
Post-Silicon Microarchitecture

Chanchal Kumar , Aayush Chaudhary ,
Shubham Bhawalkar , Utkarsh Mathur ,

Saransh Jain , Adith Vastrad , and Eric Rotenberg

Abstract—Microprocessors are designed to provide good general performance

across a range of benchmarks. As such, microarchitectural techniques which

provide good speedup for only a small subset of applications are not attractive

when designing a general-purpose core. We propose coupling a reconfigurable

fabric with the CPU, on the same chip, via a simple and flexible interface to allow

post-silicon development of application-specific microarchitectures. The interface

supports observation and intervention at key pipeline stages of the CPU, so that

exotic microarchitecture designs (with potentially narrow applicability) can be

synthesized in the reconfigurable fabric and seem like components that were

hardened into the core.

Index Terms—Adaptable architectures,microarchitecture, reconfigurable hardware

Ç

1 INTRODUCTION

IT is difficult to make large gains in single-thread performance
because of the following conundrum. On one hand, general micro-
architecture techniques that work well over many applications (e.g.,
OOO execution, branch prediction, etc.) have been nearly exhausted.
On the other hand, specialized microarchitecture techniques (e.g.,
application-customized branch predictors and prefetchers), which
can yield big speedups on individual applications, are difficult to
justify: they cannot all be included, and at the same time, one or a
few cannot be included because of their narrow applicability. In this
paper, we propose a novel microarchitecture paradigm called Post-
SiliconMicroarchitecture (PSM). The key idea is to define an efficient
and flexible interface between key pipeline stages of a flagship
superscalar core and reconfigurable logic (such as FPGA/CGRA).
The PSM interface allows communication between the core and the
reconfigurable fabric, so that application-specific branch predictors,
prefetchers, etc., can be synthesized in the reconfigurable fabric and
seem like components that were hardened into the flagship super-
scalar core. The ability to instantiate microarchitecture components
after fabrication, increases the value proposition of deployingmicro-
architecture ideas on an individual application basis.

2 PSM ARCHITECTURE

2.1 High-Level Overview

Fig. 1 shows the high-level diagram of PSM. Integrating a reconfig-
urable fabric (PSM-RF) on the same chip as a superscalar Out-of-
Order (OOO) core gets complicated due to the potential frequency
difference between the faster (but inflexible) core and the slower
(but configurable) PSM-RF. To address this issue, an interface unit,
PSM-Agent (PSM-A), is added between the core and PSM-RF.

PSM-A is tightly coupled with the core, has limited configura-
bility (thus can run at the core’s clock frequency), and acts as a
communication medium between the core and PSM-RF. It provides

Observation and Intervention queues between the Core and PSM-RF
to provide generic ‘message-passing’ style of communication.
Push/pop of data into/from the queues can happen at potentially
different clock frequencies depending on the frequency difference
between the core and PSM-RF.

A configuration bitstream shipped with the executable synthe-
sizes the custom microarchitecture in PSM-RF and configures the
communication behavior of PSM-A. The next section describes the
components of the PSM Agent while also highlighting the support
needed from the core.

2.2 PSM-Agent

The PSM Agent is designed to be simple, non-intrusive to the core,
and agnostic to the choice of the reconfigurable fabric. It has sev-
eral components, described below. The Observation and Interven-
tion queues are used for communicating data to and from PSM-RF,
while the Snoop Tables dictate how the queue payloads are con-
structed, as well as how the core’s microarchitectural behavior is
changed.

1) Retire Snoop Table (RST): RST is configured to allow PSM-RF
to snoop key information from the retiring instructions.
EachRST entry stores a PC (obtained via profiling of applica-
tion and assembly), 6 configuration bits (shown in Table 1),
and 2 ‘payload-type’ bits (‘Branch’ and ‘Destination Regis-
ter’). When an instruction retires, its PC is checked against
the entries in RST. If a matching entry is found, PSM-A con-
structs a payload and pushes it in the Retire Observation
Queue (described below). The configuration bits of the
matching entry are responsible for changing the mode of
execution of the baseline core. If the ‘Branch’ bit is set in an
entry, then the payload for the retiring (branch) instruction
includes the actual T/NT direction. Similarly, for the
‘Destination Register’ bit, the payload includes the value of
the destination register of the retiring instruction.

