−
1
J2 +Υ1 (ρ̄1 − 1 )

)
,

H21
LL(ρ2,J2) =

(
0,Υ′

1 (ρ̄1 − 1 )2/J2 +Υ′′
1 /J2

)
,

and m ±
i = m (t∗i ±).
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4.2.3. The upper–lower chamber case. Now we suppose that (̃t, ṽ) ∈ R̃ and that the ball is in 
the upper chamber. Also we assume that the next wall is above the previous one when the ball 
passes through the singularity at t  =  t∗: f (t∗−) < f (t∗+). Let (̄t, v̄) = F(̃t, ṽ).

If v(t∗ − t) > 2 − f (t)− f (t∗+), then the ball collides with the ceiling and then enters the 
lower chamber (see figure 4 on the left).

Rather than resorting to the detailed computation as we have done in the constant cham-
ber cases, we insert an imaginary stationary slit, whose length is negligible, at the height 
f∗ = 1 − ṽ(t∗ − t̃) + l(̃t), so that the two consecutive collisions at the moving slits are concat-
enated by two fictional collisions at the imaginary wall, to which the propositions 4.3 and 4.4 
formulas readily apply (c.f. figure 7).

More precisely, as the ball leaves the previous slit at time t̃  with velocity ṽ, it collides 
against the imaginary tiny slit at time t∗ and the outgoing velocity is still v∗ = ṽ as the slit is 
stationary. Meanwhile we also imagine that the ball leaves from below the fictional slit at time 
t∗ with velocity v∗ = −ṽ (with an abuse of notation), then it collides at the next moving slit at 
time t̄  with outgoing velocity v̄.

Let us denote I∗ = I(t∗, v∗), etc. We will need the following constants

κIi =
1
2
m +(ṁ + − m + l̇−/l−)

κ′
Ii =

1
2
m + l̇−/l−

κ′′
Ii =

1
8
m + l̈−(1 − 1

3
l2−)

κ′′′
Ii =

1
4
m 2

+(̈l− +
1
6
l− m̈ +)

κ′′′′
Ii =

1
8
m 3

+ l̈−

κ′′′′′
Ii =

1
8
m 2

+ m̈ +l−

where i indicates that l(t) and m(t) are evaluated at t = t∗i  (i = 1, 2).
Then the dynamics between the singular strips is captured by the following formula:

Proposition 4.5 (Upper–Lower I). Assume that (τ1 , I1 ) ∈ R+
1  with I1 > V∗ and that

l−2 {L∗I1 (θ∗2 − θ∗1 )− τ1 }2 ! 2 − f (t∗2 +)− f (t∗2 −).

Then the Poincaré map P12
ULI : R+

1 → R−
2  is given by

(ρ̄2 , J̄2 ) = G12ULI(τ1, I1) + H12
ULI(τ1, I1) +O(I−2

1 )

(t̃, ṽ)

(t̄, v̄)
(t∗, v∗)

Figure 7. The imaginary stationary wall.
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where

G12ULI(τ1, I1) =
(
l−2
m +
2
{L∗I1(θ∗2 − θ∗1 )− τ1}2 +

m +
2 − l−2 − 1
m +
2

,

− m
+
2

l−2
I1 + κI2 (ρ̄2 − 1)− κ′

I2

)

and

H12
ULI(τ1, I1) =

(
0,

κ′′
I2
I1

+ κ′′′
I2
ρ̄2 − 1

I1
+ κ′′′′

I2
(ρ̄2 − 1)2

I1
− κ′′′′′

I2
(ρ̄2 − 1)3

I1

)
.

Similarly, assume that (τ2 , I2 ) ∈ R+
2  with I2 > V∗ and that

l−1 {L∗I2 (2 + θ∗1 − θ∗2 )− τ2 }2 ! 2 − f (t∗1 +)− f (t∗1 −).

Then the Poincaré map P21
ULI : R+

2 → R−
1  is given by

(ρ̄1 , J̄1 ) = G21ULI(τ2, I2) + H21
ULI(τ2, I2) +O(I−2

2 )

where

G21ULI(τ2, I2) =
(
l−1
m +
1
{L∗I2(2+ θ∗1 − θ∗2 )− τ2}2 +

m +
1 − l−1 − 1
m +
1

,

− m
+
1

l−1
I2 + κI1 (ρ̄1 − 1 )− κ′

I1

)

and

H21
ULI(τ2, I2) =

(
0,

κ′′
I1
I2

+ κ′′′
I1
ρ̄1 − 1
I2

+ κ′′′′
I1

(ρ̄1 − 1 )2

I2
− κ′′′′′

I1
(ρ̄1 − 1 )3

I2

)
.

Proof. We present the proof of P12ULI. The formula for P21
ULI can be obtained similarly. We 

suppress the sub/superscripts whenever they are clear from the context.
We imagine that the ball collides at the fictional stationary wall at time t∗ with outgoing 

velocity v∗ = ṽ. Then l∗ = 1 − f∗ = ṽ(t∗ − t̃)− l(̃t) and we have

I∗ =
L∗
2

l∗ṽ, τ∗ = 0.

