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Abstract

Multivariate time series with missing values
are common in areas such as healthcare and
finance, and have grown in number and com-
plexity over the years. This raises the question
whether deep learning methodologies can out-
perform classical data imputation methods
in this domain. However, naive applications
of deep learning fall short in giving reliable
confidence estimates and lack interpretability.
We propose a new deep sequential latent vari-
able model for dimensionality reduction and
data imputation. Our modeling assumption
is simple and interpretable: the high dimen-
sional time series has a lower-dimensional rep-
resentation which evolves smoothly in time
according to a Gaussian process. The non-
linear dimensionality reduction in the pres-
ence of missing data is achieved using a VAE
approach with a novel structured variational
approximation. We demonstrate that our ap-
proach outperforms several classical and deep
learning-based data imputation methods on
high-dimensional data from the domains of
computer vision and healthcare, while addi-
tionally improving the smoothness of the im-
putations and providing interpretable uncer-
tainty estimates.

1 Introduction

Time series are often associated with missing values,
for instance due to faulty measurement devices, par-
tially observed states, or costly measurement proce-
dures [Honaker and King, 2010|. These missing values
impair the usefulness and interpretability of the data,
leading to the problem of data imputation: estimating
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those missing values from the observed ones [Rubin,
1976].

Multivariate time series, consisting of multiple corre-
lated univariate time series or channels, give rise to two
distinct ways of imputing missing information: (1) by
exploiting temporal correlations within each channel,
and (2) by exploiting correlations across channels, for
example by using lower-dimensional representations
of the data. For instance in a medical setting, if the
blood pressure of a patient is unobserved, it can be
informative that the heart rate at the current time
is higher than normal and that the blood pressure
was also elevated an hour ago. An ideal imputation
model for multivariate time series should therefore take
both of these sources of information into account. An-
other desirable property of such models is to offer a
probabilistic interpretation, allowing for uncertainty
estimation.

Unfortunately, current imputation approaches fall short
with respect to at least one of these desiderata. While
there are many time-tested statistical methods for mul-
tivariate time series analysis (e.g., Gaussian processes
[Roberts et al., 2013]) that work well in the case of
complete data, these methods are generally not appli-
cable when features are missing. On the other hand,
classical methods for time series imputation often do
not take the potentially complex interactions between
the different channels into account [Little and Rubin,
2002, Pedersen et al., 2017]. Finally, recent work has
explored the use of non-linear dimensionality reduction
using variational autoencoders for i.i.d. data points
with missing values [Nazabal et al., 2018, Ainsworth
et al., 2018, Ma et al., 2018], but this work has not
considered temporal data and strategies for sharing
statistical strength across time.

Following these considerations, it is promising to com-
bine non-linear dimensionality reduction with an ex-
pressive time series model. This can be done by jointly
learning a mapping from the data space (where features
are missing) into a latent space (where all dimensions
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are fully determined). A statistical model of choice can
then be applied in this latent space to model temporal
dynamics. If the dynamics model and the mapping for
dimensionality reduction are both differentiable, the
approach can be trained end-to-end.

In this paper, we propose an architecture that uses deep
variational autoencoders (VAEs) to map the missing
data time series into a latent space without missing-
ness, where we model the low-dimensional dynamics
with a Gaussian process (GP). As we will discuss be-
low, we hereby propose a prior model that efficiently
operates at multiple time scales, taking into account
that the multivariate time series may have different
channels (e.g., heart rate, blood pressure, etc.) that
change with different characteristic frequencies. Fi-
nally, our variational inference approach makes use of
efficient structured variational approximations, where
we fit another multivariate Gaussian process in order
to approximate the intractable true posterior.

