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A B S T R A C T

At ambient temperature, pressure, and sufficiently fine layer thicknesses, pure body-centered cubic (bcc) Mg can
exist as a pseudo-morphic phase when coherently bonded with a substantially stiffer bcc metal, such as Nb.
Compared to the hexagonal close-packed Mg/bcc Nb nanocomposite that exists in the larger layer thicknesses,
the bcc Mg/bcc Nb nanocomposite was recently shown to exhibit significantly higher yield stresses and strains to
failure. However, because of the morphological, spatial, and crystallographic constraints imposed by nano-
layered architecture, the elastic constants of the individual bcc Mg phase cannot be directly measured experi-
mentally. Lack of this fundamental property stands in the way of theoretical and computational modeling of the
mechanical properties of the pseudo-morphic bcc phase of Mg. In this work, we employ density functional theory
calculations and a strain-energy-based elasticity method to calculate the lattice and elastic constants of pure bcc
Mg. For validation of these constants, we combine a set of micropillar compression experiments and micro-
structurally explicit finite element simulations for the fully bcc Mg/bcc Nb nanolaminate system. We conclude
that (i) for the stress-free bcc Mg, the lattice parameter a0 is 3.581 Å, and the three independent elastic constants
C11, C12, and C44 are 39.64 GPa, 34.14 GPa, and 31.38 GPa, respectively, and (ii) for the laminated bcc Mg (i.e.,
a0 = 3.347 Å), the three elastic constants are 84.68 GPa, 56.68 GPa, and 61.4 GPa, respectively.

1. Introduction

Bi-phase interface strain engineering has been shown to transform
hexagonal close packed (hcp) phases into meta-stable cubic phases at
ambient temperatures and pressures [1–6]. The layer thicknesses at
which these so-called pseudo-morphic phases persist are very fine, with
nanometer dimensions. Recently, this phenomenon was used to trans-
form pure Mg from its low symmetry hcp structure to the more sym-
metric body-centered cubic (bcc) structure by sandwiching it between
another bcc metal, such as Nb, in a nanolaminate architecture [7–9].
This approach, which uses interface strains, is the only way to make
pure bcc Mg at ambient temperature and pressure, to the best of our
knowledge. Pure Mg in bcc form is only stable under extremely high
pressures (50 ± 6 GPa) [13,14]. Here we emphasize the purity of Mg.
With some alloying elements at sufficient concentration, the alloyed Mg
can be stabilized as a cubic structure, either bcc and face centered cubic
(fcc), at ambient temperatures [10–12].

It was recently demonstrated via nanomechanical testing that the
pseudo-morphic bcc Mg when coherently bonded to Nb within a

nanolaminate exhibited excellent properties [7,9]. Compared to pure
hcp Mg, standalone pure bcc Mg withstood much higher strains to
failure (60% higher), was 50% stronger, and retained its strength after
exposure to 200 °C (0.5 times its homologous temperature) for one
hour. The outcome indicates that bcc Mg is a highly attractive pseudo-
morphic phase from a structural viewpoint. Bcc Mg may operate by
similar easy glide deformation mechanisms, like regular bcc metals, and
hence, may be just as ductile and formable [7,9]. Such a prospect is
exciting, particularly for the intrinsically lightweight pure Mg metal,
which in its stable, ambient hcp form is brittle at room temperature.

To date, many very basic properties of the pseudo-morphic bcc Mg
phase that are critical for understanding its structural behavior are not
known. First and foremost, its elastic properties have not been mea-
sured. Understanding and modeling the deformation mechanisms and
the deformation behavior of bcc Mg requires knowing the elastic
moduli. For instance, calculations of the critical thickness at which the
pseudo-morphic phase of Mg occurs demand knowledge of its elastic
moduli. Developing an interatomic potential for pseudo-morphic bcc
Mg would call for the elastic moduli for fitting purposes. Much of the
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outstanding plastic behavior of bcc Mg can be attributed to a change in
the structure, motion, and modes of the dislocations of the bcc structure
from those of the hcp structure. Calculating the stresses and energies
associated with dislocation motion and dislocation-dislocation inter-
actions in bcc Mg via analytical or crystal plasticity modeling would
also need the elastic moduli as input.

Several features of the nanostructure of the bcc Mg/bcc Nb preclude
use of conventional means to measure its moduli. The elastic properties
of thin films have been traditionally measured using either non-contact
or contact techniques. Non-contact techniques include acoustic micro-
scopy, laser ultrasonics, micromechanical resonator-based sensing
methods [15–26]. Examples of contact techniques are macroscale ten-
sile testing and nanoindentation testing. The non-contact-based tech-
niques have an inherent disadvantage in that it is often complicated to
distinguish the response of the thin film from the substrate. The chal-
lenges surrounding elastic moduli measurement are also compounded
for thin films composed of multiple nanoscale thick layers. The nu-
merous heterophase interfaces in the films can result in multiple in-
ternal reflections. The epitaxial nature of growth within the individual
layers, along with the high surface area-to-volume ratio of 2D layering,
result in significant anisotropy in the elastic response. The layers are
not single crystalline but nanocrystalline, comprised of many grains
distributed in crystallographic orientation. Both classes of measurement
techniques are unable to discern the anisotropy of the elastic properties,
because the fine nanoscale volume of the Mg layer confined between Nb
layers prevents direct mechanical testing of the Mg alone.