From the proposition 4.3 formula,

τ∗ =
l−
l∗

Ĩ(θ̃ − θ∗2 ) + 1 +
l−
l∗

+O(v−2)

I∗ =
l∗
l−

Ĩ +
L∗l2∗
2l−

l̇− − L2∗l3∗ l̈−
8 Ĩ

+
L2∗l2∗l∗ l̈−
24 Ĩ

+O(v−2).

Now we imagine that the ball leaves from below the fictional stationary wall at time t∗ with 
outgoing velocity v∗ = −ṽ (with an abuse of notation). Then m∗ = −m(̄t)− v(̄t − t∗) and we 
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have

J∗ = −M∗
2
m∗ṽ, ρ∗ = 0.

From the proposition 4.4 formula,

ρ̄ = 1 +
m∗
m+

+O(v−2)

J̄ =
m+

m∗
J∗ +

M∗
2
m+ṁ+(ρ̄− 1 ) +

M2∗
8 J∗
m2+m∗m̈+(ρ̄− 1 )2 −

M2∗
24 J∗

m2+m∗m̈+ +O(v−2).

We observe that

l∗ = v(t∗ − t̃)− l(̃t)

= v(t∗ − t̃)− l− − l̇−(̃t − t∗) +O(v−2)

= −(ṽ+ l̇−)(t∗ − t̃)− l− +O(v−2)

= −l− Ĩ(θ̃ − θ∗2 )− l− +O(v−2)

and that

m∗ = −m(̄t)− v(̄t − t∗)

= −m+ − ṁ+(̄t − t∗) + (v̄+ 2 ṁ+)(̄t − t∗) +O(v−2 )
= −m+ + (v̄+ ṁ+)(̄t − t∗) +O(v−2 )
= −m+ + m+ρ̄+O(v−2 ).

Since m ∗ = l∗ − 1,

ρ̄ = − l−
m +
Ĩ(θ̃ − θ∗2 ) +

m + − l− − 1
m +

+O(v−2 ).

Finally the relation between I∗ and J∗, together with lemma 4.1, produces the formula for 
J̄. □ 

If v(t∗ − t) < f (t∗+)− f (t), then the ball enters the lower chamber immediately after it 
leaves the previous slit (see figure 4 on the right).

The imaginary wall trick no longer applies, so we have to return to the direct computation.
We need the following constants

κ′′
IIi =

1
4
m 2

+ l̈−

κ′′′
IIi =

1
8
m 2

+(l− m̈ + − m + l̈−)

κ′′′′
IIi =

1
24
m +l−(l2− l̈− − l−m + m̈ + − 3̈l−)

where i indicates that l(t) and m(t) are evaluated at t = t∗i  (i = 1, 2).

Proposition 4.6 (Upper–Lower II). Assume that (τ1 , I1 ) ∈ R+
1  with I1 > V∗ and that

f (t∗2 +)− f (t∗2 −) ! l−2 {L∗I1 (θ∗2 − θ∗1 )− τ1 }2 .
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Then the Poincaré map P12
ULII : R+

1 → R−
2  is given by

(ρ̄2 , J̄2 ) = G12ULII(τ1, I1) + H12
ULII(τ1, I1) +O(I−2

1 )

where

G12ULII(τ1, I1) =
(
l−2
m +
2
{L∗I1(θ∗2 − θ∗1 )− τ1}2 +

m +
2 − l−2 + 1
m +
2

,

− m
+
2

l−2
I1 + κI2 (ρ̄2 − 1) + κ′

I2

)

and

H12
ULII(τ1, I1) =

(
0,−κ′′

II2
ρ̄2 − 1
I1

− κ′′′
II2
(ρ̄2 − 1)2

I1
− κ′′′′

II2
I1

)
.

Similarly, assume that (τ2 , I2 ) ∈ R+
2  with I2 > V∗ and that

f (t∗1 +)− f (t∗1 −) ! l−1 {L∗I2 (2 + θ∗1 − θ∗2 )− τ2 }2 .

Then the Poincaré map P21
ULII : R+

2 → R−
1  is given by

(ρ̄1 , J̄1 ) = G21ULII(τ2, I2) + H21
ULII(τ2, I2) +O(I−2

2 )

where

G21ULII(τ2, I2) =
(
l−1
m +
1
{L∗I2(2+ θ∗1 − θ∗2 )− τ2}2 +

m +
1 − l−1 + 1
m +
1

,

− m
+
1

l−1
I2 + κI1 (ρ̄1 − 1 ) + κ′

I1

)

and

H21
ULII(τ2, I2) =

(
0,−κ′′

II1
ρ̄1 − 1
I2

− κ′′′
II1
(ρ̄1 − 1 )2

I2
− κ′′′′

II1
I2

)
.

Proof. Again we only prove the formula for P12
ULII.

