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® Storage-induced emissions are 42-64% lower in the high- than in the low-wind grid.
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Energy storage provides many benefits that can improve electric grid performance but has been shown to in-
crease overall system emissions. Yet, how energy storage might interreact with renewables in existing grids and
how these interactions affect overall emissions remain unclear. Here, we estimate emissions induced by battery
energy storage in two regions of the United States with very different levels of wind penetration using high-
resolution, both spatially and temporally, locational marginal prices and hourly marginal emission factors. We

find that the emission intensity of carbon dioxide, sulfur dioxide, nitrogen oxides, and mercury is 4264% lower
in the high wind penetration grid (28%) than in the low wind penetration grid (< 5%). This is due in part to a
significant share of wind dispatched as marginal fuel in baseload hours when battery storage charges from the
grid, reducing storage-induced emissions. Our study suggests that more wind generation can favorably pair with
storage and reduce the air pollution burdens otherwise caused by storage.

1. Introduction

Energy storage technologies are widely acknowledged as effective
tools to improve grid reliability [1,2], shave peak load [3,4], and in-
tegrate renewables [5,6], particularly wind [7-9] and solar [10]. Re-
cently, deploying energy storage in the United States (US) power system
has been encouraged and/or mandated by federal and state policies and
regulations. For example, in February 2018, the Federal Energy Reg-
ulation Committee (FERC) issued Order 841 to “remove barriers to the
participation of electric storage resources in the capacity, energy and
ancillary services markets operated by Regional Transmission

Organizations (RTOs) and Independent System Operators (ISOs)” [11].
At the state level, utilities are required to install or procure certain
amount of energy storage capacity by 2020 or 2030 in California
[12-14], Massachusetts [15], New Jersey [16], New York [17], and
Oregon [18]. These policy targets facilitate storage technology de-
ployment and market access, and provide opportunities for multiple
revenue streams to utilities [2,19].

With the prospect of greater storage deployment in the near future
and the increased global attention placed on reducing the health and
climate impacts of electricity systems [20,21], the emissions impacts of
increased grid system storage remain largely unclear [22,23]. While
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energy storage, per se, does not generate emissions, it stores electricity
and discharges it at 70-95% efficiency [24-26]. Incremental emissions
of storage sourced power come from this efficiency loss plus the dif-
ference between the marginal emissions of the electricity grid system
fuel mix when the storage technology charges and the marginal emis-
sions displaced when it discharges [27]. The net impact of storage
therefore hinges on when it charges and discharges and what fuel
sources are on the margin at those times, accounting for energy loss
[28].

Previous studies of the U.S. grid have found that storage can often
increase system emissions [29-31]. This is because storage is assumed
to likely charge from baseload power plants (often coal powered) when
prices are low, and discharge when the grid is largely powered by
peaking power plants (often natural gas powered) when prices are high
[29,30]. In determining the marginal generation storage uses and dis-
places when charging and discharging, earlier papers have generally
omitted renewables, assuming that wind and solar, in particular, cannot
be dispatched on the margin due to their intermittency [32-35].
However, due in large part to advances in dispatch control systems,
real-time forecasting, and changes in electricity market rules, renew-
ables are now commonly dispatched on the margin [36,37]. For ex-
ample, the Midcontinent Independent System Operator (MISO) laun-
ched the Dispatchable Intermittent Resources (DIRs) program in 2011
[38] and dispatched wind as marginal power resource for nearly half of
the time in the past few years [39]. The PJM Interconnection (PJM) has
also undertaken several initiatives that have led to nearly 4% of mar-
ginal resources being wind units in the past few years, even with a fairly
low rate of wind penetration of about 2% [40,41].

