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A B S T R A C T

The environmental burden and resource intensity of the modern global food system have obtained increased
recognition worldwide. Past studies focused primarily on the pre-consumption stages of food life cycle, while
food service at the use stage has rarely been addressed due to a lack of understanding in how energy use in
restaurants is associated with food items. In this study, we present a novel three-stage approach that quantifies
food-item-level energy demand in restaurant service scenarios, which includes an energy-to-food stage, a
cooking energy usage stage and a building energy simulation stage. Common restaurant-served meat products in
the U.S. (beef, pork, and poultry) prepared using an oven, a griller, and a broiler in a restaurant kitchen were
selected as case studies. The results show that the on-site energy demand of these meat products ranges from
~10 to 25 MJ/kg, which is comparable to the energy demand in the food production stage. Heating/cooling,
cooking, and the water systems are the main sources of energy demand. This study is the first to quantify the
energy demand of individual food items in restaurants and can complement existing food life cycle studies. The
results can help improve the understanding of the environmental consequences of dietary change.

1. Introduction

The environmental impact of the global food system, with both in-
tensive and extensive agricultural practices to support an ever-larger
and richer population, has become a main driver of global environ-
mental degradation (Tilman and Clark, 2014, Poore and
Nemecek, 2018). Restaurants provide an avenue for customers to make
“informed food choices” by granting them exposure to food environ-
mental impact information via eco-labels or coded-menus, thus redu-
cing food-related environmental impacts via transitioning toward diets
containing less meat (Camilleri et al., 2019).

The environmental impact information of a product is usually
evaluated based on life cycle assessment (LCA), as in several eco-la-
beling frameworks (e.g., the PAS 2050 (BSI 2008), the GHG Protocol
(GHG Protocal and Carbon Trust Team 2013), and the International
Organization for Standardization (ISO) 14067 (ISO 2018)). LCA is a
systematic approach that considers the entire life cycle of products from
resource extraction to end-of-life management, as well as their wide
range of environmental impacts from resource use, climate change,
water pollution, to human health (Finnveden et al., 2009, Yang and
Heijungs, 2018). LCA is commonly used to determine and promote
products, materials, technologies, and lifestyles that are more en-
vironmentally friendly, and it plays an increasingly important role in

sustainability science and policy (Yang, 2016, Guinée and
Heijungs, 2017, Guinee et al., 2011). Currently, however, only a limited
number of LCA studies have incorporated restaurant on-site energy
demand into meals’ life cycles, although improving the on-site energy
efficiency of restaurant operation has traditionally been regarded as a
main practice to achieve the so-called “Green Restaurant” (Hu et al.,
2010, Baldwin et al., 2011). Restaurants can encourage a larger amount
of meat consumption (Saksena et al., 2018, Yuan et al., 2018) and are
among the most energy-intensive types of commercial buildings
(ENERGY INFORMATION ADMINISTRATION 2008). Neglecting the
embodied environmental impact of each food item or building energy
demand could eventually provide biased information to the customers.

One of the main challenges of incorporating energy demand in the
use stage of the LCAs of restaurant meals is the lack of data availability.
This challenge has mainly been addressed by two approaches. The most
common approach is to exclude the energy contribution of the restau-
rant use stage from the system boundary and focus primarily on the
food pre-consumption stages (i.e., production, processing, and dis-
tribution) (Saarinen et al., 2012, Pulkkinen et al., 2016,
Benvenuti et al., 2016, Chen et al., 2016, Schaubroeck et al., 2018). The
other approach is to simplify the use stage in the restaurant scenario to
a household meal-serving scenario by considering only the portion of
energy consumption from refrigeration and cooking, and by calculating
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the amount of cooking energy demand based on household cooking
models (Sonesson et al., 2003) or simplified cooking energy demand
data sources (Hager and Morawicki, 2013, Kanyama, 2001) (e.g., stu-
dies by Ribal et al. (Ribal et al., 2016), Calderon et al. (Calderón et al.,
2018),Mistretta et al. (Mistretta et al., 2019), and de Laurentiis et al.
(de Laurentiis et al., 2018)). On the other hand, the studies that con-
sider the energy consumption patterns in a restaurant scenario obtain
the averaged energy demand per meal by monitoring the total energy
consumption and the total food consumption during a period of time
(Cerutti et al., 2018, Jungbluth et al., 2016). This method yields ag-
gregated data for the averaged meals, so the data cannot be feasibly
adapted to represent individual foods in the other studies. By in-
corporating all of a restaurant's energy consumption sectors, the results
of the energy monitoring approach showed that the use stage accounts
for about 40% of the GHG emissions from the production stage, while
the use stage generally accounts for less than 10% for studies using
household cooking models. Thus, the development of a generalized
model that predicts the on-site energy demand for individual restaurant
food items could facilitate the incorporation of the use stage and sig-
nificantly mitigate uncertainty in environmental impact predictions.