We have from equation (5) that

v(̄t − t̃) = f (̄t)− f (̃t)
=⇒ ṽ((̄t − t∗)− (̃t − t∗)) = −m (̄t) + l(̃t)− 1

=⇒ m + − (v̄+ ṁ +)(̄t − t∗) = (ṽ+ l̇−)(̃t − t∗) + l− − 1 +O(v−2 )
=⇒ m + − m +ρ̄ = l− Ĩ(θ̃ − θ∗2 ) + l− − 1 +O(v−2 )

=⇒ ρ̄ = − l−
m +
Ĩ(θ̃ − θ∗2 ) +

m + − l− + 1
m +

+O(v−2 ).
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The computation is similar to that in the proof of proposition 4.3. So we just list the key steps.
We observe that

2M−1
∗ J̄ = m̄ v̄+ m̄ ˙̄m +

m̄ 2 ¨̄m
3v̄

= m +v̄+ m +ṁ + + m +ṁ +ρ̄+ m +m̈ +(̄t − t∗) +
m 2

+m̈ +

3v̄

+
m̈ +

2
(̄t − t∗)2v̄+O(v−2)

and that

2 L−1
∗ Ĩ = l̃ṽ+ l̃˙̃l+

l̃2 ¨̃l
3 ṽ

= l−ṽ+ l− l̇− + l− l̇− Ĩ(θ̃ − θ∗2 ) + l− l̈−(̃t − t∗) +
l2− l̈−
3 ṽ

+
l̈−
2
(̃t − t∗)2 ṽ+O(v−2 ).

We also note from equation (5) that

ṽ = −v̄ − 2ṁ+ − 2m̈+(̄t − t∗) +O(v−2)

and that

t̄ − t̃ = f (̄t)− f (̃t)
ṽ

=
−m (̄t) + l(̃t)− 1

ṽ

=
−m + + l− − 1

ṽ
+ (−ṁ + + l̇−)

t̄ − t∗
ṽ

− l̇−
t̄ − t̃
ṽ
+O(v−3 )

=
−m + + l− − 1

ṽ
+ (−ṁ + + l̇−)

t̄ − t∗
ṽ

+ l̇−
m + − l− + 1

ṽ2
+O(v−3 ).

Therefore

2L−1
∗ Ĩ = −l−v̄− 2l− ṁ + + m + l̇− + m + l̇−ρ̄+ l̇−

+ (m + l̈− − 2l− m̈ + + l̈−)(̄t − t∗)−
l̈−
2
(̄t − t∗)2v̄

− l̈−
2v̄

(
(m + + 1)2 −

l2−
3

)
+O(v−2)

hence

2l−
M∗

J̄ +
2m +

L∗
Ĩ = m + l̇− + m +(l− ṁ + − m + l̇−)(ρ̄− 1)− 1

2
L∗l−m 2

+ l̈−
ρ̄− 1
I

− 1
4
L∗l−m 2

+(l− m̈ + − m + l̈−)
(ρ̄− 1)2

I

− 1
12I

L∗l−m +(l2− l̈− − l−m + m̈ + − 3̈l−) +O(v−2)

which produces the desired formula together with lemma 4.1. □ 

J Zhou Nonlinearity 33 (2020) 1542



1560

4.2.4. The lower–upper chamber case. Finally we suppose that (̃t, ṽ) ∈ R̃ and that the ball 
is in the lower chamber. Also we assume that the next wall is below the previous one when 
the ball passes through the singularity at t  =  t∗: f (t∗−) > f (t∗+). Again let (̄t, v̄) = F(̃t, ṽ).

If −v(t∗ − t) > f (t) + f (t∗−), then the ball collides with the floor and enters the upper 
chamber (see figure 5 on the left).

The imaginary stationary wall trick also applies in this case, which produces a desired 
formula with the following constants

χIi =
1
2
l+(l̇+ − l+ ṁ −/m −)

χ′
Ii =

1
2
l+ ṁ −/m −

χ′′
Ii =

1
8
l+ m̈ −(1 − 1

3
m 2

−)

χ′′′
Ii =

1
4
l2+(

1
6
m − l̈+ − m̈ −)

χ′′′′
Ii =

1
8
l3+ m̈ −

χ′′′′′
Ii =

1
8
l2+ l̈+m −

where i indicates that l(t) and m(t) are evaluated at t = t∗i  (i = 1, 2).

Proposition 4.7 (Lower–Upper I). Assume that (ρ1 ,J1 ) ∈ R−
1  with J1 > V∗ and that 

−m −
2 {M∗J1(ζ∗2 − ζ∗1 )− ρ1}2 ! f (t∗2−) + f (t∗2+). Then the Poincaré map P12

LU I : R−1 → R+2  
is given by

(τ̄2 , Ī2 ) = G12LUI(ρ1,J1) + H12
LUI(ρ1,J1) +O(J−2

1 )

where

G12LU I(ρ1,J1) =
(
m −
2

l+2
{M∗J1(ζ∗2 − ζ∗1 )− ρ1}2 +

l+2 − m −
2 + 1
l+2

,

− l+2
m −
2
J1 + χI2 (τ̄2 − 1) + χ′

I2

)

and

H12LU I(ρ1,J1) =
(
0,

χ′′
I2

J1
+ χ′′′

I2
τ̄2 − 1
J1

+ χ′′′′
I2

(τ̄2 − 1)2

J1
− χ′′′′′

I2
(τ̄2 − 1)3

J1

)
.

