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Abstract 

Over the last decade, tremendous amount of research and progress has 
been made towards developing smart technologies for autonomous 
vehicles such as adaptive cruise control, lane keeping assist, lane 
following algorithms, and decision-making algorithms. One of the 
fundamental objectives for the development of such technologies is to 
enable autonomous vehicles with the capability to avoid obstacles and 
maintain safety. Automobiles are real-world dynamical systems – 
possessing inertia, operating at varying speeds, with finite 
accelerations/decelerations during operations.  Deployment of 
autonomy in vehicles increases in complexity multi-fold especially 
when high DOF vehicle models need to be considered for robust 
control. Model Predictive Control (MPC) is a powerful tool that is used 
extensively to control the behavior of complex, dynamic systems. As 
a model-based approach, the fidelity of the model and selection of 
model-parameters plays a role in ultimate performance. Hardware-in-
the-loop testing of such algorithms can often prove to be complex in 
its design as well as in its implementation. Therefore, in this paper, we 
explore a less-used deployment toolchain that combines the power of 
ROS (Robot Operating System) in intra-robot communication with 
motors and sensors with the rich library of controller models in 
Simulink Real-Time.  In particular we explore this rapid-control-
prototyping in real-time to deploy Model Predictive Control for 
Obstacle Avoidance on a ROS-based scaled-vehicle.  We found that 
this framework is user-friendly and contains great potential for 
educational and research-bed deployments – with a short development 
and deployment time that can fit neatly in one semester. 

Introduction 

Contemporary automotive obstacle-avoidance and motion-planning 
research builds upon the decades-old research in wheeled-mobile-
robot (WMR) systems[1]. Some of the earliest (and simplest) WMR 
algorithms feature some variation of bug algorithms [2, 3], or 
potential-field techniques to map the shortest possible path to the goal 
while avoiding the obstacle [4, 5]. Strategies that are more complex 
involve a layered approach, such as splitting the task between low-
level and high-level planners[6, 7]. A local (or lower level) planner 
may be involved with more real time control of steering and velocity 
making minute decisions, trajectory corrections or collision avoidance 
based on short-range sensing data, whereas a global planner would be 
in-charge of the big picture. A global planner would be the path-
planning algorithm that would provide the heading and direction of the 
overall goal position or a reference trajectory. 

Many of the early methods focused computational efficiency 
(especially for real-time deployments) primarily for wheeled robots 
operating at slower speeds. Hence motion-planning approaches 
focused on model-free approaches or employed  simplified kinematic 
models (e.g. bicycle models) However, the transition from wheeled-
mobile-robots deployments (lower-speed) to real-world automotive 
deployments now requires consideration of the vehicle dynamics, due 
to the inertias, range of operational speeds and finite 
acceleration/deceleration capabilities. Fortuitously, modeling, analysis 
and control of real-world automobile systems has a rich history that 
can be brought to bear [1, 8].    

Model Predictive Control (MPC) methods are a well-established class 
of control techniques developed for optimally controlling 
multivariable systems with constraints on plant and actuators (largely 
in the chemical-process industry). However, computational-
complexity had restricted deployments to longer-time scale dynamical 
systems (such as chemical-processes) with centralized computational 
infrastructure. However, the need for improved dynamic-control 
performance of automotive-systems  coupled with an improved 
understanding of benefits of MPC algorithms and increased mobile 
computational power have led to rapid growth of deployments in the 
automotive-applications [9] (from engine-control to vehicle-handling). 
In recent times, MPC techniques have been extended to empower 
dynamic-model-based motion-planning [10] – beginning with a 
nominal global reference path (or reference trajectory) derived from a 
global planner to provide a control action based on a prediction of the 
future state of the modelled vehicle. Borrelli et al [11] first proposed 
an MPC-based approach (NLMPC) for active steering on a reference 
trajectory for a double lane change maneuver by assuming that the 
global (reference) trajectory was pre-determined by an obstacle 
avoidance planner.. Lee et al [12] performed a comparative analysis on 
various techniques in simulation and then validated the efficacy of 
model predictive controllers as compared to PID and LQR based 
methods. Hrovat et al [9] performed a survey on the state-of-the-art 
techniques that use some or the other form of model based method in 
the automotive industry where they are used to develop active safety 
systems. All the work mentioned above concludes that there is a need 
to develop the testing infrastructure necessary to validate related work 
for the following reasons: 

• Model based methods are growing in complexity. 
• The controllers must be tuned to most of the situations that 

are likely to be encountered on the road. 
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• Increasing power of computational tools and improvements 
to workflows for designing and testing the algorithms is 
relevant to the future of the work mentioned above. 