One very recent attempt was made to use synchrotron X-ray dif-
fraction (XRD) to measure the bulk modulus of the pseudo-morphic bcc
Mg phase [27]. The study analyzed Mg/Nb nanolaminates with a 1:1
layer thickness ratio and ranging from 5 nm to 50 nm in layer thickness.
The measurements indicated that, for an hcp-to-bcc pseudo-morphic
phase transformation in Mg, the critical layer thickness lies between 7
and 8 nm. In particular, the crystal structure of the 5 nm/5 nm laminate
was found to be uniformly bcc and the lattice parameter for the Mg and
Nb phases was equivalent: a0 = 3.347 Å. Both Mg and Nb phases were
highly textured with the {1 1 0} pole oriented along the nanolaminate
thickness. The combined data indicate that the {1 1 0}Mg||{1 1 0}Nb
interface is coherent and the orientation relationship cube-on-cube.

The synchrotron XRD data showed that the peaks of the pseudo-
morphic bcc Mg and the bcc Nb structures overlap and hence they were
not able to differentiate between the two structures [27]. The bulk
modulus values calculated from the bcc Mg/bcc Nb 5 nm/5 nm nano-
laminates and the bcc Nb peaks in the hcp Mg/bcc Nb 50 nm/50 nm
nanolaminates are all similar and match the value corresponding to
bulk Nb. Thus, in bcc Mg/bcc Nb 5 nm/5 nm nanolaminates, the bulk
modulus computed from the peaks correspond to that of bcc Nb but not
bcc Mg. To date, the elastic constants of bcc Mg are unknown experi-
mentally.

Density functional theory (DFT) is a common method for calculating
the moduli of a perfect crystal. In Ref. [28], a DFT model supercell of
bcc Mg was created and the elastic constants calculated via a stress-
strain method. The elastic constants C11, C12, and C44 were calculated to
be 35.55 GPa, 35.23 GPa, and 29 GPa, respectively. The results imply
that bcc Mg is much softer than Nb, as well as hcp Mg. However, with
the predicted constants, the first of three Born stability criteria for cubic
crystals, >C C11 12, is barely satisfied [29]. Latter DFT work estimated
these constants to be 38 GPa, 33 GPa, and 23.8 GPa, respectively [30].

In this work, we combine DFT, full-field 3D microstructural mod-
eling with explicit grain structures, and micropillar compression to
predict and validate the elastic constants of the pseudo-morphic bcc Mg
phase. Unlike previous studies, here, the DFT calculation for the elastic
constants includes a large number of valence electrons and the strain-
energy method. To validate the DFT predictions, we utilize focused ion
beam (FIB)-fabricated micro-pillar compression experiments to char-
acterize the anisotropic elastic response of the nanolayered composite.
To obtain three distinct curves, micropillars are fabricated with

interfaces oriented either normal, parallel and oblique (45°) to the
compression axis. Each configuration generates unique mechanical in-
formation. Compression normal and parallel to the interface represent
approximate iso-stress and iso-strain orientations, while the compres-
sion test obliquely to the layers can provide information on the elastic
shear response. Use of the DFT lattice and elastic constants in the mi-
cromechanical model produced composite elastic responses in full
agreement with all measurements. We conclude that (i) for the stress-
free bcc Mg, the elastic constants C11, C12, and C44 are 39.64 GPa,
34.14 GPa, and 31.38 GPa, respectively, and (ii) for the laminated bcc
Mg, the three elastic constants are 84.68 GPa, 56.68 GPa, and 61.4 GPa,
respectively. Based on these values, we reveal that bcc Mg is elastically
soft compared to other structural bcc metals and highly elastically an-
isotropic.

2. Methodologies

2.1. Two possible cases

As mentioned, prior measurements with high pressure XRD syn-
chrotron were performed for the 5 nm/5 nm bcc Mg/bcc Nb nanola-
minate (hereinafter referred to as the bcc Mg nanolaminate). It was
found that the composite bulk modulus was 180 GPa. Two distinct
possibilities can explain this result. The first, termed case A, is that only
the stiffness of Nb is being measured. The measured bulk modulus of
180 GPa is very close to that of bulk Nb (~178.33 GPa). This case re-
cognizes the possibility of a giant stiffness mismatch, wherein the
stiffness of the bcc Mg could be significantly lower than that of Nb. Nb
preserves its stiffness constants, C11

Nb, C12
Nb, and C44

Nb, whereas the stiffness
of the pseudo-morphic phase of bcc Mg is unknown. Presuming that the
stiffness of bcc Mg exhibits cubic anisotropy, we are left with three
unknowns, C11

A, C12
A, and C44

A .
The second possibility, termed case B, is that bcc Mg and bcc Nb

have the same elastic stiffness. This case considers that the stiffness of
nanolayered Nb and Mg are both modified by the formation of the
coherent Mg/Nb interface. The three unknowns are the three cubic
stiffness constants C11

B , C12
B , and C44

B common to the adjoined coherent
Mg/Nb pair.

Two independent approaches are used to estimate the elastic moduli
of bcc Mg. The first employs DFT, in which 10 valence electrons are
used in the calculation, and state-of-the-art algorithms for elastic
moduli estimation from DFT simulations. The second approach com-
bines micropillar compression on the nanolaminates and a micro-
mechanics model [31], in which the elastic deformation of the layered,
textured nanostructure is simulated. For case A, we directly incorporate
the DFT calculated constants for bcc Mg into the simulation of the bcc
Mg/Nb nanocomposite compression response and compare it with the
experimental deformation tests. For case B, we determine the elastic
constants for which the micromechanical model reproduces all three
curves based on micropillar compression. Such micromechanical ap-
proach has been used on martensite in steels [32].

