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Abstract—Wireless Bayesian neural networks (WBNNs) have 
been proposed to address the problem of energy efficiency and 
design complexity for training and classification in resource-
constrained edge devices. By introducing thermally-activated 
DNA actuators and magnetically-tuned spin-torque oscillators 
(STOs), WBNNs are capable of learning from small data sets and 
resolving overfitting issues to achieve accurate classification 
results. To efficiently generate Gaussian variables, this work 
presents electromagnetically-coupled STOs that can inherently 
create programmable spectrum distributions for variational 
inference on Bayesian neural networks (BNNs). Specifically, a 
nanoscale heterostructure that monolithically integrates DNA 
origami with STOs is presented to perform multiplication-and-
accumulation (MAC) with BNNs using a maximum amount of 
Gaussian variables, including: 1) STOs with weighted bias 
currents to set probability distributions and generate oscillation 
signals over a wide frequency range through interacting with an 
external magnetic field; (2) DNA origami that can selectively 
integrate wireless signals from various STOs to transform 
received energy into programmable magnetic fields. Simulation 
results demonstrate that the proposed WBNN can achieve an 
accuracy rate of higher than 96% while consuming 625 µW. 

Keywords—machine learning, DNA memory, spin-torque 
oscillators, Bayesian neural networks, brain-inspired computing 

I. INTRODUCTION 

Machine learning algorithms has been successfully 
developed to create intelligent machine for analysis of complex 
signals and images, such as support vector machine (SVM) 
[1][2], common spatial pattern (CSP) [3][4], linear discriminant 
analysis (LDA) [5][6], and artificial neural networks (ANNs). 
Among the neural network methods, convolutional neural 
networks (CNNs) are popular deep learning tools for image 
processing [7]. However, CNNs require huge amounts of data 
for regularization, so the algorithms quickly over-fit when 
processing small amounts of data. On the contrary, neural 
networks with Bayesian posterior inference are robust to over-
fitting, offering uncertainty estimates, and thus can efficiently 
learn from small datasets. Standard neural networks with 
Bayesian models offer a probabilistic interpretation of deep 
learning models by inferring distributions over the models’ 

weights. However, modeling a distribution over the kernels of a 
CNN usually requires tremendous amounts of computational 
power due to the vast number of parameters and large models, 
so inferring model posterior in a Bayesian neural network is a 
difficult task. Thus, posterior approximations are often 
employed with variational inference for model deployment to 
represent the posterior probability distributions on the weights 
with ensemble learning.  

In this approach the posterior is modeled with a simple 
variational distribution and the likelihood distribution’s 
parameters will closely resemble the true posterior distribution 
[8]-[10]. Nevertheless, the variational approach for 
approximating the posterior can be computationally expensive 
because the use of Gaussian approximating distributions may 
increase the number of model parameters significantly. To 
realize a computationally efficient platform that can quickly 
learn from small datasets with a small number of parameters, we 
propose wireless Bayesian neural networks (WBNNs) with the 
use of integrated DNA origami and STOs that are interacted 
with magnetic fields to generate required probability 
distributions for the approximate posteriors with the variational 
inference method. 

II. BAYESIAN NEURAL NETWORKS 

Real-time classification requires low prediction latency, 
sufficient accuracy, and low power overhead to be performed in 
edge devices. The paper presents wireless neural networks with 
Bayesian learning algorithms to overcome the fundamental 
trade-off between accuracy and computational complexity. The 
Bayesian neural network architecture is shown in Fig. 1, where 
each weight is assigned a probability distribution. Assume we 
have a training set 𝒟, consisting of N input-output pairs: 𝒟 ൌ
ሾሺ𝑋௡,𝑦௡ሻ|𝑛 ൌ 1,2,⋯𝑁ሿ where X is an input vector and y is the 
corresponding class label consisting of K classes. The objective 
is to use a neural network to model the input-output relation.  

