2020 IEEE/ACM 42nd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

Software Development Data for Architecture Analysis:
Expectations, Reality, and Future Directions

Yuanfang Cai

Computer Science Department
Drexel University
Philadelphia, PA, USA
yfcai@cs.drexel.edu

ABSTRACT

Recently we have worked with a dozen industrial collaborators to
pinpoint and quantify architecture debts, from multi-national
corporations to startup companies. Our technology leverages a
wide range of project data, from source file dependencies to issue
records, and we interacted with projects of various sizes and
characteristics. Crossing the border between research and practice,
we have observed significant gaps in terms of data availability and
quality among projects of different kinds. Compared with
successful open source projects, data from proprietary projects are
rarely complete or well-organized. Consequently, not all projects
can benefit from all the features and analyses we provide. This, in
turn, made them realize they needed to improve their development
processes. In this talk, we categorize the commonly observed
differences between open source and proprietary project data,
analyze the reasons for such differences, and propose suggestions
to minimize the gaps, to facilitate advances to both software
research and practice.

KEYWORDS

Software Architecture, Technical Debt, Architecture Debt,
Software Modularity, Software Quality

1 Topic Description

The gap between software engineering research and practice has
hindered progress on both fronts. High quality data is critical for
software research, from bug prediction to architecture analyses to
visionary knowledge graphs. Much software engineering research
leverages data collected from open source projects, and it is rare
that published research tools are applied in practice, and rarer still
that they produce similarly impressive results.

The reasons behind this gap are complex. In the past few years, our
architecture debt research has had the privilege of “crossing the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.

ICSE-SEIP '20, May 23-29, 2020, Seoul, Republic of Korea
© 2020 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-7123-0/20/05.
https://doi.org/10.1145/3377813.3381357

Rick Kazman

Shidler College of Business
University of Hawaii
Honolulu, HI, USA
kazman@hawaii.edu

border” and being applied in practice. Our industrial collaborators
cover a wide spectrum from multi-national corporations to startups.
During the process of working with them, we witnessed key
differences between open source and proprietary projects in terms
of how they are managed, how development data are collected, and
how data quality differs. These differences have presented
challenges for our techniques to be applied in practice to closed-
source projects. But they have also opened up opportunities for us
to improve our research and have motivated our collaborators to
improve their development processes.

In this talk, we first explain how we leverage heterogenous data
sources generated from a development process to identify and
quantify architecture debts, so that both development teams and
management can share a common goal. This goal is to understand
the severity and scope of their debts, to estimate the costs of
refactoring them, and finally, to calculate and validate the benefits
of refactoring. Our basic idea is to integrate structural information
reflected in the source code with source files transactions, as
recorded in the project’s revision history, to calculate key
performance indicators and to estimate costs and benefits.

Our tool suite consists of a novel maintainability score—
decoupling level (DL) [4], a technique for detecting architecture
anti-patterns—recently defined and extensively validated
structural flaws [15], and a technique for detecting architecture
roots—file groups responsible for high maintenance costs [6]. Next
we briefly explain each of these concepts.

(1) Decoupling Level (DL) [4] measures how well a software
system is decoupled into small and independent modules that can
be developed and maintained in parallel. DL measures various
types of dependencies among source code entities, both structural
and evolutionary couplings.

(2) Architecture anti-patterns [3] are recurrent patterns of file
relationships that violate widely accepted design principles and that
have been shown to be strongly correlated with high maintenance
costs. The detection of these anti-patterns requires a project’s
revision history that records how files were changed together. To
quantify the penalty incurred by each anti-pattern instance, we
measure the number of bugs and changes, as well as the bug churn
and change churn, using project history data, such as a that
available from, for example, a Git log.

(3) Architecture roots [5] are defined as architecturally connected
file groups that capture a project’s most error-prone or change
prone files. We first proposed the notion of a design rule space
(DRSpace)—a set of files implementing a pattern, a feature, or
other important system concerns—and an architecture root is a type
of DRSpace. Our study showed that five (or fewer) architecture
roots in a project typically cover 50% to 90% of the project’s most
error-prone files. To calculate roots, we need three types of data:
dependencies among source code entities, revision history, and
issue records, with the assumption that each commit can be linked
to an issue ticket.

Our tool suite performs these analyses and automatically generates
a report summarizing the discovered architecture problems, and
provides detailed data for follow-on analysis. We have multiple
publications reporting case studies with industrial collaborators,
e.g. [2], [11], [12], [13], [14]. Like most software research tools,
before applying these techniques on industrial projects we first
extensively evaluated them using open source projects. But we
found that it is much harder to extract data from commercial
projects: not all development teams have all the data available and
the data are usually not of high quality. The teams did not realize
the problems in their development processes until our tools
reported unexpected results.

To discover the reasons behind these abnormal results, we
intensively interacted with team members and observed several
representative cases that illuminated the differences. In this talk, we
categorize the differences between open source data and
proprietary project data and analyze the reasons behind these gaps
based on our extensive interactions with developers, designers,
architects and managers. These experiences have motivated us to
improve our research and motivated the industrial development
teams to improve their development processes. Based on these
experiences, we propose suggestions to minimize the gaps, to
facilitate advances to both software research and practice.

