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Abstract—Discriminating between quantum states is a funda-
mental task in quantum information theory. Given two quantum
states, ρ+ and ρ

−
, the Helstrom measurement distinguishes

between them with minimal probability of error. However, finding
and experimentally implementing the Helstrom measurement
can be challenging for quantum states on many qubits. Due
to this difficulty, there is a great interest in identifying local
measurement schemes which are close to optimal. In the first
part of this work, we generalize previous work by Acin et
al. (Phys. Rev. A 71, 032338) and show that a locally greedy
(LG) scheme using Bayesian updating can optimally distinguish
between any two states that can be written as a tensor product
of arbitrary pure states. We then show that the same algorithm
cannot distinguish tensor products of mixed states with vanishing
error probability (even in a large subsystem limit), and introduce
a modified locally-greedy (MLG) scheme with strictly better
performance. In the second part of this work, we compare these
simple local schemes with a general dynamic programming (DP)
approach. The DP approach finds the optimal series of local
measurements and optimal order of subsystem measurement to
distinguish between the two tensor-product states. 1

Index Terms—quantum state discrimination, LOCC, Helstrom
measurement, dynamic programming, quantum hypothesis test-
ing

I. INTRODUCTION

Measurement lies at the heart of quantum mechanics. Since

the exact state of a quantum system cannot be directly ob-

served, measurement is the primary means of understanding

real world quantum systems [1]–[6]. Due to the inherent

uncertainty in quantum systems it is impossible to design

a quantum measurement capable of perfectly discriminating

between two non-orthogonal quantum states [7], [8]. The

optimal measurement for state discrimination was described by

Helstrom [9]. However, for large composite quantum systems,

the Helstrom measurement can be computationally expensive

to compute and impractical to implement experimentally be-

cause it may require simultaneously measuring all subsystems.

Several works in the literature have investigated techniques

that use only local operations to distinguish between two

possible qubit states. Given N copies of the state, the aim

is to achieve or approximate the Helstrom probability of

success. Such algorithms perform N rounds of measurement

where one local subsystem is measured in each round. The

1An extended version of this paper is accessible at: https://arxiv.org/abs/
1912.05087

next measurement then is chosen as a function of the past

measurement results. The simplest strategy, a “majority vote”,

has been shown to have probability of error which approaches

zero exponentially fast in N [10], [11]. For N copies of

mixed qubit states, tight bounds on the error rate of the

best locally adaptive protocol can be found [12]. Dynamic

programming has also been used to recursively minimize the

expected future error over all possible allowed measurements

and thus compute the optimal adaptive strategy for any given

family of measurements [11]. Finally, for the special case

where the states are tensor powers of pure states, it has been

shown that a greedy adaptive strategy, involving Bayesian

updates of the prior after each measurement result, is optimal

and achieves the same success probability as the collective

Helstrom measurement [10].

In this paper, we generalize known results and consider

the problem of discriminating between two arbitrary tensor

product quantum states (TPQS) with a focus on qubit and

qutrit subsystems. More specifically, we suppose that we are

given either ρ+ or ρ− with prior probability q and 1 − q

respectively, where ρ± = ρ
(1)
± ⊗ · · · ⊗ ρ

(N)
± and ρ

(j)
± is

potentially different for each j ∈ {1, · · · , N}. Thus, we

relax the constraint that all subsystems are identical copies,

and instead also consider cases where distinct subsystems

are different from each other. This problem is of practical

interest in quantum communications, where we might mod-

ulate a classical binary codeword into a TPQS in order to

transmit information through multiple uses of the channel, and

each subsystem could experience a (slightly) different channel

noise parameter. The received codeword set then consists of

non-orthogonal noisy TPQS, which may be distinguished by

locally adaptive methods. We consider three locally adap-

tive algorithms: a locally-greedy (LG) algorithm, a modified

locally-greedy (MLG) algorithm, and a more general dynamic

programming (DP) algorithm. The general DP algorithm we

introduce extends previous works to additionally optimize over

the order in which subsystems are measured.

In the special case where all subsystems are pure states, then

the order of measurement does not matter and the Bayesian

update-based strategy with locally-greedy measurements is

optimal. This generalizes the result in [10] mentioned above.