Similarly, assume that (ρ2 ,J2 ) ∈ R−
2  with J2 > V∗ and that

−m −
1 {M∗J2 (2 + ζ∗1 − ζ∗2 )− ρ1}2 ! f (t∗1 −) + f (t∗1 +).
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Then the Poincaré map P21
LU I : R−2 → R+1  is given by

(τ̄1 , Ī1 ) = G21LUI(ρ2,J2) + H21
LUI(ρ2,J2) +O(J−2

2 )

where

G21LU I(ρ2,J2) =
(
m −
1

l+1
{M∗J2(2+ ζ∗1 − ζ∗2 )− ρ2}2 +

l+1 − m −
1 + 1
l+1

,

l+1
m −
1
J2 + χI1 (τ̄1 − 1 ) + χ′

I1

)

and

H21LU I(ρ2,J2) =
(
0,

χ′′
I1

J2
+ χ′′′

I1
τ̄1 − 1
J2

+ χ′′′′
I1

(τ̄1 − 1 )2

J2
− χ′′′′′

I1
(τ̄1 − 1 )3

J2

)
.

Next, if −v(t∗ − t) < f (t)− f (t∗−), then the ball enters the lower chamber immediately 
after it leaves the previous slit (see figure 5 on the right).

The computation as we have performed for proposition 4.6 can be reproduced here to 
present the formula in this case, the proof of which we ergo omit. We will need the following 
constants

χ′′
IIi =

1
4
l2+ m̈ −

χ′′′
IIi =

1
8
l2+(m − l̈+ − l+ m̈ −)

χ′′′′
IIi =

1
24
l+m −(m 2

− m̈ − − m −l+ l̈+ − 3m̈ −)

where i indicates that l(t) and m(t) are evaluated at t = t∗i  (i = 1, 2).

Proposition 4.8 (Lower–Upper II). Assume that (ρ1 ,J1 ) ∈ R−
1  with J1 > V∗ and that 

f (t∗2−)− f (t∗2+) ! −m −
2 {M∗J1(ζ∗2 − ζ∗1 )− ρ1}2. Then the Poincaré map P12

LU II : R−1 → R+2  
is given by

(τ̄2 , Ī2 ) = G12LUII(ρ1,J1) + H12
LUII(ρ1,J1) +O(J−2

1 )

where

G12LU II(ρ1,J1) =
(
m −
2

l+2
{M∗J1(ζ∗2 − ζ∗1 )− ρ1}2 +

l+2 − m −
2 − 1
l+2

,

− l+2
m −
2
J1 + χI2 (τ̄2 − 1)− χ′

I2

)

and

H12
LUII(ρ1,J1) =

(
0,χ′′

II2
τ̄2 − 1
J1

− χ′′′
II2
(τ̄2 − 1)2

J1
− χ′′′′

II2
J1

)
.

Similarly, assume that (ρ2 ,J2 ) ∈ R−
2  with J2 > V∗ and that

f (t∗1 −)− f (t∗1 +) ! −m −
1 {M∗J2 (2 + ζ∗1 − ζ∗2 )− ρ2}2 .
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Then the Poincaré map P21
LU II : R−2 → R+1  is given by

(τ̄1 , Ī1 ) = G21LUII(ρ2,J2) + H21
LUII(ρ2,J2) +O(J−2

2 )

where

G21LUII(ρ2,J2) =
(
m −
1

l+1
{M∗J2(2+ ζ∗1 − ζ∗2 )− ρ2}2 +

l+1 − m −
1 − 1
l+1

,

− l+1
m −
1
J2 + χI1 (τ̄1 − 1 )− χ′

I1

)

and

H21
LUII(ρ2,J2) =

(
0,χ′′

II1
τ̄1 − 1
J2

− χ′′′
II1
(τ̄1 − 1 )2

J2
− χ′′′′

II1
J2

)
.

5. Trapping regions

In this section, we present the proof of theorem 1. The assumptions in the theorem lead to the 
creation of a trapping region where the ball gains energy exponentially fast.

Proof. We choose V∗ ≫ 1 so that the normal forms in section 4 hold for |v| > V∗. There are 
two cases.

 (i)  Suppose that fL(t∗1 ) < fR(t∗1 ) and fL(t∗2 ) > fR(t∗2 ). The relative positions of the two slits 
at two critical jumps trap the ball forever in the lower region once it enters (c.f. figure 8). 
Henceforth proposition 4.4 predicts the change of energy after one period in the lower 
chamber to be

¯̄J =
m+
1

m−
1

m+
2

m−
2
J +O(1 ).

  Furthermore, the relative positions of the slits at two critical times guarantee that 
m(t∗1+) < m(t∗1−) < 0, m(t∗2+) < m(t∗2−) < 0, so the energy of the ball grows exponen-

tially fast at rate m+
1

m−
1

m+
2

m−
2
> 1 in the lower chamber.