The wider application of smart metering systems make the data
representing restaurant energy consumption patterns increasingly
available, especially when more advanced approaches are introduced
into this area (e.g., the non-intrusive load monitoring (NILM)
(Kim et al., 2017) method and machine learning models
(Robinson et al., 2017, Rahman and Smith, 2017)). The key remaining

challenge to achieve the calculation of food-item level energy demand
is to determine the physical linkage between serving a single food item
and the overall building energy usage. There are several issues to
consider when addressing this challenge. First, the energy consumption
patterns of the cooking appliances in restaurants are more complex than
the household cooking scenario. In household cooking, the energy
usage is mainly dependent on the recipe, the appliance type, and the
cooking behavior (Hager and Morawicki, 2013). In additional to these
factors, in a restaurant, the weekly and seasonal variation of customer
volume, the composition of the menu, and operational parameters such
as the weight of food cooked at a time and the hours of operation can all
affect energy usage (Smith et al., 2001). Second, energy consumption in
restaurants is highly aggregated. Although there are many energy end
users, only the refrigeration systems, the interior equipment (e.g., gas
cooking appliances), and water systems (used for sanitation and
cleaning) are directly related to foods, which, however, usually deal
with multiple food items simultaneously. Other energy end users are
not food-related but instead maintain and improve the indoor en-
vironmental quality (IEQ) (e.g., maintaining the thermal and indoor air
quality via the heating, ventilation, and air conditioning system
(HVAC)). Furthermore, energy consumption in restaurants is highly
variable, both temporally and geographically. For example, although
the cooling load from a specific cooking process mainly depends on the
appliance type and energy input rate, the extra energy required from
the HVAC system to remove it depends on external climate conditions.
As a result, the cooling load in each restaurant for a typical cooking

Nomenclature

es Characterized yearly-averaged on-site energy demand
(MJ/kg)

EA Annual energy consumption for serving the target food
item (MJ)

NA Annual number of meals
M Mass of the target food item (kg)
efood Energy-to-food (MJ/kg)
Esens Combined sensible heat for cooking (MJ)
Emelt Latent heat of fusion required for melting fat/water (MJ)
Eevap Energy required for water vaporization (MJ)
M0 Mass of raw food (kg)
M0, n Initial mass of food component n (kg)
Wloss Water loss (kg)
Cp Specific heat (MJ/kg · C)
Tf Final Temperature ( · C)
Ti Initial Temperature ( · C)
Hf Heat of Fusion (MJ/kg)
Hv Heat of vaporization (MJ/kg)
Eimg, i Hourly energy input to the imaginary appliance (Watt-

hours)
E0 Hourly energy input in idling scenario (Watt-hours)
EH Hourly energy input in heavy load cooking scenario (Watt-

hours)
Rp, H Production rate at heavy load scenario (kg)
rp, i Cooking demand in the ith hour (kg)
U Response factor of a cooking appliance
β Ratio of the energy-to-food of a standard food item to the

target food item
e*food Energy-to-food for preparing a standard food item (MJ/

kg)
Ep Energy for preheating the cooking appliance (Watt-hours)
Ni Hourly number of meals of the restaurant
ND Daily number of meals
C Installed capacity of the restaurant
Oi. Hourly occupancy of the area of the dining zone of the

restaurant (%)
q̇ Heat gain (MJ/hr.)
q̇rad i, Hourly amount of radiant heat gain (MJ/hr.)
q̇lat i, Hourly amount of latent heat gain (MJ/hr.)
P Rated energy input rate (W)
Fu Usage factor (%)
Fr Fraction radiant (%)
Fl Fraction latent (%)
prt (Subscript) Stand for prototype model
img (Subscript) Stand for imaginary appliance
rad (Subscript) Stand for pure radiant appliance
lat (Subscript) Stand for pure latent appliance
kit (Subscript) Kitchen zone
elec (Subscript) electrical equipment in the kitchen zone
FEH Fraction of the exhaust hood energy consumption
Va Minimum exhaust flow rate for a single island canopy

hood (L/s per linear meter)
L Length of the typical appliance in meters
Vt Total predefined ventilation requirement
FC Fraction of kitchen cooling load
q̇t kit, Total heat gain of the kitchen zone
η Allocation factor
Y Yield Rate
Mmeal Average mass of full restaurant served meals in the U.S.

(kg)
EA Annual energy consumption (MJ)
EEH Annual energy consumption by the exhaust hood (MJ)
Eshare Energy consumption shared by the target food item and

the rest of the meal (MJ)
EH Annual energy usage by heating (MJ)
EL Annual energy usage by lighting (MJ)
EF Annual energy usage by fan (MJ)
EP Annual energy usage by pump (MJ)
EW Annual energy usage by lighting (MJ)
ER Annual energy usage by refrigeration (MJ)
EC, tot Annual energy usage by cooling (MJ)
EC, kit Annual energy usage by cooling in the kitchen zone (MJ)
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process varies daily (morning/evening and midday) and seasonally
(summer and winter). The cooling load also varies across regions due to
differences in solar irradiation, temperature, and humidity.

