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Abstract—Quantum technologies are maturing by the day and
their near-term applications are now of great interest. Deep-
space optical communication involves transmission over the pure-
state classical-quantum channel. For optimal detection, a joint
measurement on all output qubits is required in general. Since
this is hard to realize, current (sub-optimal) schemes perform
symbol-by-symbol detection followed by classical post-processing.
In this paper we focus on a recently proposed belief propagation
algorithm by Renes that passes qubit messages on the factor
graph of a classical error-correcting code. More importantly, it
only involves single-qubit Pauli measurements during the process.
For an example 5-bit code, we analyze the involved density
matrices and calculate the error probabilities on this channel.
Then we numerically compute the optimal joint detection limit
using the Yuen-Kennedy-Lax conditions and demonstrate that
the calculated error probabilities for this algorithm appear to
achieve this limit. This represents a first step towards achieveing
quantum communication advantage. We verify our analysis using
Monte-Carlo simulations in practice.

Index Terms—Factor graphs, Helstrom measurement, classical-
quantum channels, linear codes, belief propagation

I. INTRODUCTION

The field of quantum computation and quantum information

has made tremendous progress in the last three decades and,

today, quantum computers are being considered for real-

world applications [1]. Recently, Google and NASA physically

demonstrated a quantum advantage over classical comput-

ers for a random circuit sampling task on their 53-qubit

machine [2]. Despite IBM’s dispute on the extent of the

advantage [3], this milestone demonstration has reinforced the

interest in finding useful near-term applications that can exploit

such quantum advantages. Researchers have explored applica-

tions such as simulation of quantum systems, metrology for

high-precision measurements, chemistry for nitrogen fixation,

optimization for logistics, and prime factorization for digital

security. However, quantum advantages in communication

settings have been less explored. We make progress towards

identifying a communication problem where low-complexity

schemes that require only near-term quantum computing can

provide a significant advantage over classical schemes.
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The pure-loss optical channel in deep-space optical com-

munications [4] can be modeled as the so-called pure-state

classical-quantum (CQ) channel. The ultimate Holevo capacity

of this channel is well-known and CQ polar codes achieve this

capacity under a quantum successive-cancellation decoder [5].

However, this decoder requires joint measurements on all the

code qubits output by the channel, which is hard to realize

in practice. Similarly, even for a given instance of a code

transmitted over this channel, a collective measurement is

required in general to optimally distinguish all the codewords.

Therefore, an interesting open problem is to construct a low-

complexity decoder that does not involve joint measurements.

Message-passing algorithms form a powerful class of

computationally-efficient classical algorithms and are widely

used to solve problems defined on graphs. In particular,

belief propagation (BP) is a message-passing algorithm that

is used to efficiently compute posterior marginal distributions

in statistical-inference problems [6], [7]. For the decoding of

linear codes, BP is executed on a factor-graph (FG) for the

code. The FG is a bipartite graph that encodes the correlations

between the bits of each codeword. When the FG is a tree,

BP can perform bit-wise maximum-a-posteriori (bit-MAP)

estimation and hence minimize the bit-error rate.

Recently, Renes [10] proposed a CQ generalization of

the BP algorithm where the messages on the edges of the

graph are now qubits instead of probabilities, and single-

qubit measurements are performed along the way. We refer to

this algorithm as belief propagation with quantum messages

(BPQM), and we refine the algorithm while retaining this

name. Since one does not observe quantum data unless one

measures it, the notion of a posterior in the case of CQ

channels does not appear to be well-defined. Note that current

receivers for deep-space optical communications effectively

measure each qubit output by the channel and then perform

classical post-processing on the resulting bits. Since this is

sub-optimal, we primarily want to avoid measuring each qubit,

which means the posterior might not yet be defined. Hence,

the goal of BPQM remains unclear even though it retains the

flavor of (quantum) statistical inference. Renes circumvents

this problem by viewing BP as performing statistical inference

locally on the “channel convolutions” induced at nodes of the

factor graph, and then generalizing these channel convolutions

to the quantum setting. We review this perspective shortly.