2.2. Density functional theory

DFT calculations were conducted using VASP [33]. Based on the
projector augmented wave method [34,35], three pseudopotentials are
employed, with different numbers of valence electrons for which a
plane-wave basis with a cutoff energy of 600 eV is adopted. To ap-
proximate the exchange-correlation energy functional, the Perdew-
Burke-Ernzerhof formulation of the generalized gradient approximation
is used [36]. The conjugate gradient scheme is employed for the elec-
tronic self-consistent loop; the convergence is reached when the total
free energy change between two steps are smaller than 10−4 eV. The
Brillouin zone is constructed by the Monkhorst-Pack scheme [37], with
a smearing width of 0.2 eV based on the Methfessel-Paxton smearing
method [38].
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A periodic cell containing two atoms is used to determine the lattice
parameter a0 and elastic constants C11, C12, and C44. The k-point mesh
is 19 × 19 × 19. For a0, the simulation cell size is varied, with the free
energy calculated for each size, and a0 corresponds to the one with the
lowest free energy. The elastic constants are calculated via the energy-
strain method provided in AELAS [39].

2.3. Micromechanics model

In this paper, we focus on the bcc Mg nanolaminate, which has
coherent interfaces. As a feasibility check, however, the investigation is
also applied to the much thicker 50 nm/50 nm Mg/Nb nanocomposite
(referred to as the hcp Mg nanolaminate).

2.3.1. Micropillar compression
In order to compare pseudo-morphic bcc Mg with hcp Mg, multi-

layers were synthesized using physical vapor deposition, as in prior
works [7,9,32]. The depositions aimed to create two sets of layer
thicknesses: 5 nm/5 nm and 50 nm/50 nm Mg/Nb nanocomposites.
Then transmission electron microscopy (TEM) was used to measure the
actual layer thicknesses. The bcc Mg nanolaminate was found to have
almost equal Mg and Nb layer thicknesses of about 5.5 nm, and the hcp
Mg nanolaminate and a Mg layer thickness of ~35 nm and a Nb layer
thickness ~65 nm. In the former composite, XRD and TEM verified that
the Mg phase uniformly has a bcc crystal structure, Mg and Nb have the
same texture, and the interface is coherent. In the latter composite, the
Mg phase is hcp, the interfaces are incoherent, and the elastic constants
of both phases are well known by measurements independent from the
ones we employ here.

To determine the composite stiffness, we conducted micropillar
compression tests on the bcc Mg nanolaminates and on the hcp Mg
nanolaminates. The micropillars were fabricated in the dual beam FEI
Helios™ FIB Scanning Electron Microscopy (SEM), using a beam of Ga+
ions to remove the material and shape it in pillar form. Details of the
micropillar fabrication and in-site testing are described in prior work
[7]. The same micropillar tests were used in both cases A and B, each of
which introduces three unknowns. Micropillars with layers oriented at
three distinct angles with respect to the pillar axis (which is the com-
pression axis) are made. Specialized FIB-fabricated techniques are used
to make micropillar compression with interfaces that were oblique (45°)
to the compression axis. If the Mg and Nb crystals are elastically ani-
sotropic, each composite layer orientation would be expected to pro-
duce a different composite modulus under compression.

2.3.2. FE modeling
To model the composite elastic response, we employ the finite ele-

ment (FE) method. An important component of FE modeling is building
the 3D microstructure model, including the layer morphology, in-
tralayer grain shapes, and texture of each phase [40,41]. A second
component is the deformation simulation, including boundary condi-
tions, and the third one concerns the constitutive law, which we con-
sider to be linear elastic for each phase. The first two components are
described in turn below. The third one pertains to the objective of the
paper, which is to characterize the elastic constants, and is discussed in
more detail with the presentation of the results.

The initial 5 nm/5 nm Mg/Nb microstructures for the FE calcula-
tions are based on the experimental measurements. The models for the
normal and parallel micropillar tests are the same. Fig. 1 shows the
meshed model of the Mg/Nb bilayer. The models are divided into two
equal volumes that represent a layer of the Nb bonded to a layer of Mg.
Both layers are polycrystalline in plane and single crystalline through
thickness with one grain spanning the layer thickness. The grains are
made 100 nm wide and thus, have a pancake-like shape. The grain
microstructure is periodic. The FE meshes consist of roughly 435,000
C3D4 elements in Abaqus (i.e., continuum three-dimensional four-
nodal elements). Each layer consists of 267 grains or a total of 534

grains in both layers.
A special custom procedure is developed to generate FE granular

