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Abstract—Wireless Bayesian neural networks (WBNNs) have
been proposed to address the problem of energy efficiency and
design complexity for training and classification in resource-
constrained edge devices. By introducing thermally-activated
DNA actuators and magnetically-tuned spin-torque oscillators
(STOs), WBNN s are capable of learning from small data sets and
resolving overfitting issues to achieve accurate classification
results. To efficiently generate Gaussian variables, this work
presents electromagnetically-coupled STOs that can inherently
create programmable spectrum distributions for variational
inference on Bayesian neural networks (BNNs). Specifically, a
nanoscale heterostructure that monolithically integrates DNA
origami with STOs is presented to perform multiplication-and-
accumulation (MAC) with BNNs using a maximum amount of
Gaussian variables, including: 1) STOs with weighted bias
currents to set probability distributions and generate oscillation
signals over a wide frequency range through interacting with an
external magnetic field; (2) DNA origami that can selectively
integrate wireless signals from various STOs to transform
received energy into programmable magnetic fields. Simulation
results demonstrate that the proposed WBNN can achieve an
accuracy rate of higher than 96% while consuming 625 pW.

Keywords—machine learning, DNA memory, spin-torque
oscillators, Bayesian neural networks, brain-inspired computing

L.

Machine learning algorithms has been successfully
developed to create intelligent machine for analysis of complex
signals and images, such as support vector machine (SVM)
[1][2], common spatial pattern (CSP) [3][4], linear discriminant
analysis (LDA) [5][6], and artificial neural networks (ANNSs).
Among the neural network methods, convolutional neural
networks (CNNs) are popular deep learning tools for image
processing [7]. However, CNNs require huge amounts of data
for regularization, so the algorithms quickly over-fit when
processing small amounts of data. On the contrary, neural
networks with Bayesian posterior inference are robust to over-
fitting, offering uncertainty estimates, and thus can efficiently
learn from small datasets. Standard neural networks with
Bayesian models offer a probabilistic interpretation of deep
learning models by inferring distributions over the models’
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weights. However, modeling a distribution over the kernels of a
CNN usually requires tremendous amounts of computational
power due to the vast number of parameters and large models,
so inferring model posterior in a Bayesian neural network is a
difficult task. Thus, posterior approximations are often
employed with variational inference for model deployment to
represent the posterior probability distributions on the weights
with ensemble learning.

In this approach the posterior is modeled with a simple
variational distribution and the likelihood distribution’s
parameters will closely resemble the true posterior distribution
[8]-[10]. Nevertheless, the variational approach for
approximating the posterior can be computationally expensive
because the use of Gaussian approximating distributions may
increase the number of model parameters significantly. To
realize a computationally efficient platform that can quickly
learn from small datasets with a small number of parameters, we
propose wireless Bayesian neural networks (WBNNs) with the
use of integrated DNA origami and STOs that are interacted
with magnetic fields to generate required probability
distributions for the approximate posteriors with the variational
inference method.

II. BAYESIAN NEURAL NETWORKS

Real-time classification requires low prediction latency,
sufficient accuracy, and low power overhead to be performed in
edge devices. The paper presents wireless neural networks with
Bayesian learning algorithms to overcome the fundamental
trade-off between accuracy and computational complexity. The
Bayesian neural network architecture is shown in Fig. 1, where
each weight is assigned a probability distribution. Assume we
have a training set D, consisting of N input-output pairs: D =
[(X™ y™)|n = 1,2,--- N] where X is an input vector and y is the
corresponding class label consisting of K classes. The objective
is to use a neural network to model the input-output relation.

From the sum rule and the product rule of probability:

P(X) = Zyp(x'y) ()
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Fig. 1 Illustration of model structure of Bayesian neural networks in which
each weight is assigned a probability distribution.

and

P(x,y) = P()P(ylx) , ()
the Bayesian learning algorithm can be written as

P(O|D,m) = p(D|8, m)p(6lm) 3)

p(D|m)

where P(D|6, m) is the likelihood of parameters € in model m,
P(6|m) is the prior probability of 8, P(8|D, m) is the posterior
probability of 6 given data D. To predict the results, the
intractable integral needs to calculate

P(x|D,m) = [ P(x|6,D,m)P(8|D,m)de . 4)
Markov Chain Monte Carlo (MCMC) sampling, which is a
general and powerful approximate inference method, is still
computationally intense. The variational method is another
commonly used approach to approximate the posterior
probability.