Although the algorithm is defined in [10], no simulation or

analysis of the BPQM algorithm was presented. In this paper,
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Fig. 1. Factor graph for the 5-bit linear code C in the running example.

we use a simple [5, 3, 2] binary code, whose FG is a tree, as

an example to understand the workings of the algorithm. We

perform a detailed analysis of the involved density matrices

and suggest some refinements to the algorithm. We also

calculate both bit- and block-error probabilities for BPQM on

this code and verify them by simulations1. Using the Yuen-

Kennedy-Lax (YKL) conditions [11], [12] we numerically

compute the fundamental joint (codeword) Helstrom limit for

optimally distinguishing the 8 codewords of this code. Finally

we show that the BPQM block-error rate appears to match this

limit, i.e., it seems to be quantum-optimal. This represents a

significant quantum advantage over current receivers, which

measure each qubit and then perform classical post-processing.

In [13], we also provide a full circuit decomposition of

BPQM (for this code) in terms of standard single-, two-qubit

and Toffoli gates. Since the circuits for BPQM have a specific

structure, this is an application that does not require a universal

quantum computer to exploit this advantage. It remains to be

seen if this advantage will persist for this code under the

noise levels in current systems. But this is an opportunity

for experimentalists to achieve the advantage by making this

specific circuit sufficiently reliable.

II. CLASSICAL BELIEF PROPAGATION (BP)

A. Decoding Linear Codes Using BP

Consider the [5, 3, 2] code C , {x ∈ {0, 1}5 : HxT = 0T },
where the parity-check matrix is given by

H =

(

x1 x2 x3 x4 x5

c1 1 1 1 0 0

c2 1 0 0 1 1

)

. (1)

The factor graph for C corresponding to this particular choice

of H is a bipartite graph that consists of 5 variable nodes

(circles) connected to 2 factor nodes (squares) according to

the parity-checks defined by the two rows of H (see Fig. 1).

Let W (y|x) represent a binary-input memoryless channel

where x ∈ {0, 1} is the input, y ∈ Y is the output for

some output alphabet Y , and W (y|x) represents the channel

transition probability. Given the output (vector) y from the

channel, the decoder for the code C needs to determine the

codeword x that was actually sent at the input. The block-

maximum-a-posteriori (MAP) decoder, which is optimal for

minimizing the average decoding error probability, calculates

the posterior probability for each codeword in the code, given

y, and chooses the codeword with the maximum value.

1Our implementation for the 5-bit code: https://github.com/nrenga/bpqm.

Assuming all codewords are equally likely, p(x|y) =
∏5

k=1 W (yk|xk) · P[x ∈ C]
p(y)

(2)

∝ W (y1|x1) · [I(x1 ⊕ x2 ⊕ x3 = 0)W (y2|x2)W (y3|x3)]

· [I(x1 ⊕ x4 ⊕ x5 = 0)W (y4|x4)W (y5|x5)] , (3)

where the constant of proportionality is independent of x. Then

it determines the maximizing codeword according to x̂MAP ,

argmaxx∈{0,1}5 p(x|y). An alternative decoding scheme is the

bit-MAP decoder which marginalizes p(x|y) for each bit and

makes a decision bitwise. Hence, to decode bit x1, the bit-

MAP decoder computes

x̂MAP
1 , argmax

x1∈{0,1}

∑

x2,x3,x4,x5∈{0,1}4

p(x|y). (4)

The idea of bit-MAP is that this marginalization can be done

efficiently when the joint probability density p(x|y) factors

into terms involving disjoint sets of variables. In our running

example, we can use the distributive property of addition

over multiplication and compute the sums involved in the two

square brackets (from (3)) simultaneously. Then the results can

be pooled in a final step that takes their product and multiplies

the result with W (y1|x1). This is exactly BP on this FG, since

the two local sums can be interpreted as “local beliefs” about

the variable x1 that are propagated to be combined with the

“belief” from the direct channel observation y1.

B. Induced Channels in BP
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Fig. 2. Channel combining at a VN using the induced channels at the node.

