Research Paper

AAMAS 2020, May 9-13, Auckland, New Zealand

Refinement for Multiagent Protocols

Samuel H. Christie V

North Carolina State University
schrist@ncsu.edu

ABSTRACT

An interaction protocol specifies a decentralized multiagent system
operationally by specifying constraints on messages exchanged by
its member agents. Engineering with protocols requires support
for a notion of refinement, whereby a protocol may be substituted
without loss of correctness by one that refines it. We identify two
desiderata for refinement. One, generality: refinement should not
restrict enactments by limiting protocols or infrastructures under
consideration. Two, preservation: to facilitate modular verification,
refinement should preserve liveness and safety.

We contribute a novel formal notion of protocol refinement
based on enactments. We demonstrate generality by tackling the
declarative framework of information protocols. We demonstrate
preservation by formally establishing that our notion of refinement
is safety and liveness preserving. We show the practical benefits
of refinement by implementing a checker. We demonstrate that it
is less time-intensive to check refinement (and thereby gain safety
and liveness) than to recheck safety and liveness of a composition.

ACM Reference Format:

Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2020. Refine-
ment for Multiagent Protocols. In Proc. of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland,
New Zealand, May 9-13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION

We are concerned with multiagent systems (MAS) where each
agent represents an autonomous real-world principal. Such systems
are decentralized: agents exercise independent decision making
and engage in arms-length communications with each other via
asynchronous messaging. An interaction protocol enables agents in
a MAS to coordinate their computations by specifying constraints
on messaging, including the format, content, and conditions under
which an agent may send and receive a message. A protocol being
the primary operational specification for a MAS makes protocols
crucial in engineering MAS. Notable approaches for specifying
protocols include AUML [27], trace expressions (Trace) [1, 13],
state machines [5], hierarchical state machines (HAPN) [38], session
types [17, 18], and information protocols (BSPL) [30].

Protocols are doubly modular [35]. Along one dimension of mod-
ularity, each role of a protocol is a module. Role-as-module raises
the question of when a role specification, derived from a protocol,
may be substituted by another specification. A role R’ conforms to
role R if and only if R’ can interoperate with any set of roles with
which R can interoperate [4, 5, 12]. However, existing works don’t
handle interactions between three or more parties and several im-
pose FIFO message delivery. Works that tackle multiparty settings

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9-13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Amit K. Chopra
Lancaster University
amit.chopra@lancaster.ac.uk

258

Munindar P. Singh
North Carolina State University
mpsingh@ncsu.edu

are restricted to protocols in which only one agent can make an
autonomous (internal) choice, thereby limiting concurrency.

Along the other dimension of modularity, a protocol is a module
that may be composed with other protocols [24, 36]. Protocol-as-
module raises the question of when a protocol P may be substituted
in a composition by a protocol Q: Q must be a specialization of P.

Refinement captures a notion of specialization that legitimizes
substitution. Suppose Purchase is a protocol that facilitates goods
for payment transactions between buyers and sellers in which either
buyer or seller may initiate a transaction. A refinement of Purchase
could be Purchase-Escrow, where instead of paying the seller di-
rectly, the buyer pays an escrow service, which pays the seller when
appropriate. Another refinement could be Buyer-Initiates, where
only the buyer may initiate the transaction.

We identify two desirable features of protocol refinement: One,
generality: refinement doesn’t restrict protocols or the infrastruc-
ture. Two, correctness preservation: substitution by a refinement
preserves correctness properties, specifically, liveness and safety,
of the composition. That is, if the original composition satisfies
liveness (or safety), then a composition resulting from the substi-
tution must also satisfy liveness (or safety). Practically, checking
refinement once saves the effort of checking every composition post
substitution. Suppose we established that a composition using Pur-
chase were safe. Then, substituting Purchase-Escrow for Purchase
in that composition would yield a safe composition.

Our contribution is two-fold. One, we contribute a notion of pro-
tocol refinement that satisfies both of the foregoing desiderata. We
satisfy generality by formalizing refinement for information proto-
cols [30, 31], which are declaratively described and whose semantics
supports asynchronous messaging without ordering guarantees.
We satisfy preservation by proving that substituting a constituent
of a composition by the constituent’s refinement ensures safety and
liveness. We prove that the composition obtained from substituting
a constituent by its refinement is itself a refinement of the original
composition.

Two, we contribute an algorithm for refinement checking and
its implementation in a tool. We show that checking refinement
is no more time-intensive than checking liveness and safety, the
properties preserved. The relative performance makes it worthwhile
to check refinement once rather than checking the liveness and
safety of each individual composition post substitution.

Section 2 introduces information protocols. Section 3 motivates
refinement with examples. Section 4 formalizes our definition. Sec-
tion 5 presents important theorems. Section 6 presents an empirical
evaluation of our tool. Section 7 discusses related work. Section 8
concludes with a discussion.

2 PROTOCOLS

We briefly describe the main ideas of information protocols with
the help of examples. Listing 1 gives a protocol named Purchase.

Research Paper

Listing 1: A simple purchase protocol.

Purchase {
roles B, S // Buyer,
parameters out ID key,

Seller

out item, out price, out payment, out

deliver
B — S: rfq[out ID key, out item]
S — B: quote[in ID key, in item, out price]
B — S: pay[in ID key, in item, in price, out payment]
S + B: ship[in ID key, in item, in price, out deliver]

Purchase specifies roles B and S, and a list of public parameters
which must be bound to complete an enactment. Parameter ID is
marked key and uniquely identifies each enactment by its binding.
Each parameter is marked "in™ or "out™ to indicate whether a
given protocol or message depends on or binds that parameter,
thereby capturing causality constraints. There are four messages,
each of which may be sent at any time provided all of their "in™
parameters are bound. When B sends rfg to S, it produces bindings
for ID and item. Once S observes the ID and item parameters, it may
send the quote message, binding price. Then B can respond with
pay, binding payment, and S can send ship, binding deliver. Here,
pay and ship can be sent in parallel, because they do not depend
on each other. Once both have been sent, the protocol is complete
because all of its public parameters are bound.

An enactment of a protocol is identified by bindings of its key pa-
rameters. BSPL requires information integrity: any parameter may
be bound only once in an enactment. Therefore, no role may send
two messages with the same "out™ parameter in any enactment.
That is, accept and reject in Listing 2, which both bind decision, are
mutually exclusive; the buyer may send at most one of them.

Listing 2: Mutually exclusive messages.

accept[in offer key,
reject[in offer key,

B S:
B~ S:

out decision]
out decision]

out accept,
out reject ,

Although other notions of safety exist in other contexts, an
information protocol is defined to be safe if and only if for any
tuple of bindings for its key parameters, any other parameter is
bound exactly once. Whereas a role can ensure that it binds any
parameter once based on its own local history of interactions, safety
ensures that no two roles may bind the same parameter. Purchase in
Listing 1 is safe. However, if you modify Purchase in Listing 1 so that
in pay, price is adorned "out ™ instead of "in~, the resulting protocol
would be unsafe as both buyer and seller may bind payment. Let’s
refer to this modified protocol as Unsafe-Purchase.