To train neural networks, the conventional approach is to use
Maximum Likelihood Estimation (MLE) that maximizes the
likelihood, P(D|0) . Given a model weighted by a prior
probability, the other way to obtain a point estimate of an
unknown quantity on the basis of the observed data is to find the
value which maximizes the posterior probability, P(6|D), with
Maximum a Posteriori (MAP) learning, which is equivalent to
the MLE with an additional regularization term. To efficiently
compute neural networks with uncertainty on the weights, the
algorithm Bayes by Backprop was proposed to optimize a well-
defined objective function [11].

While the variational posterior distribution is assumed to be
a Gaussian distribution, a sample of the weights w can be
obtained by shifting and scaling the unit Gaussian variables with
a mean u and a standard deviation o, where the non-negative
vector of standard deviations is derived from the variational
posterior parameters 8 = (u, p) by:

o =1In (1+ exp(p)) Q)
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Hence, a sample of the weights can be expressed as

w=u+eoln(1+exp(p)) (6)
where e~N(0,1) is a vector of independent unit Gaussian
variables, and o denotes the eclement-wise multiplication
operation. In the Bayes by backprop algorithm, the cost function
is approximated by using sampled weights and a scale mixture
of two Gaussians from the prior distribution. To calculate the
samples of the weights of the Bayesian neural networks, unit
Gaussian variables need to be generated efficiently. In this work
a wireless machine learning architecture based on a Bayesian
method is exploited to estimate the class probability for a given
input from the MNIST dataset. As shown in Fig. 1, each weight
requires to sample a unit Gaussian random variable that is
generated by the electromagnetically coupled STOs and
integrated by DNA origami to performance inference with the
proposed wireless Bayesian neural network.

III. SPIN-TORQUE OSCILLATORS FOR GENERATING
PROBABILITY DISTRIBUTIONS

Spin-torque oscillators (STOs) exhibit resonant oscillations
with non-linear transformation functions, which are utilized as
inherent activation functions in the WBNN. The STOs can be
integrated at high density because of their nanoscale size and
low-power consumption. Thus, oscillators are exploited as
processing units in this work. Fig 2(a) illustrates the schematic
of the STO design: an elliptical shaped magnetic element is
placed on top of a heavy-metal wire. The current flow in the
heavy metal wire generates a perpendicular pure spin current
injected into the magnetic layer via spin Hall effect, as illustrated
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Fig. 2 Spin torque devices as wireless synapses: (a) schematic illustration of
the spin torque oscillator with the oscillation magnetic element fabricated
directly on top of a heavy metal nanowire; (b) illustration of the spin Hall effect
that yields pure spin current injection into the magnetic element placed above;
(c) the magnetization states during magnetic oscillation obtained with
micromagnetic simulation; (d) the power spectrum density and the oscillation
frequency of the spin torque oscillator provides Gaussian approximation.
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in Fig. 2(b). The heavy metal can be a choice of Pt, Ta, W, or Ir
while the range of the choices of the materials for the magnetic
element can be broad. The injected spin current generates a spin
transfer torque that facilitates steady magnetization oscillation at
the Kittel oscillation frequency under a given external magnetic
field. The utilization of spin orbital torque in this special design
eliminates the need of a top electrode for the magnetic element
that enables closer distance with the DNA strand for stronger
radio-frequency (RF) magnetic field. Fig. 2(c) shows two
magnetic states of the magnetic elements with roughly 180°
phase difference during an oscillation cycle. Fig. 2(d) shows the
spectrum of the spin torque oscillation corresponding to an
external magnetic field of 0.5T. The oscillation frequency and
its spectrum distribution provide Gaussian variational inference
for the WBNN, which are sensitive to the current magnitude and
external magnetic fields set by a nearby magnetized
ferromagnetic nanoparticle. These modulation schemes provide
complex learning mechanisms, equivalent to synaptic strength
in neurons and synaptic weights in cognitive computational
models.

IV. ARCHITECTURE

The wireless neuron for the WBNN consists of a DNA
actuator, a ferromagnetic nanoparticle, and an STO. Dynamic
DNA actuators permit precise placement of nanocomponents
within a few nano meters and the length of the single-stranded
DNA (ssDNA) can be altered in response to electromagnetic
inputs [12]. Hence, the learning mechanism can be achieved by
dynamic tuning of ferromagnetic (FM) nanoparticle separation
distance using DNA origami actuators responsive to magnetic
inputs. Networks are assembled on DNA origami templates, and
pruned using DNA or electromagnetic inputs processed through
nanoparticle tuned transformers.