The enhanced dispatchability of renewables in exiting grids in the
U.S. increases the likelihood of their interactions with storage, which
are critical to understanding its emission impacts. Yet, few studies have
examined this question, and it is unclear if such interactions would
aggravate, alleviate, or have little effect on storage-induced emissions.
Here, we explore the relationship between renewable power penetra-
tions (specifically, wind power) and battery storage through hypothe-
tically deploying grid-scale battery energy storage systems in two sub-
regions of the MISO system. These locations operate in similar elec-
tricity energy mixes, with the exception of very different levels of re-
newable wind power penetration (Fig. 1; Methods). We assume that
battery storage technologies introduced maximize annual net opera-
tional revenue by taking advantage of highly volatile locational mar-
ginal prices — buying low (to charge) and selling high to (to discharge).
We estimate storage-induced emissions in each region by modeling net
revenue maximizing battery storage charging and discharging patterns
linked to hourly marginal fuel types and grid emissions including re-
newables. To simulate how the storage technologies might operate, we
use unique real-time hourly locational marginal pricing (LMP) data that
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we have compiled for ~150 locations in the studied regions [42]. With
this unique high-resolution dataset, we could accurately capture the
economically optimal charge and discharge patterns of storage, which
are a key element in determining its value and induced emissions. We
focus on four key air pollutants, i.e., carbon dioxide (CO,), sulfur di-
oxide (SO,), nitrogen oxides (NOy), and mercury (Hg) for which data
are available.

2. Methods
2.1. Study regions

The regions we choose to demonstrate these effects in this study are
the North and Central subregions in the Midcontinent Independent
System Operator (MISO) system. As one of the world’s large energy
markets, MISO manages the high voltage transmission grid and electric
power markets for its utility members, delivering electricity to 42
million people across 15 U.S. states and one coordinating member,
Manitoba, in Canada (see S1). The MISO North subregional grid
(hereafter as “North”) has members in Iowa, Minnesota, Montana,
North Dakota, South Dakota, and Manitoba, Canada; the MISO Central
subregional grid (hereafter as “Central”) serves members in Indiana,
Illinois, Kentucky, Michigan, Missouri, and Wisconsin [43]. North has a
relatively high renewables penetration of ~30% (primarily wind),
whereas Central has low renewables penetration of ~5% with more
coal and natural gas (Fig. 1). MISO also has a South subregion, which
covers Arkansas, Louisiana, Mississippi, and Texas [43]. However, as of
2018, the South subregion had virtually no renewables on the system
with an energy mix comprised of natural gas (56%), nuclear (22%), and
coal (17%), and is not included in our comparative analysis.

2.2. Compilation and processing of MISO locational marginal pricing data

We have collected and developed a unique dataset of high-resolu-
tion electricity prices used in this study are the locational marginal
prices (LMP) throughout MISO North and Central subregions for the
years 2015-2018. The real-time LMP data was obtained at five-minute
increments between 04/08/2015 and 12/31/2018 from the MISO real-
time LMP contour map, an open-access portal of MISO system operation
[42]. There are in total 33 LMP locations in North and 119 LMP loca-
tions in Central. The dataset is unique in that it not only provides the
finest known and publicly available temporal resolution of real-time
LMP in MISO but also reveal the spatial location for each price incre-
ment. Such detailed geographic information of MISO LMP has not been
published by previous studies or made available in MISO’s historical
LMP market data archive. The improved spatial resolution can facilitate
more precise, location-specific analyses than those dependent on
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Fig. 1. Fuel mix in North and Central subregional grids of the Midcontinent Independent System Operator (MISO) system. These two grids have similar fuel mixes
with regard to shares of fossil fuels (coal and natural gas together dominate both mixes) and nuclear (14% in both mixes) but quite different in terms of renewable

wind power penetration: 27% in North compared to less than 4% in Central.
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region- or state-level LMP [27,44,45]. To ensure computational com-
patibility, we aggregate the multi-year, five-minute LMP to single-year,
hourly level then use the hourly LMP (8760 data points) in revenue
optimization model for energy storage. Because the aggregation is ap-
plied at each location, spatial granularity of the data is reserved.
Summary statistics of the hourly LMP data are presented in the S2
section in Supplementary Information (SI).

