
1

PoT: A Decentralized Programming Model for the
Internet of Things

Samuel H. Christie V, Daria Smirnova, Amit K. Chopra, Munindar P. Singh

Abstract—Current programming models for develop-
ing Internet of Things (IoT) applications conceive of an
application as an orchestration. An orchestration even
if physically distributed is logically centralized and thus
ill-suited to the most interesting IoT applications, which
involve multiple autonomous parties.

We contribute Protocols over Things (PoT), a decentral-
ized programming model for IoT applications that repre-
sents an IoT application via a protocol between the parties
involved. Notably, PoT works over unordered delivery
mechanisms such as UDP and supports application-level
reliability mechanisms such as resending messages.

We realize PoT using Node-RED, a popular IoT frame-
work, to show how PoT simplifies implementation and
avoids errors. Further, we empirically demonstrate that
by supporting application-level retry policies, PoT pro-
vides improved performance over network-level delivery
guarantees.

Index Terms—Protocol; Autonomy; Asynchrony; End-
to-End Argument; Agents

I. INTRODUCTION

The Internet of Things (IoT) enables new applica-
tions that leverage the capabilities of things—Internet-
accessible devices that sense or control their environ-
ment. Many such applications involve autonomous par-
ties who share information from and control over things
to effectively cooperate in achieving their respective
goals. For example, a patient could share information
with a healthcare provider to receive automatically dis-
pensed medication. Patients should have control over
their health information, and doctors over how they
prescribe medications. More mundane IoT applications
exhibit multiple parties too. For example, a smart home
could involve an owner, one or more tenants, a power
utility, and a security service. Likewise, in an enterprise,
different suborganizations have different responsibilities
and powers. That is, real-life applications involve multi-
ple logical loci of control.

However, current programming models are geared to-
ward a single locus of control: they violate the autonomy
of all but one of the parties and don’t jibe with things
often being small and numerous. For instance, popular
frameworks such as Node-RED (https://nodered.org/)

and Eclipse Kura (https://www.eclipse.org/kura/) model
an IoT application as an orchestration [5] that receives
information from sensors, processes it in a workflow, and
effects actions in the environment.

In contrast, we advocate a programming model called
Protocols over Things (PoT) that is not only distributed
physically but also decentralized [11]: It reflects every-
one’s autonomy and decouples their reasoning through
asynchronous communication. Specifically, PoT captures
a decentralized application via a protocol that specifies
the communication constraints between the parties, ab-
stracted as roles. PoT can employ IoT communication
standards such as MQTT [4] and CoAP [8] as well as
UDP [6].

Using a logistics scenario that we implement in Node-
RED according to PoT, we show how a protocol spec-
ification enables the use of code generation tools and a
generic communication adapter to simplify development.
We focus specifically on how the adapter correlates
messages according to the protocol, and compare PoT
to existing approaches for message correlation in Node-
RED.

We further demonstrate how PoT embodies the end-
to-end principle [7] by supporting deployment over unre-
liable asynchronous communication mechanisms instead
of relying on transport-layer delivery guarantees.

We experimentally demonstrate that a PoT implemen-
tation over UDP with application-level retry strategies
compares favorably with the same implementation over
MQTT.

II. EXAMPLE IOT SCENARIO: LOGISTICS

We adopt a warehouse logistics scenario [9], simpli-
fied to focus on the aspects relevant to decentralization:
parties, their communications, and their decision making.

Figure 1 illustrates this scenario conceptually. Here,
MERCHANT, WRAPPER, LABELER, and PACKER are
autonomous parties; the arrows indicate information
flows. MERCHANT receives a purchase order (PO)—
imagine an external customer. Each PO includes one
or more items and a shipping address. MERCHANT

sends the address to LABELER, who generates the ap-
propriate shipment label to be affixed to the shipping

https://nodered.org/
https://www.eclipse.org/kura/

box. LABELER sends the generated label to PACKER.
MERCHANT sends information about the items to the
WRAPPER, who wraps the items appropriately for ship-
ping (e.g., paper for durable items and bubble wrap
for fragile ones) and notifies PACKER they are ready.
PACKER affixes the shipment label to a box and notifies
MERCHANT for each item (in the PO) that it packs in
the box.