In Fig. 3, one logic cell consists of an STO with an external
confining magnetic field applied by an external magnetized
nanoparticle. The oscillator is powered by a constant DC current
Ipc. The output of the oscillator is a small modulation of the
current (10°''W) that radiates out as a dipole field. The first cell,
indexed 0, has that modulation at a center frequency as f, with a
standard deviation as oy (u=fo, 6=0¢). This frequency is
programed by the intensity of the local field, which is set by the
distance between the magnetized FM particle and the STO, as
shown in Fig. 3(b). The distance is itself set by the extension of
a DNA molecule (DNAy), as shown in Fig. 3(c).

The logic cell indexed 0 radiates its microwave power to a
set of downstream cells, indexed 1, ..., 1, ..., n. These cells have
exactly the same structure, and are powered by weighted DC
currents Ipci to Ipcy to set the oscillation frequency distributions
during the learning process. Under the condition that DNA
absorbs the microwaves and heats up, it will in steady state reach
a temperature T; that is determined by how much radiating
energy is harvested by the DNA actuator. Given that the DNA
is with an aspect ratio of 10nm x Inm x Inm and a thermal
conductivity of 0.1 W/m-K, the DNA has a conductance of
K=10""m x 0.1 W/m-K=10""W/K. With a heat load of 10""'W,
the temperature rise will be of the order of 1 K. This temperature
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Fig. 3 (a) A single neuron consists of a DNA actuator that carries an FM particle
and an STO. (b) The oscillation frequency and spectrum distribution are
programmed with an external magnetic field applied by the FM particle. (¢) The
oscillation frequency changes with the distance, y, between the STO and the
FM particle.

rise changes the length of molecule DNA; and the distance
between the FM particle i and the Pt. Fig.4 (a)(b) depicts how
the single neuron operates to perform the MAC function in the
frequency domain. If the cells 0..n generate resonate
frequencies, fo...f,, outside of the microwave absorption range
of the DNA. No radiating energy is integrated by the DNA, so
the FM particle does not apply enough field to the local
oscillators, stopping them from oscillating. Hereby, the position
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Fig. 4 (a)(b) The length of the DNA changes with the radiation energy
harvested from the STOs at the previous layer so that it can alter the distance
between the FM particle and that in turn changes the oscillation frequency of
the neuron. (c) The overall architecture consists of multiple-layer wireless
neurons. Each neuron integrates wireless signals from neurons at the previous
layer to perform signal multiplication-and-transformation that generates
corresponding wireless signals to inform neurons at the next layer.
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of the FM nanoparticle determines the oscillation frequency, fo,
and the weighted frequency distribution is set by the electrical
field of the STO. Because interactions are distance-dependent,
physically altering the FM nanoparticle separation distance
would tune the oscillation frequency and the radiation energy to
inform the neurons at the next layer, constituting a wireless
Bayesian neural network, as shown in Fig. 4 (c).

V. SIMULATION RESULTS

The proposed wireless Bayesian neural network of various
sizes has been developed to learn the MNIST digits database
[13] that is composed of 60,000 training and 10,000 testing pixel
images of size 28 by 28. Each digit image is labelled with the
corresponding number from 0 to 9. The neural network consists
of two hidden layers with 100 neurons for each layer. Fig. 5(a)
shows the learning curves on the testing and training set on the
MNIST database. The simulation results show that the WBNN
converges quickly after 20 epochs. Fig. 5(b) shows density
estimates of the weights sampled from the variational posterior.
The simulated power consumption for 200 STOs to operate at
20 GHz is 625 pW. Results from the wireless Bayesian neural
network using a Gaussian prior are summarized and compared
to other state-of-the-art interfacing classifiers in Table I.
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Fig. 5 (a) The learning curve of testing and training errors on MNIST database,
and (b) the histogram of the trained weights of the Bayesian neural network.
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VI. CONCLUSION

The proposed wireless Bayesian neural networks utilizing
magnetically-tuned spin oscillators with thermally-activated
DNAs to perform machine learning tasks with Gaussian
variational inference. The signals are transformed into the
frequency domain based on the weighted spectral distributions
of the oscillation energy. Simulation results show that a 2-layer
WBNN with 100 neurons for each layer can carry out
handwritten digit classification based on the MNIST database
with an accuracy rate higher than 96%. The wireless architecture
enables energy-efficient computing and adaptive memory,
massively expanding computational density and enabling rapid
analysis of data sets in energy-constrained IoT devices and
Sensors.
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