2.3. Energy storage model and revenue optimization

We develop an optimization model to determine the revenue-max-
imizing hourly operation of battery storage system when participating,
as a price taker, in the MISO real-time wholesale market at each of the
33 LMP locations in North and 119 LMP locations in Central. To reflect
the realistic operational patterns of energy storage, we set the battery
system to only charge from and discharge to the grid, even if it is col-
located with other generation facilities; therefore, its annual net oper-
ating revenue is maximized from energy arbitrage. Location-specific
electricity prices and region-specific emission factors are used in our
analysis to reveal the profitability and climate impacts of battery sto-
rage operating in the MISO North and Central subregional grids.

We simulate the battery storage system based upon the general
specifications of the Tesla Powerpack battery, as it represents the state-
of-the-art technology for grid-scale battery storage [46]. Each system
contains 10 units of the Tesla Powerpack battery and has energy ca-
pacity of 2.1 MWh, alternating current (AC) power of 0.5 MW, round-
trip efficiency of 88%, and depth of discharge (DoD) rate of 100%. The
system operates on an hourly basis to maximize annual net operating
revenue, which means the battery either charges or discharges at any
given hour - charging and discharging up to 24 times each day. We
specify a linear programming model such that the maximized annual
net operating revenue and corresponding hourly operation patterns of
the battery (Eq. (6), where S, is net energy stored, B is the price, Q"""
and Q™" are the energy flows in and out of the battery at time t)
subject to constraints identified in Eqs. (1)-(7).

Maximize:
T P outflow __ T P inflow

2[21 7 X Q Zt:l P X Q 1

Subject to:

battery __ £ inflow _ ¢ outflow L

S = 2[21 Q XN thl Q X i @
Sé)attery =0 (3)
v t, Stbattery >0 (4)
vt Stba"e'y < Qbatrery 5)
V£, Q" e [0, 0.5] (6
v £, Q" € [0, 0.5] @

In the model, the round-trip efficiency 7 is split geometrically be-
tween the processes of charge and discharge (Eq. (2)). Net energy stored
in the battery system S is initialized at zero (Eq. (3)) and is con-
strained to be between zero and the system’s designed energy capacity
Qbattery (Egs. (4) and (5)) at time t. Eqs. (6) and (7) set the lower and
upper bounds of charge and discharge rate at time t.

2.4. Estimation of emission factors and absolute emissions

Marginal emission factors (MEFs) have been widely acknowledged
as a more appropriate metric, than average emission factors (AEFs), to
assess emissions caused by increase or decrease of grid generation in
response to a change in demand [27,34,47,48]. We use the method of
calculating MEFs from Li et al., because we consider renewable sources

Applied Energy 276 (2020) 115420

in the MEF estimates and reflect the current marginal fuel mix in the
MISO grid [47]. Specifically, we use electricity system data obtained
from MISO and Air Market Program Data (AMPD) archive of the U.S.
Environmental Protection Agency (EPA) [49-51], then apply 288 se-
parate linear regression (Eq. (8)) approaches of change in emissions
AE,, , against change in grid generation AG,, , for the MISO North and
Central subregions, where the slope §,, ;, is the MEF estimate (in metric
tons of pollutant per megawatt-hour) for month m and hour h:

AEm,h = ﬁmyhAGm,h (8)

Lastly, we calculate the annual total emissions by multiplying the
hourly battery energy inflow (charge) and outflow (discharge) by cor-
responding subregional MEFs for the hour of day and month (Eq. (9)).

P T T .
Emissiongnpyal = Zl:l MEFh,m X Qtoutﬂow - Zt:l MEFh,m X thﬂow 9)

3. Results
3.1. Storage charging and discharging patterns

In the two studied regions, storage shares similar charging and
discharging patterns (Fig. 2): they charge during low price hours and
discharge during higher price hours, which are usually well aligned
with low and high demand hours, respectively. As shown in the upper
charts of Fig. 2, storage tends to charge the most during the nigh hours,
when demand and price are generally low. In the summer, the high-
power charging (power rate larger than 0.4 MWh/h) window is slightly
postponed, likely due to continued air conditioning load through the
late evening. The charging power rate of storage during the daytime is
relatively low (power rate of less than 0.1 MWh/h), except for 2-4 pm
in the winter months, when it increases to about 0.3 MWh/h. On the
discharging side (lower charts of Fig. 2), the clear “X” shape indicates
that demand is higher in summer afternoons and winter mornings and
evenings, which incentivizes the storage to inject discharged electricity
to the high-priced grid as much as it can, within the physical constraints
of the storage system (see Methods). The high-power discharge window
in summer afternoons is likely reflective of increased air conditioning
load, while the high discharge window during winter mornings and
evenings likely reflects typical residential load patterns in the region.

