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Abstract—Reinforcement learning with neural networks
(RLNN) has recently demonstrated great promise for many
problems, including some problems in quantum information
theory. In this work, we apply reinforcement learning to quantum
hypothesis testing, where one designs measurements that can
distinguish between multiple quantum states {p;}|7=, while
minimizing the error probability. Although the Helstrom mea-
surement is known to be optimal when there are m = 2 states,
the general problem of finding a minimal-error measurement is
challenging. Additionally, in the case where the candidate states
correspond to a quantum system with many qubit subsystems,
implementing the optimal measurement on the entire system
may be impractical. In this work, we develop locally-adaptive
measurement strategies that are experimentally feasible in the
sense that only one quantum subsystem is measured in each
round. RLNN is used to find the optimal measurement protocol
for arbitrary sets of tensor product quantum states. Numerical
results for the network performance are shown. In special cases,
the neural network testing-policy achieves the same probability
of success as the optimal collective measurement.

Index Terms—quantum state discrimination, LOCC, neural
networks, reinforcement leraning, quantum hypothesis testing,
min-entropy

I. INTRODUCTION

The task of quantum hypothesis testing consists of finding
the optimal quantum measurement {IT;}(72, to distinguish
between m candidate states {p, j—1 with prior probabili-
ties {g; j=1- This can be applied to discrimination between
quantum coherent states [1] and also to the task of decoding
one of m codewords that has been sent through a known
noisy quantum channel [2], [3]. One important example of
locally adaptive multiple hypothesis testing protocols is the
Dolinar receiver, which uses an adaptive measurement scheme
to distinguish between m optical signals [4].

In the special case where m = 2, the optimal measurement
is called the Helstrom measurement [S] and is given by the
eigenvectors of the matrix M £ ¢;p; — qapo. For the general
case, the optimal measurement is challenging to compute.
Although an analytic solution for the optimal measurement
is not known in general, semidefinite programming tech-
niques have been used to approach the problem of finding
the minimal-error measurement and computing the optimal
success probability [6], [7].

When the candidate states are high-dimensional (corre-
sponding to a quantum system composed of many qubit
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subsystems), it may be experimentally difficult to implement
operations on all subsystems at once. Thus, we also focus
on finding optimal (or near-optimal) approaches that include
the experimentally desirable property of locality, where only
a single subsystem is measured in each round. We know that
dynamic programming can be used to recursively find the
optimal local approach [8]. However, even in the simplest case
where m = 2, the complexity grows like O(2"n(Q), where n
is the number of qubit subsystems and () is the number of
different local measurements considered [9].

A powerful alternative tool for developing optimal adap-
tive protocols is reinforcement learning with neural networks
(RLNN). In this process, an agent learns an optimized protocol
through repeated interaction with an environment. RLNN has
been successfully applied to problems in quantum information
theory such as generating error-correcting sequences [10].
While RLNN was introduced more than 20 years ago [11],
[12], interest in these methods was recently rekindled by its
remarkable success for atari games [13], [14]. This motivates
our use of RLNN to find optimal locally-adaptive measurement
protocols.

We provide preliminary results for the network performance
and demonstrate that the network can achieve optimal per-
formance in some special cases. Additionally, we prove by
counterexample that, in contrast to the binary case [9], [15],
locally-adaptive greedy strategies are not necessarily optimal
when all candidate states are pure. While we demonstrate that
the neural network is able to find a better local strategy, we
also conjecture that the gap between the optimal local strategy
and the optimal collective strategy persists.

Next, we compare the neural network performance to the
collective “Pretty Good Measurement” (PGM) [16] for general
tensor product quantum states, and demonstrate that, for a
large number of candidate states (m = 5), the neural network
exceeds the PGM success probability in most trials. Use
of the PGM as a benchmark is motivated by its optimality
in several important cases, including sufficiently symmetric
candidate states [17]-[19], and its relation to a least-squares
approximation [20]. Finally, we compare the neural network
performance to a semidefinite programming (SDP) technique
outlined in [21] in order to upper bound the gap between the
optimal local and optimal collective strategy for more general
cases.