In the case where not all subsystems are pure, we show that in

general the probability of success is affected by the order in
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which the subsystems are measured. Thus, we need to optimize

over both the order in which the subsystems are measured

and the measurement implemented on each subsystem. Ad-

ditionally, for general TPQS, the optimal order depends on

the measurement outcomes and must be determined round-

by-round.

When the states are mixed, the locally-greedy algorithm is

not optimal and, in fact, performs worse than most nonadaptive

local strategies in the limit as N → ∞. We show that this poor

asymptotic performance arises from the local Helstrom mea-

surement becoming noninformative for sufficiently imbalanced

priors. To overcome this, we introduce a modified locally-

greedy adaptive strategy with strictly better performance.

We also discuss a dynamic programming-based strategy that

finds the optimal locally-adaptive strategy, generalizing the

technique introduced in [11] to include optimizing over the

order in which subsystems are measured. This dynamic pro-

gramming approach is the optimal locally-adaptive technique

subject to some simple constraints and includes the locally-

greedy techniques as a special case of itself.

Finally, we consider the performance of ternary and binary

projective measurements over qutrit states and show that,

in general, multiple-outcome measurements are needed for

optimality. This holds even for a binary state discrimination

problem. Numerical results are provided for all these scenarios

and the source code used to generate them is available at https:

//github.com/SarahBrandsen/AdaptiveStateDiscrimination.

II. LOCALLY GREEDY ALGORITHMS

First, we describe a simple locally-greedy algorithm, which

was called the “locally optimal locally adaptive” algorithm

in [11]. Suppose we are given candidate states ρ± =
⊗N

j=1 ρ
(j)
± and prior q = Pr(ρ = ρ+). By construction,

the Helstrom measurement for ρ+, ρ−, and q is the optimal

measurement for distinguishing between the two candidate

states. If we are only given access to subsystem j and the prior

p = Pr(ρ(j) = ρ
(j)
+

∣

∣ past) conditioned on past measurement

results, then the locally-optimal measurement is the (local)

Helstrom measurement for ρ
(j)
+ , ρ

(j)
− , defined as:

Π(p, j) ,
∑

|v〉∈V(p,j)

|v〉 〈v| where (1)

V(p, j) ,
{

|v〉 : M(p, j) |v〉 = λ |v〉 , λ ≥ 0
}

(2)

and where M(p, j) , (1− p)ρ
(j)
− − pρ

(j)
+ .

Round j of the locally-greedy algorithm consists of mea-

suring subsystem j using the local Helstrom measurement for

the current prior, then updating the prior via Bayes Theorem

based on the measurement result. Hence, all information from

previous measurements is compressed into the updated prior,

and the adaptivity of the locally-greedy algorithm comes

exclusively from these prior updates.

The set of allowed measurement outcomes in each round

are {+,−}, and the outcome of the kth round is denoted

by dk ∈ {+,−}. All measurement results before the j-th

round are denoted d1:j−1 (or more succinctly d[j−1] with

[j] , {1, . . . , j}). Finally, the updated prior given these

measurement is denoted by pj = Pj(q,d[j−1]) and the locally-

greedy algorithm is equivalent to implementing Π(pj , j) in

round j. At the end of the algorithm, the state is decoded

as ρ+ if pN+1 ≥ 1
2 and ρ− else, such that the total success

probability is max(pN+1, 1− pN+1).
In the special case where ρ± is a tensor product of arbitrary

pure states, we prove analytically that the locally-greedy

algorithm achieves the same success probability as the optimal

Helstrom measurement.

Theorem 2.1: Let Ps,h(q, ρ±) and Ps,lg(q, ρ±) denote the

probabilities of successful state discrimination, given initial

prior P(ρ = ρ+) = q, using the joint N -system Helstrom

measurement and the locally greedy measurement technique,

respectively. If ρ+ and ρ− are pure states, i.e., ρ
(j)
± =

|±θj〉 〈±θj | where |θ〉 , cos θ
2 |0〉 + sin θ

2 |1〉, for some

θj ∈ (0, 2π) for every j ∈ [N ], then

Ps,h(q, ρ±) = Ps,lg(q, ρ±) (3)

=
1

2

(

1 +
√

1− 4q(1− q)ΠN
j=1 cos

2(θj)
)

. (4)

Sketch of Proof: The strategy is to prove the result for N = 2
and then extend via induction for arbitrary N . �

Plateau with locally greedy algorithm: When ρ± are tensor

products of depolarized pure states, for some depolarizing

parameter γ, we observe that the average probability of

success (asymptotically) approaches a value strictly less than 1
when the depolarizing parameter is nonzero. Thus, despite the

optimal performance of the locally-greedy algorithm for pure

states, it is no longer even asymptotically optimal for mixed

states (and can be outperformed by nonadaptive strategies as

N → ∞).