The two induced channels can be combined into a channel

[W ⊛W ′](y, z|x) = W (y|x) ·W ′(z|x). (5)

This is the variable node (VN) convolution of two channels.

x

c

u v

W W ′
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≡

x
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w w = (y, z)

Fig. 3. Channel combining at a FN using the induced channels at the node.

Likewise, the factor node (FN) convolution of two channels is

[W � W ′](y, z|x)

=
1

2
W (y|x) ·W ′(z|0) + 1

2
W (y|x⊕ 1) ·W ′(z|1). (6)
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Hence, during the node updates, BP is simply performing local

inference over these local channels [W ⊛W ′], [W �W ′], i.e.,

calculating the local posterior for x given (y, z). For some

more discussion on these induced channels, see [13].

This perspective on BP crucially aids us in defining

the quantum channel combining operations for a classical-

quantum (CQ) channel [14]. As discussed in [5] and [10], for

a CQ channel denoted by W (x) , W (|x〉 〈x|), x ∈ {0, 1}, we

can define the variable and factor node convolutions as

[W ⊛W ′](x) , W (x)⊗W ′(x), (7)

[W � W ′](x) ,
1

2
W (x)⊗W ′(0) +

1

2
W (x⊕ 1)⊗W ′(1).

(8)

III. BP WITH QUANTUM MESSAGES (BPQM)

A. Pure-State Channel

The pure-state classical-quantum (CQ) channel is defined

for classical inputs x ≡ |x〉 〈x| , x ∈ {0, 1}, as

W (x) , |θ〉 〈0| · |x〉 〈x| · |0〉 〈θ|+ |−θ〉 〈1| · |x〉 〈x| · |1〉 〈−θ|
= |(−1)xθ〉 〈(−1)xθ| , (9)

|±θ〉 , cos
θ

2
|0〉 ± sin

θ

2
|1〉 . (10)

Hence, the Kraus operators for the channel can be taken to be

M0 = |θ〉 〈0| ,M1 = |−θ〉 〈1|. The fidelity of this channel is

F (W ) , | 〈θ| − θ〉 |2 = cos2 θ, cos θ = 2 cos2
θ

2
− 1. (11)

Unless θ = π/2, the two output states are not perfectly

distinguishable, which introduces uncertainty at the receiver.

The ultimate Holevo capacity of this channel is given by [4]

C∞(W ) = h2

(

1 +
√

F (W )

2

)

. (12)

The Helstrom measurement [15], [16] to optimally distin-

guish between density matrices ρ0 and ρ1 is given by the pos-

itive operator-valued measurement (POVM) {ΠHel, I−ΠHel}:

ΠHel ,
∑

i : λi≥0

|i〉 〈i| , (ρ0 − ρ1) |i〉 = λi |i〉 . (13)

For the pure state channel it is easy to calculate that ρ0−ρ1 =
|θ〉 〈θ| − |−θ〉 〈−θ| = sin θ ·X , so that the Helstrom measure-

ment is projecting onto the Pauli X basis, i.e., the POVM

is {|+〉 〈+| , |−〉 〈−|}. In practice, the Dolinar receiver [17]

for the BPSK modulated pure-loss optical channel optimally

measures each output qubit. Hence, it induces the binary sym-

metric channel BSC(Pmin) with Pmin = (1−
√

1− F (W ))/2,

which is the minimum probability of error to distinguish be-

tween the states {|θ〉 , |−θ〉} [4]. If we implemented a classical

optimal (block-MAP) decoder on this induced BSC, then the

capacity that is attainable is C1(W ) = 1 − h2(Pmin), where

the subscript “1” indicates that we are performing symbol-by-

symbol measurements and not a collective measurement. It

can be easily checked that C1(W ) ≪ C∞(W ), and classical-

quantum polar codes equipped with a quantum successive-

cancellation decoder close this gap [4], [5]. However, this

decoder is hard to realize in the lab. Hence, an open problem

is to analyze if this gap is closed by BPQM, which can be

mapped into a “successive-cancellation-type” decoder [10].