  If the ball starts from the lower chamber with v0 < −V∗, it enjoys exponential energy 
growth with time immediately.

  If the ball starts from the upper chamber with v0 > V∗, by proposition 4.3 and the relative 

positions of the slits, its energy decreases at an exponential rate l+1
l−1

l+2
l−2

< 1 until it either 

enters the lower chamber or it enter the low energy region |v| < V∗ where the normal 
form no longer applies. The possible future when the latter situation occurs is that either 
the ball remains forever in the low energy region |v| ! V∗ or it gets trapped to the lower 
chamber with some high energy |v| > V∗ and then starts exponential acceleration. Now 
we show that the initial conditions in the upper chamber which leads to bounded orbits 
contributes a null set.
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  For any V > V∗, we denote

UV = {(t0 , v0 ) : V < v0 < V + 1, lim sup |vn| < V∗} .

  We claim that µ(UV) = 0. Otherwise we note that UV ⊆ BV := {|vn| < V + 1, ∀n > 0 }  
by the foregoing discussion and BV is bounded and invariant. Hence, by applying the 
Poincaré recurrence theorem to (F,µ) on BV, almost every point in UV  would return 
infinitely often to energy level |vn| > V , which contradicts the definition of UV . Our claim 
implies that almost all points in the energy shell WV ={V < v < V + 1} eventually 
return to some high energy level |vn| > V∗, which is only made possible if the ball enters 
the lower chamber and proposition 4.4 ensures exponential energy growth afterwards.

 (ii)  Suppose that fL(t∗1 ) > fR(t∗1 ) and fL(t∗2 ) < fR(t∗2 ). Now the relative positions of the two 
slits at two critical jumps indicate that the upper region is trapping and then proposition 

4.3 guarantees an exponential energy gain at rate l
+
1

l−1

l+2
l−2

> 1 in the upper chamber once the 

ball gets trapped. The rest of the analysis is similar to Case (i). □ 

Example 5.1. In general it is not possible to improve the result that non-escap-
ing orbits have finite measure to one with zero measure. For example, we start with 
f̃L(t) = f̃R(t) = a cos 4πt + 0.5 for some small a  >  0. We take x0 = 0,λ = 0.5 , so 
t∗1 = 0.5, t

∗
2 = 1.5. We consider a 4-periodic orbit P  starting at t0 = 0.25, v0 = 2+ 4 a. Then

(t1, v1) = (0.75, 2 + 4a), (t2, v2) = (1.25, 2 + 4a), (t3, v3) = (1.75, 2 + 4a), .

We slightly modify f̃L, f̃R near t∗1 , t
∗
2  in such a way that

fL(0.5 ) > fR(0.5 ), fL(1.5 ) < fR(1.5 )

so that the upper chamber is trapping and that the periodic orbit P  does not see this modifica-
tion. Observe that P  is elliptic for all small a as the trace of the collision map F along P  is 

tr(dFP) = 2 − 8aπ2

1+2a ∈ (0, 2) for 0 < a < 1
4π2−2. Now the matrix dFP is conjugate to a rota-

tion by 2πα with cos 2πα = 1 − 4aπ2

1+2a. We can easily choose a such that the rotation angle α is 
Diophantine, then Herman’s last geometric theorem guarantees the stability of the elliptic or-
bit P , i.e. there exists an elliptic island of bounded trajectories around P  (see [9, theorem 4]).

Although the assumptions of theorem 1 are compatible with existence of a positive meas-
ure set of bounded orbits, we can eliminate the possibility of oscillatory orbits. Recall that a 
(forward) oscillatory orbit is an orbit such that

lim sup
t→+∞

|v(t)| = ∞ and lim inf
t→+∞

|v(t)| < ∞.

t∗1 t∗2

Figure 8. The trapping lower chamber.
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Corollary 5.2. In presence of a trapping region oscillatory orbits do not exist.

Proof. We may assume without loss of generality that the lower chamber is trapping. All the 
high energy orbits in the lower chamber gain energy exponentially immediately.

Now suppose that the ball is in the upper chamber and arrives at high energy level at some 
v > V∗, then it decelerates exponentially as observed in the proof of theorem 1 until it enters 
the lower chambers or the normal form no longer applies. In either case, the ball either starts 
to accelerate exponentially or remains in the low energy region |v| < V∗ afterwards. □ 

6. Waiting time for exponential acceleration

In this section we show that in the presence of the trapping region, the majority of orbits with 
sufficiently high energy get trapped quickly under the hyperbolicity assumption. Throughout 
this section  we assume without loss of generality that the lower chamber is trapping and 
|Tr| > 2. The quantity Tr  is in fact the trace of the derivative of the linear map GU = G21

UU ◦ G12
UU  

and the hyperbolicity assumption |Tr| > 2 indicates that GU is hyperbolic.