We make the following contributions:

e A new model. We propose a VAE architecture
for multivariate time series imputation with a GP
prior in the latent space to capture temporal dy-
namics. We propose a Cauchy kernel to allow the
time series to display dynamics at multiple scales
in a reduced dimensionality.

e FEfficient inference. We use a structured variational
approximation that models posterior correlations
in the time domain. By construction, inference
is efficient and the time complexity for sampling
from the variational distribution, used for training,
is linear in the number of time steps (as opposed
to cubic when done naively).

e Benchmarking on real-world data. We carry out ex-
tensive comparisons to classical imputation meth-
ods as well as state-of-the-art deep learning ap-
proaches, and perform experiments on data from
two different domains. Our method shows favor-
able performance in both cases.

We start by reviewing the related literature in Sec. 2, de-
scribe the general setting in Sec. 3.1 and introduce our
model and inference scheme in Sec. 3.2 and Sec. 3.3, re-
spectively. Experiments and conclusions are presented
in Sec. 4 and 5.

2 Related work

Classical statistical approaches. The problem of
missing values has been a long-standing challenge in
many time series applications, especially in the field
of medicine [Pedersen et al., 2017]. The earliest ap-
proaches to deal with this problem often relied on

heuristics, such as mean imputation or forward im-
putation. Despite their simplicity, these methods are
still widely applied today due to their efficiency and
interpretability [Honaker and King, 2010]. Orthogonal
to these ideas, methods along the lines of expectation-
maximization (EM) have been proposed, but they often
require additional modeling assumptions [Bashir and
Wei, 2018].

Bayesian methods. When it comes to estimating
likelihoods and uncertainties relating to the imputa-
tions, Bayesian methods, such as Gaussian processes
(GPs) [Rasmussen, 2003], have a clear advantage over
non-Bayesian methods such as single imputation [Little
and Rubin, 2002]. There has been much recent work
in making these methods more expressive and incorpo-
rating prior knowledge from the domain (e.g., medical
time series) [Wilson et al., 2016, Fortuin and Rétsch,
2019] or adapting them to work on discrete domains
[Fortuin et al., 2018a], but their wide-spread adoption
is hindered by their limited scalability and the chal-
lenges in designing kernels that are robust to missing
values. Our latent GP prior bears certain similarities
to the GP latent variable model (GP-LVM) [Lawrence,
2004, Titsias and Lawrence, 2010], but in contrast to
this line of work, we propose an efficient amortized
inference scheme.

Deep learning techniques. Another avenue of re-
search in this area uses deep learning techniques, such
as variational autoencoders (VAEs) [Nazabal et al.,
2018, Ainsworth et al., 2018, Ma et al., 2018, Dalca
et al., 2019] or generative adversarial networks (GANS)
[Yoon et al., 2018, Li et al., 2019]. It should be noted
that VAEs allow for tractable likelihoods, while GANs
generally do not and have to rely on additional opti-
mization processes to find latent representations of a
given input [Lipton and Tripathi, 2017]. Unfortunately,
none of these models explicitly take the temporal dy-
namics of time series data into account. Conversely,
there are deep probabilistic models for time series |e.g.,
Krishnan et al., 2015, 2017, Fortuin et al., 2018b], but
those do not explicitly handle missing data. There
are also some VAE-based imputation methods that are
designed for a setting where the data is complete at
training time and the missingness only occurs at test
time [Garnelo et al., 2018a,b, Ivanov et al., 2018]. We
do not regard this setting in our work.

HI-VAE. Our approach borrows some ideas from the
HI-VAE [Nazabal et al., 2018]. This model deals with
missing data by defining an ELBO whose reconstruction
error term only sums over the observed part of the
data. For inference, the incomplete data are filled with
arbitrary values (e.g., zeros) before they are fed into
the inference network, which induces an unavoidable
bias. The main difference to our approach is that the
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(a) Architecture sketch

(b) Graphical model

Figure 1: Overview of our proposed model with a convolutional inference network, a deep feed-forward generative
network and a Gaussian process prior with mean function m(-) and kernel function k(-,-) in latent space. The
several CNN blocks as well as the MLP blocks are each sharing their respective parameters.

