20AE-0210

Obstacle Avoidance using Model Predictive Control: An Implementation and

Validation Study Using Scaled Vehicles

Author, co-author (Do NOT enter this information. It will be pulled from participant tab in

MyTechZone)

Affiliation (Do NOT enter this information. It will be pulled from participant tab in MyTechZone)

Abstract

Over the last decade, tremendous amount of research and progress has
been made towards developing smart technologies for autonomous
vehicles such as adaptive cruise control, lane keeping assist, lane
following algorithms, and decision-making algorithms. One of the
fundamental objectives for the development of such technologies is to
enable autonomous vehicles with the capability to avoid obstacles and
maintain safety. Automobiles are real-world dynamical systems —
possessing inertia, operating at varying speeds, with finite
accelerations/decelerations during operations. Deployment of
autonomy in vehicles increases in complexity multi-fold especially
when high DOF vehicle models need to be considered for robust
control. Model Predictive Control (MPC) is a powerful tool that is used
extensively to control the behavior of complex, dynamic systems. As
a model-based approach, the fidelity of the model and selection of
model-parameters plays a role in ultimate performance. Hardware-in-
the-loop testing of such algorithms can often prove to be complex in
its design as well as in its implementation. Therefore, in this paper, we
explore a less-used deployment toolchain that combines the power of
ROS (Robot Operating System) in intra-robot communication with
motors and sensors with the rich library of controller models in
Simulink Real-Time. In particular we explore this rapid-control-
prototyping in real-time to deploy Model Predictive Control for
Obstacle Avoidance on a ROS-based scaled-vehicle. We found that
this framework is user-friendly and contains great potential for
educational and research-bed deployments — with a short development
and deployment time that can fit neatly in one semester.

Introduction

Contemporary automotive obstacle-avoidance and motion-planning
research builds upon the decades-old research in wheeled-mobile-
robot (WMR) systems[1]. Some of the earliest (and simplest) WMR
algorithms feature some variation of bug algorithms [2, 3], or
potential-field techniques to map the shortest possible path to the goal
while avoiding the obstacle [4, 5]. Strategies that are more complex
involve a layered approach, such as splitting the task between low-
level and high-level planners[6, 7]. A local (or lower level) planner
may be involved with more real time control of steering and velocity
making minute decisions, trajectory corrections or collision avoidance
based on short-range sensing data, whereas a global planner would be
in-charge of the big picture. A global planner would be the path-
planning algorithm that would provide the heading and direction of the
overall goal position or a reference trajectory.

Page 1 of 8

7/20/2015

Many of the early methods focused computational -efficiency
(especially for real-time deployments) primarily for wheeled robots
operating at slower speeds. Hence motion-planning approaches
focused on model-free approaches or employed simplified kinematic
models (e.g. bicycle models) However, the transition from wheeled-
mobile-robots deployments (lower-speed) to real-world automotive
deployments now requires consideration of the vehicle dynamics, due
to the inertias, range of operational speeds and finite
acceleration/deceleration capabilities. Fortuitously, modeling, analysis
and control of real-world automobile systems has a rich history that
can be brought to bear [1, §8].

Model Predictive Control (MPC) methods are a well-established class
of control techniques developed for optimally controlling
multivariable systems with constraints on plant and actuators (largely
in the chemical-process industry). However, computational-
complexity had restricted deployments to longer-time scale dynamical
systems (such as chemical-processes) with centralized computational
infrastructure. However, the need for improved dynamic-control
performance of automotive-systems coupled with an improved
understanding of benefits of MPC algorithms and increased mobile
computational power have led to rapid growth of deployments in the
automotive-applications [9] (from engine-control to vehicle-handling).
In recent times, MPC techniques have been extended to empower
dynamic-model-based motion-planning [10] — beginning with a
nominal global reference path (or reference trajectory) derived from a
global planner to provide a control action based on a prediction of the
future state of the modelled vehicle. Borrelli et al [11] first proposed
an MPC-based approach (NLMPC) for active steering on a reference
trajectory for a double lane change maneuver by assuming that the
global (reference) trajectory was pre-determined by an obstacle
avoidance planner.. Lee et al [12] performed a comparative analysis on
various techniques in simulation and then validated the efficacy of
model predictive controllers as compared to PID and LQR based
methods. Hrovat et al [9] performed a survey on the state-of-the-art
techniques that use some or the other form of model based method in
the automotive industry where they are used to develop active safety
systems. All the work mentioned above concludes that there is a need
to develop the testing infrastructure necessary to validate related work
for the following reasons:

e Model based methods are growing in complexity.
e The controllers must be tuned to most of the situations that
are likely to be encountered on the road.

e Increasing power of computational tools and improvements
to workflows for designing and testing the algorithms is
relevant to the future of the work mentioned above.