6.1. Almost sure escape for the limiting map

We first restrict ourselves to the linear parts GUU’s of the dynamics in Proposition 4.3, which 
approximates PUU’s with an error of order O(I−1) when the velocity is large v > V∗.

We note that

(τ̄2 , Ī2 ) = G12UU(τ1, I1)

=

(
− l−2

l+2
{L∗I1(θ∗2 − θ∗1 )− τ1}2 + 1+

l−2
l+2
,

l+2
l−2
I1 +∆2 (τ̄2 − 1)

)

if 1 − l+2
l−2

< {L∗I1(θ∗2 − θ∗1 )− τ1}2 < 1 +
l+2
l−2

. The boundary lines

{L∗I1 (θ∗2 − θ∗1 )− τ1 }2 = 1 −
l+2
l−2
, {L∗I1 (θ∗2 − θ∗1 )− τ1 }2 = 1 +

l+2
l−2

 (9)

cut out from R+
1  a sequence of boxes

An = {1 − l+2
l−2

+ 2n < L∗I1(θ
∗
2 − θ∗1 )− τ1 < 1 +

l+2
l−2

+ 2n}

whose points will remain in the upper chamber under G12
UU, while the other points will enter 

the lower chamber, when jumping from right to left at t∗2.
We also observe that

(τ̄1 , Ī1 ) = G21UU(τ2, I2)

=

(
− l−1

l+1
{L∗I2(2+ θ∗1 − θ∗2 )− τ2}2 + 1 +

l−1
l+1
,

l+1
l−1
I2 +∆1 (τ̄1 − 1 )

)

if 1 − l+1
l−1

< {L∗I2(2 + θ∗1 − θ∗2 )− τ2}2 < 1 +
l+1
l−1

 and that the boundary lines
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{L∗I2 (2 + θ∗1 − θ∗2 )− τ2 }2 = 1 −
l+1
l−1
, {L∗I2 (2 + θ∗1 − θ∗2 )− τ2 }2 = 1 +

l+1
l−1

 (10)
cut out from R+

2  another sequence of boxes

Bn = {1 − l+1
l−1

+ 2n < L∗I2(2 + θ∗1 − θ∗2 )− τ2 < 1 +
l+1
l−1

+ 2n}

whose points will remain in the upper chamber under G21
UU, while the points outside will enter 

the lower chamber, when jumping from left to right at t∗1.
We define GU = G21

UU ◦ G12
UU  on R+

1 . Both G12
UU and G21

UU are piecewise affine maps, and the 
derivative of GU is a constant matrix DGU = DG21

UU · DG12
UU where

DG12UU =

⎛

⎝
l−2
l+2

− l−2
l+2
L∗(θ∗2 − θ∗1 )

∆2
l−2
l+2

−∆2
l−2
l+2
L∗(θ∗2 − θ∗1 ) +

l+2
l−2

⎞

⎠ ,

DG21UU =

⎛

⎝
l−1
l+1

− l−1
l+1
L∗(2+ θ∗1 − θ∗2 )

∆1
l−1
l+1

−∆1
l−1
l+1
L∗(2+ θ∗1 − θ∗2 ) +

l+1
l−1
.

⎞

⎠

Since det(DGU) = 1 and |Tr(DGU)| > 2, it has unstable eigenvalue Λu with unstable 
eigenvector eu, and stable eigenvalue Λs with stable eigenvector es.

We observe that each box A is foliated by unstable lines.
We say that an unstable line γ  in a box A is good if it breaks after one period and at least 

two components remain in the upper chamber, otherwise we say it is bad.
A good line is good as a solid part of it enters the trapping region after one period under 

the linear map GU:

Lemma 6.1. Let γ  be a good unstable line in some box A. Then the proportion of points on 
γ  which remain in the upper chamber after one period is at most

D =
1+ 2 l+1

l−1

2 + l+1
l−1

< 1.

Proof. We first note that G12
UU(γ) remains a complete piece in R2 as γ  lies in A and that G12

UU 
maps the boundaries of A into two vertical lines

G12UU

(
{L∗I1(θ∗2 − θ∗1 )− τ1}2 = 1−

l+2
l−2

)
⊆ {τ2 = 2 },

G12UU

(
{L∗I1(θ∗2 − θ∗1 )− τ1}2 = 1+

l+2
l−2

)
⊆ {τ2 = 0 }.

G12
UU(γ) has to stretch across at least two B-boxes if γ  has at least two pieces remaining in 

the upper chamber after one period.
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Suppose that G12
UU(γ) stretches across N B-boxes for some N  >  1. It is easy to see that for 

a fixed N, the highest proportion of points staying in the upper chamber is achieved when 
G12

UU(γ) ends on the boundaries of the top and bottom boxes as shown in figure 9. However 

the height of a B-box is equal to 2 l+1
l−1

 (see (10)) while the height of the fundamental domain is 

equal to 2 (see figure 9). This implies that in the optimal situation 
2(1−

l+1
l−1
)(N−1)

2N+ 2
l+1
l−1

 of the points 

on G12
UU(γ) land in the lower chamber after jumping from left to right at t∗1. This proportion is 

larger than 
(1−

l+1
l−1
)(2−1)

2+
l+1
l−1

 as it is an increasing function in N and N ! 2. Then the largest portion 

which remains in the upper chamber is given by D =
1+2

l+1
l−1

2+
l+1
l−1

. Recall that the relative positions 

of two slits at t∗1 implies that l+1
l−1

< 1, so D  <  1. □ 

Next we need to control the number of the short bad pieces as an unstable line breaks under 
the iterations of the linear map GU.