A protocol is live if and only if each enactment can be extended by
the emission of some messages to a complete enactment. Purchase
in Listing 1 is live. However, Unsafe-Purchase is not live because in
the enactment where the buyer receives quote before sending pay,
pay is disabled, meaning that a binding for payment—required for
completion—cannot be produced.

In an information protocol, polymorphism is expressed via mes-
sages that have the same name and schema but different adornments
for some of the parameters. Because each parameter can be bound
only once, a role must make a choice between multiple messages
that bind the same parameter.

Listing 3: Polymorphic RFQ protocol.
Polymorphic—RFQ {
roles B, S

parameters out ID key, out item, out price

259

AAMAS 2020, May 9-13, Auckland, New Zealand

B — S: greet[out ID key]

B — S: rfq[out ID key, out item]

S +— B: offer[in ID key, out item, out price]
S +— B: offer[in ID key, in item, out price]

The Polymorphic-RFQ protocol in Listing 3 demonstrates simple
polymorphism and choice: B has two ways to bind ID, and S has
one way to bind price in response to each, both named offer to
make the polymorphism clear. This example shows how multiple
mutually exclusive choices can be specified, and the power to bind
a parameter can be given to different roles based on those choices.

3 MOTIVATING PROTOCOL REFINEMENT

Intuitively, we consider protocol Q to refine protocol P if its enact-
ments are at least as elaborate with at most the same flexibility.

An enactment q of Q is elaborates on enactment p of P if g binds
the parameters in p in the same order. By elaborating on p, g sup-
ports any actions or extensions that p does. A protocol is less flexible
if there are fewer decisions or alternative paths available during an
enactment. For example, in a flexible protocol either the buyer or
seller may name the price, whereas a less flexible refinement may
specify that only the seller may do so.

3.1 Enactment Paths

To frame the motivations of refinement using examples and later
formalize the concepts, we first describe our intuitions and a nota-
tion for illustrating them.

A crucial intuition is that if Q refines P, then every enactment of
Q maps to an enactment of P [22]. Q may have fewer enactments
and its enactments may have more details, but each enactment
binds the same parameters as some enactment of P.

Under BSPL’s semantics, an enactment of a protocol is a vector
of role histories, which can be denoted by [r1:h1, ra:hy, . . ., rp:hy],
where n is the number of roles in the protocol, r; is the name of the
ith role, and h; is the history for role r;. Each history is a sequence
of message instances. Each message instance is a tuple of name,
sender, receiver, and parameter-value pairs. A complete enactment
is one in which all of the protocol’s public parameters appear.

To more explicitly and concisely capture the choices made during
an enactment, we project an enactment to a sequential view of
events called a path. A path represents a possible perspective on the
relative ordering of events: if two events A and B are independent
then both [A, B] and [B, A] are valid paths. A path is a sequence of
message instances, each with sender s, recipient r, key parameters
E, parameter list p, and optional transmission offset o, written as
(stor, E|ﬁ)o. We omit the offset parameter when it is 0.

The only use of paths is to represent asynchronous enactments
(history vectors) compactly. Suppose a path is [mg, m1, .. .]. For a
role R, order its emissions in the same order as in the path. If m;
with offset k is directed at R, the m; arrives any time after all of R’s
emissions from mg to m;, ;. have been made and before any of R’s
emissions from mj, ,; onward is made.

To be a valid path, each message instance must be enabled by
the information known to the sender from the subpath preceding
it. A complete path is a path that represents a complete enactment;
not all valid paths are complete. The set of all paths extending a
path is its set of branches; that is, paths with that path as a prefix.

Research Paper

For brevity, we do not duplicate the keys in the parameter list, and
show only the parameters introduced by (that is, observed by the
sender or recipient for the first time in) a message.

Listing 4 shows an example path for Purchase. Three of the mes-
sages have a offset of 0, meaning they are received before the next
message is sent. The third message, introducing a binding for the
parameter payment, has a offset of 1 to indicate that it is not re-
ceived until after the following message emission occurs, capturing
the case where pay and ship are being transmitted concurrently,
since they are received at the same point in the path.

Listing 4: An example path in Purchase.
[(bs, 1D | item)g ,
(s—b, ID | price)y ,
(bs, ID | payment); ,
(st—>b, ID | deliver)y]
The following sections give examples of how a refinement may
be less flexible or more elaborate than the protocol it refines.

3.2 Running Example
We illustrate several kinds of refinement via variants of the follow-

ing protocol, the overall composition of which is given in Listing 5.

Listing 5: Composition for developing further examples.

Commerce {

roles B, S, C // Buyer, Seller, Catalog

parameters out ID key, out item, out shipped

private price, payment

Either—Starts (B, S, out ID key, out item)
Lookup—Prices(S, C, in ID key, out query key, out price)

S +— B: quote[in ID key, in item, in price]
Flexible —Payment(B, S, in ID key, in item, in price, out
payment, out shipped)

This composition references, i.e., includes as constituents, three
protocols. Either-Starts specifies the beginning of the enactment,
where either the buyer or the seller can request a quote or recom-
mend an item, respectively. Then, the seller queries the catalog
for the price information regarding the item being sold in Lookup-
Prices. The quote message forwards the price information to the
buyer, so it can proceed with payment. And, Flexible-Payment de-
scribes the conclusion of the transaction, in which the buyer can
pay before or after the seller ships the product.

3.3 Polymorphism Reduction

The basic RFQ protocol in Listing 6 is a refinement of the polymor-
phic RFQ protocol given in Listing 3.

Listing 6: Simple RFQ protocol.
RFQ {

roles B, S

parameters out ID key, out item,
B — S:
S > B:

}

out price
rfq[out ID key, out item]
offer[in ID key, in item, out price]

The complete paths of Polymorphic-RFQ are:

[(B—S,ID |),(S—B, ID | item, price)],
[(B—S,ID | item), (S—B, ID | price)]

The only complete path of RFQ is:

[(B—S,ID | item), (S—B, ID | price)]

260

AAMAS 2020, May 9-13, Auckland, New Zealand

Thus the paths of RFQ are a subset of the paths of Polymorphic-RFQ,
so RFQ is a refinement.

3.4 Initiation Reduction

Initiation reduction removes alternative initiating messages that
may be sent by different roles. Consequently, the resulting protocol
has a subset of otherwise identical paths.

Listing 7: Either-Starts protocol.
Either—Starts {
roles B, S
parameters out ID key,
B — S: rfq(out ID key, out item)
S — B: recommend(out ID key, out item)

}

//complete paths:

out item

[(B—S, D |item)], [(S—B,ID |item)]

In Either-Starts in Listing 7, both B and S have the option to send
the initiating message, since both rfq and recommend produce a
binding for the key parameter ID.