models where the composite layers are built 45° angle with respect to
the loading axis. This procedure is different from the one utilized to
generate FE models for calculating the normal and parallel material
responses. A schematic of the model is shown in Fig. 1, where a layer
thickness of 50 nm is used as an example. The main idea is to first create
a 3D voxel-based model of the granular microstructure that contains a
large number of layers and then to perform a cut that would ultimately
give us a desired microstructural model [42]. Each individual layer
(which contains grains of appropriate size and shape) was separately
generated in DREAM.3D [43] and then assembled in a big/large scale
voxel-based model using a Matlab script. Next, using the same script,
we define a cutting profile to mask/select voxels from the interior of the
layered model. We choose a cutting profile that allows us to obtain a
voxel-based model with layers that are 45° inclined with respect to the
global axes (Fig. 2). An important fact to emphasize here is that the
cutting is performed on the voxel-based model and not on the FE model.
To achieve a better representation of the grain structure within the 45°
voxel-based model, we perform Laplacian based smoothing filter im-
plemented in DREAM.3D to smooth out and suppress any serrated
boundaries between grains. After applying the filter, the surface meshes
of all individual grains in the model are obtained. Next, we proceed
with performing their solid meshing (mesh interior of each grain) in
MSC Patran [44]. Finally, we generate an FE model of the granular
microstructure (Fig. 2) that is composed of linear tetrahedral C3D4
elements. Material (elastic) properties of Mg and Nb are alternately
prescribed for all the layers in the microstructure.

We simulate compression deformation in all microstructural
models. In the loading direction, the displacement is prescribed; in the
lateral direction, the surfaces were kept free to expand. Note that the
loading, applied normal and parallel to the Mg/Nb interfaces, respec-
tively, is along the negative z and negative x direction. Periodic
boundary conditions are used. To impose them, the deformation of the
pairs, left/right, top/bottom, and front/back faces, are made equal and
the stress tensors on each pair set to be opposite in sign.

At every integration point in these model microstructures, the
constitutive law accounts for cubic elastic anisotropy [45,46], which for
a cubic material leaves three unknown elastic constants. In case A, the
three unknowns correspond to the elastic constants for the bcc Mg
phase, or in case B, to the combined bcc Mg/Nb phase. The same three
5 nm/5 nm microstructural models are used for cases A and B. As a test
of the model, we also build a normal, parallel, and 45° model of the hcp
Mg/Nb nanolaminate, in which the elastic constants of the hcp Mg and
bcc Nb are already known [9].

It is worth noting that recent experiments in [27] found that in the
5 nm/5 nm laminate, the bcc Mg and bcc Nb phases share the same
lattice parameter of 3.347 Å. The change in lattice parameter generates
coherency stresses and strains. An analytical calculation of these
stresses using the DFT elastic constants can be found in Appendix A.
The normal in-plane stresses in the bcc Mg and bcc Nb are –1.4 GPa and
1.45 GPa, respectively. The coherency stress is, however, localized and
only influences local behavior, such as crack nucleation and eventual
ductility/fracture. However, in a large volume, such as the micropillars
being modeled here, the coherency stresses become broadly distributed
and in equilibrium across the sample volume, which would not ap-
preciably affect the homogenized properties of the sample, such as
elasticity, and the macroscopic elastic stress-strain response [47]. Ac-
cordingly, the local coherency stresses were not taken into account in
the micromechanical simulation.

3. Results

In this section, we present results from DFT calculations and the
micromechanics model. Known elastic constants of hcp Mg and bcc Nb
are given in Table 1.
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3.1. DFT predictions

DFT calculations were carried out assuming different number of
valence electrons in the pseudo-potential. The results are summarized
in Table 2. Among our calculations, we observe a sensitivity in C11 only
to the number of valence electrons used. Both C11 and a0 are the largest
based on the 10 valence-electron pseudo-potential (i.e., Mg_sv)

compared to those for 2 and 8 valence-electron calculations. To further
validate the Mg_sv potential, we use it to calculate the lattice para-
meters and elastic constants of hcp Mg. A comparison with experi-
mental results presented in Table 3 shows that the Mg_sv potential
provides accurate predictions for the lattice parameters and reasonable
predictions for the elastic constants. Therefore, in the remainder of this
paper, DFT predictions based on Mg_sv will be considered.

Fig. 1. Schematic of the developed procedure for 45° finite element model generation. (a) Large scale voxel-based model that contains large number of layers used for
cutting, (b) 45° voxel-based model obtained as a result of cutting, (c) corresponding 45° FE model.

Fig. 2. FE models of an explicit grain structure with 45° layer configuration where the layer thickness is (a) 50 nm and (b) 5 nm. Right hand images reveal the interior
of the granular microstructure.

Table 1
Experimental values of single crystal elastic constants for hcp Mg and bcc Nb, respectively, at room temperature and under zero external stress [48,49].

hcp Mg bcc Nb

C (GPa)11 C (GPa)12 C (GPa)13 C (GPa)33 C (GPa)44 C (GPa)11 C (GPa)12 C (GPa)44

59.4 25.61 21.44 61.6 16.4 246 134 28.7
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The same quantities were previously calculated by DFT in Refs.
[28,30]. The lattice parameters and elastic constants from all three
calculations conducted here differ from those previously reported using
two [28] or an unknown number of valence electrons [30]. Apart from
the number of valence electrons used in the calculation, the differences
can be explained by choice of cut-off energy, k-point numbers, and the
method to calculate the moduli. Unlike in the present work which uses
a strain-energy method following a recent DFT work [50], these two
studies used the stress-strain method to calculate the elastic constants.
Further, compared with the current work, the study by Junkaew et al.
[30] used a coarser k-point grid of 18 × 18 × 18 and a lower cutoff
energy of 520 eV. In general, a denser k-point grid and a higher cutoff
energy can reduce potential errors in DFT calculations.