Each party applies its decision making in deciding
when and what information to communicate. For exam-
ple, WRAPPER may select a wrapping based on current
inventory and cost and LABELER may select a shipping
label based on the speed and cost of the shipper. Further,
a party may choose to delay or not to send a message;
e.g., WRAPPER may hold on to an item until it has the
appropriate wrapping, and LABELER may discard invalid
addresses. In general, the parties work concurrently and
asynchronously based on information available to them.

Merchant

Labeler Wrapper

Packer

Address Items

Shipping label Items wrapped

Items packed

Fig. 1. Conceptual model of the logistics scenario, relative to a single
purchase order (PO).

III. SIDEBAR: NODE-RED

Node-RED is an interactive programming and execu-
tion environment for IoT applications. A Web interface
presents a palette of function blocks called nodes. A
user can construct a flow—technically an orchestration—
by connecting nodes via virtual wires that run from an
output port of one node to the input port of another. A
flow typically starts with one or more nodes that sense
information from the environment and ends with some
action in the environment.

Figure 2 illustrates a flow. The type of each node
is indicated by its color and icon. Each node has an
informal name.

In Figure 2, the nodes named labeled and
wrapped are MQTT subscriptions to the topics La-
beled and Wrapped, respectively. The output ports of
both labeled and wrapped are connected to the
input port of the Join node, meaning that received
messages are passed on to the Join node. A join node

Node-RED

Full

labeled

connected

wrapped

connected

Join

packed

connected

Sent by Packer

Pack

   

 

Node-RED http://localhost:1880/#flow/84f0e5f6.e02ab8

1 of 1 8/18/20, 2:26 PM

Fig. 2. A simple Node-RED flow using Join to combine messages

aggregates multiple messages together; in this example,
one message from each of the MQTT topics. Pack is
a function node that applies custom JavaScript code to
the aggregates produced by Join. The output port of
Pack is connected to two other nodes, which means
that each of its outputs is copied and passed to those
nodes separately. The node named Sent by Packer
logs its inputs to the developer console, to facilitate
debugging. The node named packed is an MQTT node
that publishes any input it receives to the Packed topic.

IV. CHALLENGES IN PROGRAMMING IOT
APPLICATIONS AS ORCHESTRATIONS

Node-RED (see Sidebar) epitomizes the orchestration
approach to programming IoT applications. How might
one implement a decentralized IoT application using
flows? Each party’s computations may be captured in
a separate flow called the party’s endpoint that commu-
nicates with the endpoints of other parties via messages
over e.g. MQTT.

Figure 3 illustrates the resulting architecture schemat-
ically. Notably, there is no representation of the appli-
cation that captures its decentralized nature except as
endpoints implemented in Node-RED.

Asynchronous communication infrastructure

Node-RED Endpoint Node-RED Endpoint

Fig. 3. Endpoint-oriented architecture for IoT applications.

There is another shortcoming in the architecture in
Figure 3. To interoperate, the parties need a specification
of the structures of the messages they communicate.
Such a specification lies strictly outside Node-RED but is
crucial to decentralization. Lacking such a specification,
the endpoints would become tightly coupled.

2

Listing 1. Structures of messages exchanged between the endpoints in the logistics scenario.
/ / Sender to Receiver : MessageName(parameter 1 , . . . , parameter n)

Merchant to Labeler : RequestLabel (orderID , address)

Merchant to Wrapper : RequestWrapping (orderID , i temID , i tem)

Wrapper to Packer : Wrapped (orderID , i temID , item , wrapping)

Labeler to Packer : Labeled (orderID , address , l a b e l)

Packer to Merchant : Packed (orderID , i temID , wrapping , labe l , s ta tus)

Suppose such a specification is available, as is com-
mon in practice. For example, Listing 1 specifies the
structures of the messages alluded to in Figure 1. Sadly,
the message structures in Listing 1 are inadequate for
capturing the scenario; particularly its correlation re-
quirements. PACKER needs application-level knowledge
to correlate the items and shipping label for the same
PO and pack them correctly, since it receives them
separately.