In this study, we introduce a novel three-stage approach for quan-
tifying the on-site energy demand associated with serving a food item as
a portion of a meal in a sit-down single-use restaurant. We demonstrate
this approach with common meat products, with the functional unit
defined as a kind of meat of a certain weight and prepared by a typical
cooking method (e.g., the 50 g grilled hamburger patty in a hamburger
meal). Meat products were chosen since (1) they are often order-and-
preparation foods (i.e. cooked to order) as opposed to being cooked in
bulk, and (2) meats are generally known to have a higher environ-
mental impact (Poore and Nemecek, 2018, Clark et al., 2019). The re-
sults of this study can complement LCA studies focused on pre-con-
sumption stages and help to determine the full life-cycle impacts of
meals served in restaurants, thus improving estimates of the environ-
mental consequences of dietary changes and other interventions (e.g.,
eco-labels and social media apps) on food consumption.

2. Materials and Methods

2.1. Overview

The system boundary includes all the energy usage categories
within the restaurant. The system input is the gas/electricity energy
usage, and the products are meals being served by the restaurant. To
address the above issues and to enable the disaggregation of energy
demand to the target food item, we consider a hypothetical restaurant
serving scenario containing two assumptions. First, the sole purpose of
the restaurant is to serve meals. Second, the target food within the
functional unit is prepared solely by a gas-fueled “imaginary appli-
ance”, and this appliance is not used for any other purposes. The se-
lection of a gas-fueled appliance is based on data indicating that the
majority of cooking appliances in U.S. restaurants use gas as their en-
ergy source (Zhang et al., 2010). The first assumption suggests that the
overall energy consumption can be allocated to either the target food
item or the other meals. The characterized yearly-averaged on-site
energy demand for serving the target food item, es, in MJ/kg, can
therefore be defined as

=
∼

e E
N Ms

A

m (1)

where∼EA is the portion of annual energy consumption in the restaurant
that can be attributed to the target food item in MJ, Nm is the annual
number of meals served in the restaurant containing the target food
item, and M is the serving mass of the target food item in kilograms.
Since es is defined on a per mass basis, then Eq. (1a) can be rewritten as

=e E
N Ms

A

A (2)

where EA is the energy consumption attributed to the target food item
in the hypothetical scenario where all customers order a meal

containing the food item, and NA is the total annual number of meals
served in the restaurant. This approach to modeling the hypothetical
scenario allows for a feasible calculation of es since predictions of EA
and NA are simpler than those for ∼EA and Nm. While the instantaneous
energy demand can be also obtained under the hypothetical food con-
sumption scenario, we examine the annual energy consumption to in-
corporate the temporal variations within a year, which include the daily
variation of number of customers, the weekday/weekend variation in
restaurant operation, and the seasonal variation of weather and solar
irradiation.

The three-stage framework to obtain es includes determining the
energy-to-food, calculating the energy input to the appliance, and ac-
quiring the facility energy consumption via whole building energy
modeling (BEM) (Fig. 1). Energy-to-food includes the portion of energy
that is used to raise the temperature of the food item to its target
cooking temperature (i.e. sensible heat) and the portion of energy
corresponding to water evaporation and fat melting (i.e. latent heat).
The energy-to-food of the target food item along with the number of
customers determines the cooking load of the cooking appliance. Thus,
the target food item is quantifiably related to the energy input of the
cooking appliance. This energy input from this cooking appliance
eventually converts to heat, which can be divided into four fractions:
latent fraction (Fl), radiant fraction (Fr), convected fraction (Fconv) and
lost fraction (Flost) (U.S. Department of Energy (DoE) 2010). For a
cooking appliance that is under an exhaust hood, the radiant fraction
acts as a zone load of the HVAC system. The total energy demand of the
HVAC system is then calculated as a part of BEM. BEM simulates energy
consumption in buildings based on their location, construction, heat
gain sources, and the setup of HVAC, water, lighting, pump and re-
frigeration systems. BEM enables the disaggregation of energy usage by
metering all the energy end use groups as well as their load sources.
Furthermore, BEM addresses geographical and temporal variations
because of its flexibility of adopting various geographical- and tem-
poral- specific models.

This three-stage framework connects the individual food item to the
whole building energy consumption, enabling an allocation process that
determines the target food item's energy as

= +E E ηE*A A share (3)

where E*A is the part of restaurant energy consumption in MJ that can be
physically attributed to the target food item, and Eshare is the part that
shared by the whole meal and can be only allocated by a predefined
allocation factor η.

2.2. Estimating the Energy Demand for a Typical Food Item: A Three-Stage
Framework

2.2.1. Determination of Energy-to-Food
The energy-to-food, efood in MJ/kg, for a specific food item is af-

fected by the food item's uncooked water and fat content, cooking
losses, thermal properties, and the cooking method and is calculated as

Figure 1. The three-stage framework for the determination of energy demand for meats serving in a restaurant. The heating of individual food items via cooking
appliances is physically connected to the whole building energy consumption by acting as a cooling load on the building HVAC system.
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=
+ +

e
E E E

Mfood
sens melt evap

0 (3)

whereM0 is the mass of the raw food item. The combined sensible heat
of each of the component n (ice, fat, water, and solid) in MJ is

∑= −E M C T T( )sens
n

n p n f i0, ,
(4)

where M0, n, Cp, n are the initial mass in kilograms and the specific heat
in MJ/kg K of component n, respectively; and Ti and Tf are the initial
and final bulk temperatures of the food item, respectively. The energy
required for melting fat/water is

∑=E M Hmelt
n

n f n0, ,
(5)

where Hf is the latent heat of fusion in MJ/kg. Finally,

=E W Hevap W loss v, (6)

is the energy required for water vaporization, where Wloss and Hv are
the water loss in kg and the latent heat of vaporization of water in MJ/
kg, respectively.

