
Fundamental Defensive Programming Practices

with Secure Coding Modules

Jeong Yang, Akhtar Lodgher

Department of Computing and Cyber Security

Texas A&M University–San Antonio

San Antonio, TX, USA

{jeong.yang, akhtar.lodgher}@tamusa.edu

Abstract—While many vulnerabilities are often related to

computing and network systems, there has been a growing

number of vulnerabilities and attacks in software systems. They

are generally caused by careless software design and

implementations, and not putting sufficient effort into

eliminating defects and flaws in the software itself. When it

comes to building reliable and secure software, it is critical that

security must be considered throughout the software

development process. This paper presents a series of modules

that are designed to introduce security concepts in beginners

programming courses. The modules have been developed to

teach the fundamental concepts of defensive programming from

the freshman year, to ensure that the programming concepts are

taught to beginning programmers from a security perspective.

These modules are intended to build a strong cybersecurity

foundation, which will then be enhanced further in the advanced

courses, such as Secure Applications Programming and Secure

Software Engineering courses. Both instructors and students can

practice defensive programming with these modules in their

classroom. The study plans to evaluate the teaching effectiveness

of the modules associated with the Model-Eliciting Activity

(MEA), an evidence-based teaching and learning methodology.

Keywords—secure coding, integer error, buffer overflow, input

validation, argument validation, defensive programming

I. INTRODUCTION

This paper presents a series of modules that are designed

to introduce security concepts in fundamental programming

courses. The modules have been developed to teach the

fundamental concepts of defensive programming from the

freshman year, to ensure that the programming concepts are

taught to beginning programmers from a security perspective

[1]. They are aligned with the secure coding guidelines and

standard rules suggested by the Software Engineering Institute

(SEI)’s CERT program [4, 5]. The modules are also aligned

with the essential areas of Information Assurance and Security

(IAS). The IAS is one of the 18 core Knowledge Areas (KAs)

that correspond to topic areas of study in computing provided

by the 2013 curricula guidelines for undergraduate degree

programs in CS [3]. The modules are under the NICE NCWF

curricula categories of Cyber Threats and Vulnerabilities [2].

Each module contains a detailed explanation of the concept,

step-by-step instructions of code development, examples of

noncompliant code on how to convert them into compliant

solutions, and exercise questions to assess student learning.

This work focuses on eight secure coding modules that

can be integrated into undergraduate CS1 and CS2 courses.

The goal of the modules is to teach the fundamental concepts

of the Information Assurance and Security (IAS) / Defensive

Programming from the freshman year, to ensure that the

programming concepts are taught to beginning programmers

from a security perspective. The modules are intended to build

a strong cybersecurity foundation, which will then be

enhanced further in the advanced courses such as Secure

Application Programming and Secure Software Engineering

courses. Both instructors and students can practice

fundamental defensive programming with these modules in

their classroom. With experiences of defensive and secure

programming from earlier courses, students can practice

secure software engineering with these modules in their junior

or senior level courses.

II. SECURE CODING MODULES

TABLE 1 lists secure coding modules along with their

student learning outcomes and objectives, and hours taken by a

student to complete the modules. The first several modules can

be incorporated into the CS1 course by practicing defensive

programming that constructs reliable code components to

protect itself. For example, input data validation, buffer

overflow, and dangerous integer errors are explained with

specified code examples. Compliant usage of different

numeric data types and their operations are demonstrated.

Simple cryptography techniques from other modules can also

be incorporated to teach the concept of the character data type.

Students will be able to build a small code segment to encrypt

data using shift ciphers, through these modules. Then to teach

the concept of a loop, the ciphers will be hacked by breaking

the shift cipher code using a loop structure.

In the next stage, a few modules deal with common object-

oriented issues such as privacy, visibility, the dependency of

class members and valid use of method arguments among

classes. For example, students must ensure that any changes

made in a super-class must preserve all the program invariants

that its sub-class depends on because failure to preserve

mailto:%7D@tamusa.edu

dependencies can cause security vulnerabilities. Data

members of this class will be exposed by declaring them as

public or protected are prone to unexpected attacks. The

vulnerability of such attacks can be reduced by increasing the

privacy level to private declarations.