ISIT 2020

Authorized licensed use limited to: Duke University. Downloaded on September 26,2020 at 20:17:25 UTC from IEEE Xplore. Restrictions apply.



II. REINFORCEMENT LEARNING

Each round of the reinforcement learning process involves
an agent choosing one action from an allowed action space,
implementing the action, and receiving a reward from the
environment. For a Markov decision process, the agent can
eventually learn to choose actions according to an optimal
policy that maximizes the expected future reward.

In the context of state discrimination, the environment is a
parameterized measurement protocol for the quantum system
of interest. The action space (denoted by .A) is the set of
allowed quantum measurements and the reward equals the
indicator function of success at the end of the process (i.e.,
+1 for successful discrimination once all measurements are
completed and O otherwise). Denote by s; the state of the
environment just before round ¢ and let n be the total number
of rounds. The agent’s policy, 7 (a¢|s;), is parameterized by 6
and equals the probability of selecting action a; € A in round
t conditioned on the state s; of the environment.

We train the agent using the proximal policy optimization
(PPO) algorithm [22]. This algorithm optimizes the advantage
function

A" (st,a0) =

5 (Bl

{=t

r(se, ar)|se, ar) — Ewe[r(se,azﬂst]),

where r(s,a) is the average reward for taking action a in
state s and -y is a discount factor. Given a current state s, the
advantage function compares the expected reward of choosing
action a; to the expected average reward for the policy
mg(a¢]s:). PPO optimizes a modified advantage function to
prevent rapid changes in the policy my. The modified objective
function is given by:

L(9) 2 E, [mm (Rt(G)A”(st, ar),
clip(R:(0),1 — e, 1 + €) A™ (s, at)ﬂ
o (at|st)

where the ratio function R;(f) £ o (arls) is a measure of
. . . old
the change in the policy, € is a hyperparameter, and

T if min < x < max

. . A . . .
clip(z, min,max) = < min if £ < min

max otherwise.

The final objective function also has terms that allow the
neural network to estimate the value of each state. For these
details, we refer the interested reader to [22]. Results are
generated using the default PPO algorithm from the RLIib
package included in Ray version 0.7.6 [23], [24]. Only the
learning rate is tuned. The relevant hyperparameters are the
clipping parameter € = 0.3, the discount factor v = 0.99, and
the learning rate Ir = 5 x 1075,

The neural network is fully connected and has an input
layer with m + n — 1 neurons which take the state s as
the input. The input layer feeds into two parallel sets of
subnetworks (each with two hidden layers of 256 neurons,

tanh activation functions, and each with their own linear output
layers.) The output layer of the first subnetwork consists of a
single neuron, and computes an estimate for the value a state.
The output layer of the second subnetwork has n() neurons
(i.e. the number of allowed actions) and computes the policy,
m(als). See https://github.com/SarahBrandsen/RLNN-QSD for
numerical results and the source code used to obtain them.

ITI. DISCRIMINATION TASK AND STRUCTURE

We consider the task of deriving the minimum-error adap-
tive measurement protocol to distinguish between m tensor-
product quantum states {pj}| * , with prior probability vector
g where ¢; = Pr(p = pj) Since each candidate state is
assumed to be a tensor product of n subsystems, it can be
written as

o _®p<k>

where p;*’ is a qubit density matrix for all j € [1,...,m] and
all k € [1,...,n]. Thus, the quantum system p is composed of
n unentangled qubit subsystems.