All calculations indicate that the elastic anisotropy of bcc Mg is
relatively high. We use the Zener ratio, Ac = 2C44/( −C C11 12), and its
deviation from unity, as a measure of the elastic anisotropy. For the
calculations here, compared to the 2- and 8-valence electron calcula-
tion, the 10-valence electron case gives the lowest Zener ratio Ac of
11.4, and that from Ref. [30] is 9.5. These values are higher than that of
Lithium (9.14), which possesses the highest Zener ratio among all bcc
elemental metals [51].

The corresponding bulk modulus (Kb = ( +C C211 12)/3) for bcc Mg is
35.97 GPa, which is higher than but still close to that of bulk hcp Mg
(32.5 GPa) measured experimentally (see Table 1). Yet, the bcc bulk
modulus is substantially lower than the experimentally measured bulk
modulus of Nb (178.33 GPa). The significantly lower bulk modulus of
the bcc phase supports case A, in which the measured 180 GPa bulk
modulus of the composite corresponds to that of Nb.

We recall in the 5 nm/5 nm laminate, the bcc Mg and bcc Nb phases
share the same lattice parameter of 3.347 Å. Using this lattice para-
meter, we calculate the elastic constants of bcc Mg and bcc Nb. As
shown in Table 4, the elastic constants in both phases increase from
those associated with the lattice parameter of their unlaminated, free
state, particularly for bcc Mg. This calculation implies that due to the
alteration of the lattice parameter alone, a dramatic change in the
elastic constants for bcc Mg can be expected.

3.2. Estimates from the micromechanics model

First, to demonstrate the feasibility of the approach, we apply the
model to the hcp Mg nanolaminates. In prior XRD studies, the bulk
modulus values of hcp Mg in this nanolaminate coincide with those

measured for the bulk (non-laminated) hcp Mg. Accordingly, the mi-
crostructure model uses input for the elastic properties of the hcp Mg
phase and bcc Nb phase as summarized in Table 1. Fig. 3 compares the
microstructural model elastic stress-strain responses for all three tests
with the experiments. Also shown are the SEM images of the pillars
after failure (beyond the elastic regime). The agreement between the
simulated response and measurement is excellent, verifying the mod-
eling approach we developed here. Table 5 provides the composite
moduli estimates from the tests, where the error bars reflect the dis-
persion from the two tests.

Next, we consider the bcc Mg nanolaminates. To prove repeat-
ability, two experimental tests are conducted for each layer-load or-
ientation. Fig. 4 shows the elastic responses as well as SEM images of
the pillars after the test to failure. Each layer orientation gives a distinct
composite modulus, indicating that one or the other or both of the
phases is elastically anisotropic. Table 5 summarizes the composite
moduli measured for each test. The error bars in modulus are calculated
based on the differences among the two tests. On the FE side, the same
modeling approach used in the hcp Mg nanocomposites is employed.
The two separate cases introduced earlier are considered.

We first test case A, in which the goal is to find the values of C11, C12,
and C44 of bcc Mg that enable the composite model to fit all three curves
very well, while at the same time, satisfying the Born mechanical sta-
bility criterion, >C C11 12. Fig. 4 shows that the model for case A
achieves good agreement. The corresponding moduli for bcc Mg are
C11

A = 65 GPa, C12
A = 35 GPa, and C44

A = 22.5 GPa (See Table 6). Ac-
cordingly, the bulk modulus of bcc Mg is 45 GPa. This value is sub-
stantially lower than that of Nb (178 GPa), but not too far from the DFT
prediction (35.97 GPa). It could, therefore, be argued that it was too
low to be measured in-situ in the recent XRD tests on this same multi-
layer nanolaminate material [27]. We use the Zener ratio, Ac = 2C44

A/
( −C C11

A
12
A), and its deviation from unity, as a measure of the elastic

anisotropy. The moduli for bcc Mg from case A indicates that Ac = 1.5,
which relative to many cubic materials is not considered significantly
anisotropic. In fact, like hcp Mg, bcc Mg in case A is nearly elastically
isotropic.

The same procedure is used in case B to find the values of C11
B , C12

B ,
and C44

B that enable the composite model to fit all three curves well,
while at the same time, satisfying the Born mechanical stability cri-
terion, >C C11

B
12
B . In Fig. 5, the modeling predictions for case B are

compared with the same experimental curves in Fig. 4. The corre-
sponding elastic constants shared by bcc Mg and bcc Nb are
C11

B = 100 GPa, C12
B = 20 GPa, and C44

B = 25 GPa (Table 6). From case B,
the value of Ac is 0.625. It is not unlike a bcc material to have a Zener
ratio less than one. For instance, Ac = 0.43 for bulk Nb and 0.7219 for

Table 2
DFT calculations of the lattice parameter a0, cohesive energy Ecoh, elastic
constants C11, C12, and C44 for bcc Mg at 0 K under zero external stress. PAW:
project augmented wave.

PAW
potential

number of
valence
electrons

a0 (Å) Ecoh (eV) C11 (GPa) C12 (GPa) C44 (GPa)

Mg 2 3.575 –1.478 37.62 34.83 31.41
Mg_pv 8 3.577 –1.477 37 34.68 31.17
Mg_sv 10 3.581 –1.500 39.64 34.14 31.38
Mg [28] 2 3.574 –1.487 35 35 29
Mg [30] unknown 3.571 –1.453 38.07 33.07 23.77

Table 3
Experimental measurements [48] and DFT calculations of the lattice parameter a and c, elastic constants C11, C12, C13, C33, and C44 for hcp Mg at 0 K under zero
external stress.