A. Detecting Integer Errors Caused by Improper Use of

Arithmatic Operations

This module is to use integer data types and their

operations in a safe manner to avoid improper use of

arithmetic operations. Upon completion of this module lesson,

students will be able to demonstrate ways to prevent loss of

precision when converting primitive integers to floating-point

values and detect integer errors and convert integers to

floating-point values for floating-point operations.

Integer Errors: When using integer arithmetic to

calculate a value for assignment to a floating-point variable,

improper use can lead to a loss of information. Integer

arithmetic produces integral results, discarding any possible

fractional remainder. Furthermore, there can be a loss of

precision when converting integers to floating-point values.

When used improperly, the results of integer arithmetic will be

inaccurate, either by a small amount or in the case of the

overflow, to a significant degree. The code block is an

example of improper usage of integer arithmetic.

short a = 28901; int b = 1097;

long c = 1802194120923171293L;

float d = a / 17; // d is 76.0 (truncated)

double e = b / 28; // e is 39.0 (truncated)

double f = c * 4; // f is -9.1179793305293046E18

 // because of integer overflow

There are two ways to solve this problem. The first

solution solves the issue by casting the integers as floating,

turning the integer arithmetic to floating arithmetic. For the

last issue with the double, c was type-casted as a double as it

has enough bits to handle such a large number.

short a = 533; int b = 6789;

long c = 4664382371590123456L;

float d = a / 7.0f; // d is 76.14286

double e = b / 30.; // e is 39.1785

double f = (double)c * 2; // f is 9.328764743180247E18

The second solution circumvents type casting by

declaring before operations and redefines the integer variables

as floats. Then performs arithmetic operations on them,

leading to accurate answers.

short a = 533;

int b = 6789;

long c = 4664382371590123456L;

float d = a; float e = b; float f = c;

float d /= 7; // d is 76.14286

double e /= 30; // e is 39.1785

double f *= 2; // f is 9.328764743180247E18

Rounding Errors: When performing mixed operations,

one of the possible errors that can occur is a rounding error.

int a = 60070; int b = 57750;

double value = Math.ceil(a/b);

Due to the division being an integer division, the inner

division result is truncated to 1, and instead of rounding up to

2, the final result is 1. The solution to this is straightforward.

double value = Math.ceil(a/((double) b));

As a result of the cast, the other variable, a, is

automatically promoted to a double, and the result comes out

to 2 as intended.

B. Demonstrating Data Boundaries to Prevent Buffer

Overflows

This module is aimed to use different integer data types

and their operations in a safe manner to avoid buffer

overflows. Programs should not allow mathematical

TABLE I. STUDENT LEARNING OUTCOMES AND OBJECTIVES

 Module Student Learning Outcomes / Objectives Hours Security Topic

Defensive

Programming

A Detect Integer Errors Caused by Improper Use of Arithmetic Operations 1 Integer/Rounding Errors

B Demonstrate Data Boundaries to Prevent Buffer Overflows 2 Buffer Overflow

C Validate Input Data by Checking Type, Length, Range 2 Input Validation

D Safely Use Numeric Types and Their Operations 2 Safe Numeric Operations

E Encrypt and Decrypt Text using Cipher 4 Encryption/Decryption

Object-

Oriented

Issues

F Use Members of a Class Properly to Control Access 5 Member Accessibility

G Validate Arguments in Method Operations 3 Argument Validation

H Catch Unexpected Behaviors for Sensitive Information 3 Exceptions

operations to exceed the integer ranges provided by their

primitive integer data types. Upon completion of this module

lesson, students should be able to identify the boundaries of

various integer data types and demonstrate how to detect and

correct integer buffer overflow.

Integral types in Java have inclusive ranges based on its

type and their ranges are not symmetric from negative to

positive as shown in TABLE II. A negative number of each

minimum value is one more than each positive maximum

value. Even unary negation can overflow if that is applied to a

minimum value and abs() method can overflow if the given

the minimum int or long as arguments. As integer operators

don’t indicate overflow or underflow, they can result in

incorrect computations and unexpected outcomes. Compliant

technologies need to prevent these overflows.