2.2.2. Cooking Appliance Energy Input
The cooking energy input is appliance-dependent and can be mod-

eled based on three parameters: its energy performance in the heavy
load scenario, its energy usage in the idling scenario, and its responses
to cooking demand. This study addresses cooking energy input on an
hourly variation basis to be consistent with BEM in that the smallest
time interval for all activities is an hour.

The energy usage by thermostat-controlled appliances (e.g., griddles
and ovens) can be modeled by the two-mode model, which assumes
that the energy input of an appliance during operation is linearly re-
lated to its cooking demand (Horton and Caron, 1994). The model is
characterized by the idling scenario (with energy input E0 for zero
cooking demand) and the heavy load scenario (with energy input EH for
cooking demand Rp, H) as

= + −E E E E
R

rimg i
H

p H
p i, 0

0

,
,

(7)

where Eimg, i is the energy input, in Watt-hours, to the imaginary
cooking appliance in hour i of restaurant operational time; and rp, i is
the cooking demand, in kg, during hour i. The slope −E E R(( )/ )H p H0 ,
indicates the rate of response of the appliance to the cooking demand.
The mass-based cooking demand can be converted to an energy-to-
food-based demand, and Eq. 7 can be reinterpreted as

= +E E U β e r· · ·img i food p i, 0 , (8)

where U is the response factor of the appliance and is defined as

= −U E E
R e· *

H

p H Food

0

, (9)

where e*food is the energy-to-food of a standard food item, and β is the
ratio of the energy-to-food of a standard food item to the target food
item:

=β
e
e

*food

food (10)

The standard food item is the typical food item that has been used to
test the cooking appliances according to ASTM standard test methods
(Bell et al., 2002).

The energy consumption of an appliance without thermostat control
(e.g., a broiler) involves cooking in a heavy load scenario (at EH) or in
an idling state (at E0), so the energy input is determined by the required
time for cooking as

⎜ ⎟= + ⎛
⎝

− ⎞
⎠

E
r

βR
E

r
βR

E1img i
p i

p H
H

p i

p H
,

,

,

,

,
0

(11)

where the rp, i/βRp, H term represents the fraction of time required for
the appliance in hour i to be set to the heavy load scenario.

It is assumed that each of the imaginary cooking appliances needs to
be preheated during the first restaurant operational hour. The required
energy for preheating the imaginary appliance, Ep, in Watt-hours, is
added to the corresponding time:

= +E E E r( )img p img p,1 ,1 (12)

2.2.3. Building Energy Modeling
The commercial prototype building models developed by the U.S.

Department of Energy (DoE) are used for energy modeling based on
both model availability and representativeness (U.S. Department of
Energy (DoE) 2019). This set of models provides a wide range of tem-
poral and geographical coverage (Deru et al., 2011). The models were
run using the open-source BEM software EnergyPlus (Crawley et al.,
2001).

The BEM stage includes two steps. The first step is to estimate the
hourly energy input rate of the cooking appliance, Eimg, i, based on
Eqs. 7-12. The hourly production rate of the cooking appliance, rp, i, is
determined by the number of meals per hour that are served in the
restaurant, Ni, as

=r N M·p i i, 0 (13)

Ni depends on various factors such as the fraction of occupied seats, the
hours of operation, and the table turnover rate. Data representing the
number of meals is rare due to its proprietary nature, which is a main
reason that the 2018 CBECS survey (U.S. Energy Information
Administration 2018) dropped their question on the annual number of
meals. The installed capacity of the daily number of meals, C, and the
fractional occupancy of the dining zone, Oi, of the prototype models
(Deru et al., 2011) are first used for the estimation of the daily number
of meals, ND, and then a sensitivity assessment is conducted.

ND is calculated as a fraction of the installed capacity since real
occupancy is lower than 100%:

∑=
=

N C O·
100%D

i

n
i

1 (14)

where n is the total operational hours of the restaurant. ND is then al-
located to each opening hour as

=N N O
O

·
Σi D

i

i (15)

The goal of the second step is to disaggregate the energy usage of
the imaginary appliance from the other gas appliances without chan-
ging the total heat gains from the original single gas equipment in the
prototype BEM models. This involves the division of the gas equipment
in the prototype model into three gas appliances: the imaginary appli-
ance, a pure radiant gas appliance, and a pure latent gas appliance and
the characterization of the new defined appliances with their rated
energy input rate, P in MJ/hr., their hourly usage factor, Fu, and their
heat gain fractions, Fr, Fl, and Flost. The usage factor of an appliance is
the ratio of the appliance's energy input rate to its rated energy input
rate. The parameters for the new appliances are calculated based on the
heat gain balance between the prototype model and the new model,
which is interpreted as