HI-VAE was not formulated for sequential data and
therefore does not exploit temporal information in the
imputation task.

Deep learning for time series imputation.
While the mentioned deep learning approaches are
very promising, most of them do not take the time
series nature of the data directly into account, that is,
they do not model the temporal dynamics of the data
when dealing with missing values. To the best of our
knowledge, the only deep generative model for missing
value imputation that does account for the time series
nature of the data is the GRUI-GAN [Luo et al., 2018],
which we describe in Sec. 4. Another deep learning
model for time series imputation is BRITS [Cao et al.,
2018], which uses recurrent neural networks (RNNs).
It is trained in a self-supervised way, predicting the
observations in a time series sequentially. We compare
against both of these models in our experiments.

Other related work. Our proposed model combines
several ideas from the domains of Bayesian deep learn-
ing and classical probabilistic modeling; thus, removing
elements from our model naturally relates to other ap-
proaches. For example, removing the latent GP for
modeling dynamics as well as our proposed structured
variational distribution results in the HI-VAE [Nazabal
et al., 2018] described above. Furthermore, our idea of
using a latent GP in the context of a deep generative
model bears similarities to the GPPVAE [Casale et al.,
2018] and can be seen as an extension of this model.
While the GPPVAE allows for a joint GP prior over
the whole data set through the use of a specialized
inference mechanism, our model puts a separate GP
prior on every time series and can hence rely on more
standard inference techniques. However, our model
takes missingness into account and uses a structured
variational distribution, while the GPPVAE uses mean
field inference and is designed for fully observed data.

Lastly, the GP prior with the Cauchy kernel is remi-
niscent of Jahnichen et al. [2018] and the structured
variational distribution is similar to the one used by
Bamler and Mandt [2017b] in the context of model-
ing word embeddings over time, neither of which used
amortized inference.

3 Model

We propose a novel architecture for missing value im-
putation, an overview of which is depicted in Figure 1.
Our model can be seen as a way to perform amortized
approximate inference on a latent Gaussian process
model.

The main idea of our proposed approach is to embed
the data into a latent space of reduced dimensional-
ity, in which every dimension is fully determined, and
then model the temporal dynamics in this latent space.
Since many features in the data might be correlated,
the latent representation captures these correlations
and uses them to reconstruct the missing values. More-
over, the GP prior in the latent space encourages the
model to embed the data into a representation in which
the temporal dynamics are smoother and more easily
explainable than in the original data space. Finally,
the structured variational distribution of the inference
network allows the model to integrate temporal infor-
mation into the representations, such that the recon-
structions of missing values cannot only be informed
by correlated observed features at the same time point,
but also by the rest of time series.

Specifically, we combine ideas from VAEs [Kingma and
Welling, 2014], GPs [Rasmussen, 2003|, Cauchy kernels
[Jahnichen et al., 2018], structured variational distri-
butions with efficient inference [Bamler and Mandt,
2017b], and a special ELBO for missing data [Nazabal
et al., 2018] and synthesize these ideas into a general
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framework for missing data imputation on time series.
In the following, we will outline the problem setting,
describe the assumed generative model, and derive our
proposed inference scheme.

3.1 Problem setting and notation

We assume a data set X € RT*¢ with T data points
Xt = [T1y .o Tajy oo T1a) | € RL Let us assume that
the T data points were measured at T consecutive
time points 7 = [Tl,...,TT}T with 7, < 7,,,Vt. By
convention, we usually set 7; = 0. The data X can
thus be viewed as a time series of length 7, in time.

We moreover assume that any number of these data
features x;; can be missing, that is, that their val-
ues can be unknown. We can now partition each
data point into observed and unobserved features.
The observed features of data point x; are x7 :=
[ | z4;is observed]. Equivalently, the missing fea-
tures are X" = [xy; | 24; is missing] with x7 Ux}" = x,.

