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Abstract

We describe an exponential Fermi accelerator in a two-dimensional billiard
with moving slits. We have found a mechanism of trapping regions which
provides the exponential acceleration for almost all initial conditions with
sufficiently high initial energy. Under an additional hyperbolicity assumption,
we estimate the waiting time after which most high-energy orbits start to gain
energy exponentially fast.
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1. Introduction

In an attempt to explain the existence of high energy particles in cosmic rays, Fermi [10] in
1949 proposed a model in which charged particles undergo repeated reflections in moving
magnetic fields. Later in 1961 Ulam [30] proposed that a similar mechanism should appear in
finite degree of freedom systems. He described a toy model where a particle bounces elasti-
cally between two walls, one fixed and the other moving periodically. Ulam [30] performed
numerical experiments on a piecewise linear model and conjectured that there exist escaping
orbits whose energy tend to infinity with time. Since then extensive efforts have been made by
both mathematicians and physicists to locate escaping orbits in various settings (see [7, 12, 20]
for surveys on this subject).

Notably the KAM theory has eliminated the possibility of such escaping orbits in one-
dimensional (1D) Fermi—Ulam model for sufficiently smooth wall motions [18, 27, 28], as the
prevalence of invariant curves forces all orbits to be bounded. However, unbounded solution
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can still be obtained in nonsmooth case. For example, Zharnitsky [33] has found a type of
unbounded orbits in the Ulam’s piecewise linear case, which grows linearly with time. In a
1D Fermi—Ulam model with one discontinuity, de Simoi and Dolgopyat [4] have showed that
there exists a parameter that completely shapes the large energy behavior of the system: in
the hyperbolic regime the escaping set has zero measure but full Hausdorff dimension while
in some elliptic cases the escaping orbits have infinite measure. There are many interesting
question pertaining to Fermi—Ulam model with non-periodic wall motion. We refer the reader
to [17, 34] for the results in quasi-periodic case. One and a half degree of freedom models
where the motion between collision is not free but is subjected to a potential are discussed, for
example in [1, 3, 6, 23, 24, 26].

Two-dimensional (2D) moving billiard models are natural generalization of the 1D Fermi
acceleration model and can often provide chaotic orbits even in the smooth case. For example,
unbounded orbits were found in billiard models with the smoothly breathing boundary [15,
16, 19]. In a Lorentz gas model [21], the average velocity of particles grows linearly in time
for stochastic perturbation of scatterer boundaries and quadratically for periodic perturba-
tion. Exponential growing orbits for non-autonomous billiards were constructed in [14] but
in general it remains challenging to detect a positive measure set of exponentially growing
orbits. Exponential acceleration is also conjectured to be generic for oscillating mushrooms
[13]. The models which are closest to our setting are the following. Shah er al [29] investi-
gated a rectangular billiard model with a moving slit. They [29] proposed a random process
approximation, i.e. the probability of jumping or down is proportional to the length of open-
ings. They numerically verified the expected exponential growth rate for a large ensemble of
initial conditions in the non-resonant case and they also numerically observed that the growth
rate in the resonant case was significantly higher [29]. Later they generalized the idea to
higher-dimensional time-dependent billiards and obtained a new class of numerically robust
exponential accelerators [11]. The model presented in this paper was inspired by their work.
To our best knowledge, our paper provides the first example where robust exponential accel-
eration is established rigorously.

We study a rectangular billiard with two moving slits. In our model, the billiard table is
a unit square. Two slits are moving vertically in the table with the length of left slit A and
the length of the right slit 1 — A, where A € (0, 1) is a constant. The motion of the two slits
are described by two C? 2-periodic functions f;(f) and fx(f) respectively. A massless ball
bounces elastically against the moving slits as well as the boundary of the rectangular table
(c.f. figure 1).

In this paper we study the simplest resonant case. Namely, we assume that the horizontal
speed the ball is 1, so the horizontal coordinate of the ball is periodic with period 2. Hence
we have 1:1 resonance between the period of moving slits and the period the horizontal
motion of the ball. The ball experiences two jumps between the left and the right parts of
the table during each period. We denote by x the starting horizontal position of the ball. We
assume without loss of generality that the ball starts from the left part, i.e. 0 < xop < A. The
ball jumps from the left slit to right one at time #{ = A — xp and then from right to the left
attime 3 =2 — X — xo.

We record the time and the vertical velocity of the ball immediately after each collision
with the slits. We exclude from our discussion the trajectories having a collision at x = A. The
excluded orbits constitute a measure zero set among all the initial conditions.

We describe in this paper a new exponential accelerator. We show that almost all initial con-
ditions with sufficiently high initial velocity produce exponential energy growth in the future,
provided that the relative positions of the two slits change at the time of the two jumps between
left and right parts of the table. Moreover, under an additional hyperbolicity assumption we
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Figure 1. Rectangular billiard with moving slits.

estimate the waiting time after which most high-energy orbits start to accelerate exponentially.
We observe that the rectangular billiard is pseudo-integrable as long as the ball only interacts
with one slit, in the sense that the motion can be approximated by an integrable one with
vanishing error as velocity tends to infinity (see section 4.1 for details). However the passages
between left and right slit break the pseudo-integrability and could lead to the chaos, in the
sense that the normal form obtained in section 4.2 can be hyperbolic. Similar mechanisms of
chaos have been observed in separatrix passages and kicked oscillations [2, 22,25, 31, 32]. We
also refer to [8] for discussion of similar phenomena in the piecewise smooth setting.

2. Main results

In this section we describe the exponential accelerator we have found.

For a wide range of choices in A and x, the relative positions of the left and right slits
change when the ball jumps from one slit to the other at time ¢} and #; (see figure 2). A trap-
ping region is created in this case and the ball starts to gain energy exponentially fast once it
gets trapped.

Theorem 1. Assume X\ and xp are such that fi(t7) < fr(t]) and fi(85) > fr(t5) or
Sfu(t) > fr(t) and f1.(65) < fr(£3). Then there exists V, >> 1, which depends only on fi, and
[r such that almost every orbit whose initial speed is greater than V, eventually gains energy
exponentially in time. In particular, the set of initial conditions (ty,vy) which do not enjoy
exponential energy growth has finite measure.

In the presence of a trapping region, with additional hyperbolicity assumptions we estimate
the waiting time after which most high-energy orbits start to accelerate exponentially.
We define a new function f as follows
£0) = filt) O0<t<tiorty <t<2
R0 <<,
We introduce a new quantity Tr. If the lower chamber is trapping, then we define in the
upper chamber

1—f" 1—f 1—f" 1—f"
= (i o) (i o)« (o) (= -2)

—ajayaf3
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Figure 2. Trapping regions. The plot of trapping regions for f; (1) = 0.3 cos(nt) + 0.5,
J&(t) = 0.3 sin(nz) + 0.5. The blue part indicates the values of A, xo for which a trapping
region exists: the upper rectangle is where the upper chamber is trapping and the lower
triangle is where the lower chamber is trapping. The shaded part displays where the
hyperbolicity assumption | Tr| > 2 holds.

where f* = f(t74), a; =7 (1 = f7) = fT(1 = f7).

