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Abstract

Dataset replication is a useful tool for assess-
ing whether improvements in test accuracy on a
specific benchmark correspond to improvements
in models’ ability to generalize reliably. In this
work, we present unintuitive yet significant ways
in which standard approaches to dataset replica-
tion introduce statistical bias, skewing the result-
ing observations. We study ImageNet-v2, a repli-
cation of the ImageNet dataset on which models
exhibit a significant (11-14%) drop in accuracy,
even after controlling for selection frequency, a
human-in-the-loop measure of data quality. We
show that after remeasuring selection frequencies
and correcting for statistical bias, only an esti-
mated 3.6%+1.5% of the original 11.7%+1.0%
accuracy drop remains unaccounted for. We con-
clude with concrete recommendations for recog-
nizing and avoiding bias in dataset replication.
Code for our study is publicly available'.

1. Introduction

The primary objective of supervised learning is to develop
models that generalize robustly to unseen data. Benchmark
test sets provide a proxy for out-of-sample performance,
but can outlive their usefulness. For example, evaluating on
benchmarks alone may steer us towards models that adap-
tively overfit (Reunanen, 2003; Rao et al., 2008; Dwork
et al., 2015) to the test set and do not generalize. Alter-
natively, we might select for models that are sensitive to in-
significant aspects of the dataset creation process and thus
do not generalize robustly (e.g., models that are sensitive to
the exact humans who annotated the test set).

To diagnose these issues, recent work has generated new,
previously “unseen” testbeds for standard datasets through
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a process known as dataset replication. Though not yet
widespread in machine learning, dataset replication is a
natural analogue to experimental replication studies in the
natural sciences (cf. (Bell, 1973)). These studies play an
important role in verifying empirical findings, and ensure
that results are neither affected by adaptive data analysis,
nor overly sensitive to experimental artifacts.

Recent dataset replication studies (Recht et al., 2019b;a;
Yadav & Bottou, 2019) have generally found little evidence
of adaptive overfitting: progress on the original benchmark
translates to roughly the same amount (or more) of progress
on newly constructed test sets. On the other hand, model
performance on the replicated test set tends to drop signifi-
cantly from the original one.

One of the most striking instances of this accuracy drop is
observed by Recht et al. (2019b), who performed a careful
replication of the ImageNet dataset and observe an 11-14%
gap between model accuracies on ImageNet and their new
test set, ImageNet-v2. The magnitude of this gap presents
an empirical mystery, and motivates us to understand what
factors cause such a large drop in accuracy.

In this paper, we identify a mechanism through which the
dataset replication process itself might lead to such a drop:
noisy readings during data collection can introduce statis-
tical bias. We show that re-calibrating the ImageNet-v2
dataset while correcting for this bias results in an accuracy
gap of 3.6%+1.5%, compared to the original 11.7%+1.0%
drop between ImageNet and ImageNet-v2.

Our explanation revolves around what we refer to as the
“statistic matching” step of dataset replication. Statistic
matching ensures that model performance on the original
test set and its replication are comparable by controlling
for variables that are known to (or hypothesized to) impact
model performance.” Drawing a parallel to medicine, sup-
pose we wanted to replicate a study about the effect of a
certain drug on an age-linked disease. After gathering sub-
jects, we have to reweight or filter them so that the age
distribution matches that of the original study—otherwise,
the results of the studies are incomparable. This filter-

’In causal inference terms, statistic matching is an instance of
covariate balancing (Stuart, 2010; Imai & Ratkovic, 2013).
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ing/reweighting step is analogous to statistic matching in
our context, with participant age as the relevant statistic.

To construct ImageNet-v2, Recht et al. (2019b) perform
statistic matching based on the “selection frequency" statis-
tic, which for a given image-label pair measures the rate
at which crowdsourced annotators select the pair as cor-
rectly labeled. As we discuss in the next section, selection
frequency is a well-motivated choice of matching statistic,
since (a) Deng et al. (2009) use a similar metric to gather
ImageNet images in the first place (Deng et al., 2009), and
(b) Recht et al. (2019b) have found that selection frequency
is highly predictive of model accuracy.

Why does a significant drop in accuracy persist even after
matching selection frequencies? In this paper, we show that
(inevitable) mean-zero noise in selection frequency read-
ings leads to bias in the selection frequencies of the repli-
cated dataset, which translates to a drop in model accura-
cies. Finite-sample reuse makes this bias difficult to detect.

The bias-inducing mechanism that we identify applies
whenever statistic matching is performed using noisy es-
timates. We characterize the mechanism theoretically in
Section 2. In Section 3, we remeasure selection frequencies
using Mechanical Turk and observe that as our mechanism
predicts, ImageNet-v2 images indeed have lower selection
frequency on average. After presenting a framework for
studying the effect of statistical bias on model accuracy
(Section 4), we use de-biasing techniques to estimate a
bias-corrected accuracy for ImageNet-v2 (Section 5) us-
ing the remeasured selection frequencies. In Section 7,
we discuss the implications of the identified mechanism for
ImageNet-based computer vision models specifically, and
for data replication studies more generally.