B. Node Operations in BPQM

Given the convolution output [W ⊛W ′] at a VN, a specific

unitary U⊛(θ, θ
′) (see [10], [13]) is applied to “compress” the

information into one qubit and force the other system into |0〉:
U⊛(θ, θ

′) (|±θ〉 ⊗ |±θ′〉) =
∣

∣±θ⊛
〉

⊗ |0〉 , (14)

where cos θ⊛ , cos θ cos θ′. The VN update is then to pass

the qubit from the first system and discard the second system.

At a FN, the induced mixed state [W � W ′](x) can be

turned into the CQ state
∑

j∈{0,1} pj
∣

∣±θ�

j

〉 〈

±θ�

j

∣

∣ ⊗ |j〉 〈j|
by performing U� , CNOTW→W ′ , the controlled-NOT gate

with W as control and W ′ as target. Hence,

U� ([W � W ′](x))U †
�
=

∑

j∈{0,1}

pj
∣

∣±θ�

j , j
〉 〈

±θ�

j , j
∣

∣ ,

p0 ,
1

2
(1 + cos θ cos θ′) , p1 , 1− p0,

cos θ�

0 ,
cos θ + cos θ′

1 + cos θ cos θ′
, cos θ�

1 ,
cos θ − cos θ′

1− cos θ cos θ′
. (15)

Thus, the FN update measures the second system and passes

the resulting qubit from the first system as the message, along

with the result of the classical measurement. For reversibility,

we will now describe BPQM as a coherent operation that does

not measure or discard qubits along the way at the nodes.

IV. BPQM ON THE 5-BIT CODE

A. Decoding Bit x1

Observe that the codewords belonging to the code are C =
{00000, 00011, 01100, 01111, 10101, 10110, 11001, 11010}.

We assume that all the codewords are equally likely to be

transmitted, just as in classical BP. Then the task of decoding

the value of x1 involves distinguishing between the density

matrices ρ
(0)
1 and ρ

(1)
1 , which are uniform mixtures of the

states corresponding to the codewords that have x1 = 0 and

x1 = 1, respectively, i.e., using (9) and taking ± ≡ (−1)x1 ,

ρ
(x1)
1 = |±θ〉 〈±θ| ⊗ 1

4

∑

c∈C : c1=x1

5
⊗

i=2

W (ci). (16)

These density matrices can be written using notation in (8) as

ρ
(x1)
1 = ρ± = |±θ〉 〈±θ|1⊗ [W �W ](x1)23⊗ [W �W ](x1)45.

The full BPQM circuit to decode all 5 bits of this code is

given in Fig. 4. From the perspective of decoding x1, the input

state to the circuit is ρ±. We will track this state through each

marked stage in Fig. 4. Define the unitaries and angles

U ,
∑

j,k∈{0,1}2

U⊛(θ
�

j , θ
�

k )23 ⊗ |jk〉 〈jk|45 , (17)

cos θ⊛jk , cos θ�

j cos θ�

k , (18)

V ,
∑

j,k∈{0,1}2

U⊛(θ, θ
⊛

jk)12 ⊗ |jk〉 〈jk|45 , (19)

cosϕ⊛

jk , cos θ cos θ⊛jk. (20)
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m1 = ±

m2 = ±

m4 = ±

1

V

Km1

V †

|m1θ〉

2

U U†

U⊛(m1θ, θ)

3

4

U⊛(m1θ, θ)

5

(a) (e) (f)(b) (d) (g)(c)

Fig. 4. The full BPQM circuit to decode all bits of the 5-bit code in Fig. 1. The decoded values are related to the measurement results as m1 = (−1)x̂1 ,m2 =
(−1)x̂2 ,m4 = (−1)x̂4 , and x̂3 = x̂1 ⊕ x̂2, x̂5 = x̂1 ⊕ x̂4. The open-circled controls indicate that Km1

is coherently controlled by the last two qubits
being in the state |00〉

45
. The solid line before Km1

indicates that the controlled unitary is applied to the post-measurement state.

First we can decompose U⊛(θ, θ
′) into standard gates [18].

Then these coherently controlled unitaries can be decomposed

into standard single-, two-qubit, and Toffoli gates (see [13]).