From the sum rule and the product rule of probability: 

𝑃ሺ𝑥ሻ ൌ ∑ 𝑃ሺ𝑥,𝑦ሻ௬                                                                (1) 
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and 

𝑃ሺ𝑥,𝑦ሻ ൌ 𝑃ሺ𝑥ሻ𝑃ሺ𝑦|𝑥ሻ ,                                                     (2) 

the Bayesian learning algorithm can be written as  

𝑃ሺ𝜃|𝒟,𝑚ሻ ൌ
௉൫𝒟ห𝜃,𝑚൯௉൫𝜃ห𝑚൯

௉൫𝒟ห𝑚൯
                                          (3) 

where 𝑃ሺ𝒟|𝜃,𝑚ሻ is the likelihood of parameters θ in model m, 
𝑃ሺ𝜃|𝑚ሻ is the prior probability of θ, 𝑃ሺ𝜃|𝒟,𝑚ሻ is the posterior 
probability of θ given data 𝒟 . To predict the results, the 
intractable integral needs to calculate 

𝑃ሺ𝑥|𝒟,𝑚ሻ ൌ  𝑃ሺ𝑥|𝜃,𝒟,𝑚ሻ𝑃ሺ𝜃|𝒟,𝑚ሻ𝑑𝜃 .                     (4)׬

Markov Chain Monte Carlo (MCMC) sampling, which is a 
general and powerful approximate inference method, is still 
computationally intense. The variational method is another 
commonly used approach to approximate the posterior 
probability.  

To train neural networks, the conventional approach is to use 
Maximum Likelihood Estimation (MLE) that maximizes the 
likelihood, 𝑃ሺ𝒟|𝜃ሻ . Given a model weighted by a prior 
probability, the other way to obtain a point estimate of an 
unknown quantity on the basis of the observed data is to find the 
value which maximizes the posterior probability, 𝑃ሺ𝜃|𝒟ሻ, with 
Maximum a Posteriori (MAP) learning, which is equivalent to 
the MLE with an additional regularization term. To efficiently 
compute neural networks with uncertainty on the weights, the 
algorithm Bayes by Backprop was proposed to optimize a well-
defined objective function [11]. 

While the variational posterior distribution is assumed to be 
a Gaussian distribution, a sample of the weights w can be 
obtained by shifting and scaling the unit Gaussian variables with 
a mean µ and a standard deviation 𝜎, where the non-negative 
vector of standard deviations is derived from the variational 
posterior parameters 𝜃 ൌ ሺ𝜇,𝜌ሻ by:   

𝜎 ൌ ln ሺ1 ൅ expሺ𝜌ሻሻ                                                         (5) 

Hence, a sample of the weights can be expressed as 

𝕨 ൌ 𝜇 ൅ 𝜖 ∘ ln ሺ1 ൅ expሺ𝜌ሻሻ                                            (6) 

where 𝜖~𝒩ሺ𝑜, Iሻ  is a vector of independent unit Gaussian 
variables, and ∘  denotes the element-wise multiplication 
operation. In the Bayes by backprop algorithm, the cost function 
is approximated by using sampled weights and a scale mixture 
of two Gaussians from the prior distribution. To calculate the 
samples of the weights of the Bayesian neural networks, unit 
Gaussian variables need to be generated efficiently. In this work 
a wireless machine learning architecture based on a Bayesian 
method is exploited to estimate the class probability for a given 
input from the MNIST dataset. As shown in Fig. 1, each weight 
requires to sample a unit Gaussian random variable that is 
generated by the electromagnetically coupled STOs and 
integrated by DNA origami to performance inference with the 
proposed wireless Bayesian neural network. 