Since Node-RED as a general-purpose platform pro-
vides only low-level programming facilities unaware of
the application semantics, an implementation of correla-
tion using standard Node-RED features will at best be ad
hoc and difficult to maintain. Below, we describe three
increasingly sophisticated approaches for implementing
the correlation necessary for PACKER using standard
Node-RED facilities, to explain their advantages and
limitations. Working Node-RED flows implementing the
logistics scenario with each of the approaches are avail-
able along with the rest of our code at https://gitlab.com/
masr.

A. Join-Based

Figure 2 in fact shows an endpoint for PACKER. Recall
that Join in the figure produces an aggregate consisting
of one message from each of the labeled and wrapped
MQTT subscriptions.

Unfortunately, Join aggregates the messages solely
based on their sequence in each topic—and ignores their
content—producing incorrect aggregations if the label
and item do not actually correlate.

For example, if PACKER receives Labeled with orderID
O1 and Wrapped with orderID O2, Join would aggre-
gate them and misdirect the wrapped item to the address
from O1 instead of O2.

Further, Join “consumes” each incoming message so
it can appear in at most one output. Hence, only a single
item can be associated correctly with a label. If any PO
contains multiple items, Join matches the remaining
items with labels from subsequent POs, causing all
subsequent items to correlate with the wrong label.

B. Wait-Paths-Based

Unlike Join, wait-paths (a community plugin
node) supports a correlation field, here orderID. An ex-
plicit correlation field provides some support for correct
matching.

However, wait-paths also “consumes” what it
correlates and associates at most one item in a PO with
the PO’s label. Thus, excess items are silently held (and
eventually dropped) waiting for another matching label.

C. Custom

The Node-RED function node enables custom im-
plementations. There are no limitations on the correct-
ness or efficiency of a custom implementation, but such
implementations would be low-level and complex.

D. Shortcomings Identified

First, although integrity constraints on correlation are
explicit in the informal description of the scenario in Sec-
tion II, Listing 1 omits them. Representing constraints
would enable reasoning about them computationally.

Second, traditional implementations entangle decision
making internal to an endpoint (e.g., PACKER deciding
whether, when, and what item to pack) with public
communication constraints, e.g., to correlate items and
labels.

Third, the endpoints may become inadvertently cou-
pled by accounting for each other’s implementation id-
iosyncrasies, e.g., by accommodating one box per order
but failing when the order is split.

V. THE POT PROGRAMMING MODEL

The foregoing shortcomings motivate a new program-
ming model. Whereas traditional approaches focus on
endpoints (as Section IV shows), PoT begins with a
protocol: a specification that captures the interactions
in an application via constraints on communications
between the application’s endpoints.

3

https://gitlab.com/masr
https://gitlab.com/masr

Listing 2. The Logistics Protocol
L o g i s t i c s {

r o l e Merchant , Wrapper , Labeler , Packer

parameter out order ID key , out i temID key , out item , out s ta tus

Merchant −> Labeler : RequestLabel [out order ID key , out address]
Merchant −> Wrapper : RequestWrapping [i n order ID key , out i temID key , out i tem]

Wrapper −> Packer : Wrapped [i n order ID key , i n i temID key , i n item , out wrapping]

Labeler −> Packer : Labeled [i n order ID key , i n address , out l a b e l]

Packer −> Merchant : Packed [i n order ID key , i n i temID key , i n wrapping , i n labe l , out s ta tus]
}

Figure 4 shows our protocol-based IoT application
architecture. Here, an agent is an endpoint that adopts
a role in a protocol and sends and receives messages to
and from other agents in accordance with the protocol.