The density matrices at stages (a)-(e) in Fig. 4 are:

(a) ρ±,a = |±θ〉 〈±θ|1 ⊗ [W � W ](x1)23 ⊗ [W � W ](x1)45,

(b) ρ±,b =
∑

j,k∈{0,1}2

pjpk T (±θ,±θ�

j , j,±θ�

k , k),

(c) ρ±,c =
∑

j,k∈{0,1}2

pjpk T (±θ,±θ�

j ,±θ�

k , j, k),

(d) σ± =
∑

j,k∈{0,1}2

pjpk T (±θ,±θ⊛jk, 0, j, k),

(e) Ψ± =
∑

j,k∈{0,1}2

pjpk

∣

∣

∣
±ϕ⊛

jk

〉〈

±ϕ⊛

jk

∣

∣

∣

1
⊗ |00jk〉 〈00jk| .

Here, for brevity, T (· · · ) denotes 5 qubits with the individual

subsystems being pure states described by the respective

arguments, e.g., ±θ�

j 7→
∣

∣±θ�

j

〉 〈

±θ�

j

∣

∣. We emphasize that,

at each stage, the density matrix is the expectation over all

pure states that correspond to transmitted codewords with the

first bit taking value x1 ∈ {0, 1}. The operations U and V
are effectively two-qubit unitary operations, albeit controlled

ones, and this phenomenon extends to any factor graph.

Evidently, BPQM compresses all the quantum information

into system 1 and the problem reduces to distinguishing

between Ψ
(1)
± =

∑

j,k∈{0,1}2 pjpk

∣

∣

∣
±ϕ⊛

jk

〉〈

±ϕ⊛

jk

∣

∣

∣

1
, since the

other systems are either trivial or completely classical and

independent of x1. Finally, system 1 is measured by projecting

onto the Pauli X basis, which we know from the discussion

in Section III-A (after (13)) to be the Helstrom measurement

to optimally distinguish between the states Ψ
(1)
± .

The optimal success probability of distinguishing between

ρ
(0)
1 and ρ

(1)
1 using a collective Helstrom measurement is

PHel
succ,1 =

1

2
+

1

4

∥

∥

∥
ρ
(0)
1 − ρ

(1)
1

∥

∥

∥

1
, ‖M‖1 , Tr

(√
M†M

)

.

(21)

The action of BPQM until the final measurement is unitary

and the trace norm ‖·‖1 is invariant under unitaries. Thus,

BPQM does not lose optimality until the final measurement.

Since the final measurement is also optimal for distinguishing

Ψ±, BPQM is indeed optimal in decoding the value of x1.

Thus, by only performing a single-qubit measurement at the

end of a sequence of unitaries motivated by the FG structure

and induced channels in classical BP, BPQM is still optimal

to determine x1. The success probability is Tr
[

Ψ
(1)
+ |+〉 〈+|

]

and the full post-measurement state by quantum mechanics is

Φm1
=

∑

j,k∈{0,1}2

pjpk

∣

∣

∣

〈

m1| ± ϕ⊛

jk

〉
∣

∣

∣

2

Tr
[

Ψ
(1)
± |m1〉 〈m1|

] T (m1, 0, 0, j, k),

where m1 , (−1)x̂1 . Although BPQM is optimal for x1, in

order to execute the collective Helstrom POVM for distin-

guishing ρ
(0)
1 and ρ

(1)
1 , BPQM must apply the inverse of the

sequence of operations in (a)-(e) to the state Φm1
. However, it

is actually beneficial to coherently rotate Φm1
before applying

these inverses in order to set up a (slightly) better state

discrimination problem for x2. We think this coherent rotation

might be applicable for BPQM in general.