2. Identifying Sources of Reproduction Bias

The goal of dataset replication is to create a new dataset
by reconstructing the pipeline that generated the original
test set as closely as possible. We expect (and intend) for
this process to introduce a distribution shift, partly by vary-
ing parameters that should be irrelevant to model perfor-
mance (e.g. the exact identity of the annotators used to
filter the dataset). To ensure that results are comparable
with original test sets, however, dataset replication studies
must control for distribution shifts in variables that impact
task performance. This is accomplished by subsampling or
reweighting the data so that each relevant variable’s distri-
butions under the replicated dataset and the original dataset
match. We refer to this process as statistic matching.

Our key observation is that standard approaches to statistic
matching can lead to bias in the final replicated dataset: we
illustrate this phenomenon in the context of the ImageNet-
v2 (v2) dataset replication (Recht et al., 2019b). Before
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Figure 1. The smallest, median, and largest selection frequency
images from v1 corresponding to the “throne” class (description:
the chair of state for a monarch, bishop, etc.; “the king sat on
his throne”—the “throne” class was randomly chosen). The im-
ages become easier to identify as the labeled class as selection fre-
quency increases; for additional context, we give a random sam-
pling of selection frequency/image pairs in Appendix B.

we identify the source of this bias in ImageNet-v2 con-
struction, we review the data collection process for both
ImageNet and ImageNet-v2.

ImageNet and selection frequency. ImageNet (Deng
et al., 2009; Russakovsky et al., 2015) (which we also refer
to as ImageNet-v1l or v1) is one of the most widely used
datasets in computer vision. To construct ImageNet, Deng
et al. (2009) first amassed a large candidate pool of image-
label pairs using image search engines such as Flickr. The
authors then asked annotators on Amazon Mechanical Turk
(MTurk) to select the candidate images that were correctly
labeled. Each image is shown to multiple annotators, and
an image’s selection frequency > is then defined as the frac-
tion of annotators that selected it.

Intuitively, images with low selection frequency are likely
either confusing or incorrectly labeled, while images with
high selection frequency are “easy” for humans to identify
as the proposed label (we show examples of selection fre-
quencies in Figure 1; further examples are in Appendix 8).
Therefore, Deng et al. (2009) include only images with
high selection frequency in the final ImageNet dataset?.

ImageNet-v2. ImageNet-v2 is a replication of ImageNet-
v1 that controls for selection frequency via statistic match-
ing. Following the protocol of Deng et al. (2009), Recht
et al. (2019b) collected a pool of candidate image-label
pairs, and estimated their selection frequencies via MTurk,
along with a subset of the v1 validation set. Recht et al.
(2019b) then estimated the distribution of ImageNet-v1 se-
lection frequencies for each class. They subsampled 10 im-
ages of each class from the candidate pool according to the
estimated class-specific distributions of v1.

For example, suppose 40% of “goldfish” images in

3Note that the term “selection frequency” was in fact coined
by Recht et al. (2019b), but it is also useful for describing the
initial setup of Russakovsky et al. (2015), who instead referred to
their process as “‘majority voting.”

* An image is included in the ImageNet test set if a “convincing
majority” (Russakovsky et al., 2015) of annotators select it.
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Figure 2. For an image z, the selection frequency s(z) € [0, 1] of
an image, described in Section 2, captures how recognizable it is
to humans. A distribution over images induces a one-dimensional
distribution over selection frequencies p;(s), shown in solid or-
ange and blue for the Flickr and ImageNet-v1 data distributions
respectively. We consider a case where we are given, for a specific
image x, a noisy version of s(z) (§(x)). We visualize the corre-
sponding distribution of the true selection frequency s(x) given
this noisy §(z) = 0.7. As discussed in Section 2, even though
$(zx) is an unbiased estimate of s(z), the most likely value of
s(x) for a given noisy reading of $(z) depends on the distribution
from which « is drawn. This is the driving phenomenon behind
the observed bias between ImageNet and ImageNet-v2.

ImageNet-vl have selection frequency in the histogram
bucket [0.6, 0.8]—when constructing ImageNet-v2, Recht
et al. (2019b) would in turn sample 4 “goldfish” images
from the same histogram bucket in the candidate images.

Statistic matching should ensure that v1 and v2 are bal-
anced in terms of selection frequency, and partly justifies
the expectation that models perform similarly on both.