Method a (Å) c (Å) C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

Experiment [48] 3.187 5.17 63.48 25.94 21.7 66.45 18.42
DFT (Mg_sv) 3.184 5.167 58.55 32.85 23.55 62.88 19.98
DFT [28] 3.192 5.178 63 27 20 69 18
DFT [30] 3.198 5.184 72.7 18.99 17.88 69.54 17.83

Table 4
DFT calculations of the lattice parameter a0, elastic constants C11, C12, and C44

for bcc Mg and bcc Nb at 0 K. PAW: project augmented wave. Row 2: under zero
external stress. Row 3 and row 4: when the two materials have the same ex-
perimentally measured laminated lattice parameter of 3.347 Å.

PAW potential a0 (Å) C11 (GPa) C12 (GPa) C44 (GPa)

Nb 3.324 233.39 126.78 14.35
Nb 3.347 249.01 135.43 18.1
Mg_sv 3.347 84.68 56.68 61.4
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bulk Mo [51]. However, the bulk modulus corresponding to the case B
elastic constants is 46.67 GPa for both bcc Mg and bcc Nb, which is
much lower than that measured by XRD (180 GPa). The large dis-
crepancy implies that case B is not valid. It is, therefore, not likely that
the bcc Mg and bcc Nb nanolayers adopt the same elastic moduli in the
composite.

3.3. DFT-informed FE simulations

Here, we perform a set of FE deformation simulations for com-
pression of the three-layer orientations using the elastic constants for
bcc Mg from DFT (Table 2) and for bcc Nb from bulk measurements
(Table 1). Fig. 6 compares the simulation results with the experimental
micropillar tests. The agreement is reasonably good. Deviations are
likely caused by the idealized layer morphology in the model, which are
not perfectly planar in the micropillars. Nevertheless, we emphasize
that the FE calculation does not involve any unknown elastic constants
or adjustments to the elastic constants.

4. Discussion

The main goal of this work is to determine the elastic constants of
the pseudo-morphic bcc phase of nanocrystalline Mg at room tem-
perature and ambient pressure. We used two independent methods to

calculate the moduli, one involving DFT and another involving micro-
mechanics calculations. Unlike prior efforts, the former method, DFT,
used 10 valence electrons and a strain-energy method for elastic con-
stant calculations. For the stress-free bcc Mg, DFT predicts the lattice
parameter a0 is 3.581 Å, and 39.64 GPa, 34.14 GPa, and 31.38 GPa for
C11, C12, and C44, respectively. For the laminated bcc Mg (i.e.,
a0 = 3.347 Å), the three elastic constants are 84.68 GPa, 56.68 GPa,
and 61.4 GPa, respectively. These values differ from prior DFT reports
and satisfy the Born stability criterion.

Validation of the DFT predictions is needed but must be carried out
indirectly since direct measurements of the elastic constants of bcc Mg
are not available and to date, are challenging to obtain. The validation
step involves the second micromechanics method, which is newly
presented here. It provides a basic technique to determine the elastic
moduli of a confined, textured nanocrystalline phase(s) when the
composite elastic stress-strain response is known. The nanolayer com-
posite elasticity measurements include nanolaminates tested in com-
pression normal, parallel, and at an oblique angle to the nanolayers. For
simulating the latter test, non-periodic microstructure that cannot be
replicated using standard microstructural building techniques. As part
of this study, it was necessary to develop a computational method for
representing inclined layers, an algorithm presented in detail in Section
2.3.2.

Recent XRD measurements of bulk modulus for the bcc Mg

Fig. 3. Comparison of the measured and calculated elastic stress-strain curves for the hcp Mg nanocomposite: (a) normal, (b) parallel and (c) 45° cases. This case is
used for validating the model since all the elastic constants are known (see Table 1). In the remainder of this paper, all stress-strain curves use dashed lines for the
experimental values from Ref. [9], black lines for the extrapolated elastic response averaged from the two experimental samples in each case, and asterisks * for the
FE results obtained in the current work. Corresponding SEM images of the pillars after the test to failure (beyond the elastic regime).

Table 5
Experimentally measured composite Young’s moduli from the micropillar tests.

nanolaminate Layer normal (GPa) Layer parallel (GPa) Layer 45° (GPa)

hcp Mg/bcc Nb nanolaminate 69.5 ± 3.3 88.7 ± 13 81.2 ± 8.5
bcc Mg/bcc Nb nanolaminate 76.5 ± 4.8 93.27 ± 11.3 82.9 ± 7
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nanocomposites reported that the composite modulus was 180 GPa,
close to that of unlaminated, bulk Nb (178.33 GPa). Based on this
finding, two possible explanations for the sets of elastic constants in the
Mg bcc phase were hypothesized. In case A, the bulk modulus of bcc Mg
was assumed to be different from that of bcc Nb. In case B, bcc Mg and
bcc Nb were assumed to have the same bulk modulus. The DFT calcu-
lations find that the bulk modulus of bcc Mg (35.97 GPa) is far lower
than that of Nb (178.33 GPa), indicating that case A is more likely. The
micromechanical model produced a single set of three constants under
the assumption of case B to reproduce simultaneously all three distinct
elastic responses from the micropillar tests. The bulk modulus corre-
sponding to this fitting process was 45 GPa, which is far below that
measured by high-pressure synchrotron measurements (180 GPa).
Again, case A evidently is the more likely scenario compared to case B.