2) Observation Queue at Retire (ObsQ-R): Payloads constructed
for retiring instructions are pushed in ObsQ-R. The payload
consists of PC, the configuration bits, a T/NT flag (if
‘Branch’ bit was set), and a value field (if ‘Destination Regis-
ter’ bit was set).

3) Intervention Queue at Fetch (IntvQ-F): PSM-RF uses this
queue to send commands to the fetch unit of the core/
PSM-A. The payload includes PC, a command (described
in Table 2), and corresponding data.

4) Fetch Snoop Table (FST): Each FST entry stores the PC of
branch instructions that are targeted by PSM for custom
branch prediction, or the PC of the instruction used as the
synchronization point. When ‘Custom BP’ mode is enabled,
PSM-A searches the FST and head of IntvQ-F with the PC of
the fetched instructions. If a matching entry is present in
both FST and head of IntvQ-F, custom branch prediction
sent by PSM-RF is used to override the default prediction
(the head entry is also popped from IntvQ-F). If head entry
in IntvQ-F doesn’t match, then the core simply uses the
default prediction. However, if FST has a matching entry
but IntvQ-F is empty, this means that the prediction stream
from PSM-RF is delayed, so fetch is stalled.

5) Intervention Queue at Issue (IntvQ-IS): PSM-RF uses IntvQ-IS
to send Prefetch or Load OPs to the core for opportunistic
execution. Each payload contains a command (LOAD or
PREFETCH), the address, and the data size (for LOAD
only). If the core finds a bubble in the load execution lane, it
issues the OP at the head of IntvQ-IS. The issued OP flows

� C. Kumar, S. Bhawalkar, and E. Rotenberg are with the North Carolina State University,
Raleigh, NC 27695. E-mail: {ckumar2, spbhawal, ericro}@ncsu.edu.

� A. Chaudhary, U. Mathur, S. Jain, and A. Vastrad worked on this project while they
were graduate students at North Carolina State University, Raleigh, NC 27695.
E-mail: {achaudh6, umathur, sjain22, asvastra}@ncsu.edu.

Manuscript received 22 Jan. 2020; accepted 10 Feb. 2020. Date of publication 9 Mar.
2020; date of current version 7 Apr. 2020.
Recommended for acceptance by D. Sorin
Digital Object Identifier no. 10.1109/LCA.2020.2978841

26 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020

1556-6056� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 20,2020 at 17:52:09 UTC from IEEE Xplore. Restrictions apply.

through the normal load pipe, but stays pinned at the head
of the queue until the OP resolves.

6) Observation Queue at Execute (ObsQ-EX): If the core exe-
cuted a Load OP received from PSM-A, it sends the loaded
value to PSM-RF via ObsQ-EX.

3 PSM USE CASES

In this section, we describe several PSM designs for applications
constrained by a high branch misprediction or cache miss rate. The
region of interest which suffers from these constraints is identified
and an application-specific design is developed to be synthesized
on PSM-RF. The potential frequency difference between the core
and PSM-RF, along with the latency of execution of the synthesized
design on the slower PSM-RF, necessitates development of decoupled
PSMdesignswhich can run ahead of the core’s instruction stream to
provide timely predictions.

3.1 Custom EXACT Branch Predictor

Profiling the astar benchmark (from the SPEC2006 suite) reveals
bottlenecks due to a high branch misprediction rate. astar’s region
of interest (ROI) is shown in Figs. 2a and 2b. The makebound2 func-
tion works on an input worklist of indices in a 2D graph. For each
index (C) in the input worklist, it checks if the 8 neighboring indi-
ces (D) have already been visited (E, F). If not previously visited,
these indices are marked as visited (H) while adding them in the
output worklist (G). In the next call to makebound2, the input and
output worklists are switched (A, B).