Listing 8: Buyer-Starts refinement of Either-Starts.
Buyer—Starts {
roles B, S
parameters out ID key, out item
B — S: rfq(out ID key,
}

// complete path:

out item)
[(B—S, ID | item)]

Buyer-Starts in Listing 8 is a refinement of Either-Starts, because it
selects only one of the two possible enactments.

3.5 Key Parameter Reduction

Demoting a key parameter, i.e., turning it into a non-key parame-
ter, strengthens the original key constraints. Thus demoting a key
parameter reduces flexibility, and is a valid refinement. (A valid
protocol must have at least one key.)

Consider Listing 9, which has two key parameters.

Listing 9: Multiple lookups via two key parameters.

Lookup—Prices {
roles S, C
parameters in ID key, out query key, out price
S —> C: lookup[in ID key, out query key]
C —> S: result[in ID key, in query key,
}
// possible paths
[.... (8—C,[ID, query] | query), (C—S,[ID, query] | price)]
[..., (S—C,][ID, query] | query), (S—C,[ID, query] | query),
(CS, [ID, query] | price), (C—S,[ID, query] | price)]

out price]

The paths are shown with an elided prefix, because there are "in™
parameters that need to be bound by other messages to enable
lookup. Because Lookup-Prices has a composite key, each parameter
need only have a unique binding for each pair of bindings of 1D and
query. Thus, we explicitly include some of the normally elided key
bindings to show that the second path contains multiple bindings
for query, and can have multiple corresponding prices.

Listing 10: Protocol with reduced keys.

Single —Lookup {
roles S, C

parameters in ID key, in item, out price
S —> C: lookup[in ID key, in item]
C —> S: result[in ID key, in item, out price]

}

// only one complete path

Research Paper

[..., (S—=C,ID |item), (C—S,ID | price)]

Single-Lookup in Listing 10 is a refinement of Lookup-Prices,
because the one path of Single-Lookup corresponds to a path of
Lookup-Prices, and its keys are a subset of the keys of Lookup-Prices.

3.6 Concurrency Elimination

Listing 11 specifies Flexible-Purchase, in which the order that the
buyer and seller respectively pay and deliver is flexible.

Listing 11: Purchase with concurrent payment and delivery.

Flexible —Purchase {
roles B, S

parameters in ID key, in item, in price, out payment, out shipped
B — S: pay[in ID key, in item, in price, out payment]
S + B: ship[in ID key, in item, in price, out shipped]

}

Flexible-Purchase does not specify a dependency relationship
between pay and ship, so they are not ordered and any enactment
may complete in one of three ways.

(1) B sends pay after receiving ship, yielding the path:

[..., (S—B,ID |shipped)o,(B—S,ID | payment)q]

(2) s sends ship after receiving pay. This enactment has the path:
[..., (B—S,ID | payment)y, (B—S,ID |shipped)]

(3) Bands concurrently send pay and ship, respectively, yielding
either of the following two paths:
[..., (B—S,ID | payment);,(S—B, ID | shipped)o]
[..., (S—B,ID | shipped);,(B—S, ID | payment)g]

Having a nonzero offset captures asynchrony, by allowing an-
other message to be sent before the previous message is received.
In the first path, for example, pay is sent before ship but has a offset
of 1, so they are both received at the same point in the path. That
an enactment involving concurrency can be represented in two
ways shows its flexibility, and distinguishes a protocol that enables
concurrency from one that enables only a single sequence.

The Pay-First protocol, given in Listing 12 entertains exactly one
complete enactment, where s sends ship after receiving payment.

Listing 12: Eliminating concurrency leads to refinement.

Pay—First {
roles B, S
parameters in ID key, in item, in price, out payment, out shipped
B = S: pay[in ID key, in item, in price, out payment]
S +— B: ship[in ID key, in item, in payment, out shipped]

The only complete path for this protocol is:
[..., (S—B,ID | payment),(B—S,ID | shipped)]

This path is identical to the second path of Flexible-Purchase in
Listing 11. Further, all other paths of Pay-First are prefixes of this
complete path, which means that they are paths of Flexible-Purchase
as well. Therefore, we claim that Pay-First refines Flexible-Purchase.

3.7 Adding an Intermediary

Adding roles to a protocol yields a valid refinement if care is taken
to ensure that all of the original roles observe the same information
in the same sequences. Parameters observed together in the original
protocol must be observed together in a refinement.

261

AAMAS 2020, May 9-13, Auckland, New Zealand

Listing 13 gives Direct-Purchase, in which the buyer and seller
interact directly, while Listing 14 gives Indirect-Purchase, where the
purchase is made through an intermediary.

Listing 13: Direct purchase protocol.

Direct—Purchase {
roles B, S // Buyer, Seller
parameters out ID key, out item,
private payment
S +— B: greet[out ID key]
B — S: order[in ID key,
S = B: ship[in ID key,
}
// one complete path
[(S—B,ID |), (B—S,ID |item), (S—B,ID | deliver)]

out deliver

out item]
in item, out deliver]

Listing 14: Indirect purchase protocol.

Indirect —Purchase {

roles B, S, | // Buyer, Seller, Intermediary
parameters out ID key, out item, out deliver
private payment
S +— B: greet[out ID key]
B — I: order[in ID key, out item]
I — S: confirm[in ID key, in item]
S = B: ship[in ID key, in item, out deliver]
}
// one complete path

[(S—B,ID |y, (BI,ID |item), (IS, 1D |y, (S—B, ID | deliver)]

In Indirect-Purchase, B does not send order directly to s, but
through an intermediary 1 instead. Communicating through an
intermediary does not affect the observations of the original roles,
because it merely decouples the information emission and reception
in the same way as asynchrony.

3.8 Private Parameters

A refinement may introduce new private parameters, though care
must be taken to avoid private safety conflicts that are not caught by
refinement. Listing 15 shows how using private parameters enables
splitting information across multiple messages.

Listing 15: Purchase with Escrow.
Escrowed—Purchase {
roles B, S, | // Buyer,
parameters out ID key,
private payment,

Seller , Intermediary

out item, out deliver

transfer // new private parameters

: greet[out ID key]

: order[in ID key, out item]

: pay[in ID key, out payment]

: transfer[in ID key, in payment, out transfer]

: ship[in ID key, in item, in payment, out deliver]

T4 Y Y A R
P wv—-unw

complete path, projected to public parameters only
[(S—B,ID |), (B—S,ID |item), (B—I,ID [),
(IS, 1D |), (S—B,ID | deliver)]

Listing 15 shows an extended refinement of Direct-Purchase, in
which the buyer sends the order directly to the seller, but sends
additional payment information through an intermediary that acts
as an escrow. Since the payment parameter is private, this change
does not violate refinement. And, transfer does not have any "out™
parameters, so it does not introduce any new bindings, but is nec-
essary to communicate the binding of payment to S. The fact that
Escrowed-Purchase is a refinement of Direct-Purchase can be seen
from the paths, because the B and s roles observe the same infor-
mation in the same sequence. The additional messages are ignored.