For the specific case of MPC deployments in small-scale vehicles,
Thilén [13] explores the implementation of the ROFMPC on the ROS,
which exports a MATLAB based MPC code as a node on the vehicle
platform. Verschueren et al [14] implemented a non-linear MPC using
the Acado toolkit on an RC car. While the viability and benefits of
MPC-based motion-planning methods have been established, the
increased algorithmic complexity and the need to gain experience with
real-world real-time hardware-in-the-loop deployments remains a
challenge (especially in an educational setting). The rich library of
open-source control algorithms and short-deployment times of the
ROS-Simulink Real Time framework make it an ideal candidate for
such deployments moving forward.

Our research and educational program has been exploring autonomy
performance testing with scaled Autonomous Remote Control cars
(based on the Fltenth.org parts-list) [15]. In our previous deployments
[16], student teams were successful in navigating around a closed
racecourse at speeds of 10-15 miles per hour, using Simultaneous
Localization and Mapping (SLAM) for situational awareness and basic
collision-avoidance (stopping when obstacles are detected).

In the current manuscript, we discuss our further efforts for integration
of a model-based rapid control prototyping pipeline (real-time MPC
active steering controller for a double lane-change maneuver for
obstacle avoidance) using these scaled autonomous “F1/10” RC cars.
To this end, we leverage the tools provided by MATLAB, in particular,
the Model Predictive Control Toolbox and the Robotic Systems
Toolbox to provide a framework for rapid-prototyping of controllers
in a simulation setting. Coupled with the Real-Time-Workshop
toolbox, this enables hardware-in-the-loop testing and finally
production-level development and real-time deployment to the target
hardware that can support verification-and-validation efforts. The
critical point of this work would not be the actual algorithm or
controller design, but the tools used to combine multiple resources into
a single toolchain that would enable the initial design and tuning of a
model based controller in a visual friendly environment such as
MATLAB-Simulink and quick deployment of the method onto ROS
based hardware for further hardware in the loop testing and validation
of the selected model based control technique on a scaled vehicle, all
within an educational setting.

This paper is organized as follows. The next section outlines the
development of the mathematical vehicle model and the controller
strategy. The following sections talk about the practical realization,
integration of different hardware and software layers, the test scenario
development and constraints for the same and finally the physical test
bed and our results.

Model Predictive Control Development

Model predictive control looks at the current state of the vehicle
(steering angle and velocity) and estimates the future states of the
vehicle. Based on this prediction, at reach time step, the performance
index or the cost function minimizes the error between the future state
and desired state (obtained from the reference trajectory generated
from the global planner at time #) within the bounds of some operating
constraints. This progressive horizon or desired states are the “look-
ahead” for prediction of system states on which the control signals are
optimally calculated for the succeeding time step. The constraints are

Page 2 of 8

7/20/2015

based on the mathematical representation of physical operating bounds
for the hardware system in use. These will be the maximum rate of
change for steering as well as throttle (soft constraints) and the
maximum and minimum values for the same (hard constraints).

Vehicle Model

The double-lane change MPC controller employed in this paper was
inspired from the example model for obstacle avoidance provided by
Mathworks [17]. It employs a simple kinematic bicycle model [18]
which was modified to RC car dimensions (to enable subsequent
testing on our scaled F1/10 testbed described in the next section).
Figure 1 describes the model based on the following assumptions:

1) The vehicle travels at low speeds and longitudinal velocity
is constant

2) No wheel slip, no tire forces

3) Steering only at the front wheels

4) The model lumps the left and right wheels into a single
wheel on the axis along the center of gravity.

The equations of motion for the simple kinematic bicycle model are
given as,

% = cos()v
y = sin(B)v
6 = (tan(8)/C)v
v =0.5T

v direction

’
A6
x direction \

Figure 1. Simple kinematic bicycle model without tire forces.