= = +q P F F P F F P F F˙ · · · ·r prt i prt u prt i r prt img u img i r img rad u rad i r rad, , , , , , , , , , , (16)

= =q P F F P F F˙ · · · ·l prt i prt i u prt i l prt lat u lat i l lat, , , , , , , , , (17)

where q̇r prt i, , and q̇lat prt i, , are the hourly radiant heat gain and hourly
latent heat gain from the prototype gas equipment, MJ/hr, respectively;
Pprt, Pimg, Prad and Plat represent the rated energy input rate of the
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prototype gas equipment, cooking appliance, the pure radiant equip-
ment and the pure latent equipment in MJ/hr., respectively; Fu, prt, i, Fu,
img, i, Fu, rad, i and Fu, lat, i are the hourly usage factor of the corresponding
appliances, respectively; and Fr, Prt, Fr, Rad, Fr, img, Fl, rt and Fl, Lat are the
radiant heat gain factor and latent heat gain factors for the corre-
sponding appliances.

Among the parameters in Eqs. 16-17, Pprt, Fu, prt, Fr, prtand Fl, prtare
defined in the prototype restaurant model, and Pimg depends on the
selected appliance. Fr, imgand Fl, img can be obtained from the ASHRAE
RP-136244. Furthermore, since the definition of Plat, Prad, Fr, rad and Fl, lat
won't affect the energy consumption attributed to the target food item
as long as the overall heat gains are equivalent to the prototype model,
these factors are defined for convenience as

= =P P Plat rad prt (18)

=F Fr rad r prt, , (19)

=F Fl lat l prt, , (20)

The usage factors Fu, rad, i and Fu, lat, i are then calculated using
Eqs. 16-17. The BEM model is thereby completed by revising the ori-
ginal model file and by replacing the prototype gas equipment with the
new appliances.

2.2.4. Allocation
We followed the hierarchy of avoiding or solving allocation tasks in

the ISO 14044 (The International Standards Organisation 2006) for the
allocation of energy consumption of end users other than cooking (i.e.
EA, img), which can be directly obtained from BEM results.

First, the exhaust fan usage and the cooling in the kitchen zone can
be divided into subprocesses, and then the energy usage can be allo-
cated by the corresponding load from each of the subprocesses. The
exhaust hood is assumed to run at full flow and is used for both the
imaginary appliance and other gas appliances. Thus, the fraction of the
exhaust hood energy consumption by the imaginary appliance, FEH, img,
can be calculated based on the ventilation requirement for the ima-
ginary appliance as

=F V L
VEH img
a

t
, (21)

where Va is the typical minimum exhaust flow rate required by the
appliance in L/s per linear meter, L is the characteristic length of the
appliance in meters, and Vt is the total predefined ventilation require-
ment in the prototype model as 1888 L/s.

The cooling energy consumption in the kitchen can be divided into
three parts: the removal of heat gains from the imaginary appliance, the
removal of heat gains from the cooking activity of the rest of the meal,
and the removal of heat gains from other sources (e.g., people, lights,
window, infiltration, and surface). The fractions of cooling load by the
corresponding appliances are defined as

=F
q

q

˙

˙C img
img

t kit
,

, (22)

=F
q
q
˙
˙C rad

rad

t kit
,

, (23)

=F
q
q

˙
˙C lat

lat

t kit
,

, (24)

=F
q
q
˙
˙C elec

elec

t kit
,

, (25)

where FC, img, FC, rad, FC, lat, FC, elec are the fractions of kitchen cooling
load that can be allocated to the imaginary appliance, the pure radiant
appliance, the pure latent appliance, and the kitchen electric appliance,
respectively; q̇img, q̇rad, q̇lat , q̇elec are the heat gains from the imaginary
appliance, the pure radiant appliance, the pure latent appliance and the

kitchen electric appliance at the cooling peak hour, respectively; and
q̇t kit, is the total heat gain of the kitchen zone at the cooling peak hour.
The selection of peak cooling hour heat gain rather than the annual heat
gain is to ensure that heat gains are part of the cooling load that must be
removed from the kitchen zone (United States Department of Energy
2018).

Second, the remaining energy consumption is shared by the target
food item and the rest of the meal. We choose a mass-based allocation
factor for allocation, which is the fraction of the mass of the target food
item of the whole meal, as:

=η M
Mmeal (26)

where Mmeal is the mass of the total meal.
The E*A and Eshare in Eq. 2 can then be updated as

= + +E E F E F E*A A img EH img EH C img C kit, , , , (27)

= + + + + + +

− + + +

E E E E E E E E

E F F F F( )
share H L F P W R C tot

C kit C img C rad C lat C elec

,

, , , , , (28)

where EA, img, EEH and EC, kit are the annual energy usage by the ima-
ginary appliance, by the exhaust hood and by the kitchen zone cooling,
respectively; EH, EL, EF, EP, EW, ER and EC, tot are the annual energy usage
by heating, lighting, fans, pumps, water system, refrigeration and
cooling in MJ, respectively. The + + +E F F F F( )C kit C img C rad C lat C elec, , , , ,
term is the part of kitchen zone energy consumption that has already
been specified to either the target food item or the rest of meal, so the
contribution is removed from the shared energy consumption.