Research Paper

4 FORMALIZATION

We use |« to project a list to those of its elements that belong to x.
The basic element of a protocol, and thus of a path, is a message.

cg -7 .
Definition 1: A message schema™s +— r: m p(k)™ associates sender
Z -
s, recipient r, message name m, parameter list p, and keys k.

When message schemas are enacted, they produce message in-
stances that contain additional details unique to the enactment,
namely parameter values and a reception offset.

Definition 2: A message instance associates a schema with a list of
values U and an integer reception offset 0. An instance has the form
mls, r,ﬁ(lz, D), 0]. Below, s;, pi, etc. refer to the fields of a message
instance m;. And, ins(m), outs(m), and nils(m) refer to parameters
of m that are adorned "in™, "out™, and "nil 7, respectively.

Definition 3: The offset of a message instance (o; for message m;)
is the number of events that occur before the message is received.
Thus, a message with offset 0 is effectively received immediately,
before any other events occur, whereas a message of offset 1 is
received after the next event, and so on.

A protocol is either a message schema or a bag of protocols
(references). Like messages, protocols also have roles, parameters,
and keys. Parameters that are not public are renamed uniquely, to
provide encapsulation when used in composition.

Definition 4: A protocol P is a tuple {n, X, 3, p, 1? g, F), where n is
a name; ¥ and g are the public and private roles, respectively; p,
k, and g are the public, key, and private parameters, respectively;
and F is a finite set of f references to other protocols, {Fj, .. ., Ff}.
(Vi:1<i<f= Fi=(nix,pnki), where % C ¥U#,p; C pUJ),
k: =pi N 1? and (n;, X;, pi, I;i) projects protocol P; to its public
components (with roles and parameters renamed for uniqueness).

Below, Cp is a composition (i.e., a composite protocol) that ref-
erences P—that is, P is a constituent of Cp. Cp/(is a composition
where the reference to P is replaced by a reference to Q.

Definition 5: If Cp has references F = Fy, ..
tutes P in Cp/g if and only if Cp; has references F’ = F, ..
such that for every i < f, F; = Pand F; = Q or F; = F].

A universe of discourse (UoD) consists of a set of roles and a set of
messages they can enact. Generally a UoD is taken from a protocol
specification, but multiple protocols can be composed together, or
enacted in a context that includes other protocols.

.,Ff, then Q substi-

"Ff

Definition 6: A UoDis a pair U = (R, M), where R is a set of roles,
M is a set of message names; each message specifies its parameters
along with its sender and receiver from R.

The universe of discourse for the roles and messages of protocol P
is denoted Up, and the union of UoDs Uy U Uy is (R;U Rz, MU M>).

A path is a sequence of events, namely message instances, cor-
responding to an enactment. Each path induces a history vector,
which can be derived by appending each message instance to the
sender’s history in the order the instances occur, and then to the re-
cipient’s after the corresponding offset. Conversely, multiple paths
may induce a history vector, since role histories are independent.

Definition 7: A path is a list of instances, © = (my, ma, ..., my),

with length ||7]|.

262

AAMAS 2020, May 9-13, Auckland, New Zealand

An extension of a path appends one or more messages to it.

Definition 8: (extension) If r = (m1, my, ... my), then

rom' =(my, mg,...muy,m)

and 7 o [Mu+1, Mp+2, ..., Mp+j] = (M1, M2, ... M)

A message instance m; is received on a path if its offset is less
than or equal to the number of events after m;, else it is in transit.
That is, the position of m; describes when it was sent, and the offset
describes how many events occur before it is received.

Definition 9: received(r) = {m; € P |i+0; < ||7||}

Definition 10 captures the information that a role observes after a
sequence of messages has been sent. Each parameter in the message
is known by role R if the parameter values match the bindings in
the enactment, and either R is the sender, or R is the recipient and
the message has been received.

Definition 10: known(r,k,3,R) = {p | 3Im; € r:p € p; =
U lE: 3] l]z and (s; = Ror r; = R and m; € received(r))}

A message instance is viable on a path if the sender knows the
Tin™ parameters, but not the "out™ or "nil " parameters.

Definition 11: Message instance m(s, r, ﬁ(lz), 0] is viable on path
r if and only if p € ins(m) implies p € known(z, k.3,s), and p €
known(r, k.3, s) implies p ¢ outs(m) and p ¢ nils(m)

A path is valid if and only if it is either empty or the extension of
a valid path by a viable message. A path is extensible in a universe
of discourse if there are viable messages that can be appended to
it. The set of all valid paths in U is denoted paths(«). The set of
paths produced by a protocol must cover all possible orderings of
independent events. That is, if a and b are independent events, then
both paths (...,a,...,b,...)and (..., b,...,a,...) are possible.

Definition 12: 7 € paths() if and only if 7 = 0, or there is path
t/ € paths(U), and message m € viable(z”) such that = 7’ o m.

The branches at path 7 in universe of discourse U is the set of
all paths in U with prefix 7.

Definition 13: branches(U,7) = {tr’ | r C ¢’ and t’ € paths(U)},
where 7 C 77 denotes that 7 is a prefix of 7’.

The sources of a parameter in a path are the roles that send
messages binding that parameter in the path. Safe protocols have
at most one source for each parameter in any path.

Definition 14: sources(z,p) = {s; | p € outs(m; € 1)}
The keys of a path are the combinations of key parameters that
appear in message instances on the path.

Definition 15: keys(t) = {Ei | m; € t}, where k; is the list of key
parameters of message m;.

Subsumption captures the idea that one path induces the same
knowledge as another, such that the same combinations of relevant
parameters must be bound in the same order and by the same roles.

Definition 16: Path 7’ subsumes path t for parameter list p, de-
noted 7/ >5 7, if and only if
(1) ¥p € p : sources(z’, p) = sources(z, p)
(2) VR € ®,Vk € keys(r), Vo :
known(z’, lz, 3,R) N p = known(r, E, 3,R)Np

Research Paper

(3) 72 C r = 3rj such that 7) C 7’ and 7,
where R _is the set of roles that appear in 7.

> I; Tz

Definition 17 captures refinement in terms of paths. Informally,
Q refines P if and only if every path in Q subsumes some path in
P, and every path in Q that subsumes some extensible path in P is
extensible or has unreceived messages. That is, if P has branches,
then Q must also have branches or unreceived messages.

Definition 17: Protocol Q refines protocol P for parameters p, de-
noted Q < P, if and only if for every 7 and path 7¢ € paths(U
Ug), there is a path 7p € paths(U U Up) such that (1) 7o >5 TP and
(2) branches(1 U Up, tp) # 0 implies (branches(U U Ug, 7p) # 0
or |[received(rg)l| < |lzol]).

Q < P denotes the common case of refinement with respect to
the public parameters of P.