For the specific case of MPC deployments in small-scale vehicles, 
Thilén [13] explores the implementation of the ROFMPC on the ROS, 
which exports a MATLAB based MPC code as a node on the vehicle 
platform. Verschueren et al [14] implemented a non-linear MPC using 
the Acado toolkit on an RC car. While the viability and benefits of 
MPC-based motion-planning methods have been established, the 
increased algorithmic complexity and the need to gain experience with 
real-world real-time hardware-in-the-loop deployments remains a 
challenge (especially in an educational setting). The rich library of 
open-source control algorithms and short-deployment times of the 
ROS-Simulink Real Time framework make it an ideal candidate for 
such deployments moving forward.  

Our research and educational program has been exploring autonomy 
performance testing with scaled Autonomous Remote Control cars 
(based on the F1tenth.org parts-list) [15]. In our previous deployments 
[16], student teams were successful in navigating around a closed 
racecourse at speeds of 10-15 miles per hour, using Simultaneous 
Localization and Mapping (SLAM) for situational awareness and basic 
collision-avoidance (stopping when obstacles are detected).  

In the current manuscript, we discuss our further efforts  for integration 
of  a model-based rapid control prototyping pipeline (real-time MPC 
active steering controller for a double lane-change maneuver for 
obstacle avoidance) using these scaled autonomous “F1/10” RC cars. 
To this end, we leverage the tools provided by MATLAB, in particular, 
the Model Predictive Control Toolbox and the Robotic Systems 
Toolbox to provide a framework for rapid-prototyping of controllers 
in a simulation setting. Coupled with the Real-Time-Workshop 
toolbox, this enables hardware-in-the-loop testing and finally 
production-level development and real-time deployment to the target 
hardware that can support verification-and-validation efforts. The 
critical point of this work would not be the actual algorithm or 
controller design, but the tools used to combine multiple resources into 
a single toolchain that would enable the initial design and tuning of a 
model based controller in a visual friendly environment such as 
MATLAB-Simulink and quick deployment of the method onto ROS 
based hardware for further hardware in the loop testing and validation 
of the selected model based control technique on a scaled vehicle, all 
within an educational setting.  

This paper is organized as follows. The next section outlines the 
development of the mathematical vehicle model and the controller 
strategy. The following sections talk about the practical realization, 
integration of different hardware and software layers, the test scenario 
development and constraints for the same and finally the physical test 
bed and our results. 

Model Predictive Control Development 

Model predictive control looks at the current state of the vehicle 
(steering angle and velocity) and estimates the future states of the 
vehicle. Based on this prediction, at reach time step, the performance 
index or the cost function minimizes the error between the future state 
and desired state (obtained from the reference trajectory generated 
from the global planner at time t) within the bounds of some operating 
constraints. This progressive horizon or desired states are the “look-
ahead” for prediction of system states on which the control signals are 
optimally calculated for the succeeding time step. The constraints are 

based on the mathematical representation of physical operating bounds 
for the hardware system in use. These will be the maximum rate of 
change for steering as well as throttle (soft constraints) and the 
maximum and minimum values for the same (hard constraints). 

Vehicle Model 

The double-lane change MPC controller employed in this paper was 
inspired from the example model for obstacle avoidance provided by 
Mathworks [17]. It employs a simple kinematic bicycle model [18] 
which was modified to RC car dimensions (to enable subsequent 
testing on our scaled F1/10 testbed described in the next section). 
Figure 1 describes the model based on the following assumptions: 

1) The vehicle travels at low speeds and longitudinal velocity 
is constant 

2) No wheel slip, no tire forces 
3) Steering only at the front wheels  
4) The model lumps the left and right wheels into a single 

wheel on the axis along the center of gravity.  