2.3. Case Studies and Sensitivity Analysis

85 food item types were selected as the target food items in this
study (Table S1). The cooking losses data were obtained from the USDA
Table of Cooking Yields for Meat and Poultry (USDA 2014), and only
food items that have been tested with grilling, broiling, roasting or
baking were selected as target food items since, unlike some other
cooking processes, no extra water was added during the testing process.
All food items are assumed to have an initial temperature, Ti, of 4∘C and
cooked to a known final temperature, Tf, during testing. All food items
have a serving mass M of 340 g, which is a typical regular serving size
for meat products in a full service restaurant (Condrasky et al., 2007).
The mass of the meal, Mmeal, is 741 g (Roberts et al., 2018). The raw
material weight, M0, is food-item dependent and is determined ac-
cording to the USDA Table of Cooking Yields for Meat and Poultry
(USDA 2014) as

=M M
Y0 (29)

where Y is the yield rate of the food item. All moisture losses are as-
sumed to stem from evaporation. The thermal properties of water, fat,
and solids are obtained from the ASHRAE Handbook of Refrigeration
(Faith et al., 2005), and the composition of the food items is obtained
from FoodData Central (USDA Agricultural Research Service 2020). The
mass of initial ice is zero for the case studies since Ti is above 0∘C.

Three typical gas-fueled cooking appliances have been selected: a
griddle for grilling, a broiler for broiling, and an oven for baking and
roasting (Table S2). The properties of all the appliances are collected
from publicly-available reports by the Food Service Technology Center
(FSTC 2020).

The ranges of energy demand and geographical variations were
examined using case studies conducted with models based on the
ASHRAE 90.1-2016 standard in all climate regions, which totals 1,445
case studies. The temporal variations of energy demand due to varia-
tions of the ASHRAE 90.1 standards were examined using case studies
with models following ASHRAE 90.1 -2004, -2007, -2010, -2013 and
-2016 for a restaurant in New York (Climate Region 4A) and with the 30
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food items with the lowest cooking yield, totaling 150 case studies.
A sensitivity analysis was performed with a typical food item served

in New York with ASHRAE 90.1-2016 for three estimated factors in this
study: the serving mass of the target food item M, the daily number of
meals of the restaurant ND, and the allocation factor η.

3. Results and Discussion

3.1. Case Study Results

Results of the case studies could be obtained through the Data
Availability section in Supplementary Information. The range of on-site
energy demand for serving food items in the case studies is 9.56 MJ/kg
to 24.9 MJ/kg (Fig. 2a). This result indicates that, for the selected food
items, the on-site energy demand in their restaurant serving stage is
generally comparable to the cumulative energy demand in their pro-
duction stage, which have mean values of 67.9 MJ/kg and 28.6 MJ/kg
for beef and pork, respectively, and lower values for poultry products
(Heller et al., 2018). The outliers in Fig. 2a represents foods prepared in
Fairbanks, Alaska, where larger amounts of heating and water energy
consumption are required.

The amount of on-site energy demand for the selected products is
affected by their cooking method (Fig. 2). The foods prepared by a
broiler have the highest mean on-site energy demand among the three
types of appliances since a broiler is not thermostat controlled and has
the highest idling energy consumption rate. On the contrary, cooking
with an oven demands the least amount of on-site energy due to its low
idling energy consumption, low response factor, and low radiant factor.
In a real cooking situation, the energy demand may be even more
distinctive among the appliances since appliances in restaurants can be
primarily in an idling status (Swierczyna et al., 2009).

The cooking yield of the food item has more impact than its energy-
to-food value on its on-site energy demand (Fig. 2b and Fig. 2c), so
further analysis focused on foods with the same cooking yield. For a
specified location, the annual energy usage by the restaurant's support
systems is identical for all foods. When the cooking yield is high, the
requirement of raw mass will be lower (Eq. 29), so a lower production
rate and a lower cooking intensity are required (Eq. 8, Eq. 9 and
Eq. 13). On the other hand, the influence of energy-to-food is less sig-
nificant. No trend can be identified between the energy-to-food and the
on-site energy demand for the oven scenario and the griller scenario
(Fig. 2b) since only a mean of 15.6% of cooking energy is consumed by
the energy-to-food. Most of the cooking energy is instead consumed by
idling cooking appliances. Furthermore, though energy-to-food is

directly related to the cooking energy consumption (Eq. 8 and Eq. 11),
its small value (0.51 ± 0.12 MJ/kg) results in no significant effect on
the cooking intensity of the cooking appliance. This result is consistent
with the observations in Smith et al. (Smith et al., 2001), which showed
that in real cooking scenarios, the cooking usage factors of the griddle
and oven are only 6% and 10% higher than they are in idling condi-
tions, respectively.