Safety is the correctness property that no parameter takes on
more than one value for a given set of keys in any path.

Definition 18: Protocol P is safe if every path in Up is safe. A path
7 is safe if and only if, for every m; € r, there is no mj; such that
ki = kj N Vi J,]zi#: Vj l]z]

Liveness is a correctness property requiring that every enactment

of a protocol be extensible by a finite sequence of emissions to an
enactment in which all public "out™ parameters are bound.

Definition 19: A protocol P with public "out™ parameters p is live
in Up if and only if every path in Up is a prefix of some path in
Up such that p C UE 3R known(r, k, 0, R)

5 THEORETICAL RESULTS

We say that the protocols are safe or live up to p, meaning that there
are no violations involving those parameters. In simpler terms, in-
troducing unused public parameters can artificially violate liveness
and introducing conflicts on private parameters can artificially
violate safety. Such conditions are readily checked.

Theorem 5.1 establishes that refinement preserves liveness. Hence,
if a protocol is live, it is sufficient to check that a substitute protocol
is a refinement—and we verify its liveness for free.

THEOREM 5.1. If P is live and Q <3 P then Q is live up to p.

Proof Sketch. Since P is live, for every path 7 in Up, one of the follow-
ing holds: (1) branches(Up, 7) # 0; (2) ||received(r)|| < ||z]|; or (3)
pc UE,&,R known(z, E, 9, R). Since Q < P, forevery path g € Ugp
there is a path 7p € paths(Up): 7o >5 TP and branches(Up, tp) #
0 = branches(Ug, 7g) # 0 or [[received(rg)|| < [|zp||. From sub-
sumption, UI?,z?,R known(zg, ié, o,R) = UE,i,R known(zp, I:, o, R).
Thus we have one of: (1) branches(g, 7) # 0;(2) ||[received(zp)|| <
llzoll; or (3)pc UE,&,R known(zp, k, 3, R). So Qis live up to p. O

Theorem 5.2 establishes that refinement preserves safety.
THEOREM 5.2. If P is safe and Q <z P then Q is safe up to p.

Proof Sketch. Suppose P is safe, Q <3 P and p; C p for all messages
in Q. Because Q <5 P, the sources of any p in p on any path in Q
are the same as the sources of p on some path in P. Thus, for every

263

AAMAS 2020, May 9-13, Auckland, New Zealand

parameter in p, there is at most one source for each parameter of Q
in any path in Q, and Q is safe up to p. O

Theorem 5.3 establishes that refinement applies to substitution
of a constituent in a composition. That is, if Cp is a composition
in which P is a constituent, and Q is a refinement of P, then a
composition Cp; with Q substituted for P is a refinement of Cp.

THEOREM 5.3. IfQ < P, then Cp;p < Cp.

Proof Sketch. Suppose Q < P, with P having public parameters p.
Let Uc be the universe of discourse of Cp without the messages in
P, such that Ucp, = Uc VY Up, and ﬂCP/Q = Uc Y Ug.

(0) Suppose it is not true that Cp;o < Cp. By the definition of
refinement, (1) there must be some path 7g in paths(‘llcP/Q) that
does not subsume any path 7p in Uc,,, or (2) 7p has branches but
1o does not and 7 does not have any unreceived messages.

(1) Suppose there is some path 7p € paths(’ucP/Q) that sub-
sumes a path 7p € paths(Uc,), but for some message m in UCp, o>
7o o m does not subsume any path in paths(2c,). Since 7g sub-
sumes 7p, they must induce the same knowledge at each role,
and thus would enable the same messages. Thus for g o m to
not subsume any path, m must not exist in Uc,, which means
it must be in Q. But by the definition of refinement, for any U,
V1o € paths(U U Ug), 3rp € paths(U U Up) : 79 > Tp, contra-
dicting (1).

(2) Suppose a path 7g € paths(‘llcP/Q) does not have branches
or any unreceived messages, but subsumes a path 7p € paths(Uc,)
that has branches. Since 7 subsumes 7p, they must induce the same
knowledge at each role, and thus would enable the same messages;
thus any messages enabled on 7p but not 7p must be in P, since
all the messages in Uc are in both paths(‘llcP/Q) and paths(Uc,).
But Q < P and by the definition of refinement V«Ubranches(u U
Up,tp) # O = (branches(U U Up,7g) # 0 V ||received(zp)| <
lIzoll). Thus 7o has branches in contradiction of supposition (2).

Thus, (1) and (2) are false, contradicting (0), so Cp;g < Cp. O

Theorems 5.4 and 5.5 establish that the safety and liveness of
a composition are preserved when substituting a constituent by a
refinement. This result yields assurance of the liveness and safety
of a composition without full reverification; only the replacement
protocol needs to be checked for safety and refinement.

THEOREM 5.4. IfCp is live and Q < P, then Cp g is live.

Proof Sketch. Suppose Cp is live and Q < P. Assume that Q does not
pathologically have public parameters not in P that block messages
in C. By Theorem 5.3, Cp/o < Cp. Since Cp is live, every path in
paths(Uc,) either has branches or binds every "out™ parameter
of Cp. By refinement, every path in ¢, , subsumes some path
in Uc,. Thus, every path in Ucy 0 either has branches, or binds
every "out” parameter of Cp. Since Cp and Cp; have the same
public parameters, this means Cp/ g is live. O

THEOREM 5.5. IfCp is safe and Q <3 P thenCp g is safe up top.

Proof Sketch. Let Cp be safe, and Q <j P.By Theorem 5.3, Cp/g <
Cp and Q enables only what P did. Cp is safe, so any safety viola-
tions are internal to Q. By Theorem 5.2 Q is safe up to p, so Cpo

is safe up to p. O

Research Paper

6 EVALUATION

Algorithm 1 verifies refinement based on Definition 17. It enumer-
ates all possible paths in both P and Q, and checks that each path ¢
in Q subsumes some path p in P such that if p has branches then ¢
does as well, otherwise it is not a refinement.

Algorithm 1: Refinement algorithm

1 foreach 7 in paths(Up) do

2 match « 0 ;

3 for p in paths(Up) do

4 match « 7p ;

5 if There are no branches of tp, or tg has branches or

unreceived messages then

6 L break; // found match; stop looking
7 if no match then

8 L return False; // failed Definition 17.1
9 if match has branches but 1 does not have branches or

unreceived messages then

10 LreturnFalse; // failed Definition 17.2

11 return True;

We have implemented the refinement checking algorithm in
Python 3.6.5 enhancing our toolchain for BSPL. Testing was done
via pytest, executing the relevant functions in a for loop, skipping
the first iteration so that any loading or caching occurs before our
measurements. All tests were performed on a laptop running Gen-
too Linux, kernel version 4.19.27, with an Intel i7-6600U cpu, 16GB
of DDR3 memory, and 1TB SSD. All timings are in milliseconds;
and the minimum, mean, maximum, and sample standard deviation
(0) are computed over 10 runs. The code and results are available
at https://gitlab.com/masr/protocheck.