We can now use this partitioning to define the problem
of missing value imputation. Missing value imputation
describes the problem of estimating the true values of
the missing features X" := [x]"],.;- given the observed
features X° := [x{],.,. Many methods assume the
different data points to be independent, in which case
the inference problem reduces to 1" separate problems
of estimating p(x}* | x¢). In the time series setting, this
independence assumption is not satisfied, which leads to
the more complex estimation problem of p(x}" | x9.,).

3.2 Generative model

In this subsection, we describe the details of our pro-
posed approach of reducing the observed time series
with missing data into a representation without missing-
ness, and modeling dynamics in this lower-dimensional
representation using Gaussian processes. Yet, it is
tempting to try to skip the step of dimensionality reduc-
tion and instead directly try to model the incomplete
data in the observed space using GPs. We argue that
this is not practical for several reasons.

Gaussian processes are well suited for time series mod-
eling [Roberts et al., 2013] and offer many advantages,
such as data-efficiency and calibrated posterior proba-
bilities. However, they come at the cost of inverting the
kernel matrix, which has a time complexity of O(n?).
Moreover, designing a kernel function that accurately
captures correlations in feature space and also in the
temporal dimension is difficult.

This problem becomes even worse if certain observa-
tions are missing. Omne option is to fill the missing
values with some numerical value (e.g., zero) to make
the kernel computable. However, this arbitrary filling

may make two data points with different missingness
patterns look very dissimilar when in fact they are close
to each other in the ground-truth space. Another alter-
native is to treat every channel of the multivariate time
series separately and let the GP infer missing values,
but this ignores valuable correlations across channels.

In this work, we overcome the problem of defining a
suitable GP kernel in the data space with missing ob-
servations by instead applying the GP in the latent
space of a variational autoencoder where the encoded
feature representations are complete. That is, we as-
sign a latent variable z, € R¥ for every x;, and model
temporal correlations in this reduced representation
using a GP, z(7) ~ GP(m,(-), k.(+,-)). This way, we
decouple the step of filling in missing values and cap-
turing instantaneous correlations between the different
feature dimensions from modeling dynamical aspects.
The graphical model is depicted in Figure 1b.

A remaining practical difficulty that we encountered is
that many multivariate time series display dynamics at
multiple time scales. One of our main motivations is
to model time series that arise in medical setups where
doctors measure different patient variables and vital
signs, such as heart rate, blood pressure, etc. When
using conventional GP kernels (e.g., the RBF kernel,
krpr(r|A) = exp (—Ar?/2)), one implicitly assumes a
single time scale of relevance (A). We found that this
choice does not reflect the dynamics of medical data
very well.

In order to model data that varies at multiple time
scales, we consider a mixture of RBF kernels with
different \’s [Rasmussen, 2003]. By defining a Gamma
distribution over the length scale, that is, p(A |, 5) x
Ao~ Lexp (—a)/B), we can compute an infinite mixture
of RBF kernels,

2 —a
/p(Ma,B) krpr(r|\) dA o (1 + 2;61) .

This yields the so-called Rational Quadratic kernel
[Rasmussen, 2003]. For a = 1 and 2 = 287!, it
reduces to the Cauchy kernel

kCau(T,T') = 0? <1 + (TPTI)Q) - : (1)

which has previously been successfully used in the
context of robust dynamic topic modeling where similar
multi-scale time dynamics occur [Jahnichen et al., 2018].
We therefore choose this kernel for our Gaussian process
prior.

Given the latent time series zq.7, the observations x;
are generated time-point-wise by

Pe(xt | Zt) = N(ge(zt),UQI) > (2)



Vincent Fortuin, Dmitry Baranchuk, Gunnar Ritsch, Stephan Mandt

where gy(-) is a potentially nonlinear function param-
eterized by the parameter vector 6. Considering the
scenario of a medical time series, z; can be thought
of as the latent physiological state of the patient and
go(+) would be the process of generating observable
measurements x; (e.g., heart rate, blood pressure, etc.)
from that physiological state. In our experiments, the
function gy is implemented by a deep neural network.