Sources of bias. We identify two places where the match-
ing strategy of Recht et al. (2019b) might introduce statis-
tical bias. One potential source of bias could arise from
binning the images into histograms—since there are rela-
tively few bins, within each bin the ImageNet images might
have different selection frequencies from the correspond-
ing Flickr images. (For example, the ImageNet-v1 images
in the s(x) € [0.,0.2] bucket might actually have selec-
tion frequency 0.15, whereas the Flickr images in the same
bucket might have s(z) = 0.1.) However, this source of
error appears to have not had a pronounced effect (at least
on average), as Recht et al. (2019b) report that the aver-
age selection frequency of the ImageNet-v2 images actu-
ally matches that of the ImageNet-v1 test set.

Our analysis revolves around a second and more subtle
source of bias, however. This bias stems from the fact that
for any given image x, the selection frequency s(x) is never
measured exactly. Instead, we are only able to measure

§(z), a finite-sample estimate of the statistic, attained by
averaging over a relatively small number of annotators.

To model the impact of this seemingly innocuous detail,
suppose that the selection frequencies s(z) of ImageNet
and Flickr images are distributed according to p;(s(x))
and prrickr(s(x)) respectively (or more briefly, p;(s) and
Pyiickr(s))—see Figure 2 for a visualization. Now, suppose
that for an image =, we get an unbiased noisy measurement
§(x) = 0.75 of the selection frequency via crowdsourcing.
Then, even if §(z) is an unbiased estimate of s(x), the most
likely value of s(x) for the image is not §(x), but in fact de-
pends on the distribution from which « was drawn. Indeed,
for the (hypothetical) distributions shown in Figure 2, if x is
a Flickr image then it is more likely that s(z) < 0.75 and §
is an overestimate, since a priori an image is likely to have a
low selection frequency (i.e., there is more p fyicr-(s) mass
below 0.75) and the noise is unbiased. Conversely, if z is
an ImageNet test set image in this same setting, it is more
likely that s(x) > 0.75. Therefore, if we use a Flickr image
with a noisy selection frequency 0.75 to “match” an Ima-
geNet image with the same noisy selection frequency, the
true selection frequency of the ImageNet image is actually
likely to be higher. We can make this explicit by writing
down the likelihood of s given § = 0.75 (also plotted in
Figure 2):

R pi(s) - p(8 =0.75]s) . .
pi(s|8 = 0.75) = ( I))z(é(: 075) 1) Vie {1, flickr},
which depends on the prior p;(-) and therefore is not equal
for both values of s.

The distribution of candidate Flickr images is likely skewed
to have lower selection frequencies than v1—after all,
Deng et al. (2009) narrowed down Imagenet-vl from a
large set of candidates based on quality. Therefore, one
would expect the underlying true selection frequencies of
the v1 images to be higher than (and in general, not equal
to) their matched ImageNet-v2 counterparts.

A simple model of the bias. To better understand the
source of the bias, consider a simple model in which
the ImageNet-v2 selection process is cast as a rejection
sampling procedure. Here, the densities p;($(x)) and
Piickr(8(x)) are estimated from samples (analogous to
the histograms of Recht et al. (2019b))—then, for a given
Flickr image =, we “accept” x into the v2 dataset with
probability proportional to p1(5(z))/psiickr(8(z)) (anal-
ogous to the bin-wise sampling of Recht et al. (2019b)).
If selection frequency readings were not noisy, i.e. if
$(z) = s(x), then the resulting density of selection fre-
quencies in the v2 dataset would be given by

; s(x -7]91(8(%)) = s(x
pflzckr(< (z)) pﬂickr(s(x)) p1(s()),
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Figure 3. Illustrations accompanying the simple theoretical
model, where we assume pi(s(x)) and pricrr(s(z)) are
Beta(a + 1, 3) and Beta(a, 8) (here @« = 8 = 2). As more
samples are used to estimate s(x) for each image, the resulting
ImageNet-v2 distribution tends towards the v1 distribution, but
does not match it for any finite number of samples per image.

and the selection frequencies of v2 would be distributed in
the same way as those of v1, as intended. However, the
inevitable noisiness of the selection frequencies means that
in reality, the density of selection frequencies for v2 is

ooy P18(@))

s (s(e) - [ p(sie) TS
Now as a toy example, suppose priickr(s) and pi(s) are
given by beta distributions Beta(«, 8) and Beta(« + 1, )
respectively (c.f. Figure 2). Furthermore, suppose that
§(z) is given by an average of n Bernoulli draws with suc-
cess probability s(x). Then, a series of calculations (shown
in Appendix C) reveals that the resulting v2 selection fre-
quency distribution is given by:

_ N e+ 2P
n+pB+a b1 n+a+

Note thatas n — 0 (no filtering is done at all), the above ex-
pression evaluates to exactly p ;e (), as expected. Then,
as the number of workers n tends to infinity (i.e. § be-
comes less noisy), the distribution of ImageNet-v2 selec-
tion frequencies converges to the desired p;(s). For any
finite n, however, the resulting v2 distribution will be a
non-degenerate mixture between p ek (s) and p1(s), and
therefore does not match the distribution of selection fre-
quencies p; (s) exactly. The results of this toy model (de-
picted in Figure 2) capture the bias that could be incurred
by the data replication pipeline of Recht et al. (2019b).