Table 1 shows the time required to verify three of the example
refinements, indicating that the approach is tractable.

Protocol Min Mean Max o
Buyer-Starts < Either-Starts 1 1 2 06
Single-Lookup < Lookup-Prices 103 138 169 213
Pay-First < Flexible-Purchase 53 70 87 9.6

Table 1: Time to verify refinement for example protocols.

For comparison, Table 2 lists the time it takes to verify liveness
and safety for the Commerce protocol resulting from the substitu-
tion of a single protocol by its refinement (e.g., Either-Starts with
Buyer-Starts). The last row gives the time for verifying liveness and
safety after all three constituents are substituted; this protocol is the
simplest since all three constituents have been simplified, and so
takes the least time to verify. As these measurements demonstrate,
the time to check refinement is less than the time to check liveness
for the Commerce protocol post substitution, thus establishing the
practical benefit of checking refinement.

The time to check safety post substitution is also higher than the
time to check refinement except when Buyer-Starts is substituted for

264

AAMAS 2020, May 9-13, Auckland, New Zealand

Either-Starts, as in the first and last rows, where the safety checking
tool statically detects that there are no messages with the same
Tout ™ parameter but different senders, ruling out the violation of
safety in time linear in the size of the protocol specification.

Substitution Property Min Mean Max o
sub. Buyer-Starts Liveness 14419 14745 15099 222
Safety 0 0 0 0
sub. Single-Lookup Liveness 18483 18568 18714 68
Safety 18296 18401 18541 74
sub. Pay-First Liveness 18408 18512 18601 78
Safety 18246 18347 18517 78
substitute all Liveness 11624 11868 12279 197
Safety 0 0 0 0.03

Table 2: Times to verify properties of Commerce (Listing 5)
with select constituent replaced by its refinement, as given
in Table 1.

We also tested preexisting protocol specifications, checking that
the NetBill protocol [9] is a refinement of the Bliss variant [32],
and that a variant of HL7’s CreateLaboratoryOrder flow [19] is a
refinement of the original. Table 3 shows that checking refinement
is faster than re-verifying liveness in both cases.

Protocol Property Min Mean Max o
. Refinement 1256 1294 1323 21
NetBill Liveness 13615 13926 14141 174
Refinement 5879 6003 6162 83

L
CreateLabOrder 1.0 ess 45257 46469 50878 1648

Table 3: Time to verify liveness and refinement for the Net-
Bill and CreateLabOrder protocols.

7 RELATED WORK

Refinement, a preorder relation on protocols, is somewhat related
to simulation [28], which is a preorder relation on processes. A
process P simulates a process Q if P can match all of Q’s moves;
that is, if a transition is available at a state in Q, the same transition
is available at a matching state in P. A simulating process can do
everything the simulated process can do, and therefore substitute
for (impersonate) it. Refinement is concerned with substitution
in compositions where additional states may introduce conflicts,
such as two roles binding the same parameter, and so is more like
specialization than extension. Each path in a refinement must have
the same observations in the same order as the paths it subsumes,
but may have fewer branches.

Process testing [10] defines notions of refinement for commu-
nicating processes, in which one process (e.g., a server) refines
another if it passes the same tests (e..g., supports the same clients).
Bernardi and Hennessy [6] extend testing to mutual testing such as
peer-to-peer relationships. However, testing applies to processes,
not interactions. Even more recent work on multiparty testing [11]
addresses only multiple clients interacting with the same server, re-
laxing the preorder to accommodate flexible ordering in the server’s
responses to uncoordinated clients.

https://gitlab.com/masr/protocheck

Research Paper

The Liskov substitution principle [21] states that subtypes of a
type satisfy properties of the type. Refinement is a kind of subtyping
and preserves safety and liveness. However, Liskov’s behavioral
substitution applies not to protocols, but to roles, which describe
behavior. Gay [14] discusses channel-oriented and process-oriented
subtyping for session types [17]. Session types work that tackles
multiparty asynchronous protocols [18] requires FIFO channels.

We distinguish conformance from compliance, the problem of
determining at runtime whether an agent satisfies a role [16, 29, 33].
In this terminology, Ancona et al. [2] deals with compliance rather
than conformance.

Mazouzi et al. [23] describe a design methodology for communi-
cation protocols involving translation of abstract protocol specifica-
tion diagrams in AUML to recursive colored Petri nets (RCPNs) for
formal verified at various levels of abstraction. However, although
RCPNs support concurrency, they are synchronous across the vari-
ous roles, and do not account for the possible risks to information
integrity introduced by asynchrony.

Refinement relates to prior work on atomicity of protocols [26],
which requires that if any constituent is partially enacted it must be
possible to complete, in that both address correctness of protocols
used together in a composition. Although atomicity entails liveness
for the overall composition, it is primarily concerned with detecting
conflicts that would prevent a constituent from completing and
leave it “dangling” Atomicity can be verified only by using the
composition as a whole; it cannot be determined from the specifica-
tion of a constituent protocol in isolation. By contrast, refinement
verifies that particular substitutes for a constituent protocol do not
affect the liveness of the composition, without needing to consider
the other constituents. Thus the two concepts complement each
other, with atomicity proving that a constituent will be live in a
composition, and refinement verifying that a substitute protocol
will behave the same way.

Information protocols enable layering meaning protocols, e.g.,
based on commitment and norms [3, 20, 25, 34, 37, 39]. Refinement
has been studied for commitment protocols [7, 15, 22]. Our intu-
itions regarding refinement—that Q refines P if every run of Q
embeds some run of P—agree with Gerard and Singh’s [15]. We
additionally require that every enactment in Q be able to progress
if the corresponding enactment in P can progress. The present
framework accommodates asynchronous communications, which
the above works do not address.

In ongoing work [8, p. 18], we show that Flexible-Payment (List-
ing 11), which supports payment and shipment in any order or
concurrently, cannot be expressed in protocol languages based on
trace expressions or session types. These languages can express an
analog of Pay-First (Listing 12)—a refinement of Flexible-Payment.

8 CONCLUSIONS AND FUTURE WORK

We have motivated and formalized a notion of refinement of in-
formation protocols. We established important results about this
notion of refinement. Specifically, we showed that (1) a refinement
of a safe and live protocol is, respectively, safe and live; (2) safety
and liveness of a composition are preserved when substituting a
constituent protocol with its refinement; and (3) a composition

265

AAMAS 2020, May 9-13, Auckland, New Zealand

with a refinement substituted for a constituent protocol is itself a
refinement of the original composition.

We described an algorithm for checking refinement and provide
an empirical demonstration of its performance that establishes that
checking refinement once is worthwhile compared to checking
the liveness and safety of compositions post substitution. Future
work will consider optimizations—such as taking advantage of path
symmetry, memoization, and lazy generation—that should make
the refinement-checking algorithm even more efficient.

