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Abstract—Discriminating between quantum states is a funda-
mental task in quantum information theory. Given two quantum
states, p+ and p_, the Helstrom measurement distinguishes
between them with minimal probability of error. However, finding
and experimentally implementing the Helstrom measurement
can be challenging for quantum states on many qubits. Due
to this difficulty, there is a great interest in identifying local
measurement schemes which are close to optimal. In the first
part of this work, we generalize previous work by Acin et
al. (Phys. Rev. A 71, 032338) and show that a locally greedy
(LG) scheme using Bayesian updating can optimally distinguish
between any two states that can be written as a tensor product
of arbitrary pure states. We then show that the same algorithm
cannot distinguish tensor products of mixed states with vanishing
error probability (even in a large subsystem limit), and introduce
a modified locally-greedy (MLG) scheme with strictly better
performance. In the second part of this work, we compare these
simple local schemes with a general dynamic programming (DP)
approach. The DP approach finds the optimal series of local
measurements and optimal order of subsystem measurement to
distinguish between the two tensor-product states. '

Index Terms—quantum state discrimination, LOCC, Helstrom
measurement, dynamic programming, quantum hypothesis test-
ing

I. INTRODUCTION

Measurement lies at the heart of quantum mechanics. Since
the exact state of a quantum system cannot be directly ob-
served, measurement is the primary means of understanding
real world quantum systems [1]-[6]. Due to the inherent
uncertainty in quantum systems it is impossible to design
a quantum measurement capable of perfectly discriminating
between two non-orthogonal quantum states [7], [8]. The
optimal measurement for state discrimination was described by
Helstrom [9]. However, for large composite quantum systems,
the Helstrom measurement can be computationally expensive
to compute and impractical to implement experimentally be-
cause it may require simultaneously measuring all subsystems.

Several works in the literature have investigated techniques
that use only local operations to distinguish between two
possible qubit states. Given N copies of the state, the aim
is to achieve or approximate the Helstrom probability of
success. Such algorithms perform N rounds of measurement
where one local subsystem is measured in each round. The
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next measurement then is chosen as a function of the past
measurement results. The simplest strategy, a “majority vote”,
has been shown to have probability of error which approaches
zero exponentially fast in N [10], [11]. For N copies of
mixed qubit states, tight bounds on the error rate of the
best locally adaptive protocol can be found [12]. Dynamic
programming has also been used to recursively minimize the
expected future error over all possible allowed measurements
and thus compute the optimal adaptive strategy for any given
family of measurements [11]. Finally, for the special case
where the states are tensor powers of pure states, it has been
shown that a greedy adaptive strategy, involving Bayesian
updates of the prior after each measurement result, is optimal
and achieves the same success probability as the collective
Helstrom measurement [10].

In this paper, we generalize known results and consider
the problem of discriminating between two arbitrary tensor
product quantum states (TPQS) with a focus on qubit and
qutrit subsystems. More specifically, we suppose that we are
given either p; or p_ with prior probability ¢ and 1 — ¢
respectively, where py = p(il) R ® p(iN) and p(jz) is
potentially different for each ;7 € {1,---,N}. Thus, we
relax the constraint that all subsystems are identical copies,
and instead also consider cases where distinct subsystems
are different from each other. This problem is of practical
interest in quantum communications, where we might mod-
ulate a classical binary codeword into a TPQS in order to
transmit information through multiple uses of the channel, and
each subsystem could experience a (slightly) different channel
noise parameter. The received codeword set then consists of
non-orthogonal noisy TPQS, which may be distinguished by
locally adaptive methods. We consider three locally adap-
tive algorithms: a locally-greedy (LG) algorithm, a modified
locally-greedy (MLG) algorithm, and a more general dynamic
programming (DP) algorithm. The general DP algorithm we
introduce extends previous works to additionally optimize over
the order in which subsystems are measured.

In the special case where all subsystems are pure states, then
the order of measurement does not matter and the Bayesian
update-based strategy with locally-greedy measurements is
optimal. This generalizes the result in [10] mentioned above.
In the case where not all subsystems are pure, we show that in
general the probability of success is affected by the order in
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which the subsystems are measured. Thus, we need to optimize
over both the order in which the subsystems are measured
and the measurement implemented on each subsystem. Ad-
ditionally, for general TPQS, the optimal order depends on
the measurement outcomes and must be determined round-
by-round.