We build an OpenAl gym environment [25] capable of
implementing local measurement algorithms. In each round,
the algorithm chooses the next subsystem j to measure as well
as which measurement to implement. Since all subsystems
are assumed to be qubits, re-measuring an already measured
subsystem is non-informative. To speed convergence, we in-
troduce a penalty of —0.3 from the environment if the agent
attempts re-measurement. Each element of the action space
is a pair (II, k), indicating that measurement II is to be
implemented on subsystem k. The set of allowed quantum
measurements consists of binary real qubit POVMs spaced on
the Bloch sphere according to quantization parameter (), or

{Tig(0)}|%,, where

(k)

- —sJa-Gn }

and @ = 20 (unless otherwise specified). After all subsystems
are measured, the network receives a reward of 1 if the correct
state has the largest posterior probability. That is, if p = p;=
for

j* = argmax;(p;(q,d)),

where d is the vector containing all previous measurement
results and p(q,d) is the updated probability after len(d)
rounds given the starting prior q.

Given the candidate state set, all remaining information
about the environment can be found from the updated prior
vector given the vector of previous measurement results d and
a length-n vector v where v, = 1 if subsystem k has already
been measured and O else. Thus, the environment before each
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Fig. 1. Probability of success for the optimal RLNN policy after 1000 training
iterations vs. the collective Helstrom measurement for tensor-products of pure
states when m = 2, n = 3. The neural network approximates the Helstrom
success probability, with quantization error from the action space contributing
to the difference.

round can be represented as s = (v,p(q,d)). The episode
is terminated when all subsystems have been measured, or
equivalently when v is the all-ones vector.

IV. NUMERICAL RESULTS FOR RL WITH PPO

For an initial test, we consider the special case of binary
discrimination (i.e. m = 2) between tensor products of pure
states such that pg-k) = \¢§k)> <w§k)| for all k£ € {1,...,n}
and j € {1,2}. In this case, the optimal collective (Helstrom)
success probability can be achieved through locally-adaptive
strategies [9], [15]. We randomly generate eleven trials with
n = 3 and order the trials according to increasing distin-
guishability measured by the Helstrom success probability.
For each trial, we compare the Helstrom success probability
with the neural network best performance, as shown in Fig. 1.
The neural network comes close to the Helstrom success
probability in each case, and we believe the gap is mainly
due to action space quantization.

An additional case where locally adaptive protocols are
strictly optimal has been found by Sasaki et. al in [26].
Consider a set of states S; = {p;}|72, and associated
probabilities {g;}|7_;. Suppose the known optimal POVM
for these is {II;}[7";. The set of n-subsystem product states
generated by S can be written as

S, & { épij
j=1

with corresponding probabilities defined as g;,. i, £ Qi, X
... X @;, . Then, the optimal POVM candidate state set S,, has
elements that can be written in tensor product form as:

n
Wiy, = QWi
=1

It immediately follows that the optimal probability of success
can be achieved using locally-adaptive protocols. The same
proof idea can also be used to extend that result to a broader

ie{l, ...,m}"},

0.8

0.4 - —m Optimal

—o— NN

Fig. 2. Performance of the RLNN policy after 1000 training iterations vs.
the optimal success probability as a function of the number of subsystems 7.
The RLNN approach has decreasing accuracy as the number of subsystems
n increases.

class of candidate states. That is, consider n sets of states
{pj(k)}Ly for k € {1,..,n} with associated probabilities
{g;}jL,. Let the optimal POVM for the k-th state set
be {H;k) 7Ly The state set S, = { @), pi,(is) | i
{1, ..., m}"} with corresponding prior probabilities ¢;,. ;, =
Qi, X ... X g;, then has an optimal POVM with elements

..., = Q.
j=1

Thus, locally-optimal strategies can also achieve the opti-
mal collective success probability for this extended class of
problems. This provides a useful test of the neural network
performance. We take the initial state set to be {p1,p2},
where the states are initially orthogonal depolarized states
with depolarizing parameter v = 0.3. Since the optimal local
POVM belongs to the allowed action set, there should be
no quantization loss. We train the neural network for 1000
iterations (using a custom learning rate schedule where the
learning rate starts at 5.5 x 10~ and decays by 0.95 every 10
iterations), and compare the neural network performance after
training to the optimal success probability. For the case of
relatively small subsystems n < 4, the neural network attains
or approximately attains the exact success probability. As the
subsystem number grows, the accuracy decreases, as depicted
in Fig. 2.