The load-dependent branches (E, F) have a high branch mispre-
diction rate which limit the IPC of astar. The conventional context
used for branch prediction, PC and global branch history, fail to

properly distinguish between the dynamic instances of these
branches, thus performing poorly. The proper context to predict
branches E and F would be the computed indices D (index1). A PSM
design, by virtue of its ability to snoop key info from retiring instruc-
tions, allows decoupled generation and use of index1 for predicting
branches E and F.

We develop a custom decoupled branch predictor, inspired
from the EXACT [1] branch predictor’s active update mechanism,
to predict branches E and F. Fig. 2c shows the high-level design of
astar’s custom branch predictor configured in PSM-RF. It has hard-
ware structures (A, B) to mimic the input and output worklists.
These worklists (and the arch pointer pointing to the ‘current
index’) are kept in sync with the retire stream (albeit slightly
delayed) by snooping the relevant instructions. An index can be
read (C) from the input worklist (using speculative pointer spec) to
generate the computed indices (D), which are used to look up sim-
ple direct-mapped predictors (E, F) for the waymap and maparp
branches. The generated predictions are sent to PSM-A via IntvQ-F.
The key idea here is that the spec pointer can run further ahead of
the arch pointer (even far into the next worklist) and generate a cus-
tom branch prediction stream far ahead of the core’s instruction
stream. Use of the decoupled predictor, along with the proper con-
text for prediction, index1, lets us generate accurate and timely
predictions.

Results: The baseline configuration is shown in Table 3. While
the baseline astar suffers an MPKI (Mispredictions Per Kilo Instruc-
tions) of �32, the PSM design is able to reduce the MPKI to �2.
Fig. 3 shows the performance of the decoupled PSM design over
baseline, for different PSM parameters. Fig. 3b shows the sensitiv-
ity of the PSM design to the bandwidth between core and PSM-
RF. The limitation of slower frequency can be overcome by increas-
ing the communication width. Fig. 3c shows that performance
improvement reduces if the execution latency of the hardware syn-
thesized on PSM-RF is too high. This is due to the high penalty of
synchronizing the core and PSM-RF after a misprediction. Fig. 3d
shows that the performance is resistant to the size of the communi-
cation queues.

3.2 Control Flow Decoupling

Control Flow Decoupling (CFD) [2] separates the branch slice
from a branch’s control-dependent instructions. The branch slice
is pre-executed and the branch outcomes are pushed into an
architectural Branch Queue, which is later used to determine the
control flow of the control-dependent instructions. Due to the
decoupled nature of CFD, it is a natural candidate for PSM. PSM
can inject and execute the branch-slice instructions (in the “Enable
Instruction Fetch” mode) while buffering the outcomes in PSM-
RF, which are later streamed to the core to override the default
predictions. PSM offers opportunities to target even the insepara-
ble branches (which are not CFD-friendly) by keeping additional
structures in PSM-RF to fix the control-flow dynamically. We use
astar to show this use case.

Fig. 1. High-level overview of the PSM architecture.

TABLE 1
Configuration Flags in an RST Entry

Enable PSMmode
Signifies the start of region of interest (ROI);
enables the communication queues

Full Squash mode

Squash the pipeline and direct core to do full
squashes (from head of ROB) for branch
mispredictions, instead of partial-flushes,
until PSM is disabled (simplifies
synzhronization of core & PSM-RF)

Custom BP
Directs the core to start consulting PSM-A to
get custom branch predictions from PSM-RF
(overrides core’s default branch prediction)

Disable PSM
mode

Signifies end of region of interest (ROI);
disable any features enabled by PSM; return
to baseline mode

Enable Instruction
Fetch

Squash the core, take an architectural
checkpoint, and direct the core to start
fetching a stream of instructions from PSM-A,
instead of the I-Cache

Disable Instruction
Fetch

Restore the architectural checkpoint and
redirect the core to fetch instructions from the
I-Cache

TABLE 2
Intervention Commands at Fetch

BRANCH_DIR Payload includes the custom branch prediction
(T/NT) generated by PSM-RF

SYNC
Used as a synchronization point; the Fetch unit
uses the default branch predictions until a fetched
instruction’s PC matches this payload’s PC

DONE PSM-RF has generated all predictions that it can;
core uses default predictions for further branches