When the states are mixed, the locally-greedy algorithm is
not optimal and, in fact, performs worse than most nonadaptive
local strategies in the limit as N — co. We show that this poor
asymptotic performance arises from the local Helstrom mea-
surement becoming noninformative for sufficiently imbalanced
priors. To overcome this, we introduce a modified locally-
greedy adaptive strategy with strictly better performance.

We also discuss a dynamic programming-based strategy that
finds the optimal locally-adaptive strategy, generalizing the
technique introduced in [11] to include optimizing over the
order in which subsystems are measured. This dynamic pro-
gramming approach is the optimal locally-adaptive technique
subject to some simple constraints and includes the locally-
greedy techniques as a special case of itself.

Finally, we consider the performance of ternary and binary
projective measurements over qutrit states and show that,
in general, multiple-outcome measurements are needed for
optimality. This holds even for a binary state discrimination
problem. Numerical results are provided for all these scenarios
and the source code used to generate them is available at https:
/lgithub.com/SarahBrandsen/AdaptiveStateDiscrimination.

II. LOCALLY GREEDY ALGORITHMS

First, we describe a simple locally-greedy algorithm, which
was called the “locally optimal locally adaptive” algorithm
in [11]. Suppose we are given candidate states pp =
®§V:1 pgg) and prior ¢ = Pr(p = py). By construction,
the Helstrom measurement for p,, p_, and ¢ is the optimal
measurement for distinguishing between the two candidate
states. If we are only given access to subsystem j and the prior
p = Pr(p(j) = p$)| past) conditioned on past measurement
results, then the locally-optimal measurement is the (local)

Helstrom measurement for psrj), (_J) defined as:

>

[v)eV(p.J)
Vp,i) 2 {[0): Mp.g) o) = Aoy, Az 0} @)

and where M (p,j) = (1 —p)p(_j) - ppg).

Round j of the locally-greedy algorithm consists of mea-
suring subsystem j using the local Helstrom measurement for
the current prior, then updating the prior via Bayes Theorem
based on the measurement result. Hence, all information from
previous measurements is compressed into the updated prior,
and the adaptivity of the locally-greedy algorithm comes
exclusively from these prior updates.

The set of allowed measurement outcomes in each round
are {+,—}, and the outcome of the kth round is denoted
by di € {+,—}. All measurement results before the j-th

(p,j) = |v) (v| where (1)

round are denoted dj.;—; (or more succinctly dj;_;) with
[j] & {1,...,5}). Finally, the updated prior given these
measurement is denoted by p; = P;(q,d[;—_1)) and the locally-
greedy algorithm is equivalent to implementing II(p;,j) in
round j. At the end of the algorithm, the state is decoded
as py if py41 > % and p_ else, such that the total success
probability is max(pNH, 1-— pNJrl).

In the special case where p. is a tensor product of arbitrary
pure states, we prove analytically that the locally-greedy
algorithm achieves the same success probability as the optimal
Helstrom measurement.

Theorem 2.1: Let Psy(q, p+) and Py 4(q, p+) denote the
probabilities of successful state discrimination, given initial
prior P(p = py) = ¢, using the joint N-system Helstrom
measurement and the locally greedy measurement technique,
respectively. If p;, and p_ are pure states, i.e., p(i]) =
|£0;) (£6;] where [0) £ cos%|0) + sing|[1), for some
6; € (0,2m) for every j € [N], then

Ps,h(Qa Pi) = Ps,lg(vai) 3)
1
=3 (1 + \/1 —4q(1 — q)H;\[:1 COSQ(Hj)) . @

Sketch of Proof: The strategy is to prove the result for N = 2
and then extend via induction for arbitrary N. ]

Plateau with locally greedy algorithm: When py are tensor
products of depolarized pure states, for some depolarizing
parameter -y, we observe that the average probability of
success (asymptotically) approaches a value strictly less than 1
when the depolarizing parameter is nonzero. Thus, despite the
optimal performance of the locally-greedy algorithm for pure
states, it is no longer even asymptotically optimal for mixed
states (and can be outperformed by nonadaptive strategies as
N — o).