Where x, y are the position coordinates of the center of mass of the car
in the global frame, 0 is the heading direction, v is the vehicle velocity
and (; is the length of the car. The state of the system is represented
by X = [x,,0,v]T and the control input, u, is the steering angle, &.
Since these are continuous and non-linear in 6, it is inferred that the
cost function will require a non-linear MPC. To avoid this, the system
was linearized about an operating point (at time t;) when the vehicle
is at the origin, with zero heading and constant velocity.

x = —vsin(0y).0 + cos(6y).v
v =vcos(0y).0 + sin(0,). v
8 = (tan(8)/C)).v + (v(tan(8)? + 1)/C). &

v=05T

Once the initial step is executed, the plant model is updated and
linearized about the next operating point at time which are the states at
its previous time-step. This requires a full state feedback to the plant
model at each time-step and hence all states were kept observable. A
zero order hold method discretizes the linear-continuous equations.

There are also physical constraints that need to be specified for the
vehicle that are characterized as follows:

Physical parameter Constraint type

Positive lock Hard constraint

Steering angle

Negative lock Hard constraint

Positive rate Soft constraint

Rate of change of
steering angle

Negative rate Soft constraint

Table 1: Constraint properties

The soft constraints allow for overshoot in both directions in case the
look-ahead is too low and the desired trajectory is too aggressive. The
hard constraints are provided to the MPC controller to represent the
maximum steering angle bounds in both directions (full lock left and
right) such that the optimization problem would always give a viable
input command to the vehicle.

Controller Strategy

The MPC controller was built from the Model Predictive Controller
Toolbox in Simulink. Again, our focus in this manuscript is to
transform this development of model-based MPC controller into a
deployable real-world platform that can support verification and
validation. Hence, we present critical aspects of the development of
the test setup (for completeness) but refer the reader to [16] for further
information.

The Adaptive MPC (A-MPC) was found to have significant
advantages over a linear MPC. It was more suited to handle the
changing system dynamics due to the assumption of using throttle as a
control input and velocity as a state. This is due to the sequential
linearization that occurs in the plant model at every time-step.
Implementation of A-MPC has implications with increased
computation time [19], and thus the fixed time step chosen would need
to be greater than the per-iteration computation time. Thus, the time-
step for simulation was fixed at 0.02 s. A non-linear MPC might
provide better performance but at the cost of higher computation times.

The manipulated variables are throttle (7) and steering angle (6),
whereas observed variables are x & y position of the vehicle, heading
(0) and vehicle absolute velocity (v). The observed variables have a
certain weight attached to them as a priority for the controller to track.
These individual weights alone do not make any physical sense, but
the ratio of the weights is used as a control knob to tune the controller
in simulation, and later in real-world HIL testing. The cost function
weighs the x, y position and velocity tracking higher, while giving a
zero weight to the heading of the vehicle allows its value to float based
on changing control inputs for the steering angle (J).

Page 3 of 8

7/20/2015

h
J=) Wellxe =12 + Wylly, = P + Wyllv, = 112
t=1

+ Well6, — 6,7

The reference trajectory is provided from the initial position of the
vehicle right up to the goal point, which is in front of the obstacle
within its lane. Within these reference waypoints, the controller only
looks at the closest 4 points as parameterized as the prediction horizon,
at each time-step. The controller then estimates the position of the
vehicle for these future points and uses it to predict reference-tracking
error for the future states. The controller was found to work best with
a prediction horizon of 90 steps without compromising much in terms
of computation cost. The control horizon was parameterized to 5-10%
of the prediction horizon and was set to 5 steps, implying that the
control inputs are optimized for only five steps.

SCALED “F1/10” Autonomous Remote-Control Car

The F1/10% platform created by O’Kelly et al [20] from University of
Pennsylvania serves as our primary experimental platform. The main
chassis of the vehicle is a TRAXXAS Ford Fiesta ST scaled 1/10%"
model remote-control car equipped with two motors. Digital wheel
velocity command-inputs are provided to a stock Electronic Speed
Control (ESC) which provides the requisite current to power a high
RPM DC motor driving the rear-wheels through a differential. The
second motor is a servo motor at the front for steering.

Router
A
>)
v fimu_data
Jetson
TK1
Y
RGB_camera
limage

Battery >l USB Hub
A

LIDAR
Iscan

femd_vel

A

@ Ubiquiti PicoStation

IMU Hokuyo UST-10Ix
Depth Camera

Figure 1: The systems and sensors of the test vehicle

The main computational board is an Nvidia TK1 running Ubuntu 14.0
installed with ROS Indigo. All on-board sensors are interfaced through
ROS. The figure shown below depicts the connections between the
onboard sensors and the computational platform. In this paper, the
LIDAR is the only sensor employed from the available sensor stack.