In order to run BPQM for x1 in reverse to get “as close”

to the channel outputs as possible, we need to make sure that

the state Φm1
is modified to be compatible with the (angles

used to define the) unitaries V and U in Fig. 4. Since we can

keep track of the intermediate angles deterministically, we can

conditionally rotate subsystem 1 to be
∣

∣m1ϕ
⊛

00

〉 〈

m1ϕ
⊛

00

∣

∣

1
for

|jk〉 〈jk|45 = |00〉 〈00|45. Note that in Ψ±, when either of j

or k is 1 (or both), ϕ⊛

jk = π/2 and hence

∣

∣

∣
±ϕ⊛

jk

〉〈

±ϕ⊛

jk

∣

∣

∣
=

|±〉 〈±|. Therefore, if x̂1 6= x1, then 〈m1|±〉 = 0 and the

superposition in Φm1
collapses to just the term j = k = 0.

More precisely, we can implement the unitary operation

Mm1
, (Km1

)1 ⊗ |00〉 〈00|45 + (I2)1 ⊗ (I4 − |00〉 〈00|)45 ,

where K+ and K− are unitaries chosen to satisfy K+ |+〉 =
∣

∣ϕ⊛

00

〉

and K− |−〉 =
∣

∣−ϕ⊛

00

〉

. Hence, at stage (f) we have

Ψ̃m1
=

∑

j,k∈{0,1}2

pjpk

∣

∣

∣

〈

m1| ± ϕ⊛

jk

〉∣

∣

∣

2

Tr
[

Ψ
(1)
± |m1〉 〈m1|

] T (m1ϕ
⊛

jk, 0, 0, j, k).

(22)
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Now we reverse the initial operations and arrive at stage (g).

Assuming x̂1 = x1 so that the superposition in Ψ̃m1
does not

collapse, by comparing Ψ̃m1
((f)) with Ψ± ((e)) we realize

that the state at (g) cannot be exactly equal to the channel

output, due to the additional factor involving m1. We prove

this in [13] by explicitly calculating the additional “error term”

at (g) when compared to (the state at) (a). However, we show

that when averaged over both cases x̂1 = x1 and x̂1 6= x1, we

obtain the following 5-qubit state for the system at (g):

ρ̃m1,a = |m1θ〉 〈m1θ|1 ⊗ [W � W ](x̂1)23 ⊗ [W � W ](x̂1)45,
(23)

where PBPQM
succ,1 , Tr

[

Ψ
(1)
+ |+〉 〈+|

]

= Tr
[

Ψ
(1)
− |−〉 〈−|

]

.

B. Decoding Bit x2

At this point, we have decoded x̂1 = 0 if m1 = + and

x̂1 = 1 if m1 = −. We can absorb the value of x̂1 in the

FG by updating the parity checks c1 and c2 to impose x2 ⊕
x3 = x̂1 and x4 ⊕ x5 = x̂1, respectively. Now we have two

disjoint FGs after having removed x1. It suffices to decode

x2 and x4 since x̂3 = x̂2 ⊕ x̂1 and x̂5 = x̂4 ⊕ x̂1. Also, due

to symmetry, it suffices to analyze the success probability of

decoding x2 (resp. x4) and x3 (resp. x5). For this reduced FG,

we need to split ρ̃m1,a into two density matrices corresponding

to the hypotheses x2 = 0 and x2 = 1. Recollect that for the

hypotheses ρ
(0)
1 and ρ

(1)
1 for x1, the 5-qubit state at the channel

output was exactly their uniform superposition 1
2ρ

(0)
1 + 1

2ρ
(1)
1 .

Hence, for x2, we accordingly split [W �W ](x̂1)23 in ρ̃m1,a:

Φ̃x2=x̂1
(x̂1) = |m1θ〉 〈m1θ|2 ⊗ |θ〉 〈θ|3 ⊗ [W � W ](x̂1)45,

Φ̃x2 6=x̂1
(x̂1) = |−m1θ,−θ〉 〈−m1θ,−θ|23 ⊗ [W � W ](x̂1)45

are the two hypotheses states. We can deterministically apply

(Pauli) Z x̂1 to system 2 in order to map these into

Φ±(x̂1) = |±θ〉 〈±θ|2 ⊗ |±θ〉 〈±θ|3 ⊗ [W � W ](x̂1)45,

where ± ≡ (−1)x2⊕x̂1 . Clearly, we can process systems 2
and 3 separately to decide x2. Similarly, systems 4 and 5 can