([ L)oo = o=

1

If the upper chamber is trapping, then we define in the lower chamber

Tt = fl—; — ai,@') (fz—:_ — a'za') + (Ji — a'la') (}cz—j — a’zﬁ’) —ajayd'
i f fi 2

I = R 1 2\ _ds _ [ _ds
where a/ = ' f; —fifi,o/—(O‘—i—ft;)wand,@’—ft;?f(s)z.
Theorem 2. Assume \ and xy are such that the assumption in theorem 1 holds and that

|Tr| > 2. Then there are K, { > 0 such that for any € > 0, there exists Vo = Vy(€) and T = T(¢)
such that for each V > 'V the complement of set

{(l(),V()) Sl €V, V1]V 2T |v(r)] 2 |vg)|ec’ }

has measure less than €, i.e. most orbits with initial energy |vo| > Vy start to accelerate expo-
nentially after time T.
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The proof of this result is constructive. In particular, 7 depends logarithmically on € (see
equations (12) and (13)). The quantity Tr is in fact the linear part of the normal forms in sec-
tion 4.2 and the ‘hyperbolicity assumption” here means |Trace| > 2.

Example 2.1. To illustrate our results, we consider the case where

fu(t) = 03 cos(mt) + 0.5, fr(r) = 0.3sin(mz) + 0.5. 1)
Then

A(t) = fi(t) — fa(t) = 0.3v/2 cos (m+ %) .

A trapping region exists for A, xo such that either
AA—x9) >0, A2—-A—x)<0 or AA—x9) <0, A2-X—xp) >0.

The former case is equivalent to A — xp < 0.25, 0.75 < A + x¢ < 1.75; the upper chamber is
trapping and the hyperbolicity assumption holds if |TrL| > 2.

The latter case is equivalent to A — xo > 0.25, X + x¢ < 0.75; the lower chamber is trap-
ping and the hyperbolicity assumption holds if |Tr!| > 2.

Figure 2 demonstrates that for f7,fz defined above by (1) the assumptions of theorems 1
and 2 hold for a sizable set of parameters.

The structure of the rest of the paper is the following. In section 3 we describe the collision
map. In section 4 we derive the normal form for the map obtained by considering the next
collision with the moving wall after the ball switches from left to right chamber or vice versa.
The proof of theorem 1 is given in section 5 and the proof of theorem 2 is given in section 6. In
section 7 we summarize the tools developed in the present paper and discuss open problems.

3. Preliminaries

Since the horizontal speed of the ball stays constant, only the vertical speed contributes to the
energy change of the ball. This is why we only need to record the time ¢ and the vertical veloc-
ity v immediately after each collision. Let us denote by F the collision map.

For i = 1,2, we denote as R; the strip in the (f,v)-plane bounded by the singularity line
S; = {t = 1/} and its image FS;. Also let R; = F~'R;. We subdivide the singular strips R into
upper and lower chamber parts R* and R™.

There are four possible scenarios when the ball makes a jump: the ball always hits the slits
from above or below, the ball first hits from above then from below and vice versa.

We start with the easiest case when the ball always stays in the same chamber. Then the
system is effectively equivalent to a Fermi—Ulam model with the motion (height) of the
wall being the piecewise smooth 2-periodic function f(f) with two jump discontinuities at
] and £3.

Suppose that the ball is initially in the upper chamber. We omit the subscript i as the
formulas for passing through the two singularities are the same. If for (z,v) € R we have
F@*+) = f(t) <v(t* —1) <2 —f(t) — f(t*), then the ball ends in the upper chamber after
jumping and the model is equivalent to the one with a fixed ceiling and a moving floor (see
figure 3 on the left).
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Figure 3. Equivalent Fermi—Ulam models for the upper/lower chambers.

Figure 4. From upper to lower cases.
Two consecutive collisions (,, v,,) and (41, V1) = F(t,, ) satisfy

{VnJrl =+ Zf(anr])
2 —f(tn) = f(tat1) = valtas1 — tn)-

Similarly, suppose that the ball is initially in the lower chamber. If for (¢,v) € R we have
f@) —f(t"+) < —v(t* —t) <f(t) + f(¢*), then the ball ends in the lower chamber after
jumping and the model is equivalent to the one with a moving ceiling and a fixed floor (see
figure 3 on the right). Two consecutive collisions satisfy

{;nﬂ =V + 2f (tat1)
(tn) +f(tﬂ+1) = _Vn(tn+1 - ln).

Now let us examine the switching cases.

Suppose that the ball is initially in the upper chamber and two consecutive collisions still
follow equation (2) before the ball jumps from one slit to the other. However, when the ball
jumps, if the next slit is above the previous one when the ball passes through the singularities,
then there is a possibility that the ball enters the lower chamber. More precisely, for (t,v) € R,
if v(t, — 1) > 2 — f(t) — f(t.+), then the ball collides with the ceiling and then enters the
lower chamber (see figure 4 on the left); while if v(z. —t) < f(t.+) —f(¢), then the ball
enters the lower chamber immediately after it leaves the previous slit (see figure 4 on the
right).

Two consecutive collisions satisfy the following equation (4) in the first case

{Vn(tn-H - tn) :f(trH-l) _f(tn) + 2
Vg1 = =V + 2f (tag1)

@)

3)

“4)
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Figure 5. From lower to upper cases.
and the following equation (5) in the second case

{Vn(tn-H - t) :fgtn-‘rl) 7f(tn)
Va1l = —Vy + 2f(tn+l)-

On the other hand, suppose the ball is initially in the lower chamber and two consecutive
collisions still follow equation (3) before the ball jumps from one slit to the other. When the
ball jumps, if the next slit is below the previous one when the ball passes through the singu-
larities, then there is a possibility that the ball enters the upper chamber. More precisely, for
(t,v) €R, if —v(t. —1t) > f(t) + f(t.—), then the ball collides with the floor and enters the
upper chamber (see figure 5 on the left); while if —v(z, — ) < f(¢) — f(¢+—), then the ball
enters the lower chamber immediately after it leaves the previous slit (see figure 5 on the
right).

Two consecutive collisions satisfy the following equation (6) in the first case

{Vn(thrl - trz) :f(trkH) _f(tn) -2
Vptl = —Vy + 2f(’n+l) (6)
and the following equation (7) in the second case
{Vn(thr] - t) :fgtnﬂ) _f(tn)
Vi1 = =V + 2f (tuy1). (7N
Wn

By differentiating the collision equations, we obtain that det F' = " where w is the rela-
tive velocity right after collision. Consequently, the collision map F preserves the absolutely
continuous measure p = wdrdv.