Asynchronous communication infrastructure

Decision Making
(Node-RED)

Protocol Adapter
(Node-RED)

Decision Making
(Node-RED)

Protocol Adapter
(Node-RED)

Protocol
Specification

Agent (Endpoint) Agent (Endpoint)

Fig. 4. The PoT architecture for IoT applications.

The Decision Making component implements an
agent’s private reasoning, and relies upon the Protocol
Adapter to handle incoming and outgoing messages. The
Adapter verifies whether messages respect the relevant
causality and integrity constraints, and discards any
noncompliant messages—an outgoing message may not
be emitted and an incoming message may not be made
available to Decision Making. Notably, the Adapter is
generic and need only be supplied with the protocol
specification.

A. Specifying Protocols

PoT adopts BSPL, the Blindingly Simple Protocol
Language [10]. Listing 2 specifies our logistics scenario
in BSPL. Here, a protocol is a bag of message schemas.
A protocol involves two or more roles; Logistics involves
MERCHANT, LABELER, WRAPPER, and PACKER. A
protocol has parameters; the idea is that when agents
enact a protocol (by sending and receiving messages),
they compute tuples of bindings for its parameters.
Logistics’ parameters are orderID, itemID, item, and status;

enacting Logistics computes ⟨orderID, itemID, item, status⟩
tuples.

One or more protocol parameters are key parameters
and jointly specify the key of the protocol; parameters
orderID and itemID constitute the key in Logistics. A pro-
tocol’s key specifies the integrity of the tuples computed
by the protocol: at most, one tuple exists for a key
binding. Integrity implies that a parameter may be bound
only once relative to its key. Each distinct binding for
a protocol’s key corresponds to a distinct enactment of
the protocol. A full tuple of bindings for the protocol’s
parameters corresponds to a complete enactment.

To capture causality constraints, a protocol’s parame-
ter is adorned ⌜in⌝ if the protocol depends upon another
protocol (via composition) for the parameter’s binding;
a protocol’s parameter is adorned ⌜out⌝ if the protocol
itself generates its binding. Logistics’ parameters are
all adrorned ⌜out⌝, meaning that enacting Logistics
generates bindings for them all.

A message schema is an elementary protocol. Every
message schema has a sender and a receiver role. Each
message schema has parameters that are adorned ⌜in⌝ or
⌜out⌝, and some of which constitute a key. The sender
may send a message (instance) of the (message) schema
if it knows (from prior interactions) the bindings of all
parameters adorned ⌜in⌝ in the schema and does not
know the bindings of any parameter adorned ⌜out⌝ in
the schema. In sending the message, the sender can
generate any binding for an ⌜out⌝ parameter. Thus, e.g.,
WRAPPER must know the bindings of orderID, itemID,
and item before sending a Wrapped message, but may
generate a binding of wrapping.

In keeping with asynchrony, there are no constraints
on when a message may be received; no ordering guaran-
tees are required from the communication infrastructure.

Parameter bindings become known to agents only
through message emissions and receptions; there is no
shared storage.

Formalizing protocols yields three benefits. First, pro-

4

Fig. 5. PoT version of Packer flow, showing the architectural layers.

tocols separate decision making from interaction. Sec-
ond, with BSPL specifically, integrity constraints capture
correlation requirements declaratively. For example, the
bindings of wrapping and label in a Packed message
must be consistent with the binding of ⟨orderID, itemID⟩
(Packed ’s key). Finally, as we discuss further in the
next section, a clear specification of the communication
constraints supports the implementation of agents by
enabling the automatic generation of agent skeletons
that enforce those constraints with the help of a generic
protocol adapter.