III. SPIN-TORQUE OSCILLATORS FOR GENERATING 

PROBABILITY DISTRIBUTIONS 

Spin-torque oscillators (STOs) exhibit resonant oscillations 
with non-linear transformation functions, which are utilized as 
inherent activation functions in the WBNN. The STOs can be 
integrated at high density because of their nanoscale size and 
low-power consumption. Thus, oscillators are exploited as 
processing units in this work. Fig 2(a) illustrates the schematic 
of the STO design: an elliptical shaped magnetic element is 
placed on top of a heavy-metal wire. The current flow in the 
heavy metal wire generates a perpendicular pure spin current 
injected into the magnetic layer via spin Hall effect, as illustrated 

   
(a)                                                         (b) 

              
(c)                                                              (d) 

Fig. 2  Spin torque devices as wireless synapses: (a) schematic illustration of 
the spin torque oscillator with the oscillation magnetic element fabricated 
directly on top of a heavy metal nanowire; (b) illustration of the spin Hall effect 
that yields pure spin current injection into the magnetic element placed above;
(c) the magnetization states during magnetic oscillation obtained with
micromagnetic simulation; (d) the power spectrum density and the oscillation 
frequency of the spin torque oscillator provides Gaussian approximation. 
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Fig. 1  Illustration of model structure of Bayesian neural networks in which
each weight is assigned a probability distribution. 
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in Fig. 2(b). The heavy metal can be a choice of Pt, Ta, W, or Ir 
while the range of the choices of the materials for the magnetic 
element can be broad. The injected spin current generates a spin 
transfer torque that facilitates steady magnetization oscillation at 
the Kittel oscillation frequency under a given external magnetic 
field. The utilization of spin orbital torque in this special design 
eliminates the need of a top electrode for the magnetic element 
that enables closer distance with the DNA strand for stronger 
radio-frequency (RF) magnetic field. Fig. 2(c) shows two 
magnetic states of the magnetic elements with roughly 180o 
phase difference during an oscillation cycle. Fig. 2(d) shows the 
spectrum of the spin torque oscillation corresponding to an 
external magnetic field of 0.5T. The oscillation frequency and 
its spectrum distribution provide Gaussian variational inference 
for the WBNN, which are sensitive to the current magnitude and 
external magnetic fields set by a nearby magnetized 
ferromagnetic nanoparticle. These modulation schemes provide 
complex learning mechanisms, equivalent to synaptic strength 
in neurons and synaptic weights in cognitive computational 
models. 

IV. ARCHITECTURE 

The wireless neuron for the WBNN consists of a DNA 
actuator, a ferromagnetic nanoparticle, and an STO. Dynamic 
DNA actuators permit precise placement of nanocomponents 
within a few nano meters and the length of the single-stranded 
DNA (ssDNA) can be altered in response to electromagnetic 
inputs [12]. Hence, the learning mechanism can be achieved by 
dynamic tuning of ferromagnetic (FM) nanoparticle separation 
distance using DNA origami actuators responsive to magnetic 
inputs. Networks are assembled on DNA origami templates, and 
pruned using DNA or electromagnetic inputs processed through 
nanoparticle tuned transformers.  

In Fig. 3, one logic cell consists of an STO with an external 
confining magnetic field applied by an external magnetized 
nanoparticle.  The oscillator is powered by a constant DC current 
IDC. The output of the oscillator is a small modulation of the 
current (10-11W) that radiates out as a dipole field.  The first cell, 
indexed 0, has that modulation at a center frequency as f0 with a 
standard deviation as σ0 (µ=f0, σ=σ0). This frequency is 
programed by the intensity of the local field, which is set by the 
distance between the magnetized FM particle and the STO, as 
shown in Fig. 3(b). The distance is itself set by the extension of 
a DNA molecule (DNA0), as shown in Fig. 3(c).  