®)

4. The normal form

In this section we study how the (vertical) velocity of the ball changes after one period Ar = 2
given sufficiently large initial energy. We will first approximate the collision map F with
adiabatic coordinates away from singularities. Then we examine the collision dynamics when
the ball passes through singularities. The change of coordinates we make is not area preserv-
ing, however, in our argument it is only important that it preserves Lebesgue measure class.
Moreover, the Jacobian of our coordinate change tends to 1 as velocity tends to infinity.
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4.1. The adiabatic coordinates

First we suppose that the ball collides with the slit from above and it does not make a jump at
nearby collisions.
Let us denote [(f) = 1 — f(t)and L, = foz 172(s)ds.

Lemma 4.1. For (t,v) ¢ R;UR; (i = 1,2) and v >> 1, there exists an adiabatic coordinate
(0,1) = Wy(t,v) € R/2Z x Ry such that

2 1 1
9n+l:0n+E+O(E)yln+l:In+O(E>-

Infact, § = 0(t) = L% Ot[(‘% mod 2, I =I(t,v) = % (lv—i—ll—i— %)
Proof. We can check the formula by a direct computation (see lemma 2.2 in [4]), or we can
derive it in an inductive way (see section 2.2 in [5]). The basic idea is to find higher-order adi-
abatic invariants. For example, observe that

Vil — Vn = —22([,,), 1 — L R

This leads to the Euler scheme of the following ODE
dv  —vi

dr 1
which in turn gives us the zeroth order adiabatic invariant / = Iv. Then we update the scheme
by replacing v with / and look for the first order adiabatic invariant, etc. This scheme termi-
nates at the second order adiabatic invariant I = Iv + Il + %

Next, the formula for § can be obtained reversely by solving the ODE
g2 _2
v by
which leads to 6(t) = [ 172(s)ds.
We observe that only the order v term in 7 is used to derive the formula for 6 and it seems
to produce an estimate only up to first order

Opi1 — 0, =2/1, + O(I2).

But in fact by noting the Taylor expansion of /=2 and that

20(1,) 20t 20(8)1(8)? + 21(1,)21(1,
PR — £)+ (v)z()+ ()():; ()()+
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we obtain that

1 ool —t, 1 2 i
/ I s)ds = 0 = Gl — )+ (= ) (e — 1) + 007, )
1, n n

, A L
2 2, 2B —2, »

=-— - —— 10
Ly tyV2 L3 +00n")
2 2, 2L, 2L, 28— 2L,

_“ n rzln o n2 n g + O(V;4)
L, v, 3vil, Lyv;i L3
2 28 20, | 28— 3L,

_ = n U O —4
I, Vi, 32, L3 +Om")
2

=7t o, ")

where [, = [(1,) and I, =1 (#,), which produces the desired third order estimate.
Finally, we need to rescale 6 (and hence /) to make 6 2 periodic. O

Next we assume that the ball collides at the slits from below and it does not make a jump
at nearby collisions.

We introduce a new function g(7) = f(¢) + 1. Then equation (3) becomes the same as equa-
tion (2) with g in place of f

{ = v+ 28(t011)
2 - g(tn) - g(thrl) = Vn(tn+l - tn).
Therefore all the computation above in lemma 4.1 applies with g in the place of f.

We define m(t) =1 — g(¢t) = —f(¢) and M, = f02 m(s)~2ds. We have another adiabatic
coordinate if the collision occurs in the lower chamber away from singularities

®)

Lemma 4.2. For (t,v) ¢ R;UR; (i = 1,2) and v < —1, there exists an adiabatic coordi-
nate (¢,J) = ¥ (1,v) € R/2Z x R such that

2 1 1
CnJrl:Cn+7n+o(ﬁ>,-/n+1:-/n+o<ﬁ)-

Infact, ¢ = C(t) = 2 [y =55 mod 2, J = J(t,v) = &= (mv+mm+%).

* m(s

4.2. The normal forms

In this section we present the Poincaré map P from one singular strip to the other in four pos-
sible scenarios. We assume the initial energy of the ball is sufficiently large |vo| > V. for some
large V, in all the cases.

4.2.1. The upper-upper chamber case. We begin with the upper—upper chamber case, i.e.
the ball stays in the upper chamber both before and after it makes a jump. Lemma 4.1 already
depicts the dynamics away from singularities. Now let us scrutinize what occurs near the sin-
gularities ¢ (i = 1,2) when the ball makes a jump.

For (t;,v) € R} withv, > V., we denote (i, 7,) = F" (t;,v1) € RS, where ny = [2(65 — 0;))
and 05 = 2 [ 185 and (5, 72) = F(i, %) € R{. Similarly, for (12,v2) € RS with v, > 1,
we denote (#1,71) = F™(t2,v2) € R}, where ny = [2(2 + 0} — 6,)]and 6} = E% 0[‘ l(‘ls)z,and
(f1,v1) = F(1,71) € R} (c.f. figure 6).
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Figure 6. The Poincaré map P}7; on the singular strips.

We introduce a new pair of variables (7,Z) defined on the upper singular strips
1(0—07) onRf I
= I=—onRf, R
T {1(9—9;) onRf T L, N

Now we present the Poincaré maps P12, : Rf — Ry and P3, : Rf — R which captures
the collision dynamics when the ball travels from one singular strips to the other. We need the
following constants (i = 1,2):

A, — M) (16 ez +) — 1 )it )

1+ (10 =i +) = 10 ) )

AF = szl )G +) (1 =i +) = 10 ) )

Proposition 4.3 (Upper-Upper). Suppose that (11,Z,) € R} and I, > V., and that
F(+) = f(65=) SLALLI(0; —07) — i} S2 - f(+) —f(65-),

where S means the inequality holds up to an error of order O(), and {#}, = ® mod 2. Then the

Poincaré map Pl : R — R is given by (72, Th) = Giy (11, Th) + HiZy (11, Th) + O(Z;72)
where

I Lol
Gl i) = (~ L0 — 07) b+ 1+ 2 BT+ Bl - 1)
2 2 2

and

Hijy(r, L) = (0,A5(7 — 1)* /Ty + Ay /T4) .

Similarly, suppose that (12, 15) € R;‘ , I, > V., and that
Fi+) = f(1=) SHALL(2+ 07 —63) — T S2—f(57+) —f(11-).