Using building energy modeling (BEM) in this study identifies the
contribution of energy consumption from each of the energy usage
subcategories, addressing the geographical and temporal variations of
foodservice energy demand. The dominant energy demand categories
for restaurant food service are the HVAC system, water system, and
cooking, which together account for more than 90% of total energy
usage (Fig. 3). Cooking and refrigeration combined generally contribute
to less than 25% of the total energy demand. The result is consistent
with the ENERGY STAR estimate that refrigeration accounts for only
6% of total energy consumption (Energy Star 2010). The water system
in total accounts to more than 30% of energy demand, with a main
contribution from the gas-fired water heater. The results indicate that
the simplification of restaurant cooking scenario to a household
cooking scenario, which includes only cooking and refrigeration may
significantly underestimate the energy demand of the use stage. Ad-
ditionally, the geographical specific energy demand data can be easily

Figure 2. (a)The on-site energy demand distribution for the 85 types of food with ASHRAE Standard 90.1-2016 prototype model; (b) the relationship between the on-
site energy demand and energy-to-food; (c) the relationship between the on-site energy demand and cooking yield for all the food items (model used for both (b) and
(c) is the ASHRAE Standard 90.1-2016 prototype model of Climate Region 4)

Figure 3. Disaggregation of on-site energy demand for “Pork, fresh, loin, leg
cap steak, boneless, separable lean and fat” (NDB 10956) with prototype model
of ASHRAE 90.1-2016 New York
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translated to environmental impact result using regionalized emission
factors of electricity or natural gas (e.g., from eco-invent
(February, 2012) or e-Grid (U.S. Environmental Protection
Agency, 2014)).

The geographical variation of serving a typical food item is pri-
marily from the variation of energy consumption by the HVAC system
(Fig. 4a). For example, the food item “Pork, fresh, spareribs, separable
lean and fat, baked” (NDB 10940) has a heating energy demand ranging
from 0.01 MJ/kg to 12.60 MJ/kg, and cooling energy consumption
varying from 0.08 MJ/kg to 2.91 MJ/kg, while the internal activities
level is the same for all climate regions. This result is due to restaurant
models having varying thermal criteria and climate-related heat gains
and heat losses in different climate zones, which are reflected in the
BEM.

The temporal variations due to ASHRAE Standard 90.1 are also
revealed by BEM (Fig. 4b). A drop is seen between 2007 and 2010,
which reflects the effort to achieve ASHRAE's goal of 30% energy
savings with 90.1-2010 (Thornton et al., 2011). This result may have,
however, underestimated the temporal variations. Building energy
modeling is designed for simulating the energy consumption in new or
renovated buildings, so other factors that could dramatically impact the
energy efficiency of a restaurant have not been taken into considera-
tion. For example, poor maintenance has been found to contribute to
45% of extra electricity usage in restaurants (Mudie et al., 2016). Fi-
nally, it should be noted that the temporal variations in foodservice
between weekdays and weekends have been addressed here by using
different schedules for the appliances.

3.2. Results of Sensitivity Analysis

The disaggregation of energy demand shows that the portion allo-
cated to the exhaust fan and the kitchen cooling load is a small (5%).
The corresponding terms in Eq. 27 were dropped to analyze the results
of sensitivity analysis. For hour i of restaurant operation, the energy
demand is approximated as two parts (i.e. the cooking and shared
parts):

≈ + = +e
E
MN

ηE
MN

e es i
img i

i

share i

i
s img i s share i,

, ,
, , , , (30)

The sensitivity analysis is achieved by inserting Eqs. 8-10 and Eq. 12
into Eq. 30 for thermostat-controlled appliances, or by inserting Eqs. 9-

12 into Eq. 30 for non-thermostat controlled appliances. The energy
demand for cooking in the case study can be calculated as

= +e E
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i
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, ,
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for thermostat-controlled appliances, or
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for non-thermostat controlled appliances. In addition,

=e
E

N Ms share i
share i

i meal
, ,

,

(32)

For the sensitivity assessment on the serving mass M of the target
food item, Eo/MNi is the only variable term for Eqs. 31-32. Thus, in-
creasing the serving mass, M, decreases the cooking energy demand,
while the shared energy consumption stays constant (Fig. 5a). For the
sensitivity assessment on the allocation factor η, changes of η do not
affect the amount of cooking energy, es, img, i, but increase the shared
portion linearly (Fig. 5b). While in examining the variation of occu-
pancy, increasing Ni decreases both the cooking and the shared part
energy demand (Fig. 5c).