The experimental setup is as follows. A set of 1000

candidate pure states is generated by sampling θt,± from

the continuous uniform distribution on the interval [0, π] for

t ∈ [1, .., 1000] and forming the corresponding quantum states

where |θ〉 , cos θ
2 |0〉+ sin θ

2 |1〉. Then, for every γ in the set

of allowed depolarizing parameters, {0.01, 0.05, 0.1, 0.3} and

for every N ∈ [1, 2, ..., 12], the candidate states for the t-th
trial are given by

ρ±(γ, t,N) ,
(

(1− γ) |θ±,t〉 〈θ±,t|+
γ

2
I
)⊗N

.

Since each candidate state consists of N identical subsystems,

the locally greedy method amounts to performing Helstrom

measurements based on the updated prior over N copies of

the same state. We plot the Monte Carlo average performance,

Psucc(N, γ), for fixed N and γ. The results of this computa-

tional experiment are shown in Fig. 1. In the case where γ = 0,

the probability of success must approach 1 with increasing

N because the locally greedy approach recovers the optimal

Helstrom performance (see Theorem 2.1).

Next, we provide a result that explains the performance

plateaus in Fig. 1 and then we define a modified locally greedy

approach that overcomes this sub-optimality.
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Fig. 1. Comparison of probability of success for varying γ in the case of
identical copies, as a function of the number of available systems. Based
on the computational results, we observe that as the depolarizing parameter
increases, the probability of success levels off for large N .

Theorem 2.2: Consider the problem of distinguishing be-

tween two distinct single-qubit states ρdep
+ and ρdep

− , with prior

probabilities q and 1 − q respectively. Assume that ρdep+ and

ρdep− are depolarized pure states2 |ψ+〉 〈ψ+|, |ψ−〉 〈ψ−| such

that

γ± ∈ [0, 1] and ρdep± , (1− γ±) |ψ±〉 〈ψ±|+
γ±
2
I.

For any choice of γ±, q ∈ [0, 1] the probability of correctly

distinguishing ρdep+ and ρdep− is denoted by P dep
succ and satisfies

P dep
succ ≤ max

{

1− q, q, 1−
γmin

2

}

, (5)

where γmin , min(γ+, γ−).
This theorem implies that once the prior is updated so that

either q or 1 − q is greater than 1 − γ
2 , the locally greedy

algorithm is stuck making noninformative measurements on all

subsequent subsystems. Therefore the error does not approach

0 as N → ∞. Similarly, it can be shown that the locally greedy

method also exhibits plateaus in more general scenarios. These

arise from the fact that the Helstrom measurement becomes

trivial, such that Π(p, j) ∈ {0, I}, when max(q, 1−q) ≥ 1− γ
2 .

III. MODIFIED LOCALLY GREEDY ALGORITHMS

The poor asymptotic behaviour of the locally-greedy algo-

rithm provides motivation for our introduction of a modified

locally greedy method (MLG method) with better asymptotic

properties. In particular, the structure is identical to the locally-

greedy algorithm except that a “modified Helstrom” measure-

ment is implemented in each round. The modified Helstrom

measurement is defined by:

Π∗(p, j) ,











Π(p, j) if Π(p, j) /∈ {I, 0}

|vλmax
〉 〈vλmax

| if Π(p, j) = 0

I− |vλmin
〉 〈vλmin

| if Π(p, j) = I,

2Note that an arbitrary qubit state (density matrix) can always be expressed
as a pure state passed through a depolarizing channel, because this procedure
can define any state in the Bloch sphere [7].
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Fig. 2. Comparison of probability of success for varying γ in the case of
identical copies, as a function of the number of available systems using the
MLG algorithm. We observe that as the depolarizing parameter increases, the
probability of success no longer levels off for large N .

where λmax , maxλ
{

λ
∣

∣

(

(1−p)ρ
(j)
− −pρ

(j)
+

)

|vλ〉 = λ |vλ〉
}

and λmin , minλ
{

λ
∣

∣

(

(1− p)ρ
(j)
− − pρ

(j)
+

)

|vλ〉 = λ |vλ〉
}

.

