
Reinforcement Learning with Neural Networks for

Quantum Multiple Hypothesis Testing

Sarah Brandsen∗, Kevin D. Stubbs‡, and Henry D. Pfister†‡

∗Department of Physics, Duke University, Durham, North Carolina 27708, USA
†Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA

‡Department of Mathematics, Duke University, Durham, North Carolina 27708, USA

Email: {sarah.brandsen, kevin.stubbs, henry.pfister}@duke.edu

Abstract—Reinforcement learning with neural networks
(RLNN) has recently demonstrated great promise for many
problems, including some problems in quantum information
theory. In this work, we apply reinforcement learning to quantum
hypothesis testing, where one designs measurements that can
distinguish between multiple quantum states {ρj}|

m
j=1 while

minimizing the error probability. Although the Helstrom mea-
surement is known to be optimal when there are m = 2 states,
the general problem of finding a minimal-error measurement is
challenging. Additionally, in the case where the candidate states
correspond to a quantum system with many qubit subsystems,
implementing the optimal measurement on the entire system
may be impractical. In this work, we develop locally-adaptive
measurement strategies that are experimentally feasible in the
sense that only one quantum subsystem is measured in each
round. RLNN is used to find the optimal measurement protocol
for arbitrary sets of tensor product quantum states. Numerical
results for the network performance are shown. In special cases,
the neural network testing-policy achieves the same probability
of success as the optimal collective measurement.

Index Terms—quantum state discrimination, LOCC, neural
networks, reinforcement leraning, quantum hypothesis testing,
min-entropy

I. INTRODUCTION

The task of quantum hypothesis testing consists of finding

the optimal quantum measurement {Πj}|mj=1 to distinguish

between m candidate states {ρj}mj=1 with prior probabili-

ties {qj}mj=1. This can be applied to discrimination between

quantum coherent states [1] and also to the task of decoding

one of m codewords that has been sent through a known

noisy quantum channel [2], [3]. One important example of

locally adaptive multiple hypothesis testing protocols is the

Dolinar receiver, which uses an adaptive measurement scheme

to distinguish between m optical signals [4].

In the special case where m = 2, the optimal measurement

is called the Helstrom measurement [5] and is given by the

eigenvectors of the matrix M , q1ρ1 − q2ρ2. For the general

case, the optimal measurement is challenging to compute.

Although an analytic solution for the optimal measurement

is not known in general, semidefinite programming tech-

niques have been used to approach the problem of finding

the minimal-error measurement and computing the optimal

success probability [6], [7].

When the candidate states are high-dimensional (corre-

sponding to a quantum system composed of many qubit

subsystems), it may be experimentally difficult to implement

operations on all subsystems at once. Thus, we also focus

on finding optimal (or near-optimal) approaches that include

the experimentally desirable property of locality, where only

a single subsystem is measured in each round. We know that

dynamic programming can be used to recursively find the

optimal local approach [8]. However, even in the simplest case

where m = 2, the complexity grows like O(2nnQ), where n
is the number of qubit subsystems and Q is the number of

different local measurements considered [9].

A powerful alternative tool for developing optimal adap-

tive protocols is reinforcement learning with neural networks

(RLNN). In this process, an agent learns an optimized protocol

through repeated interaction with an environment. RLNN has

been successfully applied to problems in quantum information

theory such as generating error-correcting sequences [10].

While RLNN was introduced more than 20 years ago [11],

[12], interest in these methods was recently rekindled by its

remarkable success for atari games [13], [14]. This motivates

our use of RLNN to find optimal locally-adaptive measurement

protocols.

We provide preliminary results for the network performance

and demonstrate that the network can achieve optimal per-

formance in some special cases. Additionally, we prove by

counterexample that, in contrast to the binary case [9], [15],

locally-adaptive greedy strategies are not necessarily optimal

when all candidate states are pure. While we demonstrate that

the neural network is able to find a better local strategy, we

also conjecture that the gap between the optimal local strategy

and the optimal collective strategy persists.

Next, we compare the neural network performance to the

collective “Pretty Good Measurement” (PGM) [16] for general

tensor product quantum states, and demonstrate that, for a

large number of candidate states (m = 5), the neural network

exceeds the PGM success probability in most trials. Use

of the PGM as a benchmark is motivated by its optimality

in several important cases, including sufficiently symmetric

candidate states [17]–[19], and its relation to a least-squares

approximation [20]. Finally, we compare the neural network

performance to a semidefinite programming (SDP) technique

outlined in [21] in order to upper bound the gap between the

optimal local and optimal collective strategy for more general

cases.