3.3 Inference model

In order to learn the parameters of the deep generative
model described above, and in order to efficiently in-
fer its latent state, we are interested in the posterior
distribution p(zi.7 | X1.7). Since the exact posterior is
intractable, we use variational inference [Jordan et al.,
1999, Blei et al., 2017, Zhang et al., 2018|. Furthermore,
to avoid inference over per-datapoint (local) variational
parameters, we apply inference amortization [Kingma
and Welling, 2014]. To make our variational distribu-
tion more expressive and capture the temporal correla-
tions of the data, we employ a structured variational
distribution [Wainwright and Jordan, 2008| with effi-
cient inference that leads to an approximate posterior
which is also a GP.

We approximate the true posterior p(zi.7 ; | x1.7) with
a multivariate Gaussian variational distribution

q(z1.15 [ x0.p) = N (my, A1) (3)

where j indexes the dimensions in the latent space.
Our approximation implies that our variational poste-
rior is able to reflect correlations in time, but breaks
dependencies across the different dimensions in z-space
(which is typical in VAE training [Kingma and Welling,
2014, Rezende et al., 2014]).

We choose the variational family to be the family of
multivariate Gaussian distributions in the time domain,
where the precision matrix A; is parameterized in terms
of a product of bidiagonal matrices,

, v, ift e{tt+1
A; =B/ B; ,with {B;},, = {0“ Otherw{ise b
_ (4)
Above, the b),,’s are local variational parameters and
B, is an upper triangular band matrix. Similar struc-
tured distributions were also employed by Blei and
Lafferty [2006], Bamler and Mandt [2017a).

This parameterization automatically leads to A; being
positive definite, symmetric, and tridiagonal. Samples
from g can thus be generated in linear time in 7' [Huang
and McColl, 1997, Mallik, 2001, Bamler and Mandt,
2017b] as opposed to the cubic time complexity for
a full-rank matrix. Moreover, compared to a fully
factorized variational approximation, the number of

variational parameters are merely doubled. Note that
while the precision matrix is sparse, the covariance
matrix can still be dense, allowing to reflect long-range
dependencies in time.

Instead of optimizing m and B separately for every
data point, we amortize the inference through an in-
ference network with parameters v that computes
the variational parameters based on the inputs as
(m,B) = hy(x9.7). In the following, we accordingly
denote the variational distribution as gy(-). Following
VAE training, the parameters of the generative model
0 and inference network i can be jointly trained by
optimizing the evidence lower bound (ELBO),

T

10gp(X%) > "Eqy (a0 | x1r) 108 pa(X7 | 22)] )
t=1

— B Dkrlgy(z1.r | x1.7) || P(21.7)]

Following Nazabal et al. [2018] (see Sec. 2), we evaluate
the ELBO only on the observed features of the data
since the remaining features are unknown, and set these
missing features to a fixed value (zero) during inference.
We also include an additional tradeoff parameter 3 into
our ELBO, similar to the 8-VAE [Higgins et al., 2017].
This parameter can be used to rebalance the influence
of the likelihood term and KL term on the ELBO.
Since the likelihood factorizes into a sum over observed
feature dimensions, its absolute magnitude depends on
the missingness rate in the data. We thus choose
in our experiments dependent on the missingness rate
to counteract this effect. Our training objective is the
RHS of (5).