3.2. Marginal fuel types and emission factors

Because of the difference in renewable penetration, contribution of
marginal fuel types differs between the two regions (Fig. 3). In the
North grid, where wind accounts for ~27% of total electricity genera-
tion, wind contributes to marginal generation at notable levels (14% to
36%) from low to high system generation. Coal contributes 45% to 73%
and natural gas contributes another ~19% in marginal generation. In
contrast, in the Central grid, where wind accounts for ~4% of total
electricity generation, wind rarely contributes to marginal generation.
Instead, coal and natural gas account for most marginal generation in
this region. At low system generation times, coal accounts for up to 80%
of marginal generation and natural gas takes over the remainder,
whereas the numbers reverse, by and large, at high system generation
times, with a minor contribution from hydropower (Fig. 3).

As a result, marginal emission factors (MEFs; emissions per mega-
watt hour (MWh)) across charge-discharge patterns can be quite dif-
ferent between the North and Central subregions (Fig. 4). In North,
MEFs are relative stable across its load profile. In other words, during
low system generation times of the day/month (often when storage is
charging), MEFs are not substantially different from when there is high
load on the system (often when storage is discharging). However, in the
Central subregion, MEFs vary substantially as system load changes. In
this case, when battery storage charges, often at low system generation
times when prices are low, it draws on marginal fuel mixes with high
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Fig. 2. Charge (top) and discharge (bottom) patterns of grid-scale energy storage in North and Central.
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Fig. 3. Share of marginal fuel type as a function of system generation in North (a) and Central (b).



M. Li, et al.

Central

FESEP S NP PSS FOPEP S PP LS

0 200 400 600 800
(a) CO, (kg/MWh)

1000

FEE A PP P

FEF WP Pt L'

0 0.2 0.4 0.6 0.8 1
(c) NO, (kg/MWh)

Applied Energy 276 (2020) 115420

North Central

FES G PP PP FEE G PSP S

0 0.4 0.8 1.2 1.6 2
(b) SO, (kg/MWh)

PRI N P FEF IS PP P
0 1 2 3 4 5

(d) Hg (mg/MWh)

Fig. 4. Marginal emission factors (MEFs) for CO, (a), SO, (b), NOy (c), and Hg (d) in North and Central.

emission intensities because of the dominant contribution of coal (up to
80%) in marginal generation. When it discharges, often at high system
generation times, it displaces marginal fuel mixes with much lower
emission intensities given the dominant contribution of natural gas (up
to 70%) together with hydro (up to 10%). These considerable differ-
ences enlarge the gap between MEFs at storage charge and discharge
times in the Central subregion.

3.3. Storage-induced emissions and explanations

Combining storage charging and discharging patterns with the re-
gional MEFs and accounting for efficiency loss, we find that deploying
energy storage in current North and Central grids under economically
optimized simulated conditions will likely increase CO,, SO5, NOy, and
Hg emissions by 102 kg, 0.14 kg, 0.08 kg, and 0.29 mg in North and
182 kg, 0.39 kg, 0.14 kg, and 0.66 mg in Central per MWh supplied to
the grid (Fig. 5). But importantly, the increases are much smaller in
North where significantly more wind power operates on the margin
than in Central. Storage-induced marginal emissions in the North sub-
region of MISO, where wind power penetration has reached 27% of
generation on average, are found to be between 42% and 64% lower

than emissions in the MISO Central subregion (where all renewables
represent less than 5% of all sources). By pollutant, emissions in North
are estimated to be lower:44% for CO,, 64% for SO,, 42% for NO,, and
57% lower for mercury than in Central. The lower emission intensities
in North can be partly attributed to its higher wind penetration, ex-
plained below.