Then the Poincaré map P%}U : R;r — R;r is given by

(71.11) = Gyy(2. Tn) + Hijy(m2. o) + O(L, %)
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where

I Iy
Gyl Te) = (= (£ T2+ 07 =65 = mha + 1+ (B LT+ A = 1))
1 1 1

H%/IU(TQ,IZ) = (0, A/l(ﬂ — 1)2/12 + A’{/Iz)

and IF = (17 +).

Proof. We only derive the formula for P}%,. The formula for P2}, can be obtained in a

similar fashion.

For the ease of notation we drop the sub/superscripts whenever they are clear from the
context. Note that near the jump discontinuity at r*

1(F) = () + (- 1) + %L(t*)(f _ P06,
1) = 1. () + 1. — 1) + %h(t*)(? )+ 037
1) =1_(t)+1_(i—1)+0GF?),
1) =1 (") + 1. (T— 1) + OF ),
i) =i_(")+oF™"),
i) =i (") +0oF™"),
and that
v=v-20(1), i—i= 1) ki 1)

Hence by solving iteratively the implicit equation we attain

- ()
v 72

Ly +1_

i—i= - + (I +1) +0GH73).

By a straightforward but tedious computation we arrive at

2L <l;7—i> = (Il —11y) - M(i— v

. . l_. P _
+ (el — 1+ Zlﬁ — 1)1

I, - . I 1
+ <3(l+l+ —1i)+ 7(12, - zi)) -
e TG Ta
2,
_ Bk ((i— Fy(1+ ) - l+>
l+ v

[ B Y A Ll (7l =140
N ks s ik ((t—t*)ﬁ—l+)2+M +0>{2).
2I+V 3(l,l+ — l+lf)
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It can be checked directly by Taylor expanding 7 and @ that
- 1 /_ .
F=10-6) = ((r Y- t*)) + O
+

Thus eventually we have

IT=(/I)I+AGF-1D)+AGF -1+ AN /T+0OZ72).

Now we compute 7. Observe that

Prh G ror),

Iy

7=

F—1)+0F2), 1(0 —03) =

Therefore

Li=(-D+F-r)F+1 —(-+13)+0F7?)

=((—)G+I)+T-D+1 )= T—r)1_ +1)+0F?)

I -6+ F e 4 G-

Ll—; L) Gy + 1) + 06

=110 -6+ +1, +0GF2),

which gives

F=(_JI )0 —03)+1+1_/l, +OI7?).
But lemma 4.1 implies that

I=1+007%), §=0+="240017)
hence we have

10— 03) =7+ 2n +1(0] — 03) + O(I72)

where n; = [4(65 — 6,)].
We hitherto complete the proof of the formula for P}%,. O

4.2.2. The lower—lower chamber case. We present here the mirror case to section 4.2.1, i.e.
when the ball stays in the lower chamber both before and after it makes a jump.
We need the following constants (i = 1,2)
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i .+ +.7
T’_E = (m; 1] —m;Tm;)
i
T/_l +2 — 4 4+ o=
*8’”5 (m; ;™ —mii;”)
//_i — +( — = +..+)
,.f24mi m; (m; i, —m ;).

We introduce a new pair of variables (p, J) on the lower singular strips, which is the
counterpart of (7,7) as follows

_[IC-¢) Ry T
_{J(C—Q*) onR;’j_M* on R ,R;.

Proposition 4.4 (Lower—Lower). Suppose that (p1, Jy) € R, and J, > V., and that
f(6=) = f(65+) S —my {M. (G = () = prhe S(G—) +£(55+).
Then the Poincaré map P}? : R — R; is given by

(52 o) = Gl (p1, T0) + Hiz(p1, Th) + +O(T;72)

where

12 m; * * m; m; =~
Gii(p, ) = (*F{M*\%(Cz () —piht+1+ e mijl + Ya(p2 — 1))
2 L

and

Hit(p1, J1) = (0,T5(pa — 12/ T + 05/ T) -
Similarly, suppose that (p>, J») € Ry and J» > V., and that

f6i=) =i 4+) S —m M2+ ¢ = G) = ppha S =) +f (5 +).
Then the Poincaré map P : Ry — R is given by

(1 J1) = Gir(p2, Jo) + HiL(p2 o) + +0(J57)

where

(o ) = [~ M B2+ =) — UL
1L(p2, J2) = m+{ W2+ =G)—ph+ +m+,m,‘72+ 1(pr=1) ),
1 L

Hi[(p2. o) = (0, (g — 1D/ T+ T?/Jz) ,

and mE = m(t: +).

1554



Nonlinearity 33 (2020) 1542 J Zhou

Figure 7. The imaginary stationary wall.

4.2.3. The upper—lower chamber case. Now we suppose that (7,V) € R and that the ball is in
the upper chamber. Also we assume that the next wall is above the previous one when the ball
passes through the singularity at t = t,: f(t.—) < f(t.+). Let (,v) = F(1, ).

If v(t. —t) > 2 — f(r) — f(2.+), then the ball collides with the ceiling and then enters the
lower chamber (see figure 4 on the left).

Rather than resorting to the detailed computation as we have done in the constant cham-
ber cases, we insert an imaginary stationary slit, whose length is negligible, at the height
fe =1 —=9(t. — 1) + I(), so that the two consecutive collisions at the moving slits are concat-
enated by two fictional collisions at the imaginary wall, to which the propositions 4.3 and 4.4
formulas readily apply (c.f. figure 7).

More precisely, as the ball leaves the previous slit at time 7 with velocity v, it collides
against the imaginary tiny slit at time 7. and the outgoing velocity is still v, = v as the slit is
stationary. Meanwhile we also imagine that the ball leaves from below the fictional slit at time
t, with velocity v, = —v (with an abuse of notation), then it collides at the next moving slit at
time 7 with outgoing velocity v.

Let us denote I, = I(t., v.), etc. We will need the following constants

1

R = §m+(l’h+ — M+Z_/l_)

1 .
Ky = §m+l,/l,

1 . 1
M= —myl_(1— =P

K’h 8m+ ( 3 7>
1, - 1 .

Ki = Zer(l_ + 61_m+)
| R

Ky = §m+l_
1

/9;,'-/” = gmihﬁ_l_

where i indicates that /() and m(t) are evaluated at t = ] (i = 1,2).
Then the dynamics between the singular strips is captured by the following formula:

Proposition 4.5 (Upper-Lower l). Assume that (11,Z;) € R} with T; > V.. and that
LALZ(0; —07) =i} 22— f(65+) — f(£5-).
Then the Poincaré map Py : RY — Ry is given by

(2. o) = Gua(m.Th) + Hiy (1. Th) + O(Z;77)
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where
3 * * m+ - -1
Giu(m,Th) = (%{z:*zl(ez 07—}t 22—,
my m;
mT
— 2L +sp(pp—1) - n}z)
b
and

Kl p2—1 (p2— 1) (p2—1)
Ha(n7) = (052 4 g2t sy PSP 20,

Similarly, assume that (12, 1,) € R}' with I, > V, and that
L2 +07 —03) —nh 22— f(t{+) —f(Hf-).