Fig. 4. (top row) Comparison of case A elastic stress-strain curves with experiment for the bcc Mg nanocomposite (a) normal, (b) parallel and (c) 45° cases. (bottom
row) Corresponding SEM images of the pillars after the test to failure (beyond the elastic regime).

Table 6
Values of single crystal elastic constants determined from the micromechanics
model for the two cases at room temperature. In case A, the elastic constants for
bcc Mg were unknown while those for bcc Nb were taken from Table 1. In case
B, the elastic constants, which were assumed to be the same for bcc Mg and bcc
Nb, were unknown.

bcc Mg bcc Nb

C (GPa)11 C (GPa)12 C (GPa)44 C (GPa)11 C (GPa)12 C (GPa)44

Case A 65 35 22.5 246 134 28.7
Case B 100 20 25 100 20 25

Fig. 5. Comparison of case B elastic stress-strain curves with experiment for the bcc Mg nanocomposite (a) normal, (b) parallel and (c) 45° cases.
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For validation of the DFT elastic moduli, we sought to determine
whether the DFT-calculated moduli for bcc Mg lie in the range of
constants that would lead to agreement between the micromechanical
model and the experimental response in composite pillar tests. Indeed,
when the DFT-calculated elastic moduli of bcc Mg are used in FE si-
mulations, good agreement with the experimental values is achieved.
Yet, there was some deviations between the simulated and measured
elastic responses, and as with any modeling procedure, validation and
discrepancies need to be addressed. First, the micromechanical method
is validated against hcp Mg/Nb nanolaminate data. Second, the DFT
calculations are carried out at 0 K and not at room temperature. Third,
the approach involves measuring and simulating composite moduli for
only three distinct orientations. Including the composite elastic re-
sponses in other types of deformation tests, such as shear tests, or for
other oblique angles, would have further constrained the model, nar-
rowing even more the range of possible values for each elastic constant.
Yet, still, despite these differences, the agreement seen in Fig. 6 is ex-
cellent. Thus, from this study, we conclude that the elastic moduli for
the pseudo-morphic bcc phase of pure Mg correspond to those calcu-
lated by DFT.

One intriguing aspect of the DFT predictions is the large elastic
anisotropy of bcc Mg, corresponding to a Zener ratio of 11.4. Structural
bcc metals have Zener ratios that are usually much lower, such as Fe,
which has a ratio of 2.46 [51]. In crystals, the large elastic anisotropy
tends to yield strong interactions between screw and edge components
[52], activate unusual slip systems [53], affect the dislocation core
structure [54], line tension [55], dislocation loop shape [56], and
Frank-Read source activation [57].

Last, we note that all FE models and experiments in this paper are
under ambient pressure. Nevertheless, the aforementioned XRD-based
bulk modulus of bcc Mg nanocomposite, 180 GPa, was based on data
taken over a broad span of pressures ranging from ambient to 60 GPa
[27], far above the hcp-to-bcc transition pressure of 45 GPa for Mg. To
check the effects of the pressure on the elastic constants, we applied the
same DFT method to bcc Mg and bcc Nb at 45 GPa. At this pressure, the
lattice parameters were found to be 3.043 and 3.125 Å, respectively, for
bcc Mg and bcc Nb. The elastic constants for bcc Mg are
C11 = 180.86 GPa, C12 = 108.4 GPa, C44 = 130.85 GPa and for bcc Nb,
they are C11 = 422.3 GPa, C12 = 196.8 GPa, C44 = 53.21 GPa. Thus,
under 45 GPa, the bulk moduli for bcc Mg and bcc Nb are 132.55 GPa
and 272 GPa respectively, leading to a volume average bulk modulus of
202.77 GPa. This value is still not far from the measured 180 GPa bulk
modulus of the bcc Mg nanocomposites.

5. Conclusions

In this paper, we utilize two independent approaches, DFT and a
newly proposed micromechanics model, to obtain the elastic constants
of bcc Mg, which exists when an Mg nanolayer is sandwiched between
bcc Nb layers in nanocomposites. Both methods exclude the possibility
that the bcc Mg and bcc Nb nanolayers, when laminated in a composite,
adopt the same elastic moduli, and show that bcc Mg is softer than hcp
Mg, and is much softer than bcc Nb. Our analyses estimate that for the
stress-free bcc Mg phase, the lattice constant a0 is 3.581 Å and the three
independent elastic constants, C11, C12, and C44, are 39.64 GPa,
34.14 GPa, and 31.38 GPa, respectively. For the laminated bcc Mg (i.e.,
a0 = 3.347 Å), the three elastic constants are 84.68 GPa, 56.68 GPa,
and 61.4 GPa, respectively. As an added contribution, the micro-
mechanics nanolayered composite model we present here is readily
applicable to estimate the elastic moduli of one phase if those of the
other phase and the overall nanocomposite are known.
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Appendix A

Here, we estimate the coherency strain/stress in the 5 nm/5 nm Mg/Nb bilayer composite. Let the z direction be normal to the bimetal interface.
The transformation strains in hcp Mg and bcc Nb, respectively, are