VI. IMPLEMENTING POT AGENTS

Figure 5 shows the implementation of a PACKER agent
according to the PoT model. The flow is separated into
four layers: Incoming, Message Reasoning, Retry Policy,
and Outgoing. The Incoming and Outgoing layers jointly
constitute the protocol adapter component of the archi-
tecture, but are separated because of the one-way flow
programming style of Node-RED. Message Reasoning
and Retry Policy together constitute the decision-making
component; they handle new messages and duplicate
messages, respectively.

Given a protocol, our tooling generates a skeleton
consisting of the Incoming and Outgoing layers for every
role in it. For every agent playing a role, the Message
Reasoning and Retry Policy parts are added by the agent
developer. We describe each layer below.

1) Incoming: This layer implements the reception
half of an agent’s protocol adapter.

Nodes incoming UDP and json receive messages
over UDP and decode them from JSON, respectively.
Node check Packer incoming has access to the
agent’s history, which is a collection of messages that the
agent has already observed. If an incoming message is
not a duplicate and satisfies integrity, check Packer
incoming adds it to the history and outputs it via the
top output port. If the message is a duplicate, the node
outputs it via the bottom output port without adding
it to the history again. Integrity checking on reception

is a defense against agents who may send messages in
violation of integrity.

Node log Packer incoming optionally logs re-
ceived messages to the developer console.

2) Message Reasoning: This layer captures an agent’s
reasoning, as the developer deems fit, as it reacts to
received messages and potentially generates outgoing
messages. In Figure 5, the PACKER implementation uses
a single function node Pack Items to send Packed
messages in reaction to received RequestLabel and Re-
questWrapping messages. Outgoing messages may also
be produced in response to other events; for example,
MERCHANT could initiate Logistics based on POs in a
database.

3) Retry Policy: PoT also enables support for agent-
specific retry policies for handling failure cases such
as lost messages, and reacting to duplicate incoming
messages. If an agent expects to receive a future message
in response to one that it sends, such as MERCHANT

expecting a Packed message for each item, it can
detect possible message loss when those expectations
are not met within a specified time. Our MERCHANT

implementation repeatedly resends the RequestLabel and
RequestWrapping messages for an item every second
until the corresponding Packed message is received.

However, resending a message only addresses the
loss of that message; the loss of Wrapped, Labeled or
Packed would also prevent MERCHANT from receiving
Packed. To further support recovery, the other agents can
resend relevant messages when they receive a duplicate.
Our Node-RED implementation supports this pattern
by providing a second output port on the reception
checking node for handling duplicate messages. In our
implementation of PACKER, the Resend node handles
duplicate Labeled or Wrapped messages and resends the
corresponding Packed message if available.

PoT’s support for agent retry policies reflects the end-
to-end principle [7], providing application-specific assur-
ance of correctness, without the overhead of redundant
protections in lower layers of the infrastructure.

5

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

Packet Loss %

A
vg

.I
te

m
s

Pa
ck

ed
/s

Plain UDP UDP+Retry MQTT0 MQTT2

Fig. 6. A comparison of different retry policies under different packet loss rates with respect to transaction completion.

4) Outgoing: This layer implements the emission
half of an agent’s protocol adapter. The layer checks
every outgoing message, adding to the agent’s history
and sending over the network those that satisfy the
relevant causality and integrity constraints, and dropping
those that do not. In Figure 5, the check Packer
outgoing node performs the checking. To support
retry policies, the node allows sending duplicates; how-
ever, they are not added to the agent’s history.

Node json encodes the message in JSON and
outgoing UDP sends it via UDP to the specified
recipient.

VII. EVALUATION

To demonstrate the advantages of PoT and its sup-
port for application-level retry policies, we evaluated
four variations of our PoT-based implementation of the
Logistics scenario.
Plain UDP. PoT over UDP, without retries.
UDP+Retry. PoT over UDP, with the above-mentioned

retry policies.
MQTT0. PoT over MQTT at QoS level 0.
MQTT2. PoT over MQTT at QoS level 2.