Lateral velocity of the vehicle is for a given PWM signal to the ESC is
non-linearly dependent on the battery level. The signal was calibrated
every 10-15 runs to ensure constant velocity for each run of the
controller.

The subscriber within the onboard processor has a buffer which stores
the control commands and stacks them up until the previous PWM
signals are sent out. This would cause a delay between the control
commands sent by Simulink and the actual execution of the same on
the vehicle. To avoid these problems, a last in first out strategy was
implemented which reads the latest data in the buffer. This is
implemented with a queue size of 1 in the subscriber, hence clearing
the buffer at every step.

Software Interface

In this paper, we demonstrate a unique method of performing soft-real-
time testing of a well-defined methodology for obstacle avoidance, i.e.
Adaptive MPC. Usually, the obstacle avoidance logic is written in a
generic programming language such as python or C++ and deployed
directly as a ROS node on the vehicle. This approach requires a lot of
hardware time, right from the start of tuning the controller and up to
the final deployment of the method.

The technique that is demonstrated in this work allows the use of
tuning tools within the simulation framework i.e. Simulink, such that
the major part of the controller can be designed and tuned to the scaled
vehicle specification without the presence of hardware. Later, this can
be directly deployed to the ROS framework on the scaled vehicle,
while allowing us to leverage the versatility and simplicity of
toolboxes within MATLAB-Simulink to better visualize and
understand the behavior of the robot, while also speeding up the
process of directly comparing it with simulation results for the same
scenario. The real-time portion that is implemented is a relatively new
feature of the MATLAB-Simulink ecosystem that they call simulation
pacing. This technique is used to synchronize the processes running in
ROS (lower level control) with the processes running in Simulink
(issuing control commands for vehicle behavior). This would have
previously been difficult without the use of external mode compilation
of the controller model in Simulink, or without the use of purpose built
real-time processing hardware.

Implementing a controller on a hardware platform requires complex
signal conversions, scaling, and the hardware capacity to handle the
computational load on the mobile CPU. With the ROS+Simulink
toolchain, the bulk of this computational load is shifted to a remote PC
which is capable to simultaneously interacting with multiple ROS
enabled vehicles at a time.

The input and output signals from the MPC need to undergo three
levels of conversions and mapping before they can be read by the ROS
enabled vehicle. The first is the scaling factor multiplied to the control
input (steering angle) to scale it within the MPC object, such that a
smooth control input can be provided to the vehicle. These steering
angle values are converted from radians to degrees before sending it
through the publisher. The final level of conversion happens within the
Teensy board where the command input is converted to a PWM signal
and is finally sent to the ESC and servo to drive the vehicle.

The MPC toolbox in Simulink [17] provided the basis for the
implemented MPC design. The Robotic System Toolbox (RST)
provided a bridge between the ROS enabled ego vehicle and Simulink

Page 4 of 8

7/20/2015

to allow for transmission of control signals from Simulink and
receiving sensor data from ROS.

The ROS publisher in Simulink is first populated with a blank message
while only changing the part that is useful, such as steering. The
message that the ROS system subscribes to is a topic named /cmd_vel
which has linear and angular values in 3 dimensions. The steering
output from the controller is filled into the blank message at the correct
position using a bus assignment and published to ROS at every time-
step.

The on-board system running ROS will then subscribe to this message
and send a signal to a Teensy board which has been programmed to
accept inputs from a serial port. Once this communication is done, the
final implementation of the control signal is performed by the Teensy
which will convert the value it receives into a PWM signal that finally
drives the servo and DC motors through an electronic speed control
module. The car moves forward in the next time-step and the sensor
takes a measurement of position and orientation of the car. This signal
is sent through the onboard processor and published to the ROS
network using a VRPN streaming service. This service publishes a
pose stamped ROS message that can be picked up by any system on
the ROS network. In our case, we created a subscriber in the Simulink
model that listens for these messages. Further, we break down the
measurements into the x and y position and use it to form the updated
states of the vehicle. The orientation data received from the ROS
message is in quaternions and is converted using standard Simulink
conversion blocks within the robotic system toolbox library, then
added as the third state variable. The fourth state of the car is its
absolute velocity which is kept constant for the first part of the
hardware testing, hence eliminating the need for providing throttle as
a control input to the vehicle.