INSTRUCTION
Payload includes instruction generated by PSM-RF;
core gets the instruction fromPSM-A instead of the
I-Cache (in the ‘Enable Instruction Fetch’ mode)

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020 27

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 20,2020 at 17:52:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 4 shows the storeDwhichmakes the control flow (of branchB)
dependent on the control-dependent instructions, making a simple
implementation of CFD difficult. PSM-RF streams the program slice
shown in Fig. 4 to the core, and snooping the relevant instructions
(E,F,G,H) lets it determine the branch outcomes. A simple direct-
mapped index table is kept in PSM-RF to fix the control flow. If
both maparp (C) branches are ‘not-taken’, the corresponding index entry

is set. After snooping thewaymap load (G), the index table is consulted: if
the corresponding entry is already set, the waymap direction is forced
‘taken’ in the buffered branch outcomes.

Results: CFD reduces the MPKI from �32 to 0.23. The results in
Fig. 5a show that the performance is very sensitive to the band-
width between the core and PSM-RF. At low bandwidth, the
injected CFD slice itself becomes a bottleneck due to low instructon
fetch rate from PSM-RF. Adding a loop buffer in PSM-A would get
rid of this issue. Due to the very low MPKI, performance is very
resistant to the delay of the PSM design, as shown in Fig. 5b.

3.3 Load Prefetching

Prefetching is a natural candidate for PSM as it already requires
both accuracy and timeliness. Due to the space constraint, we
present the simplest use case of prefetching using the libquantum

Fig. 2. (a) astar’s ROI in which PSM is enabled. (b) Load-dependent branches E and F in themakebound2 function. (c) Custom design in PSM-RF.

TABLE 3
Baseline System Parameters

Branch
Prediction

BP: 64 KB TAGE-SC-L predictor; BTB: 4K entries,
4-way set-associative; RAS: 32 entries

Prefetcher VLDP: 5.5 Kb

Memory
Hierarchy

L1 I/D: split, 32 KB each, 8-way set-associative, 4-cycle
access latency; L2: unified, 256 KB, 8-way set-
associative, 12-cycle access latency; L3: 8 MB, 16-way
set-associative, 42-cycle access latency; DRAM: 250-cycle
access latency

Core

9-stage (Fetch to Retire) Out-of-Order; 4 instr./cycle
Fetch/Retire; 8 instr./cycle Issue/Execute; ALUs: 4
Simple, 2 LS, 2 FP-Complex; ROB/IQ/LDQ/STQ/
PRF: 224/100/72/72/288 entries

Fig. 3. (a) Legend: C is the factor by which PSM-RF’s clock frequency is slower
than that of the core; W is the PSM superscalar width (PSM-RF can generate W
predictions and push/pop W payloads into/from the communication queues, in a
given CLKPSM-RF cycle); D is the pipelined execution latency of the design synthe-
sized in PSM-RF, in CLKPSM-RF cycles. (b) Speedup of PSM, normalized to base-
line, for different C and W parameters (all configs are delay0, queue32); perfBP is
the performance for perfect branch prediction. (c) Performance for different D
parameters (all configs are clk4_w4, queue32; e.g., delay8 means 8 CLKPSM-RF

cycles or 32 CLKCORE cycles). (d) Performance for different Q parameters (all con-
figs are clk4_w4, delay4). All configs in (b),(c), and (d) have 32KB predictors and
512-entry worklists.

Fig. 4. CFD program slice injected in the core.

Fig. 5. Results for different PSM parameters (legend in Fig. 3a). (a) All configs are
delay0, queue32. (b) All configs are clk4_w4, queue32.

Fig. 6. (a) ROI with delinquent load B. (b) PSM design for prefetching.

28 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 20,2020 at 17:52:09 UTC from IEEE Xplore. Restrictions apply.

benchmark from SPEC2006. Fig. 6a shows one of the ROIs with the
delinquent load B (high cache miss rate). The PSM design to gener-
ate prefetches for load B is shown in Fig. 6b. PSM-RF snoops the
base address along with the iteration count and the stride, from the
retire stream, and uses a simple customized FSM (Prefetch Genera-
tion Engine) to generate accurate Prefetch OPs which are sent to
the core via IntvQ-IS. A performance-feedback mechanism is used
to adaptively update the prefetch distance to achieve optimal
timeliness.