The experimental setup is as follows. A set of 1000
candidate pure states is generated by sampling 6, 4 from
the continuous uniform distribution on the interval [0, x| for
t € [1,..,1000] and forming the corresponding quantum states
where [0) £ cos 4 |0) +sin & |1). Then, for every 7 in the set
of allowed depolarizing parameters, {0.01,0.05,0.1,0.3} and
for every N € [1,2,...,12], the candidate states for the ¢-th
trial are given by

QRN
pe(rt,N) 2 (1 =) 0.0) (0ol + 2 7)

Since each candidate state consists of [V identical subsystems,
the locally greedy method amounts to performing Helstrom
measurements based on the updated prior over N copies of
the same state. We plot the Monte Carlo average performance,
Py (N, ), for fixed N and . The results of this computa-
tional experiment are shown in Fig. 1. In the case where v = 0,
the probability of success must approach 1 with increasing
N because the locally greedy approach recovers the optimal
Helstrom performance (see Theorem 2.1).

Next, we provide a result that explains the performance
plateaus in Fig. 1 and then we define a modified locally greedy
approach that overcomes this sub-optimality.
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Fig. 1. Comparison of probability of success for varying « in the case of
identical copies, as a function of the number of available systems. Based
on the computational results, we observe that as the depolarizing parameter
increases, the probability of success levels off for large N.

Theorem 2.2: Consider the problem of distinguishing be-
tween two distinct single-qubit states pi_ep and p*P, with prior
probabilities ¢ and 1 — ¢ respectively. Assume that piep and
p2P are depolarized pure states? |, ) (1|, [1_) (1_| such
that

75 €[0,1] and PP 2 (1 - ye) i) (e + 1.

For any choice of 74, ¢ € [0,1] the probability of correctly
distinguishing p(}fp and p®°P is denoted by PP and satisfies

succ

Pscilecpc)sgmax{17Q7Qa17%#}v (5)
where Ymin = min(v4,v_).

This theorem implies that once the prior is updated so that
either ¢ or 1 — ¢ is greater than 1 — 3, the locally greedy
algorithm is stuck making noninformative measurements on all
subsequent subsystems. Therefore the error does not approach
0 as N — oo. Similarly, it can be shown that the locally greedy
method also exhibits plateaus in more general scenarios. These
arise from the fact that the Helstrom measurement becomes
trivial, such that I1(p, j) € {0,1}, when max(q,1—q) > 1—3.

ITI. MODIFIED LOCALLY GREEDY ALGORITHMS

The poor asymptotic behaviour of the locally-greedy algo-
rithm provides motivation for our introduction of a modified
locally greedy method (MLG method) with better asymptotic
properties. In particular, the structure is identical to the locally-
greedy algorithm except that a “modified Helstrom” measure-
ment is implemented in each round. The modified Helstrom
measurement is defined by:

1(p, ) if I(p, j) ¢ {I, 0}
I (p,) 2 § [oxmes) Orne - 1 T1(p, ) = 0
I[ - ’U)\min> <U/\min| lf H(]L]) = H’

Note that an arbitrary qubit state (density matrix) can always be expressed
as a pure state passed through a depolarizing channel, because this procedure
can define any state in the Bloch sphere [7].

Pyuee (N7 'Y)

Fig. 2. Comparison of probability of success for varying - in the case of
identical copies, as a function of the number of available systems using the
MLG algorithm. We observe that as the depolarizing parameter increases, the
probability of success no longer levels off for large V.

where Amax £ max {\ | ((1—p)p(j)—pp(+])) lua) = Alva) }
and Ay 2 miny, {)\ ’ ((1 —p)p(f) —pp(j)) [ua) = Aua) }

Whenever the Helstrom measurement is nontrivial, the
modified Helstrom measurement is equivalent and thus locally-
optimal by definition. In the case where the Helstrom measure-
ment is trivial, it can be shown that any other measurement and
outcome would lead to identical posterior-based decoding (i.e.
any measurement is locally optimal). The modified Helstrom
measurement takes advantage of this degeneracy to create a
more informative measurement by separating out the projector
that is most strongly predictive of the less-likely candidate
state.

For any TPQS py+ and any ¢, denote by Ps (g, ps)
(respectively, P 4(q, p+)) the probability of successfully dis-
tinguishing the states via the MLG algorithm (LG algorithm).
It can be shown that, for any p1 and any ¢ € [0, 1], we have
Ps mig > Psjg. Thus, the MLG algorithm is always at least
as good as the LG algorithm. Additionally, for any p4, it
follows that P; ,,,14(p+) — 1 as the number of subsystems
7 such that pgf) #* ,o(f) approaches infinity. Thus, the MLG
algorithm no longer exhibits an asymptotic plateau in the
success probability, and this is illustrated in Fig. 2.