= =
−

= − =
a a

a
Δ Δ 3.347 3.209

3.209
0.04311

Mg
22
Mg 0 0

Mg

0
Mg (A.1)

= =
−

= − =
a a

a
Δ Δ 3.347 3.301

3.301
0.01411

Nb
22
Nb 0 0

Nb

0
Nb (A.2)

where a0
Mg and a0

Nb, taken from Ref. [51], are the basal plane lattice parameter of hcp Mg and the lattice parameter of bcc Nb in their respective free
states, and a0, experimentally measured in Ref. [27], is the common lattice parameter of the 5 nm/5 nm bcc Mg/bcc Nb system. According to
Shoykhet et al. [58], the elastic stress tensors in bcc Mg and bcc Ng, respectively, are

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

σ
M A

M A
0 0

0 0
0 0 0

ela
Mg

Mg Mg

Mg Mg

(A.3)

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

σ
M A

M A
0 0

0 0
0 0 0

ela
Nb

Nb Nb

Nb Nb

(A.4)

where ν is the isotropic Poisson’s ratio, = + −M μ ν ν2 (1 )/(1 ) is the isotropic biaxial modulus, where μ is the isotropic shear modulus, and

=
+
+

−A
M M

M M
Δ Δ

ΔMg
Mg

11
Mg Nb

11
Nb

Mg Nb 11
Mg

(A.5)

=
+
+

−A
M M

M M
Δ Δ

ΔNb
Mg

11
Mg Nb

11
Nb

Mg Nb 11
Nb

(A.6)

Using the Voigt average for cubic systems [59], μ and ν, respectively, are

= + −μ C C C1
5

(3 )44 11 12 (A.7)

= + −
+ +

ν C C C
C C C

4 2
4 6 2

11 12 44

11 12 44 (A.8)

To obtain the upper bound of the elastic strain tensor, we use the elastic constants of bcc Mg and bcc Nb corresponding to a common lattice
parameter =a 3.3470 Å at 0 K, which are presented in Table 4. As such,

= × + − =μ 1
5

(3 61.4 84.68 56.68) 42.44 GPaMg
(A.9)

= × + − =μ 1
5

(3 18.1 249.01 135.43) 33.58 GPaNb
(A.10)

= + × − ×
× + × + ×

=ν 84.68 4 56.68 2 61.4
4 84.68 6 56.68 2 61.4

0.235Mg
(A.11)

= + × − ×
× + × + ×

=ν 249.01 4 135.43 2 18.1
4 249.01 6 135.43 2 18.1

0.409Nb
(A.12)

Hence

= × × +
−

=M 2 42.44 (1 0.235)
1 0.235

137.03 GPaMg
(A.13)

= × × +
−

=M 2 33.58 (1 0.409)
1 0.409

160.12 GPaNb
(A.14)

= × + ×
+

− = −A 137.03 0.043 160.12 0.014
137.03 160.12

0.043 0.016Mg
(A.15)

= × + ×
+

− =A 137.03 0.043 160.12 0.014
137.03 160.12

0.014 0.013Nb
(A.16)

Therefore, the upper bounds of the elastic strains are

= ⎡

⎣
⎢

−
−

⎤

⎦
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2.19 0 0
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= ⎡

⎣
⎢

⎤

⎦
⎥σ

2.08 0 0
0 2.08 0
0 0 0

GPaela
Nb

(A.18)

To obtain the lower bound of the elastic strain tensor, we use the elastic constants of hcp Mg and bcc Nb under zero external stress at room
temperature, which are presented in Table 1. As such,

= × + − =μ 1
5

(3 16.4 59.4 25.61) 16.6 GPaMg
(A.19)

= × + − =μ 1
5

(3 28.7 246 134) 39.62 GPaNb
(A.20)

= + × − ×
× + × + ×

=ν 59.4 4 25.61 2 16.4
4 59.4 6 25.61 2 16.4

0.304Mg
(A.21)

= + × − ×
× + × + ×

=ν 246 4 134 2 28.7
4 246 6 134 2 28.7

0.393Nb
(A.22)

Hence

= × × +
−

=M 2 16.6 (1 0.304)
1 0.304

62.2 GPaMg
(A.23)

= × × +
−

=M 2 39.62 (1 0.393)
1 0.393

181.85 GPaNb
(A.24)

= × + ×
+

− = −A 62.2 0.043 181.85 0.014
62.2 181.85

0.043 0.022Mg
(A.25)

= × + ×
+

− =A 62.2 0.043 181.85 0.014
62.2 181.85

0.014 0.007Nb
(A.26)

Therefore, the lower bounds of the elastic strains are

= ⎡
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−
−
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= ⎡
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As an intermediate estimate of the elastic strain tensor, we use the elastic constants of bcc Mg obtained in case A and those of bcc Nb measured
experimentally [49], both at room temperature, under zero external stress, and presented in Table 6. As such,

= × + − =μ 1
5

(3 22.5 65 35) 19.5 GPaMg
(A.29)

= × + − =μ 1
5

(3 28.7 246 134) 39.62 GPaNb
(A.30)

= + × − ×
× + × + ×

=ν 65 4 35 2 32.5
4 65 6 35 2 32.5

0.262Mg
(A.31)

= + × − ×
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(A.32)

Hence

= × × +
−

=M 2 19.5 (1 0.262)
1 0.262

66.69 GPaMg
(A.33)

= × × +
−
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(A.34)

= × + ×
+
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0.043 0.021Mg
(A.35)

= × + ×
+
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0.014 0.008Nb
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Therefore, the intermediate estimates of the elastic strains are
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