Then the Poincaré map Py : Ry — Ry is given by

(1, jl) = G%JILI(TLIZ) + H%ILI(TZ’IZ) + O(Iz_z)

where

Iy A |

G%IILI(TLIZ) = (%{5*12(2 +07—6;)—mh+ mli_'l_’
m m
! i
mt
- I%Iz +rn(p —1) - “;1)
1

and

K1) pr—1 (1 — 1) (o1 —1)°
Ha(ra ) = (0.5 g Pt g AR g 20,

Proof. We present the proof of Pi2;. The formula for P2} can be obtained similarly. We
suppress the sub/superscripts whenever they are clear from the context.

We imagine that the ball collides at the fictional stationary wall at time 7, with outgoing
velocity v, = v. Then I, = 1 — f, = ¥(t, — ) — I(7) and we have

L., _
I* = jl*v, T = 0.
From the proposition 4.3 formula,

I - I
Ty = 71(9 —05)+ 1+ T+ o)

I~ L. L*Bi_  L2PlLi_
L= S04 =25 2 — e m L O(vR).
TR 87 247

Now we imagine that the ball leaves from below the fictional stationary wall at time #, with
outgoing velocity v, = —v (with an abuse of notation). Then m, = —m(f) — v(f — t..) and we

1556



Nonlinearity 33 (2020) 1542 J Zhou

have

M,
J*:_i * Vs *:0
zmvp

From the proposition 4.4 formula,

- -2
v
p o )
- m M, o M2 2
J= m:'J* + 7m+m+(p - 1)+ 8. —mimying (p—1)* — 24J —mimyiing + O ).

We observe that
L=v(t.—1) — (1)
=v(t,—10) =1 —1_(1—1.)+00W7?)
(L) (-1~ + 02
=—1_10-6;)—1_4+0(07?)

and that
my, = —m(f) — v(f — 1)
—my — g (f— 1) + (V4 2y ) (T — 1) + O(v72)
= —my + (v i ) (= 1) + O(?)
= —my + m+ﬁ+ O( )

Since m, =1, — 1,

Finally the relation between I, and J,, together with lemma 4.1, produces the formula for
J. O
If v(t, — 1) < f(t.+) — f(2), then the ball enters the lower chamber immediately after it
leaves the previous slit (see figure 4 on the right).
The imaginary wall trick no longer applies, so we have to return to the direct computation.
We need the following constants

1 .
Kl = Zmi_l,
1 .
= i)
1
Kt = 24m+l (Pl —1_mying, —31_)

where i indicates that /() and m(7) are evaluated at t = ¢ (i = 1,2).

Proposition 4.6 (Upper-Lower Il). Assume that (11,Z;) € R} with I; > V. and that
f&+) —f(5-) 2 L{LZi(03 — 0F) — T}

1557



Nonlinearity 33 (2020) 1542 J Zhou

Then the Poincaré map Py : R — R3 is given by

(P2 o) = Gipn(11.Th) + Hijpy (11, Th) + O(Z7%)

where
12 2 o mi —1; +1
Gu(m. Ih) = (| A{LL(0; —07) =+ ——
m; m;
mt
- I%Il +rn(p—1)+ 1%2)
2

and

5 — 1 (ﬁz _ 1)2 K
H12 I = (0, -kl P2 o _fm )
v (71, 1) < K 7 K 7 7,

Similarly, assume that (12,T,) € RS with T, > V., and that
fE+) =6 =) L TH{LDLQR 407 - 0;) — oo

Then the Poincaré map P2}, : RS — R is given by

(/51,«71) = G%]ILII(TZ’IZ) +Hl2]1Lll(7—2’I2) + O(Iz_z)

where
21 117 * * m1+ — lli + 1
Gun(m2. Do) = | —{LT(2+ 07 —6;) — oo + ——F—,
m m
m+
- lTlIz +ru(p—1)+ Hﬁ)
1

and

pr—1 (p1 — 1)2 K
Hipy(m2. T) = <0,ﬂiﬁl o K - % .

Proof. Again we only prove the formula for P}3,;.
We have from equation (5) that

vt —1) =f(1) - f(7)
= (-t — (—t.)=—m(®) +1(f) — 1
—my— (+m)i—t) =G+ )i-t)+1 —1+0(07?)
—my—mp=110-60)+1_—1+0(072)

I~ - —[_+1
— =i e+ M o),

my my
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The computation is similar to that in the proof of proposition 4.3. So we just list the key steps.

‘We observe that

and that

_ 9

We also note from equation (5) that

and that

Therefore

hence

2MI'T = v + i+
3v
_ . . L mA iy,
=myV+myiing +mytingp+mying (f—1.) + S
+SHE - 1)+ 007
= Bl
2L =+ 14 —
3v
. C Pi
=1 v+ 1 +1 1 I10—-605)+1_1_(t—t.)+ T
3%
i .
+o (- L)+ 0.
V=V — 2y — 2, (f—t.)+O(W?)
2 SO SO —m@) 1) — 1
v v
e e B L Y S L
I — + ( m++l_)7‘~) I 5 +0(™)
S (g +1) 2 _~l{ = +0(7).
1% v 1%
2L7 T =~ v =20 gy +myl A myl g+
+ (myl =20 sy +1)F—1.) — %—(;, )%
e ( +1)2—é +0(?)
2\ 3 Y
21 - 2myg - . ) . 1 . =1
M*JJ’_ [/:rl =myl_+my(l_my —myl_)(p—1)— Eﬁ*l,mil,pf

(p—1)?
1

1 .
- Zﬁ*l,mi(l,m —myl)

1 .
- Ec*z,m+(z2_1, —myiiny —30)+0O(W™?)

which produces the desired formula together with lemma 4.1.
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4.2.4. The lower-upper chamber case. Finally we suppose that (7, %) € R and that the ball
is in the lower chamber. Also we assume that the next wall is below the previous one when
the ball passes through the singularity at r = t,: f(t.—) > f(t.+). Again let (7,v) = F(7, 7).
If —v(t, —t) > f(t) + f(t.—), then the ball collides with the floor and enters the upper
chamber (see figure 5 on the left).
The imaginary stationary wall trick also applies in this case, which produces a desired
formula with the following constants

Xii = §l+(z+ — Ly /m_)

1
= Lt fm
Xii 2+m /m

1. 1
Xii = §l+m7(1 - gma)

L, 1 ..
Xi = Zli(ngJr — i)
Ls.
7= b
" 1 27
Xii = §l+l+m7

where 7 indicates that /() and m(r) are evaluated at t = ¢ (i = 1,2).