Priickr(s). (1)

3. Remeasuring Selection Frequencies

In this section, we measure the effect of the described
noise-induced bias on the true and observed selection fre-
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Figure 4. Selection frequency histograms for v1 and v2 based on
our selection frequency re-measurement experiment. Results in-
dicate that v2 seems to have lower selection frequency.

quencies of images in dnd v2. Using an annotation task
closely resembling those of the ImageNet-v2 and ImageNet
MTurk experiments, we collect new selection frequency
estimates for all of ImageNet-v2 and for a subset of Ima-
geNet. In these tasks, MTurk annotators were shown grids
of 48 images at a time, each corresponding to an ImageNet
class. Each grid contained a mixture of ImageNet, Flickr,
and in our case, ImageNet-v2 images of the corresponding
class (since ImageNet-v2 was not yet realized at the time
of the other experiments), as well as control images from
other classes. We describe the setup in more detail in Ap-
pendix B.1. Annotators were tasked with selecting all the
images in the grid containing an object from the class in
question. Each image was seen by 40 distinct annotators,
and assigned an observed selection frequency equal to the
fraction of these workers that selected it.

Histograms of observed selection frequencies for v1 and
v2 are shown in Figure 4. We find that the average selec-
tion frequencies of the v1 and v2 images were 85.2% =+
0.1% and 80.7% =+ 0.1% respectively compared to 71%
and 73% reported by Recht et al. (2019b) 3. Thus, the
initial 2% gain in selection frequency measured by Recht
et al. (2019b) turns into a 5% drop(’. Our model of dataset
replication bias predicts this discrepancy: once observed
selection frequencies are used for matching, they no longer
provide an unbiased estimate of true selection frequency.

Detecting bias using the original data. Our MTurk task
measures a significant selection frequency gap betweeen
v1 and v2 (~5%), but also measures average selection fre-
quencies for both datasets to be significantly higher than
reported by Recht et al. (2019b), suggesting differences
in experimental setup. Indeed, while the tasks themselves
were identical, we did make a few changes to the deploy-
ment setup of Recht et al. (2019b) to improve data qual-

%95% bootstrapped CL.

0ur model in Section 2 predicts a distributional difference in
selection frequencies between v1 and v2; a gap between means
is sufficient but not necessary evidence for this difference.
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ity. These changes are outlined in Appendix B.2: exam-
ples include introducing worker screening qualifications’,
and using different proportions of images per grid. Since
the task interface remained constant and workers are not
able to distinguish between ImageNet-v1 and ImageNet-v2
images while labeling, we believe that the changes made
improve data quality across both datasets while negligibly
affecting the selection frequency gap between them.

Still, we can fully control for experimental differences by
analyzing the raw data of Recht et al. (2019b) directly, tak-
ing care to avoid bias from observed selection frequency
reuse. We defer the exact data analysis to Appendix D. Al-
though there are insufficient samples to properly estimate
the bias-adjusted accuracy with the original data, we show
that the observed results are consistent with a large accu-
racy correction (i.e., our 3.6% gap estimate is plausible).
These results suggest that statistic matching bias affects the
v2 dataset, even fully controlling for experimental setup.
In the coming sections, we quantify the effects of this bias
on model accuracies.

4. Understanding the Accuracy Gap

Our findings so far have suggested that statistic matching
bias results in a downwards bias in ImageNet-v2 true se-
lection frequencies. In this section, we quantify the impact
on this bias on ImageNet-v2 accuracy.

4.1. Notation and terminology

Here we overview the notation and terminology useful in
discussing the bias in ImageNet-v2 accuracy.

Selection frequencies. In Section 2 we defined the true se-
lection frequency s(z) for an image x as the (population)
rate at which crowd annotators select the image as correctly
labeled. The true selection frequency of an image is unob-
servable, and often approximated by the observed selection
frequency, §,,(z) ~ LBinom (n, s(x)), which can be esti-
mated from an n-annotator MTurk experiment. When n is
clear from context, we will omit it and write §(x).

Distributions. We use D; and D5 to denote the distribu-
tions of v1 and v2 images respectively, and S; and Ss for
the corresponding finite test sets. As in Section 2, we de-
note by p;(s) the probability density of true selection fre-
quencies for images drawn from D;. Similarly, we use
pi(8,(x)) to denote the probability mass function of the
observed selection frequency for dataset :.

"Worker qualification is a service provided by MTurk that only
allows “high-reputation” annotators (typically measured by his-
torical annotation quality on the platform) to complete a given
task. Qualifications have been shown to significantly impact data
quality: in (Peer et al., 2013), using qualifications lowered the
number of inattentive workers from 33% to less than 1%.