1897978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020

Authorized licensed use limited to: Duke University. Downloaded on September 26,2020 at 20:17:25 UTC from IEEE Xplore.  Restrictions apply. 



II. REINFORCEMENT LEARNING

Each round of the reinforcement learning process involves

an agent choosing one action from an allowed action space,

implementing the action, and receiving a reward from the

environment. For a Markov decision process, the agent can

eventually learn to choose actions according to an optimal

policy that maximizes the expected future reward.

In the context of state discrimination, the environment is a

parameterized measurement protocol for the quantum system

of interest. The action space (denoted by A) is the set of

allowed quantum measurements and the reward equals the

indicator function of success at the end of the process (i.e.,

+1 for successful discrimination once all measurements are

completed and 0 otherwise). Denote by st the state of the

environment just before round t and let n be the total number

of rounds. The agent’s policy, πθ(at|st), is parameterized by θ
and equals the probability of selecting action at ∈ A in round

t conditioned on the state st of the environment.

We train the agent using the proximal policy optimization

(PPO) algorithm [22]. This algorithm optimizes the advantage

function

Aπ(st,at) =
n
∑

ℓ=t

γℓ−t
(

Eπθ
[r(sℓ, aℓ)

∣

∣st, at]− Eπθ
[r(sℓ, aℓ)

∣

∣st]
)

,

where r(s, a) is the average reward for taking action a in

state s and γ is a discount factor. Given a current state st, the

advantage function compares the expected reward of choosing

action at to the expected average reward for the policy

πθ(at|st). PPO optimizes a modified advantage function to

prevent rapid changes in the policy πθ. The modified objective

function is given by:

L(θ) , Et

[

min
(

Rt(θ)A
π(st, at),

clip(Rt(θ), 1− ǫ, 1 + ǫ)Aπ(st, at)
)]

where the ratio function Rt(θ) ,
πθ(at|st)
πθold

(at|st)
is a measure of

the change in the policy, ǫ is a hyperparameter, and

clip(x,min,max) ,











x if min ≤ x ≤ max

min if x < min

max otherwise.

The final objective function also has terms that allow the

neural network to estimate the value of each state. For these

details, we refer the interested reader to [22]. Results are

generated using the default PPO algorithm from the RLlib

package included in Ray version 0.7.6 [23], [24]. Only the

learning rate is tuned. The relevant hyperparameters are the

clipping parameter ǫ = 0.3, the discount factor γ = 0.99, and

the learning rate lr = 5× 10−5.

The neural network is fully connected and has an input

layer with m + n − 1 neurons which take the state s as

the input. The input layer feeds into two parallel sets of

subnetworks (each with two hidden layers of 256 neurons,

tanh activation functions, and each with their own linear output

layers.) The output layer of the first subnetwork consists of a

single neuron, and computes an estimate for the value a state.

The output layer of the second subnetwork has nQ neurons

(i.e. the number of allowed actions) and computes the policy,

π(a|s). See https://github.com/SarahBrandsen/RLNN-QSD for

numerical results and the source code used to obtain them.

III. DISCRIMINATION TASK AND STRUCTURE

We consider the task of deriving the minimum-error adap-

tive measurement protocol to distinguish between m tensor-

product quantum states {ρj}|mj=1 with prior probability vector

q where qj = Pr(ρ = ρj). Since each candidate state is

assumed to be a tensor product of n subsystems, it can be

written as

ρj =

n
⊗

k=1

ρ
(k)
j ,

where ρ
(k)
j is a qubit density matrix for all j ∈ [1, ...,m] and

all k ∈ [1, ..., n]. Thus, the quantum system ρ is composed of

n unentangled qubit subsystems.