Finally, we evaluate the RLNN performance for some
tensor-product quantum states where the exact locally-optimal
success probability is unknown. In these cases, we use the
“Pretty Good Measurement” (PGM) as a benchmark. For a
given state set {p;}|7; and prior vector g, elements of the
PGM are given as:

m —-1/2 m
1o £ (quz) qJ‘Pj(quz)
{=1 {=1

The PGM is optimal in several cases, such as the symmetric
case with equiprobable states p; = U’"!p; (UT)] 1 and

> Mm

—-1/2
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Fig. 3. Histogram of difference in the success probability the RLNN policy
given 1000 training iterations and the PGM when n = 3 and m = 5. The
NN comes close to or outperforms the PGM in all trials.

um I [17] or the case where the square root of the
Gram matrix for weighted states {qg;p;} has equal diagonal
elements [26], [27]. This motivates the use of the PGM as
a benchmark. Additionally, we observe that the PGM can be
achieved adaptively if Z;"Zl gjp; can be written as a tensor
product of m qubit density matrices.

We generate ten trials, where each trial has a randomly
chosen (mixed) state set with m = 5 candidate states
and n = 3 subsystems. In most cases the RLNN success
probability Py, NN 1s significantly greater than the success
probability of the PGM, Py pgm (in the case where the
number of candidate states is reduced to m = 3, the NN no
longer outperforms the PGM [28]). A histogram of the success
probability difference is shown in Fig. 3.

V. PURE TENSOR PRODUCT CANDIDATE STATES

In the special case where m = 2, it has been shown [9], [15]
that locally-greedy algorithms are optimal for distinguishing
between pure tensor product states. This, however is not the
case when m > 2.

Theorem V.1. Denote by Pyuccig({p;j},q) the probability of
success when following a locally greedy strategy, and likewise
denote by Pyccopt the success probability for the optimal
collective measurement on the full quantum system. For m >
2, there exists at least one set of pure tensor product states
{pj}7ey with starting prior q such that Pswcc1g({pj},q) <
Psuce,opt ({05} @)

Proof- Consider as an example the case where n = 2 and
the candidate state set is symmetric with

ps 2 (0710) (ol @?)1)

N T
— (U ® U [00) (00| ((U ® U)J) ,

sin( cos( ")

where

PSUCC
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Fig. 4. Training curve (solid blue line) over the first 1000 iterations. The
final success probability after 2000 iterations is Psuce = 0.93 > Pyyec, 1g- This
approaches the conjectured optimal success probability for local strategies
of Paee = 0.93, represented by the dashed black line. However, there
remains a gap between the neural network performance and the best collective
measurement success probability FPsucc, opt = 0.97.

and ¢ = [1/3,1/3,1/3]. Since (U ® U)™ = I, the PGM
is optimal [17]. The corresponding probability of success is
then Pyuce, opt = %(3 + Qﬂ) ~ 0.971. Since both subsystems
are identical copies, there is no need to consider the order of
measurement.

The unique locally optimal measurement for the first
subsystem is the local PGM, that is, the PGM for states
{U70) (0| (UJ')T}~|?:1 with ¢ = [1/3,1/3,1/3]. The updated
probability vector after measuring the first subsystem and
obtaining measurement outcome dy will be p;(dy) = 264, +
%(1 — 0j,4,). From [27], [29], [30], we may verify that a
locally optimal measurement for the second subsystem given
the new prior is the PGM for states {U7|0) (0| (U7)T}|7™,
with probabilities ;(d1) = 326; 4, + 55(1 — 0;,4,) because
they satisfy the sufficient condition,