The equations of motion for the simple kinematic bicycle model are 
given as, 

𝑥̇ = 𝑐𝑜𝑠(θ)𝑣 

𝑦̇ = 𝑠𝑖𝑛(θ)𝑣 

θ̇ = (𝑡𝑎𝑛(θ)/𝐶!)𝑣 

𝑣̇ = 0.5𝑇 

Where 𝑥, 𝑦	are the position coordinates of the center of mass of the car 
in the global frame, 𝜃 is the heading direction, 𝑣 is the vehicle velocity 
and 𝐶! is the length of the car. The state of the system is represented 
by 𝑋 = [𝑥, 𝑦, θ, 𝑣]" and the control input, 𝑢, is the steering angle,	𝛿. 
Since these are continuous and non-linear in θ, it is inferred that the 
cost function will require a non-linear MPC. To avoid this, the system 
was linearized about an operating point (at time 𝑡#) when the vehicle 
is at the origin, with zero heading and constant velocity. 

𝑥̇ = −𝑣𝑠𝑖𝑛(θ#). θ + 𝑐𝑜𝑠(θ#). 𝑣 

𝑦̇ = 𝑣𝑐𝑜𝑠(θ#). θ + 𝑠𝑖𝑛(θ#). 𝑣 

θ̇ = (𝑡𝑎𝑛(δ)/𝐶!). 𝑣 + (𝑣(𝑡𝑎𝑛(δ)$ + 1)/𝐶!).		δ 

𝑣̇ = 0.5. 𝑇 

𝛿 

𝜃  
𝑣 

𝐶! 

Figure 1. Simple kinematic bicycle model without tire forces.  
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Once the initial step is executed, the plant model is updated and 
linearized about the next operating point at time which are the states at 
its previous time-step. This requires a full state feedback to the plant 
model at each time-step and hence all states were kept observable. A 
zero order hold method discretizes the linear-continuous equations. 

There are also physical constraints that need to be specified for the 
vehicle that are characterized as follows: 

 Physical parameter Constraint type 

Steering angle 
Positive lock Hard constraint 

Negative lock Hard constraint 

Rate of change of 
steering angle 

Positive rate Soft constraint 

Negative rate Soft constraint 

Table 1: Constraint properties 

The soft constraints allow for overshoot in both directions in case the 
look-ahead is too low and the desired trajectory is too aggressive. The 
hard constraints are provided to the MPC controller to represent the 
maximum steering angle bounds in both directions (full lock left and 
right) such that the optimization problem would always give a viable 
input command to the vehicle. 

Controller Strategy 

The MPC controller was built from the Model Predictive Controller 
Toolbox in Simulink. Again, our focus in this manuscript is to 
transform this development of model-based MPC controller into a 
deployable real-world platform that can support verification and 
validation. Hence, we present critical aspects of the development of 
the test setup (for completeness) but refer the reader to [16] for further 
information.  

The Adaptive MPC (A-MPC) was found to have significant 
advantages over a linear MPC. It was more suited to handle the 
changing system dynamics due to the assumption of using throttle as a 
control input and velocity as a state. This is due to the sequential 
linearization that occurs in the plant model at every time-step. 
Implementation of A-MPC has implications with increased 
computation time [19], and thus the fixed time step chosen would need 
to be greater than the per-iteration computation time. Thus, the time-
step for simulation was fixed at 0.02 s. A non-linear MPC might 
provide better performance but at the cost of higher computation times.  

The manipulated variables are throttle (T) and steering angle (𝛿), 
whereas observed variables are x & y position of the vehicle, heading 
(𝜃) and vehicle absolute velocity (v). The observed variables have a 
certain weight attached to them as a priority for the controller to track. 
These individual weights alone do not make any physical sense, but 
the ratio of the weights is used as a control knob to tune the controller 
in simulation, and later in real-world HIL testing. The cost function 
weighs the x, y position and velocity tracking higher, while giving a 
zero weight to the heading of the vehicle allows its value to float based 
on changing control inputs for the steering angle (δ).  

𝐽 = 	D𝑊%||𝑥& − 𝑥'||$ +𝑊(||𝑦& − 𝑦'||$ +𝑊)||𝑣& − 𝑣'||$
*

&+,
+𝑊-||𝜃& − 𝜃'||$ 

The reference trajectory is provided from the initial position of the 
vehicle right up to the goal point, which is in front of the obstacle 
within its lane. Within these reference waypoints, the controller only 
looks at the closest h points as parameterized as the prediction horizon, 
at each time-step. The controller then estimates the position of the 
vehicle for these future points and uses it to predict reference-tracking 
error for the future states. The controller was found to work best with 
a prediction horizon of 90 steps without compromising much in terms 
of computation cost. The control horizon was parameterized to 5-10% 
of the prediction horizon and was set to 5 steps, implying that the 
control inputs are optimized for only five steps. 

