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I. PURPOSE OF THE TOOL

Although software measurement and source code analysis
techniques have been researched for decades, making project
decisions that have significant economic impact—especially
decisions about technical debt and refactoring—is still a chal-
lenge for management and development teams. Development
teams feel the increasing challenges of maintenance as the
architecture degrades, and often have intuitions about where
the problems are, but have difficulty pinpointing which files are
problematic and why. It is still a challenge for the development
teams to quantify their projects’ maintenance problems—their
debts—as a way of justifying the investment in refactoring.

Here we present our tool suite called DVS'. The objective
of DV8 is to measure software modularity, detect architecture
anti-patterns as technical debts, quantify the maintenance cost
of each instance of an anti-pattern, and enable return on
investment analyses of architectural debts. Different from other
tools, DVS integrates data from both source code and revision
history. We now elaborate on each of DV8’s capabilities.

A. Maintainability Measurement

The first function of DV8 is architecture maintainability as-
sessment using a pair of architecture-level maintainability met-
rics: decoupling level (DL) [7] and propagation cost (PC) [4].
DL measures how well a software system is decoupled into
small and independent modules that can be developed and
maintained in parallel. PC measures how tightly the files in a
software system are coupled, which indicates the probability
that changes to one file propagate to other files. These metrics
were developed independently by different research groups.
Applying both to the same project helps us evaluate which
metric is more effective and reliable, and if and how they can
reveal different aspects of the same project.

B. Architecture Anti-pattern Detection

The second major function of DVS8 is architecture anti-
pattern detection. Mo et al. [6] formally defined a set of recur-
ring architecture problems that incur high maintenance costs.
Files involved in such anti-patterns suffer from one or more
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architecture design mistakes, and have a significant impact on
the bug-proneness and change-proneness of a software system.
To make the penalty incurred by these anti-patterns explicit,
we quantify the number of bugs and changes, as well as the
bug churn and change churn, for each instances of anti-patterns
using project history data. The users can also visualize each
instance as a design structure matrix (DSM) [1], [13]. The
anti-patterns that can be detected by DV8 are as follows:

1) Unstable Interface. According to design rule theory [1]
and well-known design principles [5], an influential interface
with a large number of dependents should remain stable.
In practice, if influential files have high change rates, then
multiple files depending on them have to be changed as a
consequence.

2) Modularity Violation Groups. According to design rule
theory [1], truly independent modules should evolve indepen-
dently. Our prior work [6] proposed the concept of Implicit
Cross-module Dependency, which is a variant of modularity
violation [12] to identify modules without structural relation-
ships but which have changed together frequently, as recorded
in revision history. In DV8, the user can detect Modularity
Violation Groups, which contain a minimal number of files
involved in a mutual modularity violation.

3) Unhealthy Inheritance Hierarchy. This anti-pattern was
defined to detect violations of the Liskov Substitution prin-
ciple [2], [5] or Dependency Inversion Principle [5], where
a parent class depends on one or more of its subclasses, or
where a client of an inheritance hierarchy depends on both the
parent class and its children. These cases make it impossible
for an inheritance hierarchy to enable polymorphism, and
could propagate bugs and changes to files that depend on this
inheritance hierarchy.

4) Crossing. In DVS, a Crossing is defined as: a file that has
both high fan-in and high fan-out, and changes often together
with both the files it depends on and its dependents. Such a file
is often at the center of maintenance activities. Since such files
form a cross shape in a Design Structure Matrix [1], hence it
is called Crossing.

5) Cligue. Cyclic dependencies are a well-know design
problem. Instead of detecting just pair-wise cycles [6], DV8
detects Cliques—sets of files that form strongly connected
graphs.

6) Package Cycle. Dependency cycles between packages
should also be avoided because this violates the basic design
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principle of forming a hierarchical structure [10]. Changes to a
file in one package often cause unexpected changes to files in
other packages due to the cycle of dependencies among them.

Given the history record of a project, DV8 can also quantify
the maintenance costs incurred by each anti-pattern instance,
in terms of the number of bugs, changes, bug churn and
change churn incurred by the files involved in each anti-pattern
instance.

C. Architecture Debt Analysis

DV8 also provides architecture root analysis, proposed by
Xiao et al. [15], in which the authors proposed the notion
of a design rule space (DRSpace)—a set of architecturally
connected files that implement a pattern, a feature, or other im-
portant system concern. This paper also proposed the concept
of architecture roots—DRSpaces that cluster together the most
error-prone files in the system. As Xiao et al. [15] reported,
five architecture roots in a project typically cover 50% to 90%
of the most error-prone files within a project. Using DVS, the
user can also estimate the return-on-investment of refactoring
each root, which can be used as a basis to make refactoring
decisions.

II. VALIDATION EXPERIENCES WITH PRACTITIONERS

DV8 has been used by multiple companies and we have ana-
lyzed dozens of industrial projects. As we reported recently [8]
with ABB?, we integrated DVS into their development process.
In that paper, we reported our analysis of eight projects
in the company. These projects were developed at multiple
locations (India, USA, and Switzerland) and differ in their
ages, domains, and sizes. Our study had the following steps:
first, ABB’s development teams granted us access to their
code repository from which we collected file dependency
information, history data, and work items (commits). Using
this data as input, we ran DV8, which automatically generated
metrics, and visualizable architecture anti-patterns and roots,
along with supporting data. Finally, we combined the output
from these tools into a report for each project, and presented
these to the development teams. After we ensured that the
development teams understood the reports, we conducted a
phone or email interview with each team to collect their
feedback and, most importantly, to see if these techniques
helped them to determine if, when, and where to refactor.

Our experiences have shown that the two metrics—PC and
DL—can faithfully reflect the extent to which a project is expe-
riencing maintenance difficulty. The complementary nature of
PC and DL can provide useful insights. The architecture anti-
pattern detector can highlight which files are suffering from
which design problems; this visualization and quantification
has effectively bridged the gap between management and
development teams. Except for the two smallest projects,
containing just a few hundreds of files each (and the highest
metrics scores), all other projects are now undergoing major
refactorings to address the problems that DV8 detected.
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III. RELEVANCE TO TECHNICAL DEBT

The architecture problems identified by DVS§ are one type
of technical debt. DV8 provides two ways to quantify archi-
tecture debt. First, DV8 detects Architecture Roots [15], which
capture how bug-prone files are structurally connected and
clustered together, and how they evolve over time. Considering
each root as a debt [3], DV8 can calculate the maintenance
costs of files involved in each root and the benefits achievable
through refactoring. Second, DVS8 detects architecture anti-
patterns [6], that is, recurring architecture problems among
files with significant impacts on bug-proneness and change-
proneness. DV8 not only identifies these anti-patterns, but
also quantifies the severity of each instance. DV8 has been
repeatedly validated in industrial settings and greatly valued
by practitioners [3], [8], [9], [11], [14]
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