IV. DYNAMIC-PROGRAMMING ALGORITHMS

The dynamic programming (DP) algorithm works back-
wards to recursively compute an expected future risk function
Rs:[0,1] xS — [0, 1], where S denotes the set of subsystem
indices that are yet to be measured. The domain corresponds to
the current updated prior and unmeasured subsystems and the
codomain is the expected probability of state discrimination
error given that an optimal locally adaptive algorithm is
applied in all remaining rounds. For each round, DP generates
the optimal choice of the next subsystem to be measured
and the optimal measurement to implement (given an allowed
action set.)

Now, we introduce some notation for purposes of defining
the expected risk function. Let o be the ordering permutation
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such that, at round j € {1,...,N}, the next subsystem
measured is o(j). The algorithm must additionally determine
the chosen measurement action a,(;y € A where A is the
set of allowed measurement POVMs. The measurement result
upon executing the action can take on values d, ;) € D, where
D is the space containing possible outcomes for the chosen
action set. For example, if .A contains projective measurements
on qubits, then D = {£1}. Then at round j, the past
actions and results are recorded into the vectors afj_l] =

(@5 (1);- -5 80(-1)) and dfj_yy = (doqr),- -, do(j-1)) Te-
spectively.
Formally, at round j,
S £ 8-\ {e(G - 1)} ©)
= [N\ o([j - 1]). )

For the case S = (), one can make a hard decision on the
updated prior py £ Pj\’,(q,a‘[TN],d‘[’N]), i.e., by comparing it
to 0.5. Hence

Ry (py) = min(pn, 1 — pn), (®)

For the general case S # @) and j = N — |S| + 1, N — |5]
measurements have been performed. The goal is to choose
the best subsystem o(j) to be measured during the j-th step
in order to minimize the expected error probability assuming
optimal future decisions. Thus, we have

R _ = i P(d _

s (Pn—s)) oL > (k PN-|S]5 ak)
dr €D

X Rs\(r} (PN|S+1 (pr\spak, dk)>7 )

where the optimal subsystem and action pairing are thus those
that achieve the minimum in the above equation. The DP
algorithm optimizes over all other locally-adaptive algorithms
with the same allowed measurement set, and thus is guaranteed
to perform at least as well as the LG and MLG algorithms
when the action space is over all binary POVMs.

Effect of ordering on success probability: One general
question is whether subsystem ordering affects the probability
of success when optimization is done over all “reasonable”
adaptive protocols. We address the question of ordering by first
demonstrating analytically that ordering can make a difference
for a specific subset of candidate states when /N = 2. Consider
candidate states of the form:

o= (10" D)l

X

= (5 1 0,)el-00l

Measuring the subsystems in the best order (diagonal ma-
trices first followed by |+6) (6|) is equivalent to updating
the prior from ¢ = % to x and then implementing a Helstrom
measurement on the second subsystem with the updated prior.
The resulting probability of success is optimal and performs
as well as a composite Helstrom measurement on both subsys-
tems, namely, Pyyce,best = %(1 + \/1 —4(1 — x)x cos?(20)).

0.9
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Fig. 3.  Comparison of probabilities Piycc,best(N = 3,7) and
Psuce,worst (N = 3,7) as a function of the depolarising parameter v over
1000 trials. Although Pyycc best (N = 3,77) # Psuce,worst (IN = 3,7), the
relative difference is small.

Measuring in the reverse order, the probability of success is

Piuceworst = max{z,1 — z, 3(1+ /1 — § cos?(20))} given

that the diagonal subsystems are always optimally measured
in the computational basis regardless of previous information.
Thus, there is, in general, a difference between the best and
worst ordering.

More generally, we show that a small but nontrivial differ-
ence persists for more general tensor product states under the
DP algorithm. The experimental protocol involves taking 1000
random trials where [)gi) are all real qubit states. The set of
measurements Aqpi¢ i taken to be the standard action space
of real orthogonal projectors [11]

Aquie 2 {{16) (61, |0*) (&*[}: 0 € [0, 7]}

where we quantize ¢ into ), = 128 equally spaced points.
For each N and v considered, we then find the average
success probability in two distinct cases— first, for the “best”
ordering (the standard DP algorithm) and second for the
“worst” ordering (where the risk function is maximized with
respect to subsystem index k but still minimized with respect
to the action ay).