MQTT runs over TCP. QoS level 0 and level 2 mean
that MQTT guarantees a message will be delivered at
most once and exactly once, respectively.

We set up our experiment to compare the variations
by their average throughput, defined as the rate at
which enactments complete. We ran the experiment on
a single Linux computer, using tc-netem to simulate
random packet loss. For each variation and each level
of packet loss, we ran ten iterations of one minute
each. In each iteration, MERCHANT generates a new

PO every 5 milliseconds (simulating external customers),
with the POs having a uniformly distributed number
of items between 1 and 4. Enactment timeouts were
disabled, and the merchant’s retry policy was configured
to resend its messages every second until it received the
corresponding Packed message.
Hypothesis Under random packet loss, UDP+Retry

completes more enactments over a given duration
than both MQTT variations and Plain UDP.

Figure 6 shows the results of our experiment as a
graph of the average throughput (enactments completed
per second) over packet loss probability. Each plot shows
the mean of ten iterations, with error bars showing the
sample standard deviation.

The results support our hypothesis. Plain UDP drops
rapidly and consistently in throughput, since any mes-
sage loss prevents an enactment from completing. In con-
trast, UDP+Retry has a consistently higher throughput
under packet loss. Since Plain UDP has less overhead
and both initiate enactments at the same rate, the dif-
ference is in their reliability: UDP+Retry recovers some
enactments that would otherwise be lost.

Both MQTT variations suffer an initial drop in
throughput at low packet loss, possibly due to TCP
backoff. Their throughput changes very little up to 20%
loss, demonstrating reliability superior to Plain UDP and
the benefits of TCP’s ability to batch multiple messages
in one packet. However, both MQTT variations drop
precipitously in throughput starting at 20% and fail to
complete any enactments after 50% loss. At every packet
loss rate, UDP+Retry has a higher throughput than either
MQTT variation. Since TCP on Linux defaults to retry-
ing packet transmissions for longer than the one-minute
sample duration, and UDP+Retry never gives up, the

6

difference in throughput is not due to lost enactments but
efficiency. UDP+Retry is more efficient than MQTT’s
infrastructure-level retry solutions because it can detect
losses without requiring message acknowledgments and
no enactment blocks the progress of another.

VIII. CONCLUSION

PoT differs from existing work on protocol languages
and deriving endpoint representations, e.g., [1, 3], in its
use of an information-based representation for protocols.
The PoT representation is uniquely compatible with
asynchrony and naturally addresses correlation problems.
PoT is also directly of practical value as it enables
the generation of agent (endpoint) skeletons in Node-
RED and, through them, the enforcement of protocol
constraints.

PoT accommodates heterogeneity; an application may
involve both PoT agents (implemented as described
in Section VI) and non-PoT agents. PoT agents are
guaranteed to be compliant with the protocol, but non-
PoT agents can also be compliant. If a non-PoT agent is
not compliant, however, the PoT agent’s adapter provides
some protection by recognizing and rejecting incoming
messages that fail integrity.

PoT’s basis in information protocols supports
application-level retransmission of messages—a fault
tolerance mechanism. PoT could be extended to sup-
port a wider and more sophisticated variety of such
mechanisms. For example, retransmission could be adap-
tive: an agent could learn expected arrival times for
messages from other agents relative to other messages
and use that knowledge to determine when to resend
a message. Future extensions should improve ease of
use, flexibility, and robustness against various faults or
malicious behavior until decentralized programming is
no longer considered difficult but properly understood
as the best way to improve fault tolerance and create
scalable dynamic systems.

PoT opens up the possibility of expressing deeper
expectations between parties, such as norms [2]. Just
as PoT tackles expectations about the information ex-
changed, norms would capture the meaning of that
information, such as whether one party committed to
doing something for another or prohibited the other party
from doing something. We could evaluate whether such
a commitment or prohibition was satisfied or violated
and whom to hold to account for it. Such models can
enable greater social intelligence, paving the path to
superior programming models for autonomy, flexibility,
and reusability.