Suppose γ  is an unstable line in some box A. For x ∈ γ , we denote as rn(x) the distance 
from xn to the nearest boundary of the component γn containing xn. Employing the argument 
in section 5 of [5] we obtain the following Growth Lemma.

Lemma 6.2 (Growth lemma). There exists a constant C∗ s.t. for any small ϵ > 0 and any 
n ∈ N

mesγ{x ∈ γ : rn(x) < ϵ} ! C∗ϵ.

Proof. Let kn(δ) denote the max number of the pieces that an unstable line of length less 
than δ can be cut into after n iterates. We define kn = limδ→0 kn(δ). We claim that kn ! 8n. 
Indeed since the singularities of Gn

U are lines and there are at most 8n possibilities for slopes. 
Consequently, there exists δ0 so small that kn(δ) ! 16n for any δ < δ0. We choose n0 such that 
32n0
Λ

n0
u

< 1 and by replacing GU with Gn0
U  we can always assume n0  =  1.

For inductive purposes we cut a long unstable line into pieces shorter than δ0 and let r̄n(x) 
denote the distance from xn to the nearest real or artificial boundary of the component contain-
ing xn. We note that by doing so we improve the estimate as r̄n(x) ! rn(x) and it suffices to 
prove the statement for ̄rn.

2
2l+1
l−1

Figure 9. A good curve partly enters the trapping region.
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First we observe that

mesγ{r̄0(x) < ϵ} ! 2L
δ0

ϵ (11)

r̄n+1(x) is less than ϵ if xn+1 either passes a real or artificial singularity, where L is the unstable 
height of γ . The former is controlled by 2k1(δ0)mesγ{rn < ϵ

Λu
} while the latter by 2k1(δ0)

L
δ0
ϵ. 

Therefore

mesγ{r̄n+1 < ϵ} ! 32
Λu
mesγ{rn < ϵ}+ 32 L

δ0
ϵ.

Thus by induction we conclude that

mesγ{r̄n < ϵ} !
(
32
Λu

)n

mesγ{r̄0 (x) < ϵ}+ 32 L
δ0
ϵ

(
1 + · · ·+

(
32
Λu

)n−1
)
.

Since 32Λu
< 1, (11) gives the desired growth control with

C∗ =

(
32
Λu

)
2 L
δ0

+
32 L

δ0 (1 − 32
Λu
)
.

 

□ 

Finally we show that under the linear approximation map GU almost every point will even-
tually escape to the trapping region:

Proposition 6.3. In each box A, for any ϵ > 0, there exists N = N(ϵ) such that all but an 
ϵ-measure set of points in A enter the lower chamber within N periods. In particular, almost 
every point will leave the upper chamber in the future.

Proof. Fix ϵ > 0. Choose k, l such that

DkL < 0.5 ϵ and (kl+ 1 )
C∗ + L2

Λl/2u
< 0.5 ϵ,

and take N  =  kl  +  1.
We suppose that under the linear map GU a point x on a unstable line γ  stays in the upper 

chamber up to N periods.
If the trajectory of x lands on good lines more than k times in N periods, then lemma 6.1 

shows that for good lines the portion which remains in the upper chamber in the next period is 
at most D. Hence by induction we see that

mesγ{x ∈ γ : {PmU x}Nm =0 visits good lines more than k times} < DkL.

If instead the trajectory of x visits good lines less than k times in N periods, then it has to 
visit consecutively l bad lines at least once in N periods.

Now suppose that the trajectory segment xn, · · · , xn+l land on bad lines γn, · · · , γn+l  for 
some n  <  N and we denote as Bn the set of all such x ∈ γ  that lands badly during n to n  +  l 
periods. We subdivide Bn into Bn,L and Bn,S, where Bn,L collects points with |γn| ! Λ−l/2

u  and 
Bn,S collects points with |γn| < Λ−l/2

u .

J Zhou Nonlinearity 33 (2020) 1542



1568

By lemma 6.2, |Bn,S| ! C∗Λ−l/2
u . On the other hand, it follows from uniform hyperbolicity 

that

Pγn{xn returns badly for next l periods} = |γn+l|
Λl

u|γn|
! L

Λl/2
u
.

Hence

|Bn,L| !
L

Λl/2u

∑

|γn|!Λ−l/2
u

|G−n
U γn| !

L

Λl/2u
|γ| ! L2

Λl/2u
.

Combining the estimates on Bn,L and Bn,S, we have

|Bn| !
C∗

Λl/2
u

+
L2

Λl/2
u

=
C∗ + L2

Λl/2
u

.