We let Do|s; be the distribution of v2 images reweighted
to have the same selection frequency distribution as
vl. Formally, Ds|s; is the compound distribution
(x2 ~ Da|s(x2) ~ p1(s)). Sampling from Ds|s; corre-
sponds to first sampling a v1 image x1, then sampling an
image x5 from v2, conditioned on s(x2) = s(x1).

Accuracies. For a classifier ¢, let f.(x) be an indicator
variable of whether c correctly classifies x. Since our anal-
ysis applies to any fixed classifier ¢, we omit it and use
f(x). We then define Ax as classifier accuracy on distri-
bution or test set X—for example, accuracy on v1 is given

by ADl = PIlN'Dl (f(xl) = 1) = IEx1~'D1 [f(xl)} :

4.2. Breaking down the accuracy gap

The accuracy gap between the v1 and v2 test sets is given
by As, —As,. What fraction of this gap can be attributed to
bias in selection frequency? To answer this, we decompose
this accuracy gap into three elements whose contribution
can be studied separately:

(As, = Apyjoy) + (Apyie, — Apy) + (Ap, — As, ) . )
————

finite sample gap ~ O

bias-corrected accuracy gap selection gap

Bias-corrected accuracy gap. The first term of (2), called
the bias-corrected accuracy gap, captures the portion of the
v1-v2 accuracy drop that cannot be explained by a differ-
ence in selection frequency, and instead might be explained
by benign distribution shift or adaptive overfitting.

Selection gap. The second term of (2) is accuracy gap that
can only be attributed to selection frequency, since it com-
pares accuracy on Dy to accuracy on a reweighted version
of D,. If there was no bias, and the distribution of selec-
tion frequencies for v1 and v2 matched exactly, then this
term would equal zero (Ds|s; would equal D). Thus, the
selection gap translates the effect of discrepancy in true se-
lection frequency between v1 and v2 into a discrepancy
in accuracy. Since we measured v1 as having higher true
selection frequency, we expect the selection gap to be posi-
tive and thus explain a portion of the accuracy gap that was
previously attributed to distribution shift.

Finite-sample error. The final term refers to the finite-
sample error from using 10,000 images as a proxy for
distributional accuracy. We believe that this term is
negligible, since (a) 95% bootstrapped confidence intervals
for the classifiers we evaluate are all at most 0.1%, and
(b) there can be no adaptive overfitting on So with respect
to Dy. Thus, we drop this term from consideration and
instead use Ap, and Ag, interchangeably.

Computing selection-adjusted accuracy. We have shown
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how to decompose the v1-v2 accuracy gap into a com-
ponent explained by selection frequency (selection gap),
and a component unexplained by selection frequency (bias-
corrected accuracy gap). The challenge in computing this
decomposition is estimating Ap, s, , the selection-adjusted
v2 accuracy. While the closed form of Ap,),, is

[ Enlr@)lst@) = 5] ) ds,
S

we have no access to p;(s) for any value of i (we do not
even have direct access to s(x) for any image x). In the next
section, we explore methods for estimating Ap,|,, using
only the observed selection frequencies that we collected.

5. Quantifying the Bias

In the previous sections, we showed that statistic match-
ing based on noisy observed selection frequencies may lead
ImageNet-v2 images to have lower true selection frequen-
cies than expected. In Section 4 we related this discrepancy
in selection frequency to a corresponding discrepancy in
model accuracy between v1 and v2, which we called the
“selection gap.” In this section, we explore a series of meth-
ods for estimating this gap—we estimate that the selection
gap accounts for 8.1% of the 11.7% v1-v2 accuracy drop.

5.1. Naive approach

We have introduced the selection-adjusted v2 accuracy,

Ao = [ Enlf@ls@) =s] ms)ds, O

which captures model accuracy on a version of ImageNet-
v2 reweighted to have the same true selection frequency
distribution of ImageNet-v1. Since we do not observe true
selection frequencies, we cannot evaluate ADQ|51, and are
instead forced to estimate it. A natural way to do so is to
use observed selection frequencies in place of true ones,
leading to the following “naive estimator:”

Apyey = ;)1“32 [f(12)\§w,(12) = S] 1 (ﬁn(rl) = S) @
The naive estimator is a computable® but biased estimator
of the selection-adjusted accuracy. This follows from our
analysis in Section 2, since /1%2 s, 18 just a mechanism for
statistic matching between ImageNet-v1 and ImageNet-v2
using observed selection frequencies in place of true selec-
tion frequencies. Thus, the selection-adjusted v2 accuracy
computed by the naive estimator is likely to still underesti-
mate the true selection-adjusted accuracy Ap,|s, -

8This is true as long as we can reliably approximate the expec-
tations. Here we have 10* images and only 41 possible values of
$n(x); also, halving the number of images negligibly affects the
value of the estimator.