TABLE II. INTEGER TYPES AND RANGES IN JAVA

Type Byte Bit Representation Range

byte 1 8-bit signed two's-

complement

−128 to 127

short 2 8-bit signed two's-

complement

−32,768 to 32,767

char 2 16-bit unsigned

integers

\u0000 to \uffff

(0 to 65,535)

int 4 32-bit signed

two's-complement

−2,147,483,648 to

2,147,483,647

long 8 64-bit signed

two's-complement

−9,223,372,036,854,775,808

to 9,223,372,036,854,775,807

For example, the following code example is susceptible to

integer overflow:

public byte operations (byte n1, byte n2, byte n3)

 return n1 + (n2 * n3);

To make the code more secure to prevent the overflow,

safeAdd and safeMultiply functions can be used for necessary

precondition checks required for addition and multiplication

operations. Each function throws an exception when an

integer overflow would otherwise occur; any other

conforming error handling is also acceptable.

 public byte operations(byte n1, byte n2, byte num3)

 return safeAddition(n1, safeMultiplication(n2, n3));

C. Validating Input Data by Checking Type, Length,

Range

This module is to validate input data by checking their

type, length, and range. It focuses on checking exceptional

values from floating-point inputs, not using floating-point

variables as loop counters, and using conversions of numeric

types to narrower types without losing or misinterpreting data.

This is to practice defensive programming that constructs

reliable code components to protect itself. Conversions of

numeric types to narrower types can result in lost or

misinterpreted data if the value of the wider type is outside the

range of values of the narrower type. Consequently, all

narrowing conversions must be guaranteed safe by range-

checking the value before conversion. The following is an

example of a code where data can be lost or result in

misinterpreted data outside the range of the byte type.

int value = 128; func(value);

 public void func(int i)

 byte b = (byte) i; // b has value -128 (no -128 in byte)

This code can be written securely by checking whether the

integer value provided is within the range of maximum and

minimum values supported by byte.

public void func(int i) {

if ((i < Byte.MIN_VALUE) || (i > Byte.MAX_VALUE)){

 throw new ArithmeticException("Out of range");

 }

 byte b = (byte) i;

}

D. Safely Using Numeric Types and Their Operations

This module is to use numeric data types and their

operations in a safe manner to avoid unexpected results. One

example is to avoid to use bitwise and arithmetic operations

on the same data. While bitwise operations do have their base

10 equivalents, their operations should not be used with

normal arithmetic operations due to obscuring programmer’s

intention and reducing readability. When it comes to

outputting a grouping of bit integers, and pack them into a

single variable, we need to stick to bitwise. In the following

code block, the result is meant to hold a bit collection, not a

numeric value (arr[] is a byte array initialized to 0xFF):

byte[] arr = new byte[] {-1, -1, -1, -1};

int result = 0;

for (int i = 0; i < arr.length; i++) {

 result = ((result << 8) + arr[i]);

}

In the bitwise operation, the value of the byte array

element arr[i] is promoted to an int by sign-extension. When a

byte array element contains a negative value, the sign-

extension propagates 1-bits into the upper 24 upper bits of the

int. The unexpected behavior might occur if it is assumed the

bytes are an unsigned type.

E. Encrypting and Decrypting Using Cipher

This module is for students to have an understanding of

basic encryption and decryption using a Caesar cipher. Some

other ciphers are also introduced. Caesar’s encryption makes

messages secret by shifting each letter three letters forward in

the alphabet (sending the last three letters of the alphabet to

the first three). It process mathematically, first replace each

letter by an element of 26, that is, an integer from 0 to 25

equal to one less than its position in the alphabet. In a

computational algorithm, it can be represented by the function

f (p) = (p + 3) mod 26, where p represents an integer that is

associated with an alphabet letter. To decrypt Caesar’s cipher,

the inverse of f, f-1, is used: f-1(p) = (p-3) mod 26. Here, each

letter is shifted back three letters in the alphabet with the first

three letters sent to the last three letters. To enhance security, a

generalized cipher can be used using f(p) = (ap+b) mod 26

where a and b are integers. Upon completion of this module,

students should be able to understand how the cipher works,

how to encode a simple alpha text and decode the encoded

text using Ciphers, describe the basic concept of how to break

the cipher code, describe the code for hacking the Cipher, and

demonstrate the correct execution of the hack using several

examples.