4 Experiments

We performed experiments on the benchmark data set
Healing MNIST [Krishnan et al., 2015], which com-
bines the classical MNIST data set [LeCun et al., 1998]
with properties common to medical time series, the
SPRITES data set [Li and Mandt, 2018], and on a
real-world medical data set from the 2012 Physionet
Challenge [Silva et al., 2012]. We compared our model
against classical imputation baselines as well as modern
deep learning approaches. We found strong quantita-
tive and qualitative evidence that our proposed model
outperforms most of the baseline methods in terms
of imputation quality on all three tasks and performs
comparably to the state of the art, while also offering a
probabilistic interpretation and uncertainty estimates.
In the following, we are first going to give an overview
of the baseline methods and then present our experi-
mental findings. Details about the data sets and neural
network architectures can be found in Appendix A. An
implementation of our model can be retrieved from
https://github.com/ratschlab/GP-VAE.
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Table 1: Performance of the different models on the Healing MNIST test set and the SPRITES test set in terms of
negative log likelihood [NLL] and mean squared error [MSE]| (lower is better), as well as downstream classification
performance [AUROC] (higher is better). The reported values are means and their respective standard errors
over the test set. The proposed model outperforms all the baselines.

Healing MNIST SPRITES
Model NLL MSE AUROC MSE
Mean imputation - 0.168 £ 0.000 0.938 £ 0.000 0.013 £ 0.000
Forward imputation - 0.177 + 0.000 0.935 £+ 0.000 0.028 £+ 0.000
VAE 0.599 + 0.002 0.232 £+ 0.000 0.922 £+ 0.000 0.028 £ 0.000
HI-VAE 0.372 + 0.008 0.134 £ 0.003 0.962 + 0.001 0.007 £ 0.000
GP-VAE (proposed) 0.350 + 0.007 0.114 + 0.002 0.960 + 0.002 0.002 + 0.000

4.1 Baseline methods

Forward imputation and mean imputation.
Forward and mean imputation are so-called single im-
putation methods, which do not attempt to fit a dis-
tribution over possible values for the missing features,
but only predict one estimate [Little and Rubin, 2002].
Forward imputation always predicts the last observed
value for any given feature, while mean imputation
predicts the mean of all the observations of the feature
in a given time series.

Gaussian process in data space. One option to
deal with missingness in multivariate time series is to
fit independent Gaussian processes to each channel.
As discussed previously (Sec. 3.2), this ignores the
correlation between channels. The missing values are
then imputed by taking the mean of the respective
posterior of the GP for that feature.

VAE and HI-VAE. The VAE [Kingma and Welling,
2014| and HI-VAE [Nazabal et al., 2018| are fit to the
data using the same training procedure as the proposed
GP-VAE model. The VAE uses a standard ELBO that
is defined over all the features, while the HI-VAE uses
the ELBO from (5), which is only evaluated on the
observed part of the feature space. During inference,
missing features are filled with constant values, such
as zero.

GRUI-GAN and BRITS. The GRUI-GAN [Luo
et al., 2018] uses a recurrent neural network (RNN),
namely a gated recurrent unit (GRU). Once the GAN
is trained on a set of time series, an unseen time series
is imputed by optimizing the latent vector in the input
space of the generator, such that the generator’s output
on the observed features is closest to the true values.
BRITS [Cao et al., 2018| also uses an RNN, namely
a bidirectional long short-term memory network (BiL-
STM). For a series of partially observed states, the
network is trained to predict any intermediate state
given its past and future states, aggregated by two

separate LSTM layers. Similarly to our approach, the
loss function is only computed on the observed values.

4.2 Healing MNIST

Time series with missing values play a crucial role in the
medical field, but are often hard to obtain. Krishnan
et al. [2015] generated a data set called Healing MNIST,
which is designed to reflect many properties that one
also finds in real medical data. We benchmark our
method on a variant of this data set. It was designed
to incorporate some properties that one also finds in
real medical data, and consists of short sequences of
moving MNIST digits [LeCun et al., 1998] that rotate
randomly between frames. The analogy to healthcare
is that every frame may represent the collection of
measurements that describe a patient’s health state,
which contains many missing measurements at each
moment in time. The temporal evolution represents
the non-linear evolution of the patient’s health state.
The image frames contain around 60 % missing pixels
and the rotations between two consecutive frames are
normally distributed.