Consequently the set B of points on γ  which make l consecutive bad landings is controlled 
in size by

|B| ! (kl + 1 )
C∗ + L2

Λl/2
u

.

Since a box A is foliated by unstable lines, we conclude by a disintegration of measure 
argument and our choice of k, l that under the linear map GU the set of points in A which stay 
in the upper chamber for at least N periods has measure less than ϵ. □ 

6.2. Quick escape for the actual map

By proposition 4.3, the fundamental domains of PUU are O(I−1)-deformation of the boxes 
A, B and PUU = GUU +O(I−1).

Now we prove theorem 2.

Proof of theorem 2. Fix ϵ > 0 and a box A with large energy Ĩ0 (to be specified later). 
By proposition 6.3 we choose N such that in each A-box the points that remain in the upper 
chamber up to N periods under the linear approximation GU take up a set of measure less than 
0.5ϵ, i.e. we take N  =  kl  +  1 where k, l are integers such that

k >
log(0.25ϵ/L)

logD
and

kl+ 1

Λl/2
u

<
0.25ϵ
C∗ + L2 . (12)

We shall show that the statement of theorem 2 holds with some large Ĩ0 = Ĩ0(ϵ) and

T = 2 N. (13)

Let Aδ
n and Bδ

n denote the points in An and Bn which are closer than δ to the boundary,

Aδ =
⋃

n

Aδ
n , Ãδ =

⋃

n

(
An −\Aδ

n
)

,
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Bδ =
⋃

n

Bδ
n , B̃δ =

⋃

n

(
Bn − \Bδ

n
)

.

Choose δ < 0.5ϵ so that the set of points in the box A which visit either Aδ or Bδ during the 
first N iterations is less than 0.5ϵ.

By proposition 4.3, there is a constant C1 such that if P12
UU(x) ∈ B̃C1/I and 

P21
UU(P12

UUx) ∈ ÃC1/I then the orbit of x stays in the upper chamber for the next period and

|PU(x)− GU(x)| !
C1

I where PU = P21
UU ◦P12

UU .

Accordingly there is a constant C2 such that if for some n ! N

P12UUPk
U(x) ∈ B̃

C2 Λ
N
u

I∗ , Pk+1
U (x) ∈ Ã

C2 Λ
N
u

I∗ (14)

and Ik ! I∗ for k  <  n then the real orbit of x stays in upper chamber for the first n iterations 
and

|PnU (x)− GnU (x)| !
C2 ΛNu
I∗ . (15)

Next, set C3 =
l+2 l+1
l−2 l−1

< 1. Then during N iterations the value of I cannot drop by more than 

CN
3  times. Hence if x satisfies (14) and I0 ! CN

3 I∗ then (15) holds.
Now choose I∗ so that

C2 ΛN
u

I∗ < δ. (16)

Now we consider the orbits where Ī ! I0 ! Ī + 1 for some Ī ! CN
3 I∗. There are three 

possibilities:

 (i)  The real orbit of x leaves the upper chamber at some period n  <  N; 
 (ii)  The real orbit of x stays in Ãδ for the first N iterations; 
 (iii)  The real orbit of x stays in Ãδ until it hits Aδ ∪ (P12

U )
−1Bδ at some period n  <  N.

Proposition 6.3 and our choice of δ and I∗ imply that the set of orbits where either (ii) or 
(iii) happens has measure smaller than ϵ.

This completes the proof of theorem 2. □ 

7. Conclusion

We have described in this paper a 2D exponential Fermi accelerator: a rectangular billiard 
with two moving slits. We found a mechanism for a particle to gain energy exponentially fast, 
i.e. the trapping regions. When the relative positions of two slits change at two critical jumps, 
a trapping region, either the upper or lower chamber, is created so that every high velocity 
orbit starts to gain energy exponentially fast once it gets trapped. We demonstrated that a trap-
ping region exists for sizable choices of parameters and the exponential acceleration happens 
for almost all high energy orbits. Moreover under additional hyperbolicity assumptions on the 
parameters we provided an explicit estimate on the waiting time until which the exponential 
acceleration starts for most high-energy orbits.
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It is worth noting that all the analysis done in this paper is based on the normal forms in 
the high energy region. The normal form implies exponential energy growth almost surely 
if a particle starts with sufficiently high initial velocity, and it eliminates the possibility of 
oscillatory orbits. The normal forms do not apply in low energy region where we might have 
bounded orbits for certain wall motion. In this paper we did not analyze the case when a trap-
ping region does not exist, which can be easily achieved by choosing parameters such that the 
relative positions of two slits do not change at two critical jumps. Our normal forms still apply 
even in this complicated case but the analysis would be more delicate as the particle needs 
to make a choice of traveling up or down every time it jumps. We also note that in the non-
resonant case when the periods of the particle and the wall are incommensurable, the normal 
form still applies, however the jumping time depends on the period. In particular, the jumping 
times become dense on the period which precludes the existence of the trapping region, so 
the problem becomes similar to the resonant non-trapping case. These observations provide 
possible directions for future work.
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