F. Using Members of a Class to Control Access

This module is to declare and use members of a class

properly to control access. It focuses on limiting accessibility

of fields of a class, not exposing private members of an outer

class from within a nested class, and not returning references

to private mutable class members.

A nested class is a class whose declaration occurs within

the body of another class or interface. Its use is error-prone

unless the semantics are well understood. One of the features

of a nested class is that it has access to the private fields of its

outer class, and by consequence, if this nested class is made

public, anything accessing said public nested class has access

to the same private fields. The following is a code block

showing how a public inner class can affect the private fields

of an outer class:

class Coordinate {

 private int x; private int y;

 public class Point {

 public void getPoint()

 System.out.println("(" + x + "," + y + ")");

 } }

class Main {

 public static void main(String[] args) {

 Coordinate c = new Coordinate();

 Coordinate.Point p = c.new Point();

 p.getPoint();

 }

}

Not to expose the private members of an outer class from

within a nested class, changing ‘public’ of the inner class to

‘private’ solves the issue, then the code block will not

compile due to Main attempting to access a private nested

class outside of its private scope.

G. Validating Arguments in Method Operations

Through this module, students should be able to validate

arguments on method operations. Failure to validate method

arguments can result in incorrect calculations, runtime

exceptions, violation of class invariants, and inconsistent

object state. Whenever arguments are passed to a method,

programmers run the risk of having an invalid object state of

argument during its use as shown below:

private Object myObject = null;

void setMyObject(Object object) {

 myObject = object;

 }

 void useMyObject() {

 // Perform some action using the object passed

 }

 Checking for valid argument before using is integral to

programming securely as follows:

private Object myObject = null;

void setMyObject(Object object) {

 if (object == null) {

 // Handle null state

 }

 if (isObjectStateInvalid(object)) {

 // Handle invalid state

 }

 myObject = object;

 }

 void useMyObject () {

 if (myObject == null) {

 // Handle null condition

 }

 // Perform some action using the object passed

 }

H. Catching Unexpected Behaviors for Sensitive

Information

The risk is that filtering failure of sensitive information

when propagating exceptions often results in leaks that can

help attackers develop further exploits. They may change

input arguments to expose the internal structures of the

application. For example, a FileNotFoundException message

can reveal information about the file system layout, and its

exception type reveals the absence of a requested file.

 try {

 FileInputStream fis =

 new FileInputStream(System.getenv("APPDATA") + args[0]);

 } catch (FileNotFoundException e) {

 throw new IOException("Unable to retrieve file", e);

 }

Programs must filter both exception messages and their

types not to expose sensitive information. Thus, the above

issue can be fixed by only permitting files to be opened by the

user as follows:

FileInputStream fis = null;

try {

 switch(Integer.valueOf(args[0])) {

 case 1:

 fis = new FileInputStream("c:\\home\\file1");

 break;

 // More options

 default:

 System.out.println("Invalid option!");

 break;

 }

 } catch (Throwable t) {

 MyExceptionHandler.report(t);

 }

III. EVALUATION PLAN

The study plans to evaluate the teaching effectiveness of

the secure modules associated with the Model-Electing

Activities (MEAs) [8, 9], a proven effective teaching/learning

method to help engineering students become better problem

solvers. The results of student learning will be investigated to

improve the design of the intervention by using the design

experiment methodology [10]. This methodology allows the

investigation of how a particular intervention affects student

learning and instructor teaching practices [11].

