
DV8: Automated Architecture Analysis Tool Suites

Yuanfang Cai
Department of Computer Science

Drexel University
Philadelphia, USA

yfcai@cs.drexel.edu

Rick Kazman
Dept. of Information Technology Management

University of Hawaii
Honolulu, USA

kazman@hawaii.edu

Index Terms—Software Architecture, Software Quality, Soft-
ware Maintenance

I. PURPOSE OF THE TOOL

Although software measurement and source code analysis

techniques have been researched for decades, making project

decisions that have significant economic impact—especially

decisions about technical debt and refactoring—is still a chal-

lenge for management and development teams. Development

teams feel the increasing challenges of maintenance as the

architecture degrades, and often have intuitions about where

the problems are, but have difficulty pinpointing which files are

problematic and why. It is still a challenge for the development

teams to quantify their projects’ maintenance problems—their

debts—as a way of justifying the investment in refactoring.

Here we present our tool suite called DV81. The objective

of DV8 is to measure software modularity, detect architecture

anti-patterns as technical debts, quantify the maintenance cost

of each instance of an anti-pattern, and enable return on

investment analyses of architectural debts. Different from other

tools, DV8 integrates data from both source code and revision

history. We now elaborate on each of DV8’s capabilities.

A. Maintainability Measurement

The first function of DV8 is architecture maintainability as-

sessment using a pair of architecture-level maintainability met-

rics: decoupling level (DL) [7] and propagation cost (PC) [4].

DL measures how well a software system is decoupled into

small and independent modules that can be developed and

maintained in parallel. PC measures how tightly the files in a

software system are coupled, which indicates the probability

that changes to one file propagate to other files. These metrics

were developed independently by different research groups.

Applying both to the same project helps us evaluate which

metric is more effective and reliable, and if and how they can

reveal different aspects of the same project.

B. Architecture Anti-pattern Detection

The second major function of DV8 is architecture anti-
pattern detection. Mo et al. [6] formally defined a set of recur-

ring architecture problems that incur high maintenance costs.

Files involved in such anti-patterns suffer from one or more

1https://www.archdia.net/products-and-services/

architecture design mistakes, and have a significant impact on

the bug-proneness and change-proneness of a software system.

To make the penalty incurred by these anti-patterns explicit,

we quantify the number of bugs and changes, as well as the

bug churn and change churn, for each instances of anti-patterns

using project history data. The users can also visualize each

instance as a design structure matrix (DSM) [1], [13]. The

anti-patterns that can be detected by DV8 are as follows:

1) Unstable Interface. According to design rule theory [1]

and well-known design principles [5], an influential interface

with a large number of dependents should remain stable.

In practice, if influential files have high change rates, then

multiple files depending on them have to be changed as a

consequence.

2) Modularity Violation Groups. According to design rule

theory [1], truly independent modules should evolve indepen-

dently. Our prior work [6] proposed the concept of Implicit
Cross-module Dependency, which is a variant of modularity
violation [12] to identify modules without structural relation-

ships but which have changed together frequently, as recorded

in revision history. In DV8, the user can detect Modularity
Violation Groups, which contain a minimal number of files

involved in a mutual modularity violation.

3) Unhealthy Inheritance Hierarchy. This anti-pattern was

defined to detect violations of the Liskov Substitution prin-

ciple [2], [5] or Dependency Inversion Principle [5], where

a parent class depends on one or more of its subclasses, or

where a client of an inheritance hierarchy depends on both the

parent class and its children. These cases make it impossible

for an inheritance hierarchy to enable polymorphism, and

could propagate bugs and changes to files that depend on this

inheritance hierarchy.

4) Crossing. In DV8, a Crossing is defined as: a file that has

both high fan-in and high fan-out, and changes often together

with both the files it depends on and its dependents. Such a file

is often at the center of maintenance activities. Since such files

form a cross shape in a Design Structure Matrix [1], hence it

is called Crossing.

5) Clique. Cyclic dependencies are a well-know design

problem. Instead of detecting just pair-wise cycles [6], DV8

detects Cliques—sets of files that form strongly connected

graphs.

6) Package Cycle. Dependency cycles between packages

should also be avoided because this violates the basic design
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principle of forming a hierarchical structure [10]. Changes to a

file in one package often cause unexpected changes to files in

other packages due to the cycle of dependencies among them.

Given the history record of a project, DV8 can also quantify

the maintenance costs incurred by each anti-pattern instance,

in terms of the number of bugs, changes, bug churn and

change churn incurred by the files involved in each anti-pattern

instance.

C. Architecture Debt Analysis

DV8 also provides architecture root analysis, proposed by

Xiao et al. [15], in which the authors proposed the notion

of a design rule space (DRSpace)—a set of architecturally

connected files that implement a pattern, a feature, or other im-

portant system concern. This paper also proposed the concept

of architecture roots—DRSpaces that cluster together the most

error-prone files in the system. As Xiao et al. [15] reported,

five architecture roots in a project typically cover 50% to 90%

of the most error-prone files within a project. Using DV8, the

user can also estimate the return-on-investment of refactoring

each root, which can be used as a basis to make refactoring

decisions.

II. VALIDATION EXPERIENCES WITH PRACTITIONERS

DV8 has been used by multiple companies and we have ana-

lyzed dozens of industrial projects. As we reported recently [8]

with ABB2, we integrated DV8 into their development process.

In that paper, we reported our analysis of eight projects

in the company. These projects were developed at multiple

locations (India, USA, and Switzerland) and differ in their

ages, domains, and sizes. Our study had the following steps:

first, ABB’s development teams granted us access to their

code repository from which we collected file dependency

information, history data, and work items (commits). Using

this data as input, we ran DV8, which automatically generated

metrics, and visualizable architecture anti-patterns and roots,

along with supporting data. Finally, we combined the output

from these tools into a report for each project, and presented

these to the development teams. After we ensured that the

development teams understood the reports, we conducted a

phone or email interview with each team to collect their

feedback and, most importantly, to see if these techniques

helped them to determine if, when, and where to refactor.

Our experiences have shown that the two metrics—PC and

DL—can faithfully reflect the extent to which a project is expe-

riencing maintenance difficulty. The complementary nature of

PC and DL can provide useful insights. The architecture anti-

pattern detector can highlight which files are suffering from

which design problems; this visualization and quantification

has effectively bridged the gap between management and

development teams. Except for the two smallest projects,

containing just a few hundreds of files each (and the highest

metrics scores), all other projects are now undergoing major

refactorings to address the problems that DV8 detected.

2http://www.abb.com

III. RELEVANCE TO TECHNICAL DEBT

The architecture problems identified by DV8 are one type

of technical debt. DV8 provides two ways to quantify archi-

tecture debt. First, DV8 detects Architecture Roots [15], which

capture how bug-prone files are structurally connected and

clustered together, and how they evolve over time. Considering

each root as a debt [3], DV8 can calculate the maintenance

costs of files involved in each root and the benefits achievable

through refactoring. Second, DV8 detects architecture anti-

patterns [6], that is, recurring architecture problems among

files with significant impacts on bug-proneness and change-

proneness. DV8 not only identifies these anti-patterns, but

also quantifies the severity of each instance. DV8 has been

repeatedly validated in industrial settings and greatly valued

by practitioners [3], [8], [9], [11], [14]
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