Whenever the Helstrom measurement is nontrivial, the

modified Helstrom measurement is equivalent and thus locally-

optimal by definition. In the case where the Helstrom measure-

ment is trivial, it can be shown that any other measurement and

outcome would lead to identical posterior-based decoding (i.e.

any measurement is locally optimal). The modified Helstrom

measurement takes advantage of this degeneracy to create a

more informative measurement by separating out the projector

that is most strongly predictive of the less-likely candidate

state.

For any TPQS ρ± and any q, denote by Ps,mlg(q, ρ±)
(respectively, Ps,lg(q, ρ±)) the probability of successfully dis-

tinguishing the states via the MLG algorithm (LG algorithm).

It can be shown that, for any ρ± and any q ∈ [0, 1], we have

Ps,mlg ≥ Ps,lg . Thus, the MLG algorithm is always at least

as good as the LG algorithm. Additionally, for any ρ±, it

follows that Ps,mlg(ρ±) → 1 as the number of subsystems

j such that ρ
(j)
+ 6= ρ

(j)
− approaches infinity. Thus, the MLG

algorithm no longer exhibits an asymptotic plateau in the

success probability, and this is illustrated in Fig. 2.

IV. DYNAMIC-PROGRAMMING ALGORITHMS

The dynamic programming (DP) algorithm works back-

wards to recursively compute an expected future risk function

RS : [0, 1]×S → [0, 1], where S denotes the set of subsystem

indices that are yet to be measured. The domain corresponds to

the current updated prior and unmeasured subsystems and the

codomain is the expected probability of state discrimination

error given that an optimal locally adaptive algorithm is

applied in all remaining rounds. For each round, DP generates

the optimal choice of the next subsystem to be measured

and the optimal measurement to implement (given an allowed

action set.)

Now, we introduce some notation for purposes of defining

the expected risk function. Let σ be the ordering permutation
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Authorized licensed use limited to: Duke University. Downloaded on September 26,2020 at 20:21:35 UTC from IEEE Xplore.  Restrictions apply. 



such that, at round j ∈ {1, . . . , N}, the next subsystem

measured is σ(j). The algorithm must additionally determine

the chosen measurement action aσ(j) ∈ A where A is the

set of allowed measurement POVMs. The measurement result

upon executing the action can take on values dσ(j) ∈ D, where

D is the space containing possible outcomes for the chosen

action set. For example, if A contains projective measurements

on qubits, then D = {±1}. Then at round j, the past

actions and results are recorded into the vectors a
σ
[j−1] =

(aσ(1), . . . ,aσ(j−1)) and d
σ
[j−1] = (dσ(1), . . . , dσ(j−1)) re-

spectively.

Formally, at round j,

Sj , Sj−1 \ {σ(j − 1)} (6)

= [N ] \ σ([j − 1]). (7)

For the case S = ∅, one can make a hard decision on the

updated prior pN , Pσ
N (q,aσ[N ],d

σ
[N ]), i.e., by comparing it

to 0.5. Hence

R∅ (pN ) = min(pN , 1− pN ), (8)

For the general case S 6= ∅ and j = N − |S| + 1, N − |S|
measurements have been performed. The goal is to choose

the best subsystem σ(j) to be measured during the j-th step

in order to minimize the expected error probability assuming

optimal future decisions. Thus, we have

RS

(

pN−|S|

)

= min
(k,ak)∈S×A

∑

dk∈D

P

(

dk

∣

∣

∣

∣

pN−|S|, ak

)

×RS\{k}

(

PN−|S|+1

(

pN−|S|,ak, dk

)

)

, (9)

where the optimal subsystem and action pairing are thus those

that achieve the minimum in the above equation. The DP

algorithm optimizes over all other locally-adaptive algorithms

with the same allowed measurement set, and thus is guaranteed

to perform at least as well as the LG and MLG algorithms

when the action space is over all binary POVMs.

Effect of ordering on success probability: One general

question is whether subsystem ordering affects the probability

of success when optimization is done over all “reasonable”

adaptive protocols. We address the question of ordering by first

demonstrating analytically that ordering can make a difference

for a specific subset of candidate states when N = 2. Consider

candidate states of the form:

ρ+ =

(

1− x 0
0 x

)

⊗ |θ〉 〈θ| ,

ρ− =

(

x 0
0 1− x

)

⊗ |−θ〉 〈θ| .