This process is repeated at the rate of 50 Hz due to the fixed time-step
specified in the model configuration pane within Simulink.

1
'

1 Subscribe to

' observable states ROS Publish to ROS

: from ROS

1

X{t+1) Simulink Control

A 4 Inputs
X(t)

r
1

i

1

i 1 .

] Update Plant Model
M States iy -

H [X(t) yy > {linearize and
' .
1

i

1

i

1

i

1

i

1

i

1

discretize)

Adaptive-MPC

Reference
Trajectory

{from offline
planner)

Previous Control
Inputs

Figure 2: Complete system architecture
Test Scenario Development

In this paper, we assume a stalled lead vehicle which necessitates a
double lane change maneuver for the follower (ego) vehicle to avoid

this obstacle. Our development of a suitable obstacle avoidance
pipeline features global (off-board) and local (on-board) motion-
planning components. An OptiTrack Motion-Capture (MoCap)
system, meant to replicate a GPS in the indoor setting, provides
position/velocity information of the ego vehicle. The perception
framework (on the ego-follower vehicle) detects the obstacle and
provides obstacle (lead vehicle) state information to the global planner
within the ROS ecosystem. The global-planner then creates an
obstacle-avoidance trajectory which serves as the reference trajectory
input to our MPC algorithm. However, we note that was due to the
limitations of the experimental testbed (as we will discuss later). The
proposed framework can easily be extended to the case where the ego-
vehicle is moving at a lower-speed in the current lane — since only the
relative position/velocity of the ego-vehicle are necessary. In such
cases, we can replace a global planner to generate the reference values
and leverage the ability of MPC to handle constraints explicitly [17].

The complete system architecture (Figure 1) is composed of three parts
— the perception framework for obstacle tracking, the global planner,
the ROS and Simulink framework for communication of state
information and the MPC model in Simulink Real-Time. The lowest
level of control — converting output pose state from the MPC to PWM
signals readable by the ESC and reading pose data (from the MoCap
and IMU) also occurs over the ROS framework. The Robotics Systems
Toolbox provides seamless integration of ROS with the MPC model
in Simulink.

Test Bed

The controller was implemented on an autonomous scaled vehicle in
an indoor test environment the Clemson (ICAR) campus in Greenville,
SC. The A-MPC requires state information of the vehicle — position,
velocity and heading — information that in the real world would be
provided by a GPS. The test setup at CUICAR employed a ground-
truth motion capture system OptiTrack to provide “GPS” like data in
an indoor setting. The system (shown in Figure 4) comprises of 12
infrared cameras surrounding the 4.85 by 3.5 meter test space that track
reflective markers fixed to the ego vehicle. The system has an accuracy
of a few millimeters, which is significant when dealing in such small
scales. The position & orientation information from the MoCap setup
is supplied through a ROS-node to the global planner on the ego
vehicle, which supplies trajectory information to the Simulink model.
Velocity is assumed a constant.

Obstacle Avoidance

Perception

The ego-vehicle is equipped with a 2D Lidar (Hokuyo URG-04LX-
UGO1) for sensing obstacles. The obstacles are determined as a cluster
of points based on distance from one another. This cluster is further
processed to extract a cost-map of the surroundings. This is passed to
an offline planner that generates the double lane change maneuver. In
a traditional sense of obstacle avoidance, the vehicle’s trajectory is
conditioned on whether the control system is enabled and if it is in a
certain range of an obstacle or not. This distance that is used to
determine an imminent collision will change drastically in the real-
world scenario, where we would need to consider the relative
deceleration of the lead vehicle with respect to the ego car. In our case
due to space and safe speed conditions for indoor experimentation, we
assume a static obstacle and a detection range of 2 meters.

Page 5 of 8

7/20/2015

MoCap
Cameras

- Ego Vehicle Obstacle \A |

Figure 3: Test setup with OptiTrack

Global planner

The global planner is a rapidly - exploring random tree (RRT)
algorithm that generates two random trees expanding from the start and
the goal point to find a viable path for the vehicle to follow [21]. The
two trees move towards one another using a simple greedy heuristic
[22].