We can verify this bias empirically by varying the number
of annotators n used to calculate $,, () for each image, and
visualizing the resulting trends in p;(5,(x)) (Figure 5a),
pi(f(z) = 1|s(x)) (Figure 5b), and A%lel (Figure 5c).
The results corroborate our analysis in Section 2 and our
findings from Section 3. Specifically, Figure 5 plots each
term in the definition of the naive estimator,

A, =3B £l = 2] o (snlo) = £

Fig. 5¢

Fig. 5b

and allows us to draw the following conclusions:

e Figure 5a shows that the distribution of observed v1
selection frequencies p1 ($,, (z)) becomes increasingly
skewed as more annotators are used to estimate selec-
tion frequencies (i.e. as bias decreases).

e Figure 5b plots selection frequency-conditinoed clas-
: s _k
sifier accuracy, Eg,~p, [f(22)|8n(22) = £] as a
function of n. The plot indicates that when we use
observed selection frequency in place of true selection
frequency, we overestimate model accuracy on images
with low selection frequency and underestimate accu-

racy on images with high selection frequency.

e Combining these two sources of bias, Figure Sc shows
that as we reduce bias by increasing n, the selection-
adjusted v2 accuracy increases for every classifier.

It turns out that computing (4) using the 40 annotators
per image that we collected in Section 3 already produces
selection-adjusted v2 accuracies that are on average 6.0%
higher than the initially observed v2 accuracy. Thus, de-
spite still suffering from matching bias, the naive reduces
the v1-v2 accuracy drop to 5.7%. In the following sec-
tions, we explore two different techniques for debiasing the
naive estimator and explaining more of the accuracy gap.

5.2. Estimating bias with the statistical jackknife

As a first attempt at correcting for the previously identified
bias, we turn to a standard tool from classical statistics. The
jackknife (Quenouille, 1949; Tukey, 1958) is a nonpara-
metric method for reducing the bias of finite-sample esti-
mators. Here, we use it to estimate and correct for the bias
in finite-sample estimates of the adjusted accuracy Ap, s, .

Jackknifing the naive estimator. As a first approach,
we can apply the jackknife directly to the naive estimator
(cf. (4)). For the jackknife-corrected estimate to be mean-
ingful, we have to show that the naive estimator is a sta-
tistically consistent estimator of the true selection-adjusted
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Figure 5. A series of graphs, all demonstrating bias in estimators that condition on selection frequency. Left: The estimated population
density of selection frequencies, calculated naively from samples. For a given number of annotators per image n, the corresponding line
in the graph has equally spaced points of the form (k/n, Y 15—/, ). Middle: Model accuracy of a ResNet-26 conditioned on selection
frequency; once again, we naively using empirical selection frequency in place of true selection frequency for conditioning. Just as in
the left-most graph, for a given n-annotator line, points at x = k/n in the graph correspond to the accuracy on images with observed
selection frequency k/n. Right: Adjusted v1 versus v2 accuracy plots, calculated for varying numbers of annotators per image (with
adjusted accuracy computed using the naive estimator of Section 5.1). Each point in the plot corresponds to a trained model.

accuracy (i.e., that lim,, A%2|51 = Ap,|s,)- We prove
this property in Appendix E, under the assumption that we
can evaluate quantities of the form p; (8, () = s) exactly
(in practice this assumption seems acceptable since the em-
pirical variance of the estimator is small). Applying the
jackknife to the naive estimator reduces the adjusted accu-
racy gap further, from 5.7% to 4.6%.

Considerations and limitations.  For the jackknife to
perform reliably, we must have that (a) the leave-one-out
estimators have low enough variance, and (b) the bias is
an analytic function in 1/n that is dominated by the ©(2)
term in its power series expansion. We address the first of
these concerns by plotting jackknife confidence intervals
(c.f. (Efron & Tibshirani, 1994)) for our estimates. Consid-
eration (b) carries a bit more weight: as shown in App. E.1,
the n-sample naive estimator has a roughly linear relation-
ship in 1/n, but not a perfect one—in particular, the esti-
mator seems to increase at a rate slightly faster than 1/n,
suggesting that as a result, the jackknife still provides an
underestimate of the selection-adjusted accuracy. Another
potential source of error is finite-sample error in measuring
the expectations E,.,.p, [f(22)|$n(22)], but as previously
mentioned this is likely negligible due to the dataset size
and the invariance of the results to the number of images.

In the next section, we present another approach to estimat-
ing the selection-adjusted accuracy that relies on a different
set of assumptions: parametric modeling.

5.3. Estimating bias with a parametric model

We now explore a more fine-grained approach to estimating
the selection-adjusted accuracy of ImageNet-v2, namely

explicit parametric modeling. Recall that the adjusted ac-
curacy captures accuracy on ImageNet-v2 reweighted to
match ImageNet-vl in terms of true selection frequency
distribution, and is given by:

Ao, = / P2 (f(@2)l5(2) = 5) - pi(s) ds (5)
s€[0,1]

In Sections 5.1 we computed a biased estimate of Ap,|s,
using observed selection frequencies § in place of true se-
lection frequencies. Then, in 5.2 we corrected for bias in
the naive estimator post-hoc using the statistical jackknife.