Results: Figs. 7 and 8 show the performance of using PSM for
prefetching delinquent loads in 3 benchmarks from the SPEC2006
suite. Each benchmark uses its own customized Prefetch Genera-
tion Engine (with a range of complexity) and is able to achieve
good performance improvement. Due to the adaptive prefetch dis-
tance, the performance is resistant to the bandwidth between the
core and PSM-RF, as well as the execution latency of PSM-RF.

3.4 Load-Dependent Load Prefetching

PSM can be used to prefetch load-dependent loads (e.g., pointer
chasing) as shown in Fig. 9. Load OPs can be sent to the core using
IntvQ-IS and the loaded values can be snooped back by PSM-RF
from ObsQ-EX. These loaded values can then be used to generate
the prefetch stream for the load-dependent loads. Due to the struc-
tural hazard of being able to execute only 1 Load OP from IntvQ-
IS, the load stream might get slowed down if a Load OP misses in
the cache and gets stuck at the head of IntvQ-IS. To avoid this, a
‘Prefetch Stream’ runs ahead (‘Load-delay Distance’) and pre-
fetches the loads so that IntvQ-IS is not blocked by the missing
Load OPs from the ‘Load Stream’.

We use this mechanism to prefetch the load-dependent loads in
the primal_bea_mpp function (not shown) of mcf (from SPEC2017),
to achieve 20 percent performance improvement (not shown) over
baseline which is good considering the primal_bea_mpp function
accounts for about 30 percent of the execution time in the baseline.

4 RELATED WORK & CONCLUSION

There have been several proposals (e.g., [3], [4]) to tightly integrate
reconfigurable logic with a core, on the same chip. The focus of
these works has been on mapping the execution of ‘hot loops/
traces’ on reconfigurable logic which serve as accelerators for tar-
geted applications. Our work, on the other hand, targets the micro-
architectural inefficiencies by allowing post-silicon deployment of
application-specific microarchitecture components. We develop a

generic framework to communicate between the core and the
potentially slower reconfigurable logic, with an interface that is
simple, non-intrusive, and agnostic to the choice of reconfigurable
fabric. We show that the latency of communicating with the recon-
figurable logic requires development of decoupled designs that
can satisfy the requirements of accuracy as well as timeliness. We
demonstrate several use cases of this decoupled design to show-
case the viability of Post-Silicon Microarchitecture.

ACKNOWLEDGMENTS

This work was supported by NSF Grant CCF-1823517, and Grants
from Intel.

REFERENCES

[1] M. Al-Otoom, E. Forbes, and E. Rotenberg, “EXACT: Explicit dynamic-branch
prediction with active updates,” in Proc. 7th Int. Conf. Comput. Frontiers, 2010,
pp. 165–176.

[2] R. Sheikh, J. Tuck, and E. Rotenberg, “Control flow decoupling,” in Proc. 45th
Int. Symp. Microarchitecture, 2012, pp. 329–340.

[3] J. R. Hauser and J.Wawrzynek, “Garp: AMIPS processor with a reconfigurable
coprocessor,” Proc. 5th IEEE Symp. Field-Programmable Custom Comput. Mach.,
1997, pp. 12–21.

[4] V. Govindaraju, C. Ho, and K. Sankaralingam, “Dynamically specialized
datapaths for energy efficient computing,” in Proc. 17th IEEE Int. Symp. High
Perform. Comput. Architecture, 2011, pp. 503–514.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Fig. 7. Results for libquantum(libq), lbm and bwaves benchmarks (legend in
Fig. 3a). All configs are delay0, queue32.

Fig. 8. Results for libquantum(libq), lbm and bwaves benchmarks (legend in
Fig. 3a). All configs are clk4_w4, queue32.

Fig. 9. Load-dependent load prefetching.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020 29

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 20,2020 at 17:52:09 UTC from IEEE Xplore. Restrictions apply.