The next step is to generate a path from the ego vehicle to the point
just outside the safe zone created around the obstacle. This is
commonly referred to as configuration space creation in most path
planning solutions where one must find the points within the space that
is acceptable for the vehicle to traverse along. Using the extracted cost-
map, the planner makes decisions based on certain factors such as
inflation over boundaries, the dimensions of the robot etc. These are
tuned to perform in a scaled vehicle setting and an indoor environment.

ROS + Simulink Communication Framework

The position and heading of the vehicle is measured using the
OptiTrack system as mentioned earlier and streamed into the ROS
network using a local VRPN server. This system records and streams
the data in the format of a geometry msg/PoseStamped ROS message.
To stream this data into Simulink, we leverage the Robotic System
Toolbox’s features such as a block to subscribe and publish messages

to ROS from within Simulink. The messages that are published out of
Simulink and into ROS is the control command that goes directly to
the hardware. This command controls the steering of the vehicle and is
populated by the control signals that the A-MPC controller sends as an
output at each time-step. This ensures that the vehicle is receiving its
control command directly from the A-MPC block.

Results and discussion

Initially the system was modelled and simulated in Simulink to verify
the effectiveness of the controller. A simple sinusoid trajectory was
provided as a reference trajectory to gauge the system response.
Initially this was done in simulation where the time period was mapped
to the length of the track and the amplitude was set to 1m. The weights
assigned to the controller ensure that the MPC only prioritizes
following the trajectory (the x and y position of the vehicle).

In figure 3, we see the difference between a mathematical model in
simulation and the implementation of the same controller on physical
hardware. We notice that the model in simulation follows the trajectory
more smoothly than the HIL test. This difference can be visualized in
figure 4 as the tracking error in simulation is far less as compared to
the error in hardware testing.

These errors can be attributed to the simple kinematic bicycle model
that is used as the plant. The assumptions imposed upon the system
due to the simplistic nature of the model are that we do not know the
tire forces, nor the slip angles of the vehicle. We also ignore the effects
of roll, pitch and yaw on the physical system.

Hardware testing

T T
1 ——F1/10th vehicle path | |
€ 0 Reference path
=
_1 L L L L]
0 1 2 3 4
X(m)
Simulation
1 —— Simulated vehicle path | |
€ 0 - — ‘Reference path
=
—1 1 L 1 L
0 1 2 3 4
X(m)
Figure 4: Trajectory comparison between simulation and hardware
Hardware testing
’E“ 0.4 Actual tracking error !
- 02 Target error
e e i ol b
Lu _02 L 1 L L L 1
0 1 2 3 4
X (m)
Simulation
__04F ‘ . - .]
c — Simulation tracking error
- 0.2¢ ~—— Target error 1
IS
Lu _02 i L L L L
0 1 2 3 4
X (m)
Figure 5: Error comparison between simulation and hardware
Page 6 of 8

7/20/2015

Summary

In this paper, we go through a few reasons why one cannot perform
full scale autonomous testing while developing algorithms, nor can
pure simulation be the right method of tuning said programs. We
explore an alternative that lies between these two extremes (testing on
scaled vehicles) that gives a lot more experience than pure simulation
while maintaining a safe and repeatable environment for an academic
setting. We also go through the pipeline for generating a vehicle
trajectory for an advanced maneuver such as obstacle avoidance, and
how that path can be executed by a lower level controller, using a
model-based approach.

Developing the model in simulation was the first task that we
undertook and was necessary to perform for initial results over which
we could benchmark its performance. The link between MATLAB-
Simulink (for rapid development solutions) and ROS (widely used
distributed-computing platform) is one of the major interfaces that was
required to successfully deploy the controller to hardware in an
efficient manner. Using RST to perform this inter-framework
communication, we went on to the next step of the project which was
execution on the actual test vehicle. These results show us that even-
though the model works well in simulation, there is a lot of scope for
improvement when deployed on hardware.

The next steps would be to use the MATLAB code-generation
capabilities to generate production level code to be deployed and run
directly on the real-time target machine. Along with running the code
purely for obstacle avoidance, this could be integrated with other
controllers that rely on other sensor data (like a camera) to detect and
perform other tasks (such as lane keeping) or a RADAR to perform
ACC.

References

1. R. Rajamani, Vehicle dynamics and control: Springer
Science & Business Media, 2011.

2. I. Kamon, E. Rivlin and E. Rimon, "A new range-sensor

based globally convergent navigation algorithm for mobile
robots," in Proceedings of IEEE International Conference
on Robotics and Automation, pp. 429-435, 1996.