SCALED “F1/10” Autonomous Remote-Control Car 

The F1/10th platform created by O’Kelly et al [20] from University of 
Pennsylvania serves as our primary experimental platform.  The main 
chassis of the vehicle is a TRAXXAS Ford Fiesta ST scaled 1/10th 
model remote-control car equipped with two motors. Digital wheel 
velocity command-inputs are provided to a stock Electronic Speed 
Control (ESC) which provides the requisite current to power a high 
RPM DC motor driving the rear-wheels through a differential. The 
second motor is a servo motor at the front for steering.  

 

Figure 1: The systems and sensors of the test vehicle 

The main computational board is an Nvidia TK1 running Ubuntu 14.0 
installed with ROS Indigo. All on-board sensors are interfaced through 
ROS. The figure shown below depicts the connections between the 
onboard sensors and the computational platform. In this paper, the 
LIDAR is the only sensor employed from the available sensor stack. 
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Lateral velocity of the vehicle is for a given PWM signal to the ESC is 
non-linearly dependent on the battery level. The signal was calibrated 
every 10-15 runs to ensure constant velocity for each run of the 
controller.   

The subscriber within the onboard processor has a buffer which stores 
the control commands and stacks them up until the previous PWM 
signals are sent out. This would cause a delay between the control 
commands sent by Simulink and the actual execution of the same on 
the vehicle. To avoid these problems, a last in first out strategy was 
implemented which reads the latest data in the buffer. This is 
implemented with a queue size of 1 in the subscriber, hence clearing 
the buffer at every step.  

Software Interface 

In this paper, we demonstrate a unique method of performing soft-real-
time testing of a well-defined methodology for obstacle avoidance, i.e. 
Adaptive MPC. Usually, the obstacle avoidance logic is written in a 
generic programming language such as python or C++ and deployed 
directly as a ROS node on the vehicle. This approach requires a lot of 
hardware time, right from the start of tuning the controller and up to 
the final deployment of the method. 

The technique that is demonstrated in this work allows the use of 
tuning tools within the simulation framework i.e. Simulink, such that 
the major part of the controller can be designed and tuned to the scaled 
vehicle specification without the presence of hardware. Later, this can 
be directly deployed to the ROS framework on the scaled vehicle, 
while allowing us to leverage the versatility and simplicity of 
toolboxes within MATLAB-Simulink to better visualize and 
understand the behavior of the robot, while also speeding up the 
process of directly comparing it with simulation results for the same 
scenario. The real-time portion that is implemented is a relatively new 
feature of the MATLAB-Simulink ecosystem that they call simulation 
pacing. This technique is used to synchronize the processes running in 
ROS (lower level control) with the processes running in Simulink 
(issuing control commands for vehicle behavior). This would have 
previously been difficult without the use of external mode compilation 
of the controller model in Simulink, or without the use of purpose built 
real-time processing hardware. 

Implementing a controller on a hardware platform requires complex 
signal conversions, scaling, and the hardware capacity to handle the 
computational load on the mobile CPU. With the ROS+Simulink 
toolchain, the bulk of this computational load is shifted to a remote PC 
which is capable to simultaneously interacting with multiple ROS 
enabled vehicles at a time.  

The input and output signals from the MPC need to undergo three 
levels of conversions and mapping before they can be read by the ROS 
enabled vehicle. The first is the scaling factor multiplied to the control 
input (steering angle) to scale it within the MPC object, such that a 
smooth control input can be provided to the vehicle. These steering 
angle values are converted from radians to degrees before sending it 
through the publisher. The final level of conversion happens within the 
Teensy board where the command input is converted to a PWM signal 
and is finally sent to the ESC and servo to drive the vehicle.  

The MPC toolbox in Simulink [17] provided the basis for the 
implemented MPC design. The Robotic System Toolbox (RST) 
provided a bridge between the ROS enabled ego vehicle and Simulink 

to allow for transmission of control signals from Simulink and 
receiving sensor data from ROS. 

The ROS publisher in Simulink is first populated with a blank message 
while only changing the part that is useful, such as steering. The 
message that the ROS system subscribes to is a topic named /cmd_vel 
which has linear and angular values in 3 dimensions. The steering 
output from the controller is filled into the blank message at the correct 
position using a bus assignment and published to ROS at every time-
step.  