The logic cell indexed 0 radiates its microwave power to a 
set of downstream cells, indexed 1, …, i, …, n.  These cells have 
exactly the same structure, and are powered by weighted DC 
currents IDC1 to IDCn to set the oscillation frequency distributions 
during the learning process. Under the condition that DNA 
absorbs the microwaves and heats up, it will in steady state reach 
a temperature Ti that is determined by how much radiating 
energy is harvested by the DNA actuator. Given that the DNA 
is with an aspect ratio of 10nm × 1nm × 1nm and a thermal 
conductivity of 0.1 W/m-K, the DNA has a conductance of 
K=10-10m × 0.1 W/m-K=10-11W/K.  With a heat load of 10-11W, 
the temperature rise will be of the order of 1 K.  This temperature 

rise changes the length of molecule DNAi and the distance 
between the FM particle i and the Pt. Fig.4 (a)(b) depicts how 
the single neuron operates to perform the MAC function in the 
frequency domain.  If the cells 0...n generate resonate 
frequencies, f0…fn, outside of the microwave absorption range 
of the DNA. No radiating energy is integrated by the DNA, so 
the FM particle does not apply enough field to the local 
oscillators, stopping them from oscillating. Hereby, the position 

 

(a) 

 
(b)                                                          (c) 

Fig. 3  (a) A single neuron consists of a DNA actuator that carries an FM particle 
and an STO. (b) The oscillation frequency and spectrum distribution are
programmed with an external magnetic field applied by the FM particle. (c) The
oscillation frequency changes with the distance, y, between the STO and the 
FM particle.  
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(c) 

Fig. 4  (a)(b) The length of the DNA changes with the radiation energy
harvested from the STOs at the previous layer so that it can alter the distance
between the FM particle and that in turn changes the oscillation frequency of 
the neuron. (c) The overall architecture consists of multiple-layer wireless 
neurons. Each neuron integrates wireless signals from neurons at the previous 
layer to perform signal multiplication-and-transformation that generates
corresponding wireless signals to inform neurons at the next layer. 
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of the FM nanoparticle determines the oscillation frequency, f0, 
and the weighted frequency distribution is set by the electrical 
field of the STO. Because interactions are distance-dependent, 
physically altering the FM nanoparticle separation distance 
would tune the oscillation frequency and the radiation energy to 
inform the neurons at the next layer, constituting a wireless 
Bayesian neural network, as shown in Fig. 4 (c). 

V. SIMULATION RESULTS 

The proposed wireless Bayesian neural network of various 
sizes has been developed to learn the MNIST digits database 
[13] that is composed of 60,000 training and 10,000 testing pixel 
images of size 28 by 28. Each digit image is labelled with the 
corresponding number from 0 to 9. The neural network consists 
of two hidden layers with 100 neurons for each layer. Fig. 5(a) 
shows the learning curves on the testing and training set on the 
MNIST database. The simulation results show that the WBNN 
converges quickly after 20 epochs. Fig. 5(b) shows density 
estimates of the weights sampled from the variational posterior. 
The simulated power consumption for 200 STOs to operate at 
20 GHz is 625 µW.  Results from the wireless Bayesian neural 
network using a Gaussian prior are summarized and compared 
to other state-of-the-art interfacing classifiers in Table I. 

VI. CONCLUSION 

The proposed wireless Bayesian neural networks utilizing 
magnetically-tuned spin oscillators with thermally-activated 
DNAs to perform machine learning tasks with Gaussian 
variational inference. The signals are transformed into the 
frequency domain based on the weighted spectral distributions 
of the oscillation energy. Simulation results show that a 2-layer 
WBNN with 100 neurons for each layer can carry out 
handwritten digit classification based on the MNIST database 
with an accuracy rate higher than 96%. The wireless architecture 
enables energy-efficient computing and adaptive memory, 
massively expanding computational density and enabling rapid 
analysis of data sets in energy-constrained IoT devices and 
sensors.  

REFERENCES 
[1] P. Shenoy, K. Miller, J. Ojemann, and R. Rao, “Generalized features for 

electrocorticographic BCIs,” IEEE Trans. Biomed. Eng., vol. 55, no. 1, 
pp. 273-280, Jan. 2008. 

[2] T. Lal, M. Schroder, T. Hinterberger, J. Weston, M. Bogdan, N. 
Birbaumer, and B. Scholkopf, “Support vector channel selection in BCI,” 
IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 1003-1010, Jun. 2004. 