We build an OpenAI gym environment [25] capable of

implementing local measurement algorithms. In each round,

the algorithm chooses the next subsystem j to measure as well

as which measurement to implement. Since all subsystems

are assumed to be qubits, re-measuring an already measured

subsystem is non-informative. To speed convergence, we in-

troduce a penalty of −0.3 from the environment if the agent

attempts re-measurement. Each element of the action space

is a pair (Π̂, k), indicating that measurement Π̂ is to be

implemented on subsystem k. The set of allowed quantum

measurements consists of binary real qubit POVMs spaced on

the Bloch sphere according to quantization parameter Q, or

{Π̂Q(ℓ)}|Qℓ=1, where

Π̂Q(ℓ) ,

{





( ℓ
Q )2 ℓ

Q

√

(1− ( ℓ
Q )2)

ℓ
Q

√

(1− ( ℓ
Q )2) 1− ( ℓ

Q )2



 ,





1− ( ℓ
Q )2 − ℓ

Q

√

(1− ( ℓ
Q )2)

− ℓ
Q

√

(1− ( ℓ
Q )2) ( ℓ

Q )2





}

and Q = 20 (unless otherwise specified). After all subsystems

are measured, the network receives a reward of 1 if the correct

state has the largest posterior probability. That is, if ρ = ρj∗

for

j∗ = argmaxj(pj(q,d)),

where d is the vector containing all previous measurement

results and p(q,d) is the updated probability after len(d)
rounds given the starting prior q.

Given the candidate state set, all remaining information

about the environment can be found from the updated prior

vector given the vector of previous measurement results d and

a length-n vector v where vk = 1 if subsystem k has already

been measured and 0 else. Thus, the environment before each
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Fig. 1. Probability of success for the optimal RLNN policy after 1000 training
iterations vs. the collective Helstrom measurement for tensor-products of pure
states when m = 2, n = 3. The neural network approximates the Helstrom
success probability, with quantization error from the action space contributing
to the difference.

round can be represented as s , (v, p(q,d)). The episode

is terminated when all subsystems have been measured, or

equivalently when v is the all-ones vector.

IV. NUMERICAL RESULTS FOR RL WITH PPO

For an initial test, we consider the special case of binary

discrimination (i.e. m = 2) between tensor products of pure

states such that ρ
(k)
j = |ψ(k)

j 〉 〈ψ(k)
j | for all k ∈ {1, ..., n}

and j ∈ {1, 2}. In this case, the optimal collective (Helstrom)

success probability can be achieved through locally-adaptive

strategies [9], [15]. We randomly generate eleven trials with

n = 3 and order the trials according to increasing distin-

guishability measured by the Helstrom success probability.

For each trial, we compare the Helstrom success probability

with the neural network best performance, as shown in Fig. 1.

The neural network comes close to the Helstrom success

probability in each case, and we believe the gap is mainly

due to action space quantization.

An additional case where locally adaptive protocols are

strictly optimal has been found by Sasaki et. al in [26].

Consider a set of states S1 , {ρj}|mj=1 and associated

probabilities {qj}|mj=1. Suppose the known optimal POVM

for these is {Πj}|mj=1. The set of n-subsystem product states

generated by S can be written as

Sn ,

{ n
⊗

j=1

ρij

∣

∣

∣ i ∈ {1, ...,m}n
}

,

with corresponding probabilities defined as qi1...in , qi1 ×
...× qin . Then, the optimal POVM candidate state set Sn has

elements that can be written in tensor product form as:

Πi1...in =

n
⊗

j=1

Πij .

It immediately follows that the optimal probability of success

can be achieved using locally-adaptive protocols. The same

proof idea can also be used to extend that result to a broader
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Fig. 2. Performance of the RLNN policy after 1000 training iterations vs.
the optimal success probability as a function of the number of subsystems n.
The RLNN approach has decreasing accuracy as the number of subsystems
n increases.

class of candidate states. That is, consider n sets of states

{ρj(k)}|mj=1 for k ∈ {1, .., n} with associated probabilities

{qj}|mj=1. Let the optimal POVM for the k-th state set

be {Π(k)
j }mj=1. The state set Sn ,

{
⊗n

j=1 ρij (ij)
∣

∣ i ∈
{1, ...,m}n

}

with corresponding prior probabilities qi1...in ,

qi1 × ...× qin then has an optimal POVM with elements

Πi1...in =
n

⊗

j=1

Π
(j)
ij
.

Thus, locally-optimal strategies can also achieve the opti-

mal collective success probability for this extended class of

problems. This provides a useful test of the neural network

performance. We take the initial state set to be {ρ1, ρ2},

where the states are initially orthogonal depolarized states

with depolarizing parameter γ = 0.3. Since the optimal local

POVM belongs to the allowed action set, there should be

no quantization loss. We train the neural network for 1000

iterations (using a custom learning rate schedule where the

learning rate starts at 5.5×10−5 and decays by 0.95 every 10

iterations), and compare the neural network performance after

training to the optimal success probability. For the case of

relatively small subsystems n ≤ 4, the neural network attains

or approximately attains the exact success probability. As the

subsystem number grows, the accuracy decreases, as depicted

in Fig. 2.