The on-board system running ROS will then subscribe to this message 
and send a signal to a Teensy board which has been programmed to 
accept inputs from a serial port. Once this communication is done, the 
final implementation of the control signal is performed by the Teensy 
which will convert the value it receives into a PWM signal that finally 
drives the servo and DC motors through an electronic speed control 
module. The car moves forward in the next time-step and the sensor 
takes a measurement of position and orientation of the car. This signal 
is sent through the onboard processor and published to the ROS 
network using a VRPN streaming service. This service publishes a 
pose stamped ROS message that can be picked up by any system on 
the ROS network. In our case, we created a subscriber in the Simulink 
model that listens for these messages. Further, we break down the 
measurements into the 𝑥 and y position and use it to form the updated 
states of the vehicle. The orientation data received from the ROS 
message is in quaternions and is converted using standard Simulink 
conversion blocks within the robotic system toolbox library, then 
added as the third state variable. The fourth state of the car is its 
absolute velocity which is kept constant for the first part of the 
hardware testing, hence eliminating the need for providing throttle as 
a control input to the vehicle. 

This process is repeated at the rate of 50 Hz due to the fixed time-step 
specified in the model configuration pane within Simulink.      

 
Figure 2: Complete system architecture 

Test Scenario Development  

In this paper, we assume a stalled lead vehicle which necessitates a 
double lane change maneuver for the follower (ego) vehicle to avoid 
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this obstacle. Our development of a suitable obstacle avoidance 
pipeline features global (off-board) and local (on-board) motion-
planning components. An OptiTrack Motion-Capture (MoCap) 
system, meant to replicate a GPS in the indoor setting, provides 
position/velocity information of the ego vehicle. The perception 
framework (on the ego-follower vehicle) detects the obstacle and 
provides obstacle (lead vehicle) state information to the global planner 
within the ROS ecosystem. The global-planner then creates an 
obstacle-avoidance trajectory which serves as the reference trajectory 
input to our MPC algorithm. However, we note that was due to the 
limitations of the experimental testbed (as we will discuss later). The 
proposed framework can easily be extended to the case where the ego-
vehicle is moving at a lower-speed in the current lane – since only the 
relative position/velocity of the ego-vehicle are necessary. In such 
cases, we can replace a global planner to generate the reference values 
and leverage the ability of MPC to handle constraints explicitly [17].  

The complete system architecture (Figure 1) is composed of three parts 
– the perception framework for obstacle tracking, the global planner, 
the ROS and Simulink framework for communication of state 
information and the MPC model in Simulink Real-Time. The lowest 
level of control – converting output pose state from the MPC to PWM 
signals readable by the ESC and reading pose data (from the MoCap 
and IMU) also occurs over the ROS framework. The Robotics Systems 
Toolbox provides seamless integration of ROS with the MPC model 
in Simulink.  

Test Bed 

The controller was implemented on an autonomous scaled vehicle in 
an indoor test environment the Clemson (ICAR) campus in Greenville, 
SC. The A-MPC requires state information of the vehicle – position, 
velocity and heading – information that in the real world would be 
provided by a GPS. The test setup at CUICAR employed a ground-
truth motion capture system OptiTrack to provide “GPS” like data in 
an indoor setting. The system (shown in Figure 4) comprises of 12 
infrared cameras surrounding the 4.85 by 3.5 meter test space that track 
reflective markers fixed to the ego vehicle. The system has an accuracy 
of a few millimeters, which is significant when dealing in such small 
scales. The position & orientation information from the MoCap setup 
is supplied through a ROS-node to the global planner on the ego 
vehicle, which supplies trajectory information to the Simulink model. 
Velocity is assumed a constant.  

Obstacle Avoidance  

Perception 

The ego-vehicle is equipped with a 2D Lidar (Hokuyo URG-04LX-
UG01) for sensing obstacles. The obstacles are determined as a cluster 
of points based on distance from one another. This cluster is further 
processed to extract a cost-map of the surroundings. This is passed to 
an offline planner that generates the double lane change maneuver.  In 
a traditional sense of obstacle avoidance, the vehicle’s trajectory is 
conditioned on whether the control system is enabled and if it is in a 
certain range of an obstacle or not. This distance that is used to 
determine an imminent collision will change drastically in the real-
world scenario, where we would need to consider the relative 
deceleration of the lead vehicle with respect to the ego car. In our case 
due to space and safe speed conditions for indoor experimentation, we 
assume a static obstacle and a detection range of 2 meters. 