[3] G. Blancharda and B. Blankertz, “BCI competition 2003—Data set IIa: 
Spatial patterns of self-controlled brain rhythm modulations,” IEEE 
Trans. Biomed. Eng., vol. 51, no. 6, pp. 1062-1066, Jun. 2004. 

[4] M. Grosse-Wentrup and M. Buss, “Multiclass common spatial patterns 
and information theoretic feature extraction,” IEEE Trans. Biomed. Eng., 
vol. 55, no. 8, pp. 1991-2000, Aug. 2008. 

[5] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. 
Schlogl, B. Obermaier, and M. Pregenzer, “Current trends in Graz brain-
computer interface (BCI) research,” IEEE Trans. Rehab. Eng., vol. 8, no. 
2, pp. 216-219, Jun. 2000. 

[6] J. Kronegg, G. Chanel, and S. Voloshynovskiy, “EEG-based 
synchronized brain-computer interfaces: A model for optimizing the 
number of mental tasks,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, 
no. 1, pp. 50-58, Mar. 2007. 

[7] K. Bong, S. Choi, C. Kim, S. Kang, Y. Kim, and H.-J. Yoo, “A 0.62mW 
ultra-low-power convolutional-neural-network face-recognition 
processor and a CIS integrated with always-on haar-like,” in IEEE 
International Solid-State Circuits Conference (ISSCC) Digest of 
Technical Papers, San Francisco, CA, Feb. 2017, pp. 248-249. 

[8] M. Roth and F. Gustafsson, “Computation and visualization of posterior 
densities in scalar nonlinear and non-Gaussian Bayesian filtering and 
smoothing problems”, IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), 5-9 March 2017, New Orleans, 
LA, USA. 

[9] D. Barber and C. M. Bishop, “Ensemble Learning for Multi-layer 
Networks,” In Advances in Neural Information Processing Systems, pp. 
395–401, 1998. 

[10] A. Graves, “Practical Variational Inference for Neural Networks,” In 
Advances in Neural Information Processing Systems, pp. 2348–2356, 
2011. 

[11] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight 
Uncertainty in Neural Networks,” In International Conference on 
Machine Learning, pp. 1613–1622, 2015. 

[12] J. A. Johnson, A. Dehankar, A. Robbins, P. Kabtiyal, E. Jergens, K. H. 
Lee, E. Johnston-Halperin, M. Poirier, C. E. Castro, and J. O. Winter, 
“The path towards functional nanoparticle-DNA origami composites,” 
Materials Science and Engineering: R: Reports, vol. 138, pp. 153-209, 
Oct. 2019. 

[13] Y. LeCun, C. Cortes and C. Burges, MNIST handwritten digit database, 
[Online]. Available: http://yann.lecun.com/exdb/mnist 

[14] J. Zhang, Z. Wang, and N. Verma, “A matrix-multiplying ADC 
implementing a machine-learning classifier directly with data 
conversion,”  IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 
332-333, Feb. 2015. 

[15] F. N. Buhler, A. E. Mendrela, Y. Lim, J. A. Fredenburg, and M. P. Flynn, 
“A 16-channel noise-shaping machine learning analog-digital interface, ” 
in Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, 
HI, USA, June 2016, pp. C30-C31.  

 

  
(a)                                                         (b) 

Fig. 5  (a) The learning curve of testing and training errors on MNIST database, 
and (b) the histogram of the trained weights of the Bayesian neural network. 

TABLE I.           PERFORMANCE SUMMARY 

 ISSCC 15’ [14] VLSI 16’ [15] This work 

Method 
Matrix-

multiplying 
ADC 

Noise-shaping 
analog-digital 

interface 

Wireless 
Bayesian 

neural network 

Power 
Consumption 

663.6 nW 243.7 µW 625 µW 

Function 
Matrix-

Multiplying 
Matrix-

Multiplying 
Classification 
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