Measuring the subsystems in the best order (diagonal ma-

trices first followed by |±θ〉 〈±θ|) is equivalent to updating

the prior from q = 1
2 to x and then implementing a Helstrom

measurement on the second subsystem with the updated prior.

The resulting probability of success is optimal and performs

as well as a composite Helstrom measurement on both subsys-

tems, namely, Psucc,best =
1
2 (1 +

√

1− 4(1− x)x cos2(2θ)).
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Fig. 3. Comparison of probabilities Psucc,best(N = 3, γ) and
Psucc,worst(N = 3, γ) as a function of the depolarising parameter γ over
1000 trials. Although Psucc,best(N = 3, γ) 6= Psucc,worst(N = 3, γ), the
relative difference is small.

Measuring in the reverse order, the probability of success is

Psucc,worst = max{x, 1 − x, 12 (1 +
√

1− 1
2 cos

2(2θ))} given

that the diagonal subsystems are always optimally measured

in the computational basis regardless of previous information.

Thus, there is, in general, a difference between the best and

worst ordering.

More generally, we show that a small but nontrivial differ-

ence persists for more general tensor product states under the

DP algorithm. The experimental protocol involves taking 1000

random trials where ρ̂
(j)
± are all real qubit states. The set of

measurements Aqubit is taken to be the standard action space

of real orthogonal projectors [11]

Aqubit ,

{

{|φ〉 〈φ| ,
∣

∣φ⊥
〉 〈

φ⊥
∣

∣} : φ ∈
[

0,
π

2

]}

, (10)

where we quantize φ into Qφ = 128 equally spaced points.

For each N and γ considered, we then find the average

success probability in two distinct cases– first, for the “best”

ordering (the standard DP algorithm) and second for the

“worst” ordering (where the risk function is maximized with

respect to subsystem index k but still minimized with respect

to the action ak).

We plot Psucc,order(N = 3, γ) as a function of γ in

Fig. 3 and we also compare the difference Psucc,diff(N, γ) ,
Psucc,best(N, γ) − Psucc,worst(N, γ) for N ∈ {3, 4, 5, 6, 7} in

Fig. 4. From these results, we observe that the difference in

probability of success with respect to ordering is quite small

but persists even when using the DP algorithm.

Insufficiency of binary projective measurements: Finally, we

investigate whether adaptive binary projective measurements

are always sufficient for general quantum states. This question

is motivated in part by recalling that in the special case when

ρ± are both pure, Theorem 2.1 shows that the optimal adaptive

strategy consists of binary projective measurements. To this

aim, we define an action space A to be sufficient for state

space H if and only if for all ρ± ∈ H and q ∈ [0, 1],

Psucc,A(q, ρ±) = Psucc,Aall
(q, ρ±),

1936
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Fig. 4. Difference in maximum and minimum probability of success,
Psucc,diff(N, γ), as a function of the depolarizing parameter γ over 1000
trials for N = 3, 4, 5, 6, 7.

where Aall is the set of all quantum measurements of dimen-

sion dim(ρ±) and Psucc,A(q, ρ±) is the probability of success

of the DP algorithm for a given action space A.

We show by example that binary projective measurements

are not sufficient for general state spaces. To this aim, we

define Hqutrit to be the space of depolarized, real qutrit

states and define the action space of real binary (ternary)

measurements as Ab (At).

We fix N = 3 and randomly generate 1000 sets of pure

TPQS candidate states, where each subsystem is a qutrit. Then

for each depolarizing parameter γ, we compute the average

success probability of four separate methods: use both the best

and worst ordering in combination with both binary (A = Ab)

and ternary (A = At) action spaces. Results for all four

methods are shown in Fig. 5. The difference between the

remaining three methods and the ternary best-ordering method

(Pdiff,order(γ,A) = Psucc,best(γ,At) − Psucc,order(γ,A)) is

shown in Fig. 6. We observe that the best ternary ordering is

better than best binary ordering and again the ordering affects

performance. From this, we conjecture that, for any action

space and any adaptive approach, the order of subsystem

measurement will affect the success probability. It remains

an open question whether it is sufficient to consider d rank-

1 orthogonal projectors for a state space Hd containing d-

dimensional real quantum states.