The net emissions of storage are affected simultaneously by two
factors: 1) the charging and discharging rate of storage (MWh/h) and 2)
grid MEFs (kg/MWh or mg/MWh) at charging and discharging hours.
We visualize these two factors in the top row of Fig. 6(a-d), where each
point represents a cell in the heatmaps of Figs. 3 and 4, and observe that
grid MEFs are always lower in North than in Central except for Hg. We
also fit linear regression lines for the scattered points. Note that the
discharge rate is interpreted as negative charge rate when determining
the fitted lines. We find slopes of the fitted lines are steeper in Central
(green) than in North (blue), which means, in general, the difference
between grid MEFs at charging and discharging hours are larger in
Central than in North. For example, if storage is scheduled to discharge
at 0.3MWh/h in Central, it often is pre-charged by grid generation with
MEFs CO, of 760 kg/MWh then displaces grid generation with MEFs
CO, of 660 kg/MWh, which creates a CO, emission difference of
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Fig. 5. Net CO,, SO, NO, and Hg emissions induced by the storage. Marginal CO2, SO2, NOx, and Hg emissions per megawatt hour (MWh) supplied by the storage
in the Central grid are estimated at 182 ( = 7) kg, 0.39 ( = 0.021) kg, 0.14 ( = 0.005) kg, and 0.66 ( £+ 0.038) mg, while in the North grid, they are 102 ( = 4) kg,

0.14 ( = 0.009) kg, 0.08 ( = 0.003) kg, and 0.29 ( = 0.018) mg.

100 kg/MWh; while in North, the difference would only be 38 kg/MWh
(539 kg/MWh at charging hour and 501 kg/MWh at discharging hour).
Consequently, as storage operates overtime, it induces more net emis-
sions in Central than in North.

In the bottom row of Fig. 6(e-h), we group the points from Fig. 6a-d
by discharge and charge and show distributions of MEFs for all emission
types. When comparing the distributional characteristics of MEFs in the
discharge group against those in the charge group, we find that the
differences between MEFs in the two groups are more significant in
Central (green) than in North (blue). This finding supports our ob-
servation in Fig. 6a-d and helps to further explain why storage induces
more net emissions in the Central subregion than in the North.

4. Discussions

Grid-scale energy storage and renewable energy have been found in
many studies as necessary elements to reduce emissions form the
electricity sector. Indeed, our findings indicate that higher wind pene-
tration in power grids can significantly lower emissions induced by
energy storage. Deploying renewables in power grids can be com-
plementary to energy storage with regard to reducing emissions if
dispatched as marginal units when storage is charging. But adding re-
newables can amplify the emissions induced by energy storage, if re-
newables are dispatched as marginal units at times when storage is
discharging. Because the charge-discharge patterns of storage are
driven by energy demand curves, similarity between the curves of re-
newable generation and demand decides whether renewables and sto-
rage would complement or cancel each other. For instance, wind gen-
eration in the Upper Midwest is more available overnight than during
daytime, which is often the opposite to demand and could lead to more

wind energy charged into storage. Solar power is the opposite and
electricity produced from photovoltaics tends to share a similar daily
generation curve with demand. Depending on the system, this could
potentially result in solar generation becoming unwanted by storage
since storage has to discharge (to sell electricity at higher price than it
paid to charge). Other renewables, such as hydro power, that do not
have obvious generation curves like wind and solar power may have a
more uncertain effect on reducing storage-induced emissions. If they
are more often dispatched as marginal units when storage charges, low-
emission energy are stored in batteries and will be released to replace
high-emission power generation hours later. As a result, these renew-
ables would be complementary for reducing storage-induced emissions.
As renewables and storage are expected to increase in U.S. grids, it is
important to gain better insights into potential interactions and con-
sequent economic and environmental impacts indifferent grid en-
vironments.