We plot Psuccorder(IN = 3,7) as a function of v in
Fig. 3 and we also compare the difference Pyycc,gir(IV, ) £
Piuce,best (N, ) — Pouce,worst (N, ) for N € {3,4,5,6,7} in
Fig. 4. From these results, we observe that the difference in
probability of success with respect to ordering is quite small
but persists even when using the DP algorithm.

Insufficiency of binary projective measurements: Finally, we
investigate whether adaptive binary projective measurements
are always sufficient for general quantum states. This question
is motivated in part by recalling that in the special case when
p+ are both pure, Theorem 2.1 shows that the optimal adaptive
strategy consists of binary projective measurements. To this
aim, we define an action space A to be sufficient for state
space H if and only if for all p1 € H and ¢ € [0, 1],

(10)

Psucc,A(qa Pi) = Psucc,Aau (Qa pi),
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Fig. 4. Difference in maximum and minimum probability of success,
Piyce,dif (N, ), as a function of the depolarizing parameter y over 1000
trials for N = 3,4,5,6, 7.

where A,y is the set of all quantum measurements of dimen-
sion dim(p4) and Psyec, 4(¢, p+) is the probability of success
of the DP algorithm for a given action space .A.

We show by example that binary projective measurements
are not sufficient for general state spaces. To this aim, we
define Hqueric to be the space of depolarized, real qutrit
states and define the action space of real binary (ternary)
measurements as Ay, (Ay).

We fix N = 3 and randomly generate 1000 sets of pure
TPQS candidate states, where each subsystem is a qutrit. Then
for each depolarizing parameter vy, we compute the average
success probability of four separate methods: use both the best
and worst ordering in combination with both binary (A4 = A;)
and ternary (A = A;) action spaces. Results for all four
methods are shown in Fig. 5. The difference between the
remaining three methods and the ternary best-ordering method
(Pdiﬂ”,order('% A) = Lsucc,best (73 -At) - Psucc,order(’)/a A)) is
shown in Fig. 6. We observe that the best ternary ordering is
better than best binary ordering and again the ordering affects
performance. From this, we conjecture that, for any action
space and any adaptive approach, the order of subsystem
measurement will affect the success probability. It remains
an open question whether it is sufficient to consider d rank-
1 orthogonal projectors for a state space H, containing d-
dimensional real quantum states.

V. CONCLUSION

In this work, we investigated simple locally-greedy and
modified locally-greedy algorithms as well as more general
dynamic programming algorithms for quantum state discrimi-
nation when the given states are tensor products of N arbitrary
qubit or qutrit states. We prove analytically that, when the
individual subsystems are pure states, the simple locally-
greedy algorithm achieves the optimal performance of the joint
N-system Helstrom measurement. For the scenario where each
subsystem contains arbitrary qubit states, we demonstrate a
plateau in the probability of success attained by the locally-
greedy algorithm with increasing N. The reason for this

1
g
< 0.9
k>
L:
l
g
2 0.8
VRS ternary, best
—e— ternary, worst
—— binary, best
—a— binary, worst
0.7 T T T T

0.1 0.2 0.3 0.4 0.5 0.6
v

Fig. 5. The average probability of success for the best and worst ordering
using both ternary and binary projective measurements for qutrit product states
when N = 3. Results are averaged over 1000 trials.

0.012

0.010
0.008 |

0.006 -
—+— ternary, worst
—e— binary, best

—=— binary, worst

Pdiff,order (’Y-, A)

0.004

Fig. 6. Loss in average success probability for the various methods relative
to ternary best, namely, Pgig order(7,.A) as a function of -y when N = 3.
Results are averaged over 1000 trials.

plateau is found and an explicit bound is derived for the
success probability as a function of the channel depolarizing
parameter and initial prior. Based on these results, a modified
locally-greedy algorithm is introduced with strictly better
performance and its state discrimination becomes perfect in
the large N limit.

For the general DP algorithm, we show that ordering
of subsystems affects the performance when the individual
subsystems have distinct states. For qutrit states, we show
that binary projective measurements are inadequate to achieve
optimal performance.
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