In constrast, the model-based approach tries to circumvent
this bias altogether: we parameterize functions of the true
selection frequency directly (i.e., pi(s) and po(f(z) =
1ls(x) = s)), then fit parameters that maximize the like-
lihood of the observed data while taking into account
the noise model. For example, since the distribution of
$n(z) given s(x]) is the binomial distribution, we can write
(and optimize) a closed-form expression for the likelihood
of observing a given set of selection frequencies based
on a parameterized true selection frequency distribution
p1(s;0). We estimate selection-adjusted accuracy in two
steps. First, we fit models for the true selection frequency
distributions p;(s) and pa(s). Then, we use our estimate
of p2(s) in conjunction with observed data to fit models
for po(f(x)|s(x) = s). Finally, we recover estimates for
Ap,|s, by numerically computing the integral in Ap,|,,
(c.f. (5)), plugging in the learned parametric estimates.

Fitting a model to p;(s(x)). We model the p;(s(x))
as members of a parameterized family of distribution
pi(s(x); @) with true parameters 6. Then, for each dataset
1, we model the observed selection frequencies as sampled
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Figure 6. Accuracy on v1 versus v2 adjusted using the two techniques discussed in this section. On the left (respectively, right) we use
the jackknife (parametric model) of Section 5.2 (5.3) to estimate adjusted accuracies for v2. The graphs confirm that the “true” gap in
accuracy between v1 and v2 is indeed much smaller than the initially observed gap. Confidence intervals on the left are based on the
jackknife standard error, and confidence intervals on the right are based on 400-sample 95% bootstrap confidence intervals

Dataset: v1
8
o _MEES Fit p(s; 6) e
B Induced p(§;0) A
£ 4 —— Observed p(3)
a 9 I.
0 '

T |
0 0.2 0.4 0.6 0.8 1

Selection frequency

Figure 7. Our fit beta mixture models p;(s; é) for “true” selec-
tion frequency, the noisy selection frequency distribution they in-
duce p;(3; 6, and the observed selection frequency p; (). The fit
pi(s; 6) distributions place more density on higher selection fre-
quencies than naively estimating p; (s) from the observed p; (8).

from a compound distribution, in which one first samples
s ~ p;(-;07), then observes § ~ Binom (n, s) (where n is
the number of MTurk annotators).

To infer each 07, we use maximum likelihood estimation
on the observed samples over the compound distribution.
We opt to use mixtures of beta distributions as the family
pi(+;0) over which to optimize”, and we use Expectation-
Maximization to find, for each dataset, the maximum like-
lihood mixture of k = 3 beta-binomial distributions for
the observed §,,(z). We provide further detail (including
pseudocode) on the fitting process for p;(s(z);6) in Ap-
pendix F. We plot the resulting fitted distributions p; (s(z))
in Figure 7. Our estimated p;($; ;) distributions continue
the trend previously seen in Figure 5a, and show the ex-
tent to which our naive 40-sample empirical estimates of
pi(s(x)) exhibit bias.

A beta distribution composed with a binomial is a beta-
binomial distribution—the basis of beta-binomial regression.

Fitting a model to p2(f(z) = 1|s(z) = s). Next, we
consider accuracy conditioned on selection frequency:

g(s) = p2(f(w2) = 1]s(z2) = s).

While introducing the naive estimator (Section 5.1), we
found that that estimating g(s) using observed selection
frequencies instead of true selection frequencies results in
bias (Figure 5b). Under the parametric approach, we in-
stead model g(s) as a member of a parametric class (i.e.,
g(s) = g(s;w)), then account for noise in observed selec-
tion frequencies via the following identity:
9(5)-p(3]s)-pa(s) ds.

pa(f(e2) = L3u(az) = 5) = [
s€[0,1]

We parameterize g as a cubic spline, and estimate the pa-

rameter by minimizing the squared error between the left

and right sides above using a quadratic program solver.

Results. Once we have estimated probability distribu-
tions p;(s(z);0;) and the conditional classification func-
tion g(s(x);w), we can compute an estimate of Ap,|,, us-
ing Equation (5) and numerical integration. Figure 6b de-
picts various models’ v1 and v2 accuracies both with and
without the adjustment for selection frequency. Our esti-
mate for the frequency-adjusted gap in accuracy averaged
over all models is 3.6% + 1.5%, around 30% of the original
11.7% 4 1.0% gap in accuracy.

Beyond accuracy gap, Recht et al. (2019b) also studied the
linear relationship between v2 accuracy and v1 accuracy
while varying the classifier used—this is plotted by the blue
dots in Figure 6b. This relationship is linear for our ad-
justed accuracies as well (cf. Figure 6b), however the slope
we find is 1.01 £ 0.09 instead of 1.13 £ 0.05.