be processed separately to decide x4. It is also clear that by

performing the variable node operation U⊛(θ, θ), we compress

all the information into system 2, i.e., produce |±θ⊛〉 〈±θ⊛|2⊗
|0〉 〈0|3, which can be optimally distinguished by measuring in

the X-basis. This agrees with the definition of node operations

in BPQM as well because now the factor node c̃1 has degree

2, and hence the optimal processing is to perform the variable

node convolution between qubits 2 and 3. We can incorporate

the operation Z x̂1 into BPQM by performing U⊛(m1θ, θ) on

systems 2 and 3 (and similarly on systems 4 and 5). Although

U⊛(m1θ, θ) 6= U⊛(θ, θ) · (Z x̂1 ⊗ I2), the two operations act

identically on the states Φ̃x2=x̂1
(x̂1) and Φ̃x2 6=x̂1

(x̂1).
Based on this perspective, we can calculate

P[x̂2 6= x2] =
1

2
− 1

4
‖Φ+(x̂1)− Φ−(x̂1)‖1 (24)

=
1

2
− 1

4
· sin θ⊛ ‖X‖1 =

1− sin θ⊛

2
. (25)

However, from simulations of BPQM we observe that this is

slightly lower than the actual BPQM error rate for x2.
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Fig. 5. The BPQM bit and block error probabilities, and the YKL limit,
plotted against the mean photon number per mode N (cos θ = e−2N [4]).

C. Correct Analysis for Bit x2

In order to understand the discrepancy, we start from the

channel outputs and construct the hypotheses states ρ
(x2)
2 for

x2 assuming we first decode x2. Similar to ρ
(x1)
1 , ρ

(x2)
2 is the

uniform superposition of states corresponding to all codewords

with the second bit taking the value x2. Since we actually

decode x1 first, we track ρ
(x2)
2 through the full BPQM circuit

in Fig. 4. During this process, we show that the state ρ̃
(0)
2,m1=+

we obtain at stage (g) (for, say, x̂1 = 0) is not exactly

equal to Φ̃x2=x̂1
(x̂1) but only two of the distinct entries differ

(slightly) [13]. However, most importantly, we observe that

1

2
ρ̃
(0)
2,m1=+ +

1

2
ρ̃
(1)
2,m1=+ =

1

2
Φ̃x2=0(0) +

1

2
Φ̃x2=1(0). (26)

This explains that while the full density matrix ρ̃m1,a was cor-

rect, we had split it incorrectly to arrive at the two hypotheses

Φ̃x2=x̂1
(x̂1) and Φ̃x2 6=x̂1

(x̂1). Based on this, we verify that

PBPQM
succ,2 = Tr

[

U⊛(m1θ, θ)ρ̃
(x2)
2,m1

U⊛(m1θ, θ)
† · |±〉 〈±|2

]

=
1

2
+

1

4

∥

∥

∥
L
(

ρ
(0)
2 − ρ

(1)
2

)

L†
∥

∥

∥

1
(27)

=
1

2
+

1

4

∥

∥

∥
ρ
(0)
2 − ρ

(1)
2

∥

∥

∥

1
= PHel

succ,2, (28)

where L is the sequence of operations in Fig. 4 from (a)-(g).

V. SIMULATIONS AND CONCLUSION

We simulated the BPQM circuit in Fig. 4 and averaged

the bit and block error rates of BPQM over 105 uniformly

random codeword transmissions. These results are plotted in

Fig. 5 against the mean photon number per mode [4]. We

used the Yuen-Kennedy-Lax (YKL) conditions [11], [12] to

numerically calculate the fundamental joint Helstrom limit,

which is also shown in Fig. 5. We observe that BPQM appears

to exactly achieve the YKL limit and hence be quantum

optimal. The equalities relating PBPQM
succ,2 and PHel

succ,2 are yet to be

proven rigorously, although they were verified directly using

the density matrices. It also remains to be shown analytically

that the block error rate of BPQM meets the YKL limit exactly.
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