Note that although refinement preserves the safety and liveness
of a protocol, sometimes a refined protocol may be safe or live
when the protocol it refines is not. Indeed, that would be a common
occurrence during engineering. Engineers may specify a protocol
that meets their application requirements and upon determining
(through a checker tool) that the protocol is not safe or live, may
proceed to refine it to obtain one that is safe and live—and therefore
appropriate for developing agents to play roles in it.

We could support richer kinds of refinement if we exploited se-
mantic mappings between the parameters of protocols. For example,
suppose a purchase protocol supports separate delivery addresses
for each item. It should be reasonable to refine this protocol to
one in which the same address is used for all of the items. Such
a protocol should be a refinement, since it reduces the number of
choices and does not produce any less information: the customer
could provide the same address multiple times in the unrefined
protocol. However, such a refinement goes beyond this paper, as
this paper does not support mappings between parameters.

Our notion of protocol refinement shares with works on confor-
mance the intuition that refinement means a reduction of emission
choices relative to the original protocol. A future direction is to
investigate the relationship between refinement and conformance.
We would expect that if protocol Q refines protocol P and if a role p
features in both, Q projected to p would conform with P projected
to p.

An interesting line of work would be to consider the refine-
ment of commitment specifications along with the refinement of
information protocols. For example, introducing an intermediary
for purposes of escrow (Listing 15) is a refinement of the direct
purchase protocol (Listing 6) in the current work; however, this
does not consider that the relevant commitment specifications may
have to be refined as well, e.g., to set up commitments between
escrow and the other agents. It would be necessary to ensure that
protocols support enactments that enable agents to comply with
their commitments, along the lines of the Clouseau approach [34].

9 ACKNOWLEDGEMENTS

Thanks to the anonymous reviewers for helpful comments. Chopra
was supported by the EPSRC grant EP/N027965/1 (Turtles). Christie
and Singh were partially supported by the National Science Foun-
dation under grant IIS-1908374.

Research Paper

REFERENCES

(1]

[10]

(1]

[12]

[13

[14]

[15

[16]

(17

[18]

[19

[20]

Davide Ancona, Daniela Briola, Angelo Ferrando, and Viviana Mascardi. 2015.
Global Protocols as First Class Entities for Self-Adaptive Agents. In Proceedings of
the 14th International Conference on Autonomous Agents and Multiagent Systems.
IFAAMAS, Istanbul, 1019-1029.

Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2018. Agents Interop-
erability via Conformance Modulo Mapping. In Proceedings of the 19th Workshop
on From Objects to Agents (WOA) (CEUR). CEUR-WS.org, Palermo, Italy, 109-115.
Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. 2014. A
Commitment-Based Infrastructure for Programming Socio-Technical Systems.
ACM Transactions on Internet Technologies 14, 4 (Dec. 2014), 23:1-23:23.

Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti,
and Munindar P. Singh. 2009. Choice, Interoperability, and Conformance in
Interaction Protocols and Service Choreographies. In Proceedings of the 8th In-
ternational Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Budapest, 843-850. DOI : https://doi.org/10.5555/1558109.1558129
Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti. 2006. A
Priori Conformance Verification for Guaranteeing Interoperability in Open Envi-
ronments. In Proceedings of the 4th International Conference on Service-Oriented
Computing (ICSOC) (Lecture Notes in Computer Science), Vol. 4294. Springer,
Chicago, 339-351.

Giovanni Bernardi and Matthew Hennessy. 2015. Mutually Testing Processes.
Logical Methods in Computer Science 11, 2 (2015). DOI: https://doi.org/10.2168/
LMCS-11(2:1)2015

Amit K. Chopra and Munindar P. Singh. 2006. Contextualizing Commitment
Protocols. In Proceedings of the 5th International Joint Conference on Autonomous
Agents and Multiagent Systems. ACM Press, Hakodate, Japan, 1345-1352. DOI:
https://doi.org/10.1145/1160633.1160884

Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2019. An Evalua-
tion of Communication Protocol Languages for Engineering Multiagent Systems.
(Oct. 2019). arXiv:1901.08441v2 [cs.SE].

Benjamin Cox, J. D. Tygar, and Marvin Sirbu. 1995. NetBill Security and Transac-
tion Protocol. In Proceedings of the 1st USENIX Workshop on Electronic Commerce.
USENIX, New York, 77-88.

Rocco De Nicola and Matthew Hennessy. 1984. Testing Equivalences for Processes.
Theoretical Computer Science 34 (1984), 83-133. DOI:https://doi.org/10.1016/
0304-3975(84)90113-0

Rocco De Nicola and Hernan C. Melgratti. 2015. Multiparty Testing Preorders. In
Trustworthy Global Computing - 10th International Symposium, TGC 2015, Madrid,
Spain, August 31 - September 1, 2015 Revised Selected Papers (Lecture Notes in
Computer Science), Pierre Ganty and Michele Loreti (Eds.), Vol. 9533. Springer,
16-31. DOI: https://doi.org/10.1007/978-3-319-28766-9_2

Ulrich Endriss, Nicolas Maudet, Fariba Sadri, and Francesca Toni. 2003. Protocol
Conformance for Logic-based Agents. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). IJCAI, Acapulco, Mexico, 679-684.
Angelo Ferrando, Michael Winikoff, Stephen Cranefield, Frank Dignum, and
Viviana Mascardi. 2019. On the Enactability of Agent Interaction Protocols:
Toward a Unified Approach. CoRR abs/1902.01131v4 (Feb. 2019), 1-13.

Simon J. Gay. 2016. Subtyping Supports Safe Session Substitution. In A List of
Successes That Can Change the World - Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday (Lecture Notes in Computer Science), Sam Lindley,
Conor McBride, Philip W. Trinder, and Donald Sannella (Eds.), Vol. 9600. Springer,
95-108. DOI : https://doi.org/10.1007/978-3-319-30936-1_5

Scott N. Gerard and Munindar P. Singh. 2013. Formalizing and Verifying Protocol
Refinements. ACM Transactions on Intelligent Systems and Technology (TIST)
42, 2 (March 2013), 21:1-21:27. DOI:https://doi.org/10.1145/2438653.2438656
Appendix pages 1-7.

Laura Giordano, Alberto Martelli, and Camilla Schwind. 2007. Specifying and
verifying interaction protocols in a temporal action logic. Journal of Applied
Logic 5, 2 (2007), 214-234.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchro-
nous Session Types. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). ACM, San Francisco, 273-284.
Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchro-
nous Session Types. 7. ACM 63, 1 (March 2016), 9:1-9:67.