 

 
Figure 3: Test setup with OptiTrack 

Global planner 

The global planner is a rapidly - exploring random tree (RRT) 
algorithm that generates two random trees expanding from the start and 
the goal point to find a viable path for the vehicle to follow [21]. The 
two trees move towards one another using a simple greedy heuristic 
[22]. 

The next step is to generate a path from the ego vehicle to the point 
just outside the safe zone created around the obstacle. This is 
commonly referred to as configuration space creation in most path 
planning solutions where one must find the points within the space that 
is acceptable for the vehicle to traverse along. Using the extracted cost-
map, the planner makes decisions based on certain factors such as 
inflation over boundaries, the dimensions of the robot etc. These are 
tuned to perform in a scaled vehicle setting and an indoor environment.  

ROS + Simulink Communication Framework  

The position and heading of the vehicle is measured using the 
OptiTrack system as mentioned earlier and streamed into the ROS 
network using a local VRPN server. This system records and streams 
the data in the format of a geometry_msg/PoseStamped ROS message. 
To stream this data into Simulink, we leverage the Robotic System 
Toolbox’s features such as a block to subscribe and publish messages 

MoCap 
Cameras 

Obstacle Ego Vehicle 

MoCap 
Cameras 

Obstacle 

Ego Vehicle 
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to ROS from within Simulink. The messages that are published out of 
Simulink and into ROS is the control command that goes directly to 
the hardware. This command controls the steering of the vehicle and is 
populated by the control signals that the A-MPC controller sends as an 
output at each time-step. This ensures that the vehicle is receiving its 
control command directly from the A-MPC block.  

Results and discussion 

Initially the system was modelled and simulated in Simulink to verify 
the effectiveness of the controller. A simple sinusoid trajectory was 
provided as a reference trajectory to gauge the system response. 
Initially this was done in simulation where the time period was mapped 
to the length of the track and the amplitude was set to 1m. The weights 
assigned to the controller ensure that the MPC only prioritizes 
following the trajectory (the x and y position of the vehicle).   

In figure 3, we see the difference between a mathematical model in 
simulation and the implementation of the same controller on physical 
hardware. We notice that the model in simulation follows the trajectory 
more smoothly than the HIL test. This difference can be visualized in 
figure 4 as the tracking error in simulation is far less as compared to 
the error in hardware testing.  

These errors can be attributed to the simple kinematic bicycle model 
that is used as the plant. The assumptions imposed upon the system 
due to the simplistic nature of the model are that we do not know the 
tire forces, nor the slip angles of the vehicle. We also ignore the effects 
of roll, pitch and yaw on the physical system.   

 
Figure 4: Trajectory comparison between simulation and hardware 

 
Figure 5: Error comparison between simulation and hardware 

Summary 

In this paper, we go through a few reasons why one cannot perform 
full scale autonomous testing while developing algorithms, nor can 
pure simulation be the right method of tuning said programs. We 
explore an alternative that lies between these two extremes (testing on 
scaled vehicles) that gives a lot more experience than pure simulation 
while maintaining a safe and repeatable environment for an academic 
setting. We also go through the pipeline for generating a vehicle 
trajectory for an advanced maneuver such as obstacle avoidance, and 
how that path can be executed by a lower level controller, using a 
model-based approach.  

Developing the model in simulation was the first task that we 
undertook and was necessary to perform for initial results over which 
we could benchmark its performance. The link between MATLAB-
Simulink (for rapid development solutions) and ROS (widely used 
distributed-computing platform) is one of the major interfaces that was 
required to successfully deploy the controller to hardware in an 
efficient manner. Using RST to perform this inter-framework 
communication, we went on to the next step of the project which was 
execution on the actual test vehicle. These results show us that even-
though the model works well in simulation, there is a lot of scope for 
improvement when deployed on hardware. 

The next steps would be to use the MATLAB code-generation 
capabilities to generate production level code to be deployed and run 
directly on the real-time target machine. Along with running the code 
purely for obstacle avoidance, this could be integrated with other 
controllers that rely on other sensor data (like a camera) to detect and 
perform other tasks (such as lane keeping) or a RADAR to perform 
ACC.  
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ROS Robot Operating System 
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MoCap Motion Capture System. In 
this case, this is the 
OptiTrack MoCap System.  
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International Center for 
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