Proposition 4.7 (Lower-Upper l). Assume that (p\, Ji) € R{ with J, > V., and that
—my {MLT(G = CF) = pi}a 2 f(5=) +f(15+). Then the Poincaré map Ppyy : Ry — Ry
is given by

(7_'2’j2) = Gﬁ/[(ﬂl’ jl) + Hﬁ}l(ﬁl, jl) + O(jlﬂ)

where
12 m, s I —my +1
Grulp1, ) = ZT{M*jl(Cz =) —phat B
2 2
l+
- 2T+ xn(m-1)+ X}2>
n,
and

i 71 7 —1)? 7 — 1)}
Ao 1) = (0.5 4 3ot gy IS (R0,

Similarly, assume that (p>, J») € Ry with J, > V. and that
—my M B2+ = G) = pihe 2 () + (5 +).
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Then the Poincaré map P : Ry — Ry is given by

(71.71) = Giu(p2. o) + Hin(p2. ) + O(J5 %)

where
21 my o IF—my+1
Giun(p2, o) = IT{M*j2(2 +( = G) bt T
1 1

Iy _ :

— D+ xn(f — 1)+ xq

ny
and

i 7i— 1 A 1)? A1)
Hi}n(pz,%) = (0,%+X;’{ 1‘72 +X;’1’/( ljz ) 7X;/1///( 1‘72 ) )

Next, if —v(t. — 1) < f(t) — f(t.—), then the ball enters the lower chamber immediately
after it leaves the previous slit (see figure 5 on the right).

The computation as we have performed for proposition 4.6 can be reproduced here to
present the formula in this case, the proof of which we ergo omit. We will need the following
constants

1L, .
Xﬁi = Zl+m,
Xiti = gli(m—h = lyin-)
1 ..
Xt = ggbem (miin —m Lyl = 3in_)

where i indicates that /() and m(7) are evaluated at t = ¢ (i = 1,2).

Proposition 4.8 (Lower-Upper ll). Assume that (p\, Ji) € R{ with Jy > V. and that
f&=) —f(&5+) Z —my {M.Ti(& — ¢) — pi }a. Then the Poincaré map P2y : Ry — Ry
is given by

(7. 12) = GLgu(p1. ) + Higu(p1. T) + O(T2)

where
12 my v LF—my —1
Grym(p1, 1) = IT{M*jl(Cz —{)—pmht T
2 2
l+
-2 Ti+xn(m-1)- X?z)
n,
and

T —1 (7 — 12
Hiin(n. 1) = (00 2t~ aip Pl - M),

Similarly, assume that (ps, J») € Ry with J, > V, and that
Ji=) =f(i+) 2 —m AM B2+ ¢ = G) — p2}o
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Then the Poincaré map Py : Ry — R} is given by

(71.71) = Giyn(pa, ) + Hipn(pa, o) + O(jz_z)

where
21 m; * * l?r _ mli —1
Grun(p2: o) = ZT{M*jz(z +( = G) = pht T
1 1
l+
- L D+x(m-1) - X;l)
ny
and

71— 1 -1 2 X////
Hi(p2, Jo) = (0, X 7 Xﬁ’l( = > ;21 .

5. Trapping regions

In this section, we present the proof of theorem 1. The assumptions in the theorem lead to the
creation of a trapping region where the ball gains energy exponentially fast.

Proof. We choose V.. >> 1 so that the normal forms in section 4 hold for |v| > V.. There are
two cases.

@

Suppose that f;(f]) < fr(t]) and f.(5) > fr(#5). The relative positions of the two slits
at two critical jumps trap the ball forever in the lower region once it enters (c.f. figure 8).
Henceforth proposition 4.4 predicts the change of energy after one period in the lower
chamber to be
+ .+
= mm
J=-"L"27+0().
myomy,
Furthermore, the relative positions of the slits at two critical times guarantee that
m(tf+) < m(rf—) < 0, m(54+) < m(t5—) < 0, so the energy of the ball grows exponen-
+ ot
tially fast at rate ;"—L ::—2, > 1in the lower chamber.
1 2
If the ball starts from the lower chamber with vy < —V,, it enjoys exponential energy
growth with time immediately.

If the ball starts from the upper chamber with vy > V,, by proposition 4.3 and the relative
" o . I R
positions of the slits, its energy decreases at an exponential rate EE < 1 until it either

12
enters the lower chamber or it enter the low energy region |v| < V, where the normal
form no longer applies. The possible future when the latter situation occurs is that either
the ball remains forever in the low energy region |v| < V. or it gets trapped to the lower
chamber with some high energy |v| > V. and then starts exponential acceleration. Now
we show that the initial conditions in the upper chamber which leads to bounded orbits

contributes a null set.
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Figure 8. The trapping lower chamber.
For any V > V,, we denote
Uy = {(to,vo) 1 V <vg <V + 1, limsup |v,| < V..}.

We claim that 1(Uy) = 0. Otherwise we note that Uy C By := {|v,| <V + 1, Vn > 0}
by the foregoing discussion and By is bounded and invariant. Hence, by applying the
Poincaré recurrence theorem to (F, u) on By, almost every point in Uy would return
infinitely often to energy level |v,| > V, which contradicts the definition of Uy. Our claim
implies that almost all points in the energy shell Wy = {V < v < V + 1} eventually
return to some high energy level |v,| > V., which is only made possible if the ball enters
the lower chamber and proposition 4.4 ensures exponential energy growth afterwards.
(ii) Suppose that fi(f}) > fr(#]) and fi.(#3) < fz(#;). Now the relative positions of the two
slits at two critical jumps indicate that the upper region is trapping and then proposition
A
i
ball gets trapped. The rest of the analysis is similar to Case (i). |

4.3 guarantees an exponential energy gain at rate > 11in the upper chamber once the

Example 5.1. In general it is not possible to improve the result that non-escap-
ing orbits have finite measure to one with zero measure. For example, we start with

fL(t) :fR(t) =acosd4nt+0.5 for some small a>0. We take xo=0,A=0.5 so
1} = 0.5,85 = 1.5. We consider a 4-periodic orbit P starting at fo = 0.25, vy = 2 + 4a. Then

(t1,v1) = (0.75,2 + 4a), (t2,v2) = (1.25,2 4+ 4a), (13,v3) = (1.75,2 + 4a),
We slightly modify fi, fz near 1}, #; in such a way that

f(0.5) > fx(0.5),  fi(1.5) < fx(1.5)

so that the upper chamber is trapping and that the periodic orbit P does not see this modifica-
tion. Observe that P is elliptic for all small a as the trace of the collision map F along P is

tr(dFp) =2 — 18175(; € (0,2) for 0 <a< 72— Now the matrix dFp is conjugate to a rota-
4am

tion by 2mav with cos 2mra = 1 — 755 We can easily choose a such that the rotation angle a is
Diophantine, then Herman’s last geometric theorem guarantees the stability of the elliptic or-
bit P, i.e. there exists an elliptic island of bounded trajectories around P (see [9, theorem 4]).