Finally, we evaluate the RLNN performance for some

tensor-product quantum states where the exact locally-optimal

success probability is unknown. In these cases, we use the

“Pretty Good Measurement” (PGM) as a benchmark. For a

given state set {ρj}|mj=1 and prior vector q, elements of the

PGM are given as:

ΠPGM
j ,

( m
∑

ℓ=1

qℓρℓ

)−1/2

qjρj

( m
∑

ℓ=1

qℓρℓ

)−1/2

.

The PGM is optimal in several cases, such as the symmetric

case with equiprobable states ρj = U j−1ρ1
(

U†
)j−1

and
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Fig. 3. Histogram of difference in the success probability the RLNN policy
given 1000 training iterations and the PGM when n = 3 and m = 5. The
NN comes close to or outperforms the PGM in all trials.

Um = I [17] or the case where the square root of the

Gram matrix for weighted states {qjρj} has equal diagonal

elements [26], [27]. This motivates the use of the PGM as

a benchmark. Additionally, we observe that the PGM can be

achieved adaptively if
∑m

j=1 qjρj can be written as a tensor

product of m qubit density matrices.

We generate ten trials, where each trial has a randomly

chosen (mixed) state set with m = 5 candidate states

and n = 3 subsystems. In most cases the RLNN success

probability Psucc, NN is significantly greater than the success

probability of the PGM, Psucc, PGM (in the case where the

number of candidate states is reduced to m = 3, the NN no

longer outperforms the PGM [28]). A histogram of the success

probability difference is shown in Fig. 3.

V. PURE TENSOR PRODUCT CANDIDATE STATES

In the special case where m = 2, it has been shown [9], [15]

that locally-greedy algorithms are optimal for distinguishing

between pure tensor product states. This, however is not the

case when m > 2.

Theorem V.1. Denote by Psucc,lg({ρj}, q) the probability of

success when following a locally greedy strategy, and likewise

denote by Psucc,opt the success probability for the optimal

collective measurement on the full quantum system. For m >
2, there exists at least one set of pure tensor product states

{ρj}|mj=1 with starting prior q such that Psucc,lg({ρj}, q) <
Psucc,opt({ρj}, q).

Proof- Consider as an example the case where n = 2 and

the candidate state set is symmetric with

ρj ,
(

U j |0〉 〈0| (U j)†
)⊗2

= (U ⊗ U)j |00〉 〈00|
(

(U ⊗ U)j
)†

,

where

U ,

(

cos( 2π3 ) − sin( 2π3 )
sin( 2π3 ) cos( 2π3 )

)
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Conjectured optimal local

Optimal collective

Fig. 4. Training curve (solid blue line) over the first 1000 iterations. The
final success probability after 2000 iterations is Psucc ≈ 0.93 > Psucc, lg. This
approaches the conjectured optimal success probability for local strategies
of Psucc = 0.93, represented by the dashed black line. However, there
remains a gap between the neural network performance and the best collective
measurement success probability Psucc, opt ≈ 0.97.

and q = [1/3, 1/3, 1/3]. Since (U ⊗ U)m = I, the PGM

is optimal [17]. The corresponding probability of success is

then Psucc, opt =
1
6 (3 + 2

√
2) ≈ 0.971. Since both subsystems

are identical copies, there is no need to consider the order of

measurement.

The unique locally optimal measurement for the first

subsystem is the local PGM, that is, the PGM for states

{U j |0〉 〈0| (U j)†}|3j=1 with q = [1/3, 1/3, 1/3]. The updated

probability vector after measuring the first subsystem and

obtaining measurement outcome d1 will be pj(d1) =
2
3δj,d1

+
1
6 (1 − δj,d1

). From [27], [29], [30], we may verify that a

locally optimal measurement for the second subsystem given

the new prior is the PGM for states {U j |0〉 〈0| (U j)†}|mj=1

with probabilities p̃j(d1) = 37
39δj,d1

+ 1
39 (1 − δj,d1

) because

they satisfy the sufficient condition,

pj(d1) =
C

〈0| (U j)†
(

∑

k p̃k(d1)U
j |0〉 〈0| (U j)†

)− 1

2

U j |0〉

for normalization constant C. Note that, for the last subsystem,

any locally-optimal measurement will yield the same final

success probability, so it is not necessary to verify uniqueness

of this measurement. The resulting success probability is

Psucc, lg = 4
5 , hence Psucc, lg < Psucc, opt.