ISO/HLY7. 2013. Laboratory Order Conceptual Specification. (May 2013). https:
//wiki.hl7.org/index.php?title=Laboratory_Order_Conceptual_Specification.
Warda El Kholy, Jamal Bentahar, Mohamed El-Menshawy, Hongyang Qu, and
Rachida Dssouli. 2017. SMC4AC: A New Symbolic Model Checker for Intelligent
Agent Communication. Fundamenta Informaticae 152, 3 (2017), 223-271. DOI:
https://doi.org/10.3233/FI-2017-1519

266

[21

[22

(23]

[26

[27

[28

™~
20,

[30

[31

[32

&
&

[34

[35

[37

[38

[39

AAMAS 2020, May 9-13, Auckland, New Zealand

Barbara Liskov and Jeannette M. Wing. 1994. A Behavioral Notion of Subtyping.
ACM Transactions on Programming Languages and Systems 16, 6 (1994), 1811-1841.
DOI:https://doi.org/10.1145/197320.197383

Ashok U. Mallya and Munindar P. Singh. 2007. An Algebra for Commitment
Protocols. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 14,
2 (April 2007), 143-163. DOI: https://doi.org/10.1007/s10458-006-7232- 1

Hamza Mazouzi, Amal El Fallah Seghrouchni, and Serge Haddad. 2002. Open
Protocol Design for Complex Interactions in Multi-Agent Systems. In Proceedings
of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS). ACM Press, Bologna, 517-526.

Tim Miller and Peter McBurney. 2011. Propositional Dynamic Logic for Reasoning
about First-Class Agent Interaction Protocols. Computational Intelligence 27, 3
(2011), 422-457.

Marco Montali, Diego Calvanese, and Giuseppe De Giacomo. 2014. Verification of
data-aware commitment-based multiagent system. In Proceedings of the 13th In-
ternational Conference on Autonomous Agents and Multiagent Systems. IFAAMAS,
Paris, 157-164.

Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2018. Composi-
tional Correctness in Multiagent Interactions. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Stockholm, 1159-1167. DOI : https://doi.org/10.5555/3237383.3237868
James Odell, H. Van Dyke Parunak, and Bernhard Bauer. 2001. Representing Agent
Interaction Protocols in UML. In Proceedings of the 1st International Workshop
on Agent-Oriented Software Engineering (AOSE 2000) (Lecture Notes in Computer
Science), Vol. 1957. Springer, Toronto, 121-140.

David Michael Ritchie Park. 1981. Concurrency and Automata on Infinite Se-
quences. In Theoretical Computer Science, 5th GI-Conference. Springer, Karlsruhe,
Germany, 167-183. DOI : https://doi.org/10.1007/BFb0017309

Munindar P. Singh. 1998. Agent Communication Languages: Rethinking the
Principles. IEEE Computer 31, 12 (Dec. 1998), 40-47. DOI : https://doi.org/10.1109/
2.735849

Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-
ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Taipei, 491-498. DOI : https://doi.org/10.5555/2031678.2031687
Munindar P. Singh. 2012. Semantics and Verification of Information-Based
Protocols. In Proceedings of the 11th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). IFAAMAS, Valencia, Spain, 1149-1156.
DOI:https://doi.org/10.5555/2343776.2343861

Munindar P. Singh. 2014. Bliss: Specifying Declarative Service Protocols. In
Proceedings of the 11th IEEE International Conference on Services Computing (SCC).
IEEE Computer Society, Anchorage, Alaska, 235-242. DOI:https://doi.org/10.
1109/SCC.2014.39

Munindar P. Singh and Amit K. Chopra. 2010. Correctness Properties for Multia-
gent Systems. In Proceedings of the 6th AAMAS Workshop on Declarative Agent
Languages and Technologies (DALT 2009) (Lecture Notes in Artificial Intelligence).
Springer, Budapest, 192-207. DOI : https://doi.org/10.1007/978-3-642-11355-0_12
Munindar P. Singh and Amit K. Chopra. 2020. Clouseau: Generating Commu-
nication Protocols from Commitments. In Proceedings of the 34th Conference on
Artificial Intelligence (AAAI). AAAI Press, New York, 1-9.

Munindar P. Singh, Amit K. Chopra, Nirmit V. Desai, and Ashok U. Mallya.
2004. Protocols for Processes: Programming in the Large for Open Systems. In
Proceedings of the 19th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). ACM, Vancouver, 73-83. DOI:
https://doi.org/10.1145/1052883.1052893 SIGPLAN Notices, volume 39, number
12, December 2004, pages 73-83.

Benjamin Vitteau and Marc-Philippe Huget. 2004. Modularity in Interaction Pro-
tocols. In Advances in Agent Communication (Lecture Notes in Computer Science),
Frank Dignum (Ed.), Vol. 2922. Springer, Berlin, 291-309.

Michael Winikoff, Wei Liu, and James Harland. 2005. Enhancing Commitment
Machines. In Proceedings of the 2nd International Workshop on Declarative Agent
Languages and Technologies (DALT) (LNAI), Vol. 3476. Springer-Verlag, Berlin,
198-220.

Michael Winikoff, Nitin Yadav, and Lin Padgham. 2018. A New Hierarchical
Agent Protocol Notation. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 32, 1 (Jan. 2018), 59-133.

Pimar Yolum and Munindar P. Singh. 2002. Flexible Protocol Specification and
Execution: Applying Event Calculus Planning using Commitments. In Proceedings
of the Ist International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS). ACM Press, Bologna, 527-534. DOI : https://doi.org/10.1145/
544862.544867

https://doi.org/10.5555/1558109.1558129
https://doi.org/10.2168/LMCS-11(2:1)2015
https://doi.org/10.2168/LMCS-11(2:1)2015
https://doi.org/10.1145/1160633.1160884
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1007/978-3-319-28766-9_2
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1145/2438653.2438656
https://wiki.hl7.org/index.php?title=Laboratory_Order_Conceptual_Specification
https://wiki.hl7.org/index.php?title=Laboratory_Order_Conceptual_Specification
https://doi.org/10.3233/FI-2017-1519
https://doi.org/10.1145/197320.197383
https://doi.org/10.1007/s10458-006-7232-1
https://doi.org/10.5555/3237383.3237868
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1109/2.735849
https://doi.org/10.1109/2.735849
https://doi.org/10.5555/2031678.2031687
https://doi.org/10.5555/2343776.2343861
https://doi.org/10.1109/SCC.2014.39
https://doi.org/10.1109/SCC.2014.39
https://doi.org/10.1007/978-3-642-11355-0_12
https://doi.org/10.1145/1052883.1052893
https://doi.org/10.1145/544862.544867
https://doi.org/10.1145/544862.544867

	Abstract
	1 Introduction
	2 Protocols
	3 Motivating Protocol Refinement
	3.1 Enactment Paths
	3.2 Running Example
	3.3 Polymorphism Reduction
	3.4 Initiation Reduction
	3.5 Key Parameter Reduction
	3.6 Concurrency Elimination
	3.7 Adding an Intermediary
	3.8 Private Parameters

	4 Formalization
	5 Theoretical Results
	6 Evaluation
	7 Related Work
	8 Conclusions and Future Work
	9 Acknowledgements
	References