Although the assumptions of theorem 1 are compatible with existence of a positive meas-
ure set of bounded orbits, we can eliminate the possibility of oscillatory orbits. Recall that a
(forward) oscillatory orbit is an orbit such that

limsup|v(f)] =co and liminf |v(¢)| < oo.
t—~o00 t—=+o0
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Corollary 5.2. In presence of a trapping region oscillatory orbits do not exist.

Proof. We may assume without loss of generality that the lower chamber is trapping. All the
high energy orbits in the lower chamber gain energy exponentially immediately.

Now suppose that the ball is in the upper chamber and arrives at high energy level at some
v > V,, then it decelerates exponentially as observed in the proof of theorem 1 until it enters
the lower chambers or the normal form no longer applies. In either case, the ball either starts
to accelerate exponentially or remains in the low energy region |v| < V, afterwards. O

6. Waiting time for exponential acceleration

In this section we show that in the presence of the trapping region, the majority of orbits with
sufficiently high energy get trapped quickly under the hyperbolicity assumption. Throughout
this section we assume without loss of generality that the lower chamber is trapping and
|Tr| > 2. The quantity Tr is in fact the trace of the derivative of the linear map Gy = G3}, o Gi7;
and the hyperbolicity assumption | Tr| > 2 indicates that Gy is hyperbolic.

6.1. Almost sure escape for the limiting map

We first restrict ourselves to the linear parts Gy ’s of the dynamics in Proposition 4.3, which
approximates Pyy’s with an error of order O(I~!) when the velocity is large v > V.
We note that

(72, 1) = Gy (1, 1)

Iy . Iy IF _
= (7é{£*1—1(92 — 91) — Tl}z + 14+ é,éL +A2(7'2 — 1))

if 1 — % <{L.ILi(0;—6])—ma <1+ % The boundary lines

l+ l+
(LD -0 —nh=1- % {LLE -0 -nh=1+Z= ©
2 2
cut out from RT a sequence of boxes
l;r * * l;
A, =A1 —F+2n<£*I1(92 —07)—7m <1 —|—F+2n}
2 2

whose points will remain in the upper chamber under G17;, while the other points will enter
the lower chamber, when jumping from right to left at £3.
We also observe that

(71.11) = Gyy(m2. )

I It
= (—#{5*12(2 +07 —03) —mha+ 1+ l%_, I%Iz +Ar(71 = 1)>
I b

+ +
if1 — j'f <{LL2+6f—05)—m} <1+ f'—_ and that the boundary lines
1 1
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I I
{L.02460] —0;) —m}r=1— IL_ (L2407 —0;) —nla=1+ ZL_
I 1
(10)
cut out from R;r another sequence of boxes
+ +

[ l
B, ={1— l%+2n</:*22(2+0’f —0)—-m< 1+l%+2n}
1 1
whose points will remain in the upper chamber under G2};;, while the points outside will enter
the lower chamber, when jumping from left to right at #].
We define Gy = Gi}; o Gi%, on R{". Both G}, and G}, are piecewise affine maps, and the
derivative of Gy is a constant matrix DGy = DG}, - DG%, where

L L * *
Fo SELG -6
2 2

12 _
bGyy = A, A, * R
2F zgc*(ez _61)+f
I i . ox
DG # _ﬁﬁ*(2+91 - 03)
uU —

- - +
A —AGELA2+ 07 —65) + =

Since det(DGy) =1 and |Tr(DGy)| > 2, it has unstable eigenvalue A, with unstable
eigenvector e, and stable eigenvalue A, with stable eigenvector e;.

We observe that each box A is foliated by unstable lines.

We say that an unstable line v in a box A is good if it breaks after one period and at least
two components remain in the upper chamber, otherwise we say it is bad.

A good line is good as a solid part of it enters the trapping region after one period under
the linear map Gy

Lemma 6.1. Let v be a good unstable line in some box A. Then the proportion of points on
~ which remain in the upper chamber after one period is at most

e
1+21|T

D= <1

Proof. We first note that G!%,(~y) remains a complete piece in R; as + lies in A and that G}2,
maps the boundaries of A into two vertical lines

l+
G2, <{E*I| 0 —0))—mn}=1- li_) C{mn=2}
2

l+
G;]ZU ({L‘,*L(HE‘ - 9?) — ’7'1}2 =1 + l%) Q {’7’2 = 0}
2

G1i2,() has to stretch across at least two B-boxes if + has at least two pieces remaining in
the upper chamber after one period.
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e

Figure 9. A good curve partly enters the trapping region.

Suppose that G'7,(7y) stretches across N B-boxes for some N > 1. It is easy to see that for

a fixed N, the highest proportion of points staying in the upper chamber is achieved when

G12,(7) ends on the boundaries of the top and bottom boxes as shown in figure 9. However
+

the height of a B-box is equal to 25‘—, (see (10)) while the height of the fundamental domain is

n
21— )(N-1)
equal to 2 (see figure 9). This implies that in the optimal situation "7l+ of the points
N2
1

on G1%,(7) land in the lower chamber after jumping from left to right at ¢}. This proportion is

i
(1=5)@-1

larger than ———— as it is an increasing function in N and N > 2. Then the largest portion
244 +
i 14211

which remains in the upper chamber is given by D = ——. Recall that the relative positions
2+
. T I .

of two slits at ¢ implies that l‘—, <l,soD<1. i O

1

Next we need to control the number of the short bad pieces as an unstable line breaks under
the iterations of the linear map Gy.

Suppose +y is an unstable line in some box A. For x € v, we denote as r,(x) the distance
from x, to the nearest boundary of the component ~y, containing x,. Employing the argument
in section 5 of [5] we obtain the following Growth Lemma.

Lemma 6.2 (Growth lemma). There exists a constant C* s.t. for any small € > 0 and any
neN

mes,{x € v : ry(x) < e} < C'e.

Proof. Let k,(d) denote the max number of the pieces that an unstable line of length less
than § can be cut into after n iterates. We define &, = limgs_,¢ &, (9). We claim that &, < 8n.
Indeed since the singularities of GY,; are lines and there are at most 8n possibilities for slopes.
Consequently, there exists do so small that k,(6) < 16n for any 0 < dy. We choose ng such that

32ng
AY

< 1 and by replacing Gy with G} we can always assume np = 1.