1) RLNN finds a better strategy: Given the demonstrated

reliable performance of our neural network when the number

of subsystems is small, aim to find whether the neural network

can outperform the locally-greedy strategy for the above

example. Given the symmetry of the candidate states, we

extend the set of allowed quantum measurements to include

SIC POVMs of the form:

Π̂(ℓ) ,

{

R

(

ℓπ

(Q− 1)

)

|0〉 〈0|R†

(

ℓπ

(Q− 1)

)

,
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Fig. 5. Probability of success for SDP and RLNN when m = 2 and n =

3. For each trial, the RLNN success probability is computed by separately
training the neural network five times with 2000 iterations each. The error
bars represent the standard deviation in the final success probability over the
five independent trainings. In all trials, the gap between local and non-local
measurements is small.

R

(

ℓπ

(Q− 1)
+

2π

3

)

|0〉 〈0|R†

(

ℓπ

(Q− 1)
+

2π

3

)

,

R

(

ℓπ

(Q− 1)
+

4π

3

)

|0〉 〈0|R†

(

ℓπ

(Q− 1)
+

4π

3

)}

for ℓ ∈ [0, ..., Q − 1] for Q = 12. This is combined with the

set of binary projective measurements for Q = 12 to form the

full measurement set.

The probability of success is plotted as a function of the

training iteration in Fig. 4. The training curve indicates rapid

learning and a final success probability of Psucc = 0.928,

which represents a significant improvement over the locally

greedy approach. This suggests that the optimal method is to

implement Π̂(Q−1) on the first subsystem, which corresponds

to a rotated SIC POVM where each measurement outcome is

orthogonal to at least one candidate state. Then the second

subsystem is measured according to the Helstrom measure-

ment for two remaining candidate states, with Psucc ≈ 0.93.

Despite this improvement over the locally greedy method,

there remains a gap between the best local approach we know

and the optimal collective measurement.

VI. GAP BETWEEN LOCALLY OPTIMAL ALGORITHM AND

COLLECTIVE MEASUREMENT

Finally, we use RLNN to estimate the gap between the

best locally adaptive algorithm and the optimal collective

(non-local) measurement in more general cases where the

best locally adaptive algorithm is not otherwise known. The

probability of success for the optimal collective measurement

is closely approximated via semidefinite programming (SDP),

as introduced in [21].

The simulation setup for a given m and n is as follows:

for each trial, we randomly generate pure tensor product

candidate states and then apply depolarizing noise with a

randomly chosen noise parameter. The RLNN algorithm is

independently trained 5 times over 2000 iterations, and the
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Fig. 6. Probability of success for SDP and RLNN after 2000 training
iterations when m = 3, n = 3. For each trial, the RLNN success probability
is computed by separately training the neural network five times with 2000
iterations each. The error bars represent the standard deviation in the final
success probability over the five independent trainings. Compared to the case
where m = 2, there is greater variation in training results and a larger gap
between local and non-local measurements.

average final success probability is compared (with error bars)

to the optimal collective success probability found via SDP.

Results are plotted for m = 2, n = 3 in Figure 5 and for

m = 3, n = 3 in Figure 6, and indicate that the gap between

local and collective measurements increases with m.

VII. CONCLUSION

We apply RLNN to devise near-optimal locally-adaptive

measurement schemes for multiple state discrimination. We

provide preliminary results for the neural network performance

in cases where the locally-adaptive probability of success is

known, and show that the network can achieve good perfor-

mance when the total number of subsystems to be measured is

small. We show by counterexample that, unlike in the binary

case, adaptive locally greedy algorithms no longer achieve the

optimal collective success probability when all candidate states

are pure tensor product states. We also use RLNN to find an

improved, (less-greedy) locally-adaptive protocol and observe

that the gap between the optimal collective success probability

appears to persist for all locally-adaptive algorithms. Finally,

we use RLNN to estimate the gap between the optimal local

and optimal collective strategies in more general cases.
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