The benefit of this data set is that we know the ground
truth of the imputation task. We compare our model
against a standard VAE (no latent GP and standard
ELBO over all features), the HI-VAE [Nazabal et al.,
2018], as well as mean imputation and forward imputa-
tion. The models were trained on time series of digits
from the Healing MNIST training set (50,000 time se-
ries) and tested on digits from the Healing MNIST
test set (10,000 time series). Negative log likelihoods
on the ground truth values of the missing pixels and
mean squared errors (MSE) are reported in Table 1,
and qualitative results shown in Figure 2. To assess the
usefulness of the imputations for downstream tasks, we
also trained a linear classifier on the imputed MNIST
digits to predict the digit class and measured its per-
formance in terms of area under the receiver-operator-

characteristic curve (AUROC) (Tab. 1).
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Table 2: Performance of different models on Healing MNIST data with artificial missingness and different
missingness mechanisms. We report mean squared error (lower is better). The reported values are means and their
respective standard errors over the test set. Our model outperforms the baselines on all missingness mechanisms.

Mechanism Mean imp. Forward imp. VAE HI-VAE GP-VAE (proposed)
Random 0.069 = 0.000 0.099 £ 0.000 0.100 &= 0.000 0.046 £ 0.001 0.036 £+ 0.000
Spatial 0.090 £ 0.000 0.099 £ 0.000 0.122 &£ 0.000 0.097 £ 0.000 0.071 £ 0.001
Temporal®™  0.107 &+ 0.000 0.117 £+ 0.000 0.101 + 0.000 0.047 £ 0.001 0.038 £ 0.001
Temporal™ 0.086 £ 0.000 0.093 & 0.000 0.101 £ 0.000 0.046 £ 0.001 0.037 £+ 0.001
MNAR 0.168 & 0.000 0.177 £ 0.000  0.232 £ 0.000  0.134 £ 0.003 0.114 £ 0.002
Healing MNIST SPRITES has previously been used with sequential autoencoders

I“L -"
cp-vAE [EE B

Figure 2: Reconstructions from Healing MNIST and
SPRITES. The GP-VAE (proposed) is stable over time
and yields the highest fidelity.

Our approach outperforms the baselines in terms of
likelihood and MSE. The reconstructions (Fig. 2) re-
veal the benefits of the GP-VAE approach: related
approaches yield unstable reconstructions over time,
while our approach offers more stable reconstructions,
using temporal information from neighboring frames.
Moreover, our model also yields the most useful imputa-
tions for downstream classification in terms of AUROC.
The downstream classification performance correlates
well with the test likelihood on the ground truth data,
supporting the intuition that it is a good proxy mea-
sure in cases where the ground truth likelihood is not
available.

We also observe that our model outperforms the base-
lines on different missingness mechanisms (Tab. 2).
Details regarding this evaluation are laid out in the
appendix (Sec. B.2).

4.3 SPRITES data

To assess our model’s performance on more complex
data, we applied it to the SPRITES data set, which

[Li and Mandt, 2018]. The dataset consists of 9,000
sequences of animated characters with different clothes,
hair styles, and skin colors, performing different actions.
Each frame has a size of 64 x 64 pixels and each time se-
ries features 8 frames. We again introduced about 60 %
of missing pixels and compared the same methods as
above. The results are reported in Table 1 and example
reconstructions are shown in Figure 2. As in the previ-
ous experiment, our model outperforms the baselines
and also yields the most convincing reconstructions.

4.4 Real medical time series data

We also applied our model to the data set from the 2012
Physionet Challenge [Silva et al., 2012]. The data set
contains 12,000 patients which were monitored on the
intensive care unit (ICU) for 48 hours each. At each
hour, there is a measurement of 35 different variables
(heart rate, blood pressure, etc.), any number of which
might be missing.