For inductive purposes we cut a long unstable line into pieces shorter than &y and let 7, (x)
denote the distance from x, to the nearest real or artificial boundary of the component contain-
ing x,. We note that by doing so we improve the estimate as 7,(x) < r,(x) and it suffices to
prove the statement for 7,.
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First we observe that

2L
mes~, {7o(x) < €} < 5o€ (1)
0
Fut1(x) 18 less than € if x,, | either passes a real or artificial singularity, where L is the unstable
height of . The former is controlled by 2k; (dp)mes. {r, < Aiu} while the latter by 2k; (dg) é%e.
Therefore
L
—e€

32
mes, {F,41 < €} < —mesy{r, <€} + 325 .
0

Ay

Thus by induction we conclude that

32\" L 32\""!
mes, {7, < e} < | -— ) mes, {Fo(x) <e}+32—e(14---+ | — .
Au 60 Au

Since 13\—2“ < 1, (11) gives the desired growth control with

32\ 2L 32L
o (32)AL, B O
(Au> 60 50(1_/%)

Finally we show that under the linear approximation map Gy almost every point will even-
tually escape to the trapping region:

Proposition 6.3. In each box A, for any € > 0, there exists N = N(e) such that all but an
e-measure set of points in A enter the lower chamber within N periods. In particular, almost
every point will leave the upper chamber in the future.

Proof. Fix € > 0. Choose k, [ such that

C* +L2

DL <0.5¢ and (Kl + 1)T < 0.5¢,

and take N =kl + 1.

We suppose that under the linear map Gy a point x on a unstable line  stays in the upper
chamber up to N periods.

If the trajectory of x lands on good lines more than k times in N periods, then lemma 6.1
shows that for good lines the portion which remains in the upper chamber in the next period is
at most D. Hence by induction we see that

mes., {x € v : {Ppx}_, visits good lines more than k times} < D*L.

If instead the trajectory of x visits good lines less than k times in N periods, then it has to
visit consecutively / bad lines at least once in N periods.

Now suppose that the trajectory segment Xu, ' - - ,Xs4 land on bad lines Vn, - - > V4 for
some n < N and we denote as B, the set of all such x € v that lands badly during n to n + [
periods. We subdivide B, into B, and B, s, where B, collects points with |y, | > A, 72 and
B,,.s collects points with |y,| < A, 72,
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By lemma 6.2, |B,s| < C*Ay, /2 On the other hand, it follows from uniform hyperbolicity
that
P, {x, returns badly for next [ periods} = P < L
e Al = AL
Hence
L2

L _ L
1Busl < NG Y. 16"l < WM < e
Iyl 200172 " "

Combining the estimates on 5,1, and B, 5, we have

c* L2 C* 4 LZ
AR VCRVERVE
Consequently the set B of points on v which make / consecutive bad landings is controlled
in size by

C* + L2

|B| < (kI + UW
Since a box A is foliated by unstable lines, we conclude by a disintegration of measure
argument and our choice of k, / that under the linear map Gy the set of points in A which stay
in the upper chamber for at least N periods has measure less than e. |

6.2. Quick escape for the actual map

By proposition 4.3, the fundamental domains of Pyy are O(Z~')-deformation of the boxes
A,B and Pyy = Gyy + O(Z71).
Now we prove theorem 2.

Proof of theorem 2. Fix ¢ > 0 and a box A with large energy Zy (to be specified later).
By proposition 6.3 we choose N such that in each A-box the points that remain in the upper
chamber up to N periods under the linear approximation Gy, take up a set of measure less than
0.5¢, i.e. we take N = kI 4+ 1 where k, [ are integers such that

k> log(0.25¢/L) an kl+1 - 0.25¢
log D A2 C*+L[* 12
We shall show that the statement of theorem 2 holds with some large Zy = Zy(e) and
T =2N. (13)

Let Af, and B,‘f denote the points in A, and B, which are closer than J to the boundary,

A=Al A =4 —\4).

n
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B =\JB. B =J(B.,-\B).

n

Choose § < 0.5¢ so that the set of points in the box A which visit either A% or B° during the
first N iterations is less than 0.5¢.

By proposition 4.3, there is a constant C; such that if P}%(x) € BY/T and
P2, (P12,x) € AC/T then the orbit of x stays in the upper chamber for the next period and

C
|Py(x) — Gy(x)] < ?l where Py = P2}, 0 P12,
Accordingly there is a constant C, such that if for some n < N

N
~Cy Ay

— N
P2P(x) e BF, Pl(x) e AT (14)

and Zy > Z* for k < n then the real orbit of x stays in upper chamber for the first n iterations
and

CoAY

= (15)

Py (x) = Gy(¥)| <

Lo

Next, set C3 = =
27

CY times. Hence if x satisfies (14) and Zy > CyZ* then (15) holds.
Now choose Z* so that
CoAY
I*

< 1. Then during N iterations the value of / cannot drop by more than

< 0. (16)

Now we consider the orbits where Z < Zy < Z + 1 for some Z > CQ’ T*. There are three
possibilities:

(i) The real orbit of x leaves the upper chamber at some period n < N;
(ii) The real orbit of x stays in 4‘5 for the first NV iterations;
(iii) The real orbit of x stays in .A° until it hits A° U (P}?)~'B? at some period n < N.

Proposition 6.3 and our choice of § and Z* imply that the set of orbits where either (ii) or
(iii) happens has measure smaller than e.
This completes the proof of theorem 2. |

7. Conclusion

We have described in this paper a 2D exponential Fermi accelerator: a rectangular billiard
with two moving slits. We found a mechanism for a particle to gain energy exponentially fast,
i.e. the trapping regions. When the relative positions of two slits change at two critical jumps,
a trapping region, either the upper or lower chamber, is created so that every high velocity
orbit starts to gain energy exponentially fast once it gets trapped. We demonstrated that a trap-
ping region exists for sizable choices of parameters and the exponential acceleration happens
for almost all high energy orbits. Moreover under additional hyperbolicity assumptions on the
parameters we provided an explicit estimate on the waiting time until which the exponential
acceleration starts for most high-energy orbits.
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It is worth noting that all the analysis done in this paper is based on the normal forms in
the high energy region. The normal form implies exponential energy growth almost surely
if a particle starts with sufficiently high initial velocity, and it eliminates the possibility of
oscillatory orbits. The normal forms do not apply in low energy region where we might have
bounded orbits for certain wall motion. In this paper we did not analyze the case when a trap-
ping region does not exist, which can be easily achieved by choosing parameters such that the
relative positions of two slits do not change at two critical jumps. Our normal forms still apply
even in this complicated case but the analysis would be more delicate as the particle needs
to make a choice of traveling up or down every time it jumps. We also note that in the non-
resonant case when the periods of the particle and the wall are incommensurable, the normal
form still applies, however the jumping time depends on the period. In particular, the jumping
times become dense on the period which precludes the existence of the trapping region, so
the problem becomes similar to the resonant non-trapping case. These observations provide
possible directions for future work.
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