The results of the sensitivity analysis show that the energy demand
is dependent on both the total served mass and the allocation strategy
since the three-stage model and the functional unit are mass-based. The
mass-based allocation method reveals the underlying physical re-
lationship, so variations within the sensitivity analysis are explained
with consistency. Other available allocation methods may not have
such an advantage. For example, the energy content in kcal could also
be used as a basis for allocation, which, however, may lead to a large
variation among food products in the case studies since the energy
content varies about a factor of three (from 1.13 kcal/g to 3.73 kcal/g)
(Table S1). This large variation can be explained by the food component
but can hardly be related to the energy demand of food item. In this
manner, an energy-content-based allocation factor may underestimate
the fraction of energy consumption to cooked food items but over-
estimate the energy demand for industrial-processed food items with
high energy content. The study by Wu and Sturm (Wu and Sturm, 2014)
shows that the averaged energy content for restaurant served entrées,
appetizers, sides, salads, drinks, and desserts are 674 kcal, 813 kcal,
260 kcal, 496 kcal, 419 kcal, and 429 kcal. The preparation of entrées is

Figure 4. (a) The geographical variation of on-site energy demand (food item: “Pork, fresh, shoulder breast, boneless, separable lean and fat” (NDB 10940); model
set: ASHRAE 90.1-2016); (b) Temporal variation of on-site energy demand represented by 30 food items with the lowest yield rate (model: ASHRAE 90.1-2016 in
Climate Region 4)
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usually related to cooking but accounts for only a small portion of en-
ergy demand in an energy-content-based strategy.

4. Conclusions, Limitations and Recommendations

In this study, we examined the on-site energy demand for serving
meat products in restaurants and proposed a model that disaggregates
the energy demand data at a food-item-level that represents real energy
consumption patterns in restaurants. We developed a toolbox based on
the proposed model, which enables the estimation of temporal-specific
and regionalized data. Our results show that the energy demand of the
use stage of meat products can be comparable to their production stage
due to the contributions from the HVAC system and the water system.
Our results could potentially act as important data sources for future
LCA studies aiming at eco-labeling, thus facilitating diet change
through customer intervention.

Our model is based on experimental studies of the cooking appli-
ances’ performance by the Food Service Technology Center
(FSTC 2020), tests on the cooking yield by the USDA (USDA 2014), as
well as numerical models of full-service restaurants by the DoE
(U.S. Department of Energy (DoE) 2019). The following limitations
should be acknowledged when using our results as secondary data in an
LCA study:

1 The restaurant models in this study are hypothetical buildings that
operate ideally to meet the minimum requirements of ASHRAE
standards.

2 The appliances’ properties represent the performance of typical
models (Table S2). The results may vary by the appliance maker/
model.

3 The typical cooking procedure is to heat the raw material from 4∘C
to an inner temperature of about 68∘C to 71∘C. The cooking proce-
dure details for each of the meat types, including the exact cooking
temperature, the preheating temperature, and yield measurement
can be found in the USDA's Table of Cooking Yield (Showell et al.,
2012).

These limitations bring about recommendations for future studies.
First, the toolbox in the Supplementary Information needs further de-
velopment. Currently, the toolbox has only been developed for ac-
quiring results for case studies. If the main framework of the three-stage

model is maintained, then more features can be added in the future. For
example, users may want to specify a few parameters using their own
data, such as cooking losses, the parameters of cooking appliances, and
allocation factors. Furthermore, only three cooking methods have been
incorporated due to the availability of cooking yield data, and including
other cooking methods requires more complex heat transfer models. For
example, braising meat products requires adding extra water (and a
corresponding additional energy input) to the food product, and in-
sufficient data exist for this process. The energy demand for such
cooking methods could be achieved in future studies by developing new
appliance energy consumption models and by experimental collection
of energy-to-food data and cooking yield data.

In this study, we considered only one pattern of food service (order-
and-preparation), which allows for the calculation of cooking demand
based on the variation of the number of customers. It is thus re-
commended to develop models for products prepared in bulk and
served throughout a restaurant's operation (e.g., bread). Additionally,
the sensitivity analysis results reveal the energy demand's high depen-
dence on estimated parameters (i.e. the allocation factor and the oc-
cupancy level). A confidence interval for the results could not be
quantified in the current study due to a lack of data to determine the
variance of the estimated parameters. In future studies, the uncertainty
may be mitigated by incorporating more sophisticated models for each
of the modeling stages. For example, the current energy-to-food model
may be replaced by a heat and mass transfer model (Zhang et al., 2015,
Pan et al., 2000). More detailed BEM models can also be developed to
address the problems within the current models. One identified pro-
blem is that the radiant fraction of the prototype gas equipment is only
0.2, while the radiant fraction for the imaginary appliance can be up to
0.4, which may force the radiant factor for the pure radiant appliance to
be less than 0 to maintain the radiant heat gain balance per Eq. 16. All
factors in the current study were constrained to be between 0 and 1 in
the toolbox in the Supplementary Information to address this problem
in completing the calculation.

Finally, future studies can aid life cycle assessment by collecting
experimental data on building energy consumption and meal service for
the calibration of numerical models. The results of our current model
cannot be calibrated by currently-available household-cooking models,
which lack of a consideration of the real restaurant operation scenario
(e.g., cooking appliance's idling status, preheating frequencies, and the
energy demand of systems despite of the cooking activities).

Figure 5. Results of sensitivity analysis on (a) the serving mass as a fraction of the total meal, (b) the allocation factor, and (c) the occupancy level as a factor of the
occupancy in the current study of the restaurant (1 represents current study) (represented by food item “Beef, chuck, shoulder clod, top blade, steak, separable lean
and fat, trimmed to 0" fat, all grades” (NDB 23060) with prototype model is ASHRAE Standard 90.1 -2016 New York)
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