The instructor effectiveness and students’ attitudes and

interest will be studied. The study of instructor effectiveness

will be guided by the questions: a) Can MEAs help instructors

implement cyber security modules in classroom teaching and

how they utilize the MEAs in teaching practices? b) Can the

implementation of cyber security modules through MEAs help

researchers and instructors assess students’ problem-solving

strategies and their learning and performance? c) To what

extent do instructors change their attitudes towards student

learning and their teaching practices because of the

implementation of cyber security modules through MEAs?

The study of students’ attitudes and interest will be

guided by the questions: a) Can the implementation of cyber

security modules through MEAs change students’ attitudes

towards learning in computer science? b) Can the

implementation of cyber security modules through MEAs

enhance students’ interest, willingness, and confidence in

computer science?

IV. CONCLUSION AND FUTURE WORK

This paper presents eight secure coding modules that are

designed to be integrated into undergraduate fundamental

programming courses. The goal of the modules is to teach the

fundamental concepts of the Security and Defensive

Programming from the freshman year, to ensure that

programming concepts are taught to beginning programmers

from a security perspective. The modules are currently

available through the NSA public library for use: CLARK

Cybersecurity Library [7]. As part of the grant project [6],

these modules will be taught in CS1 and CS2 courses at three

institutions (Texas A&M University-San Antonio, Laredo

College, San Antonio College) with the MEAs incorporated as

a strategic approach to teach the concepts of the security

modules.

ACKNOWLEDGEMENT

Partial support for this work was provided by the National

Science Foundation (NSF)’s grant project entitled “Recruiting

and Retaining Students into Computing” under the award

#1832433.

REFERENCES

[1] Akhtar Lodgher and Jeong Yang, “Cyber Security Modules for Core,

Major and Elective Courses in the Bachelor of Science (BS) Computer

Science Curriculum,” National Security Agency (NSA) Grant, Sep
2017-Aug 2018.

[2] William Newhouse, Stephanie Keith, Benjamin Scribner, Greg Witte,

“National Initiative for Cybersecurity Education (NICE) Cybersecurity
Workforce Framework,” National Institute of Standards and Technology

(NIST), U.S. Department of Commerce, 2017,
https://doi.org/10.6028/NIST.SP.800-181.

[3] The Joint Task Force on Computing Curricula (2013) Association for

Computing Machinery (ACM) and IEEE-Computer Society, Computer
Science Curricula 2013 Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science, Dec 2013.

[4] Software Engineering Institute (SEI) at Carnegie Mellon University.
Curricula: Software assurance Materials and Artifacts. Retrieved from

https://www.sei.cmu.edu/education-outreach/curricula/software-
assurance/.

[5] Software Engineering Institute (SEI) at Carnegie Mellon University.
Secure Coding Standards. Retrieved from
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Codin
g+Standards.

[6] Jeong Yang, Akhtar Lodgher, and Young rae Kim, “Recruiting and
Retaining Students into Computing,” National Science Foundation
(NSF) Grant, Oct 2018-Sep 2021.

[7] CLARK Cybersecurity Library, Retrived from https://clark.center/home.

[8] Moore, T.J. (2008). "Model-Eliciting Activities: A case-based approach
for getting students interested in material science and engineering,"
Journal of Materials Education, v.30 (5-6), pp. 295-310.

[9] Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S., & Kim, Y. R.
(2013). Modeling in engineering: The role of representational fluency in
students’ conceptual understanding. Journal of Engineering Education,
102(1), 141-178.

[10] Allan Collins, Diana Joseph, Katerine Bielaczyc, Design Research:
Theoretical and Methodological Issues, The Journal of the Learning
Science, 13(1), 15-42, 2004.

[11] Nuñez, A.-M. (2015). “Hispanic-Serving Institutions: Where are they
now?” A commissioned paper presented at the meeting “Hispanic-
Serving Institutions in the 21st century: A convening” at the University
of Texas El Paso. El Paso, TX.

https://doi.org/10.6028/NIST.SP.800-181
https://www.sei.cmu.edu/education-outreach/curricula/software-assurance/
https://www.sei.cmu.edu/education-outreach/curricula/software-assurance/
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://clark.center/home

