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ABSTRACT

Recently we have worked with a dozen industrial collaborators to
pinpoint and quantify architecture debts, from multi-national
corporations to startup companies. Our technology leverages a
wide range of project data, from source file dependencies to issue
records, and we interacted with projects of various sizes and
characteristics. Crossing the border between research and practice,
we have observed significant gaps in terms of data availability and
quality among projects of different kinds. Compared with
successful open source projects, data from proprietary projects are
rarely complete or well-organized. Consequently, not all projects
can benefit from all the features and analyses we provide. This, in
turn, made them realize they needed to improve their development
processes. In this talk, we categorize the commonly observed
differences between open source and proprietary project data,
analyze the reasons for such differences, and propose suggestions
to minimize the gaps, to facilitate advances to both software
research and practice.
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1 Topic Description

The gap between software engineering research and practice has
hindered progress on both fronts. High quality data is critical for
software research, from bug prediction to architecture analyses to
visionary knowledge graphs. Much software engineering research
leverages data collected from open source projects, and it is rare
that published research tools are applied in practice, and rarer still
that they produce similarly impressive results.

The reasons behind this gap are complex. In the past few years, our
architecture debt research has had the privilege of “crossing the
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border” and being applied in practice. Our industrial collaborators
cover a wide spectrum from multi-national corporations to startups.
During the process of working with them, we witnessed key
differences between open source and proprietary projects in terms
of how they are managed, how development data are collected, and
how data quality differs. These differences have presented
challenges for our techniques to be applied in practice to closed-
source projects. But they have also opened up opportunities for us
to improve our research and have motivated our collaborators to
improve their development processes.

In this talk, we first explain how we leverage heterogenous data
sources generated from a development process to identify and
quantify architecture debts, so that both development teams and
management can share a common goal. This goal is to understand
the severity and scope of their debts, to estimate the costs of
refactoring them, and finally, to calculate and validate the benefits
of refactoring. Our basic idea is to integrate structural information
reflected in the source code with source files transactions, as
recorded in the project’s revision history, to calculate key
performance indicators and to estimate costs and benefits.

Our tool suite consists of a novel maintainability score—
decoupling level (DL) [4], a technique for detecting architecture
anti-patterns—recently  defined and extensively validated
structural flaws [15], and a technique for detecting architecture
roots—file groups responsible for high maintenance costs [6]. Next
we briefly explain each of these concepts.

(1) Decoupling Level (DL) [4] measures how well a software
system is decoupled into small and independent modules that can
be developed and maintained in parallel. DL measures various
types of dependencies among source code entities, both structural
and evolutionary couplings.

(2) Architecture anti-patterns [3] are recurrent patterns of file
relationships that violate widely accepted design principles and that
have been shown to be strongly correlated with high maintenance
costs. The detection of these anti-patterns requires a project’s
revision history that records how files were changed together. To
quantify the penalty incurred by each anti-pattern instance, we
measure the number of bugs and changes, as well as the bug churn
and change churn, using project history data, such as a that
available from, for example, a Git log.



(3) Architecture roots [5] are defined as architecturally connected
file groups that capture a project’s most error-prone or change
prone files. We first proposed the notion of a design rule space
(DRSpace)—a set of files implementing a pattern, a feature, or
other important system concerns—and an architecture root is a type
of DRSpace. Our study showed that five (or fewer) architecture
roots in a project typically cover 50% to 90% of the project’s most
error-prone files. To calculate roots, we need three types of data:
dependencies among source code entities, revision history, and
issue records, with the assumption that each commit can be linked
to an issue ticket.

Our tool suite performs these analyses and automatically generates
a report summarizing the discovered architecture problems, and
provides detailed data for follow-on analysis. We have multiple
publications reporting case studies with industrial collaborators,
e.g. [2], [11], [12], [13], [14]. Like most software research tools,
before applying these techniques on industrial projects we first
extensively evaluated them using open source projects. But we
found that it is much harder to extract data from commercial
projects: not all development teams have all the data available and
the data are usually not of high quality. The teams did not realize
the problems in their development processes until our tools
reported unexpected results.

To discover the reasons behind these abnormal results, we
intensively interacted with team members and observed several
representative cases that illuminated the differences. In this talk, we
categorize the differences between open source data and
proprietary project data and analyze the reasons behind these gaps
based on our extensive interactions with developers, designers,
architects and managers. These experiences have motivated us to
improve our research and motivated the industrial development
teams to improve their development processes. Based on these
experiences, we propose suggestions to minimize the gaps, to
facilitate advances to both software research and practice.
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