2 Speaker Names and Bios

2. Speaker Names

Dr. Yuanfang Cai, Associate Professor, Drexel University

Dr. Rick Kazman, Professor, University of Hawaii

2. Bio of Yuanfang Cai

Yuanfang Cai is a Professor at Drexel University. Her major
research interests include software architecture, design, modularity,
evolution, the revelation of architecture and architectural issues
within source code, and the integration of software architecture and
economics. She has authored more than 80 publications and is
ranked the 2nd in the field of Technical Debt and Software
Modularity on Google Scholar. She is the creator of the suites of
concepts and technologies leading to new ways of software
architectural analysis: the design rule hierarchy algorithm to model
software architectures [8], the notion of DRSpace that integrates
software architecture modeling with evolution history and quality

232

information [6], the Decoupling Level (DL) metric that measures
to what extend a software architecture is decoupled [4], and the
approaches to quantifying key parameters of architecture debts [7].

2. Bio of Rick Kazman

Rick Kazman is a Professor at the University of Hawaii and a
Visiting Scientist at the Software Engineering Institute of Carnegie
Mellon University. His primary research interests are software
architecture, design and analysis tools, software visualization, and
software engineering economics. Kazman has co-created several
highly influential methods and tools for architecture analysis,
including the SAAM (Software Architecture Analysis Method), the
ATAM (Architecture Tradeoff Analysis Method), the CBAM
(Cost-Benefit Analysis Method) and the Dali and Titan tools. He
is the author of over 200 publications, and co-author of several
books, including Software Architecture in Practice [10], Designing
Software Architectures: A Practical Approach [9], Evaluating
Software Architectures: Methods and Case Studies, and Ultra-
Large-Scale Systems: The Software Challenge of the Future.

Both authors have co-authored most of the papers that are the
foundation of this talk [1][2][3][4][S1[6][7][11][12][13][14][15].

REFERENCES

(1
(2]

Y. Cai, R. Kazman, C., Jaspan, J. Aldrich: Introducing tool-supported

Architecture review into software design education. CSEE&T 2013

R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, and A.

Shapochka. A case study in locating the architectural roots of technical debt. In

Proc. 37th International Conference on Software Engineering, May 2015.

R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns: The formal definition

and automatic detection of architecture smells. In Proc. 12thWorking IEEE/IFTP

International Conference on Software Architecture, May 2015.

R. Mo, C. Yuanfang, K. Rick, X. Lu, and F. Qiong. Decoupling level: A new

metric for architectural maintenance complexity. In Proc. 38" International

Conference on Software Engineering, pp. 499-10, 2016.

L. Xiao, Y. Cai, and R. Kazman. Titan: A toolset that connects software

architecture with quality analysis. In 22nd ACM SIGSOFT International

Symposium on the Foundations of Software Engineering, 2014.

L. Xiao, Y. Cai, and R. Kazman. Design rule spaces: A new form of architecture

insight. In Proc. 36rd International Conference on Software Engineering, 2014.

L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and quantifying

Architectural Debts,” in Proc. 38rd International Conference on Software

Engineering, 2016.

S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi. Design rule hierarchies

and parallelism in software development tasks. In Proc. 24th International

Conference on Automated Software Engineering, pp. 197-208, 2009.

H. Cervantes, R. Kazman, Designing Software Architectures: A Practical

Approach, Addison-Wesley, 2016.

[10] L. Bass, P. Clements, R. Kazman, Sofiware Architecture in Practice, 3rd ed.,
Addison-Wesley, 2012 (2nd ed. 2003, 1st ed. 1998).

[11] R. W. Schwanke, L. Xiao, Y. Cai: Measuring architecture quality by structure
plus history analysis. ICSE 2013: 891-900

[12] W. Wu, Y. Cai, R. Kazman, R. Mo, Z. Liu, R. Chen, Y. Ge, W. Liu, J. Zhang:
Software Architecture Measurement - Experiences from a Multinational
Company, in Proc. of the 12th European Conference on Software Architecture,
(ECSA’18), pp 303-319, Sept, 2018.

[13]R. Mo, Y. Cai, R. Kazman, Q. Feng: Assessing an architecture’s ability to support
feature evolution, in Proc. of the 26th Conference on Program Comprehension
(ICPC’18), pp 297-307, May 2018

[14] M. Nayebi, Y. Cai, R. Kazman, G. Ruhe, Q. Feng, C. Carlson, F. Chew: A
longitudinal study of identifying and paying down architecture debt, in Proc. of
the 4l1st International Conference on Software Engineering: Software
Engineering in Practice ICSE’19 (SEIP), pp 171-180, May, 2019

[15] R. Mo, Y. Cai, R. Kazman, L. Xiao and Q. Feng: Architecture Anti-patterns:

Automatically Detectable Violations of Design Principles, /[EEE Transactions on

Software Engineering, 2019.

B3]

(4]

(9]