Considerations and limitations. Error in parametric mod-
eling generally stems from two sources: finite-sample error
and model misspecification. These sources of error affect
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all parametric models, but we take various precautions to
mitigate their impact on our estimates. To assess our finite-
sample error, we give 95% bootstrapped confidence inter-
vals (details are in Appendix F), which are displayed as
error bars in Figure 6b. We also ensure that our results
are not sensitive to the number of annotators used to fit the
parametric models (cf. Appendix F). As with any model-
ing decision, our choices of model classes might not fully
capture the ground-truth, and thus may be a source of error.
We account for this as much as possible by demonstrating
the robustness of our results to varying the number of free
parameters (cf. Appendix F).

6. Related Work

Rapid improvements on standard datasets (e.g. (LeCun,
1998; Krizhevsky, 2009; Russakovsky et al., 2015; Zhou
et al., 2017) in computer vision) has drawn interest to
verifying and testing the robustness of progress thus far.
Previous work has characterized cross-dataset generaliza-
tion(Torralba & Efros, 2011), and explored the impact
of synthetic perturbations on generalization, such as ad-
versarial examples (Kurakin et al., 2016; Tsipras et al.,
2019; Ilyas et al., 2019; Su et al., 2018) or various other
corruption robustness measures (Hendrycks & Dietterich,
2019; Kang et al., 2019). Recently, a number of works
have emerged around evaluating performance on newly
reproduced test sets, including works focusing on Ima-
geNet (Recht et al., 2019b) and CIFAR (Recht et al.,
2019a). In our work, we study a source of statistical
bias that may affect such dataset replication. Similar phe-
nomena have been noted in the context of the natural sci-
ences (e.g., ecology (Greig-Smith, 1983)) and causal infer-
ence (Stipak & Hensler, 1982).

7. Discussion and Conclusions

Dataset replication pipelines can introduce unforeseen, of-
ten unintuitive statistical biases. In the case of ImageNet-
v2, even using unbiased estimates of image selection fre-
quency in the data generation pipeline results in a signifi-
cant statistical bias, and ultimately turns out to account for
a large portion of the observed accuracy drop. Our findings
give rise to the following considerations.

7.1. Remaining accuracy gap and unmodeled bias

Worker heterogeniety. Our study focuses on bias stem-
ming from the fact that for a given image = one never ob-
serves s(x) but rather §,(z) = Binom (n, s(x)). There is
another source of bias due to noise that we do not model
here, namely variance in the MTurk annotator population.
Specifically, some annotators are more likely in general to
select or reject independently of what image-label pair they

are being shown. This unmodeled variance likely translates
to unmodeled bias, suggesting that more of the gap might
be explained by taking worker heterogeniety into account.

Task shift bias. At the time of the original ImageNet ex-
periment, workers judged image-label pairs by some ab-
stract set of criteria C;. Suppose that at the time of
the ImageNet-v2 experiment several years later, annota-
tors judged image-label pairs based on an overlapping but
non-identical set of criteria Cs. Ideally, we should not care
about differences between C; and Co—indeed, one of the
goals of dataset replication is to test robustness to such be-
nign distribution shifts. The source of the bias lies in the
iterated nature of the filtering experiment. In particular,
after both the original experiment and the replication, im-
ages in ImageNet-vl now meet both C; and C5. On the
other hand, images in ImageNet-v2 only meet criteria C,
and may be judged to have low selection frequency under
C1—we would thus expect models to perform better on
ImageNet-v1 images due to their increased qualifications.
Although this may contribute towards the remaining accu-
racy gap, this type of bias is difficult to study or correct for
without more knowledge of both experiments.

Other sources of error. The remaining error unexplained
by bias in data collection could come from one of the gap
sources listed in Section 4, i.e., finite sample error, or dis-
tribution shift and adaptive overfitting. Quantifying the po-
tential contribution of the individual terms in the remaining
gap will require more experimentation and future work.

7.2. Adaptive overfitting and distribution shift

Identifying sources of distribution shift. A longstand-
ing goal in computer vision is to develop models that are
less prone to failure under small distributional shifts. A
step in the journey towards this goal is precisely character-
izing the kinds of distribution shifts under which models
fail—examples include rotations and translations of nat-
ural images Engstrom et al. (2019), or corrupted natural
images (Hendrycks & Dietterich, 2019). Our findings im-
ply that the drop may be attributable to differences in se-
lection frequency distribution, corroborating observations
by Recht et al. (2019b) that models are sensitive to selec-
tion frequency. Differences in selection frequency distribu-
tion present another distribution shift to study in depth.

Detecting and avoiding bias in dataset replication. More
broadly, our analysis identifies statistical modeling of the
data collection pipeline as a useful tool for dataset replica-
tion. Indeed, characterizing the ImageNet and ImageNet-
v2 generative processes and isolating them in a a simple
theoretical model allowed for the discovery and correction
of a source of bias in the dataset replication process.
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