3. V. J. Lumelsky and T. Skewis, "Incorporating range
sensing in the robot navigation function," IEEE
Transactions on Systems, Man, and Cybernetics, vol. 20,
no. 5 pp. 1058-1069, 1990.

4. J. R. Andrews and N. Hogan, "Impedance control as a
framework for implementing obstacle avoidance in a
manipulator," M. I. T., Dept. of Mechanical Engineering,
1983.

5. Y. Koren and J. Borenstein, "Potential field methods and
their inherent limitations for mobile robot navigation," in
Proceedings. 1991 IEEE International Conference on
Robotics and Automation, pp. 1398-1404, 1991.

6. J. F. Canny and M. C. Lin, "An opportunistic global path
planner," Algorithmica, vol. 10, no. 2-4 pp. 102-120, 1993.
7. J.-P. Laumond, M. Taix and P. Jacobs, "A motion planner

for car-like robots based on a mixed global/local approach,"
in EEE International Workshop on Intelligent Robots and
Systems, Towards a New Frontier of Applications, pp. 765-
773, 1990.

8. T. D. Gillespie, Fundamentals of vehicle dynamics vol.
400: Society of automotive engineers Warrendale, PA,
1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

D. Hrovat, S. Di Cairano, H. E. Tseng and 1. V.
Kolmanovsky, "The development of model predictive
control in automotive industry: A survey," in 2012 IEEE
International Conference on Control Applications, pp. 295-
302, 2012.

C. E. Garcia, D. M. Prett and M. Morari, "Model predictive
control: theory and practice—a survey," Automatica, vol.
25, no. 3 pp. 335-348, 1989.

F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, et al.,
"MPC-based approach to active steering for autonomous
vehicle systems," International Journal of Vehicle
Autonomous Systems, vol. 3, no. 2 pp. 265-291, 2005.

J. Lee and H.-J. Chang, "Analysis of explicit model
predictive control for path-following control," PloS one,
vol. 13, no. 3 p. 0194110, 2018.

E. Thilén, "Robust Model Predictive Control for
Autonomous Driving," 2017,

R. Verschueren, M. Zanon, R. Quirynen and M. Diehl,
"Time-optimal race car driving using an online exact
hessian based nonlinear MPC algorithm," in 2016
European Control Conference (ECC), pp. 141-147, 2016.
University_of Pennsylvania. Fltenth Build. URL:
http://f1tenth.org/build.html.

A. T. Raman, V. N. Krovi and M. J. Schmid, "Empowering
Graduate Engineering Students With Proficiency in
Autonomy," in ASME 2018 International Design
Engineering Technical Conferences and Computers and
Information in Engineering Conference, 2018.
MathWorks. Obstacle Avoidance Using Adaptive Model
Predictive Control. URL:
https://www.mathworks.com/help/mpc/ug/obstacle-
avoidance-using-adaptive-model-predictive-control.html.
J. Kong, M. Pfeiffer, G. Schildbach and F. Borrelli,
"Kinematic and dynamic vehicle models for autonomous
driving control design," in 2015 IEEE Intelligent Vehicles
Symposium (IV), pp. 1094-1099, 2015.

Mathworks. Simulation Pacing. URL:
https://www.mathworks.com/help/simulink/ug/simulation-

pacing.html.
M. O'Kelly, V. Sukhil, H. Abbas, J. Harkins, et al., "F1/10:

An Open-Source Autonomous Cyber-Physical Platform,"
arXiv preprint arXiv:1901.08567, no. 2019.

Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, et al., "Motion
planning for urban driving using RRT," in 2008 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pp. 1681-1686, 2008.

Page 7 of 8

7/20/2015

22. J. J. Kuffner and S. M. LaValle, "RRT-connect: An
efficient approach to single-query path planning," in
Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065), pp. 995-
1001, 2000.

Contact Information
Ardashir Bulsara, 1239 Laurens View Road, Greenville SC, 29607.

abulsar@clemson.edu, +1(864)908-7252

Definitions/Abbreviations

ROS Robot Operating System
MPC Model Predictive Control
RST Robotic Systems Toolbox
ACC Adaptive Cruise Control
MoCap Motion Capture System. In

this case, this is the
OptiTrack MoCap System.

CUICAR Clemson University
International Center for
Automotive Research

RTW Real Time Workshop/
Simulink Coder

Page 8 of 8

7/20/2015