V. CONCLUSION

In this work, we investigated simple locally-greedy and

modified locally-greedy algorithms as well as more general

dynamic programming algorithms for quantum state discrimi-

nation when the given states are tensor products of N arbitrary

qubit or qutrit states. We prove analytically that, when the

individual subsystems are pure states, the simple locally-

greedy algorithm achieves the optimal performance of the joint

N -system Helstrom measurement. For the scenario where each

subsystem contains arbitrary qubit states, we demonstrate a

plateau in the probability of success attained by the locally-

greedy algorithm with increasing N . The reason for this
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Fig. 5. The average probability of success for the best and worst ordering
using both ternary and binary projective measurements for qutrit product states
when N = 3. Results are averaged over 1000 trials.
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Fig. 6. Loss in average success probability for the various methods relative
to ternary best, namely, Pdiff,order(γ,A) as a function of γ when N = 3.
Results are averaged over 1000 trials.

plateau is found and an explicit bound is derived for the

success probability as a function of the channel depolarizing

parameter and initial prior. Based on these results, a modified

locally-greedy algorithm is introduced with strictly better

performance and its state discrimination becomes perfect in

the large N limit.

For the general DP algorithm, we show that ordering

of subsystems affects the performance when the individual

subsystems have distinct states. For qutrit states, we show

that binary projective measurements are inadequate to achieve

optimal performance.

ACKNOWLEDGMENT

The authors would like to thank Iman Marvian for helpful

discussions. The work of Brandsen, Rengaswamy, and Pfister

was supported in part by the National Science Foundation

(NSF) under Grant No. 1908730 and 1910571. Any opinions,

findings, conclusions, and recommendations expressed in this

material are those of the authors and do not necessarily reflect

the views of these sponsors.

1937

Authorized licensed use limited to: Duke University. Downloaded on September 26,2020 at 20:21:35 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] A. Peres, Quantum theory: Concepts and methods, vol. 57. Springer
Science & Business Media, 2006.

[2] J. Renes, R. Blume-Kohout, A. Scott, and C. Caves, “Symmetric infor-
mationally complete quantum measurements,” Journal of Mathematical

Physics, vol. 45, 06 2004.
[3] A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini, and P. Perinotti,

“Optimal quantum tomography of states, measurements, and transfor-
mations,” Phys. Rev. Lett., vol. 102, p. 010404, 2009.

[4] M. Dall’Arno, S. Brandsen, F. Buscemi, and V. Vedral, “Device-
independent tests of quantum measurements,” Phys. Rev. Lett., vol. 118,
p. 250501, 2017.

[5] P. Busch, “Quantum states and generalized observables: A simple proof
of gleason’s theorem,” Phys. Rev. Lett., vol. 91, p. 120403, 2003.

[6] R. W. Spekkens, “Contextuality for preparations, transformations, and
unsharp measurements,” Phys. Rev. A, vol. 71, p. 052108, 2005.

[7] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information: 10th Anniversary Edition. New York, NY, USA: Cambridge
University Press, 10th ed., 2011.

[8] N. Gisin, “Quantum cloning without signaling,” Physics Letters A,
vol. 242, pp. 1–3, 1998.

[9] C. W. Helstrom, “Quantum detection and estimation theory,” Journal of

Statistical Physics, vol. 1, no. 2, pp. 231–252, 1969.
[10] A. Acín, E. Bagan, M. Baig, L. Masanes, and R. Muñoz Tapia,

“Multiple-copy two-state discrimination with individual measurements,”
Phys. Rev. A, vol. 71, p. 032338, 2005.

[11] B. L. Higgins, A. C. Doherty, S. D. Bartlett, G. J. Pryde, and H. M.
Wiseman, “Multiple-copy state discrimination: Thinking globally, acting
locally,” Phys. Rev. A, vol. 83, p. 052314, 2011.

[12] J. Calsamiglia, J. I. de Vicente, R. Muñoz Tapia, and E. Bagan, “Local
discrimination of mixed states,” Phys. Rev. Lett., vol. 105, p. 080504,
2010.

1938

Authorized licensed use limited to: Duke University. Downloaded on September 26,2020 at 20:21:35 UTC from IEEE Xplore.  Restrictions apply. 