C

pj(di) =
(] (Uj)T(Zk Pr(d1)U710) (0| (Uj)T)

—1
2

U710)

for normalization constant C'. Note that, for the last subsystem,
any locally-optimal measurement will yield the same final
success probability, so it is not necessary to verify uniqueness
of this measurement. The resulting success probability is
Psucc, lg = %s hence Psucc, g < Psucc, opt- O

1) RLNN finds a better strategy: Given the demonstrated
reliable performance of our neural network when the number
of subsystems is small, aim to find whether the neural network
can outperform the locally-greedy strategy for the above
example. Given the symmetry of the candidate states, we
extend the set of allowed quantum measurements to include
SIC POVMs of the form:
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Fig. 5. Probability of success for SDP and RLNN when m = 2 and n =
3. For each trial, the RLNN success probability is computed by separately
training the neural network five times with 2000 iterations each. The error
bars represent the standard deviation in the final success probability over the
five independent trainings. In all trials, the gap between local and non-local
measurements is small.
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for ¢ € [0,...,Q — 1] for Q = 12. This is combined with the
set of binary projective measurements for () = 12 to form the
full measurement set.

The probability of success is plotted as a function of the
training iteration in Fig. 4. The training curve indicates rapid
learning and a final success probability of Py = 0.928,
which represents a significant improvement over the locally
greedy approach. This suggests that the optimal method is to
implement f[(Q— 1) on the first subsystem, which corresponds
to a rotated SIC POVM where each measurement outcome is
orthogonal to at least one candidate state. Then the second
subsystem is measured according to the Helstrom measure-
ment for two remaining candidate states, with Py, ~ 0.93.
Despite this improvement over the locally greedy method,
there remains a gap between the best local approach we know
and the optimal collective measurement.

VI. GAP BETWEEN LOCALLY OPTIMAL ALGORITHM AND
COLLECTIVE MEASUREMENT

Finally, we use RLNN to estimate the gap between the
best locally adaptive algorithm and the optimal collective
(non-local) measurement in more general cases where the
best locally adaptive algorithm is not otherwise known. The
probability of success for the optimal collective measurement
is closely approximated via semidefinite programming (SDP),
as introduced in [21].

The simulation setup for a given m and n is as follows:
for each trial, we randomly generate pure tensor product
candidate states and then apply depolarizing noise with a
randomly chosen noise parameter. The RLNN algorithm is
independently trained 5 times over 2000 iterations, and the
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0.6 "3 k)
8 <
Ay
0.55 4
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m SDP
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Fig. 6.  Probability of success for SDP and RLNN after 2000 training
iterations when m = 3, n = 3. For each trial, the RLNN success probability
is computed by separately training the neural network five times with 2000
iterations each. The error bars represent the standard deviation in the final
success probability over the five independent trainings. Compared to the case
where m = 2, there is greater variation in training results and a larger gap
between local and non-local measurements.

average final success probability is compared (with error bars)
to the optimal collective success probability found via SDP.
Results are plotted for m = 2, n = 3 in Figure 5 and for
m = 3, n = 3 in Figure 6, and indicate that the gap between
local and collective measurements increases with m.

VII. CONCLUSION

We apply RLNN to devise near-optimal locally-adaptive
measurement schemes for multiple state discrimination. We
provide preliminary results for the neural network performance
in cases where the locally-adaptive probability of success is
known, and show that the network can achieve good perfor-
mance when the total number of subsystems to be measured is
small. We show by counterexample that, unlike in the binary
case, adaptive locally greedy algorithms no longer achieve the
optimal collective success probability when all candidate states
are pure tensor product states. We also use RLNN to find an
improved, (less-greedy) locally-adaptive protocol and observe
that the gap between the optimal collective success probability
appears to persist for all locally-adaptive algorithms. Finally,
we use RLNN to estimate the gap between the optimal local
and optimal collective strategies in more general cases.
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