7

ACKNOWLEDGMENTS

Thanks to the anonymous reviewers for helpful com-
ments. Christie, Smirnova, and Chopra were supported
by EPSRC grant EP/N027965/1 (Turtles). Christie and
Singh were partially supported by the National Science
Foundation under grant IIS-1908374.

REFERENCES

[1] M. Baldoni, C. Baroglio, and F. Capuzzimati, “A
commitment-based infrastructure for programming
socio-technical systems,” ACM Transactions on In-
ternet Technologies, vol. 14, no. 4, pp. 23:1–23:23,
Dec. 2014.

[2] A. K. Chopra and M. P. Singh, “Custard: Comput-
ing norm states over information stores,” in Proc.
AAMAS. IFAAMAS, 2016, pp. 1096–1105.

[3] A. Ferrando, M. Winikoff, S. Cranefield,
F. Dignum, and V. Mascardi, “On enactability
of agent interaction protocols: Towards a unified
approach,” in Proc. EMAS, LNCS 12058,
Springer, 2019, pp. 43–63.

[4] OASIS, “MQTT 3.1.1 specification document,”
Oct. 2014, OASIS Standard; http://docs.oasis-open.
org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf.

[5] C. Peltz, “Web service orchestration and choreog-
raphy,” IEEE Computer, vol. 36, no. 10, pp. 46–52,
Oct. 2003.

[6] J. Postel, “User datagram protocol,” RFC, vol.
768, pp. 1–3, 1980. [Online]. Available: https:
//tools.ietf.org/html/rfc768

[7] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-
to-end arguments in system design,” ACM Trans-
actions on Computer Systems, vol. 2, no. 4, pp.
277–288, Nov. 1984.

[8] Z. Shelby, K. Hartke, and C. Bormann, “The Con-
strained Application Protocol (CoAP),” IETF, RFC

7252, Jun. 2014, proposed standard; https://tools.
ietf.org/html/rfc7252.

[9] S. Sicari, A. Rizzardi, and A. Coen-Porisini, “Smart
transport and logistics: A Node-RED implementa-
tion,” Internet Technology Letters, vol. 2, no. 2, p.
e88, 2019.

[10] M. P. Singh, “Information-driven interaction-
oriented programming: BSPL, the Blindingly Sim-
ple Protocol Language,” in Proc. AAMAS, IFAA-
MAS, 2011, pp. 491–498.

[11] M. P. Singh and A. K. Chopra, “The Internet
of Things and multiagent systems: Decentralized
intelligence in distributed computing,” in Proc.
ICDCS. IEEE, Jun. 2017, pp. 1738–1747, Blue Sky
Thinking Track.

AUTHOR BIOS

Samuel H. Christie V is a PhD student at NC State
University and a Research Associate at the School
of Computing and Communications at Lancaster
University, UK. Contact him at schrist@ncsu.edu.

Daria Smirnova was a Research Associate at the
School of Computing and Communications at Lan-
caster University, UK.

Amit K. Chopra is a Senior Lecturer in the
School of Computing and Communications
at Lancaster University, UK. Contact him at
amit.chopra@lancaster.ac.uk.

Munindar P. Singh is a Professor in Computer Science
and a co-director of the Science of Security Lablet
at NC State University. Singh is an IEEE Fellow, a
AAAI fellow, and a former Editor-in-Chief of IEEE
Internet Computing and ACM Transactions on In-
ternet Technology. Contact him at singh@ncsu.edu.

8

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252

	Introduction
	Example IoT Scenario: Logistics
	Sidebar: Node-RED
	Challenges in Programming IoT Applications as Orchestrations
	Join-Based
	Wait-Paths-Based
	Custom
	Shortcomings Identified

	The PoT Programming Model
	Specifying Protocols

	Implementing PoT agents
	Incoming
	Message Reasoning
	Retry Policy
	Outgoing

	Evaluation
	Conclusion