We again compare our model against the standard VAE
and HI-VAE, as well as a GP fit feature-wise in the data
space, the GRUI-GAN [Luo et al., 2018] and BRITS
model [Cao et al., 2018], which reported state-of-the-art
imputation performance.

The main challenge is the absence of ground truth
data for the missing values. This cannot easily be
circumvented by introducing additional missingness
since (1) the mechanism by which measurements were
omitted is not random, and (2) the data set is already
very sparse with about 80% of the features missing.
To overcome this issue, Luo et al. [2018] proposed a
downstream task as a proxy for the imputation quality.
They chose the task of mortality prediction, which was
one of the main tasks of the Physionet Challenge on
this data set, and measured the performance in terms
of AUROC. In this paper, we adopt this measure.

For sake of interpretability, we used a logistic regression
as a downstream classification model. This model tries
to optimally separate the whole time series in the input
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Figure 3: Imputations of several clinical variables with different amounts of missingness for an example patient
from the Physionet 2012 test set. Blue dots are observed ground-truth points, red dots are ground-truth points
that were withheld from the models. BRITS (red) and forward imputation (green) yield single imputations, while
the GP-VAE (blue) allows to draw samples from the posterior. The GP-VAE produces smoother curves, reducing
noise from the original input, and exhibits an interpretable posterior uncertainty.

Table 3: Performance of the different models on the
Physionet data set in terms of AUROC of a logistic
regression trained on the imputed time series. We
observe that the proposed model performs comparably
to the state of the art.

Model AUROC
Mean imputation 0.703 £+ 0.000
Forward imputation 0.710 £+ 0.000
GP 0.704 £ 0.007
VAE 0.677 £ 0.002
HI-VAE 0.686 £ 0.010
GRUI-GAN 0.702 £ 0.009
BRITS 0.742 + 0.008

GP-VAE (proposed) 0.730 £+ 0.006

space using a linear hyperplane. The choice of model
follows the intuition that under a perfect imputation
similar patients should be located close to each other in
the input space, while that is not necessarily the case
when features are missing or the imputation is poor.

Note that it is unrealistic to ask for high accuracies in
this task, as the clean data are unlikely to be perfectly
separable. As seen in Table 1, this proxy measure
correlates well with the ground truth likelihood.

The performances of the different methods under this
measure are reported in Table 3. Our model outper-
forms most baselines, including the GRUI-GAN, and
performs comparably to the state-of-the-art method
BRITS. This provides strong evidence that our model
is well suited for real-world imputation tasks. Interest-
ingly, forward imputation performs on a competitive
level with many of the baselines, suggesting that those
baselines do not succeed in discovering any nonlinear

structure in the data.

Note that, while BRITS outperforms our proposed
model quantitatively, it does not fit a generative model
to the data and does not offer any probabilistic interpre-
tation. In contrast, our model can be used to sample
different imputations from the variational posterior
and thus provides an interpretable way of estimating
the uncertainty of the predictions, as is depicted in
Figure 3. The imputations on different clinical vari-
ables in the figure show how the posterior of our model
exhibits different levels of uncertainty for different fea-
tures (blue shaded area). The uncertainty estimates
correlate qualitatively with the sparseness of the fea-
tures and the noise levels of the measurements. This
could be communicated to end-users, such as clinicians,
to help them make informed decisions about the degree
of trust they should have in the model.

It can also be seen in Figure 3 that our model produces
smoother curves than the baselines. This is likely due
to the denoising effect of our GP prior, which acts in
a similar way to a Kalman filter in this case [Kalman,
1960]. Especially when the data are very noisy, such
as medical time series, this smoothing can make the
imputations more interpretable for humans and can
help in identifying temporal trends.

5 Conclusion

We presented a deep probabilistic model for multi-
variate time series imputation, combining ideas from
variational autoencoders and Gaussian processes. We
observed that our model outperforms classical base-
lines as well as modern deep learning approaches on
benchmark data sets and real-world medical data and
performs comparably to the state of the art.
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