Our methods of estimating marginal emission factors and storage
charging-discharging patterns can be applied in other regions. Because
economic dispatch is the commonly norm to unlock market value of
energy storage, it is reasonable to assume that storage will operate si-
milarly in other parts of the world. Our findings that storage induced
emissions are moderated by wind power may still be generalizable in
other regions, as electric power grids in significant parts of the world,
such as the US, China, and European countries, are still dominated by
fossil fuels but are experience growing wind penetration. While the
general approach may likely hold in other regions, findings about sto-
rage induced emissions will be specific to fuel mix of other regional
grids and how these grids respond to shifts in load.

Additional visualizations of hourly electricity prices and marginal
share of wind can be found in the SI (see Fig. Sla and Fig. S2). The
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figures are displayed in the same temporal layout with the purpose to
clarify that low prices are not necessarily always related to, or resulted
from, high renewable generation. Observing Fig. Sla and Fig. S2 to-
gether, we see that the marginal share of wind is actually higher during
high-price hours (10am to 9 pm) but not as high as one would expect
during low-price hours (lam to 9am). It is important to note that re-
newables like wind are dispatchable to the extent that they are avail-
able. Improved forecasting technologies can predict their short-term
availability with fairly high accuracy, but they may not be immediately
available and completely dispatchable like coal and natural gas. Fur-
thermore, transmission congestion in power grids is another critical
factor, in addition to marginal cost of generation, that often rises real-
time LMPs. When demand is high in a certain location, consuming
cheap renewables generation that was transmitted through congested
grid would cause the locational marginal price at this location to be-
come much higher than the marginal cost of renewables generation.

There are a few limitations to our results and many opportunities for
future research. First, while the specific results only apply to energy
storage that participates in the Midcontinent Independent System
Operator wholesale market as a price-taker, the research highlights
many important issues relevant to other jurisdictions and markets. For
example, if significant new storage capacity were added to the grid,
they may not arbitrage in the market as price-taker any more as their
operation could affect locational marginal price and further change the
emissions they induce. If the grid were decarbonized by deploying PV
or wind, the results could also change in interesting ways, shaped by
changes in locational marginal price, value of storage, and shifting ar-
bitrage opportunities. Second, our study is focused on the MISO North
and South grids, where coal is the dominant fuel and wind power is the
main renewable. But in regions where the grid has significantly dif-
ferent fuel mix, for instance natural gas or renewables is the dominant
fuel type, the impact of renewables on storage induced emissions may
be different. Third, we use locational marginal prices to model oper-
ating patterns for storage but do not constrain the storage to only
charge from the hypothetically co-located generator. Although co-lo-
cated energy storage and renewable generation can have great eco-
nomic and environmental values [27,52], this scenario is out of the
scope of this study, but ripe for future analysis. Issues surrounding the
impacts and opportunities for storage are multi-faceted and system
dependent. Careful analysis of the impacts and policies promoting
storage need to take these system issues into account.

5. Conclusion

We assess how grid-scale energy storage can interact with renew-
ables in existing grids in the United States and how these interactions
affect storage-induced emissions. By simulating storage in two grids
with similar generator mixes (i.e., North and Central subregions in the
Midcontinent Independent System Operator footprint) except for dif-
ferent levels of renewable penetration, we find that storage induced
emissions would be substantially lower, by 42-64%, in the grid with
much higher wind penetration. Because the charge-discharge patterns
of storage are quite similar in the two regions (Fig. 2), the differences in
emission intensities are a result of their marginal generation fuel mixes
at times of charge and discharge (Fig. 3). Compared with the Central
subregion, North has a much higher wind penetration (28% vs 4%),
where wind steadily contributes significant shares to marginal genera-
tion from low to high system demand (or base- to peak-load). Without
the additional wind resources, there would likely be more coal burned
during base-load hours when storage charges from the grid, as in the
case of the Central subregion (Fig. 3b), leading to higher emissions. In
other words, high wind penetration and wind on the margin in the
North grid importantly moderate storage-induced emissions by sup-
pressing the differences between marginal emissions at charging and
discharging times (Fig. 6).
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