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Abstract

Dynamic pricing, also known as real-time pricing, provides electricity users with an economic incentive to adjust
electricity use based on changing market conditions. This paper studies the economic implications of real-time
pricing mechanisms in a cement manufacturing plant. Production for a representative cement manufacturing
plant is modeled using stochastic mathematical programming. The results show that a cement plant can a) reduce
electricity costs by shifting electricity load of certain processes to times when electricity prices are lower, and b)
profitably reduce electricity use during peak prices through more efficient scheduling of production under
real-time pricing compared to fixed pricing. The results suggest that building scheduling flexibility into certain
industrial manufacturing processes to reschedule electricity consumption when the electricity prices at their peak
may be economical. The results also suggest that shifts in the production schedule of a cement manufacturer that
result from real-time pricing may also influence environmental impacts. The modelling framework modeled
real-time pricing as a source of risk in this study, which is also applicable to other energy intensive industries. As
such, dynamic pricing strategies that include the non-market impacts of electricity generation should be further
explored.
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1. Introduction

The growth of electricity demand has slowed in the past decade and it is projected to continue slowing through
2040 in the United States (EIA, 2014). One of the major reasons for the decline in growth has been the
substantial increase in investments that enhance energy efficiency and load management, particularly in the
industrial sector. Rapidly declining costs of renewable energy resources such as distributed solar also contributed
to slow electricity demand (US DOE, 2015). Approximately one-third of the total US electricity production is
used by the industrial sector (EIA, 2013; Gielen & Taylor, 2007). Further, of total industrial energy consumption
in the United States, about 48% is electricity (US EIA, 2015). For instance, electricity makes up approximately
25% of the energy used in cement production (Kramer et al., 2009; Madlool et al., 2011; Madlool, 2013).
Considering the substantial amount of electricity demand in such industries, efficient use of electricity becomes
an important part of production planning and a potential driver of market behavior.

Dynamic pricing, also known as real-time pricing, is one useful method for managing electricity consumption
since it provides customers with an economic incentive to adjust electricity use based on changing market
conditions. Although there have been initiatives for implementing more time-varying retail rates (Taylor, 2002;
Chao, 2009; Bharvirkar et al., 2008; Faruqui et al., 2010; Alcott, 2011; Cooke, 2011), the majority of retail
industrial customers face retail rates that are fixed regardless of the level of demand. Alternatively, larger
industrial customers may negotiate time-of-use rate contracts under which the electricity rate is higher when
electricity demand is typically high, and lower when demand is, on average, low. Flat, or minimally varying,
rates do not give consumers a direct incentive to adjust their electricity consumption in response to actual
changes in the cost of generation. Further, consumers may end up paying higher prices when the real-time
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electricity prices are lower during off-peak hours in the wholesale market (Faruqui et al., 2010). Real-time
pricing provides electricity customers with an opportunity to use more electricity at the times when the price of
electricity is justified by the economic activity it is supporting, which in the aggregate can also reduce consumer
bills and can eventually shave costly peak loads facing utilities. Significant amounts of electricity savings are
possible through upgrading technology and machinery to improve efficiencies, but dynamic pricing offers a low
cost way to manage electricity use (Olsen et al., 2010) by shifting it away from peak-load times (Wang & Li,
2015; Changhui et al., 2017; DOE, 2006).

Adjusting to real-time pricing can be difficult for large industrial consumers, especially for firms that do not have
a flexible electricity consumption schedule (Eryilmaz et al., 2016; Olsen et al., 2010). Thus, the economic
implications of real-time pricing may vary by industry and production technology. This study focuses on the
implications of real-time electricity pricing on cement production planning. Cement manufacturing is considered
to be a suitable industry to implement real-time pricing since it has been estimated that up to 50% curtailment of
electricity use is possible through dynamic pricing (Olsen et al., 2010). While management of electricity
consumption is possible in this energy-intensive industry, it has mostly been implemented through interruptible
tariffs, under which electricity users agree to curtail a certain amount of electricity usage through a
pre-determined agreement with the utility. Dynamic pricing is typically thought to be an -electricity usage
shifting” mechanism in which the timing of electricity use changes (Wang & Li, 2015). Under real-time pricing,
customers may choose to adjust electricity consumption on an hourly basis, which requires additional flexibility
in the operational schedule of the implementing facility (Borenstein, 2005). In addition to the customer-level
benefits, demand response in large industrial sectors benefit the electric system as a whole (Khan et al., 2016;
Eid et al., 2016). More broadly, real-time pricing is found to be an efficient tool in competitive markets and the
benefits of real-time pricing have been observed in other energy and utility systems (Hailong et al., 2015).
Further, a study by Bornstein (2005) emphasizes that real-time pricing is a superior option, particularly for large
industrial customers compared to time-of-use pricing in terms of electricity cost-efficiencies and rescheduling
production (Borenstein, 2005). For example, plants may shut down or interrupt electricity use during the times
when the electricity price is at peak by having the capability of over-producing and storing work-in-progress
inventory or switching to an alternative fuel. A number of studies have attempted to quantify the energy and
economic savings of real-time pricing in manufacturing, including cement. An early white paper by Zarnikau
(1997) outlines the economic benefits of real-time pricing for manufacturing including customer bill savings.
Hamdani (2000) found approximately $1 million/year in energy cost savings due to scheduling energy
consumption for certain part of cement processes with real-time pricing. Another study found 9MW of peak load
reduction per year with real-time pricing in cement operations in South Africa (Mathews et al., 2007). Finally, an
empirical study examining the challenges and benefits of dynamic pricing on load forecasting and utility
resource planning, concluded that dynamic pricing can be an efficient pricing scheme, benefiting both the
customer and the utility (Khan et al., 2016).

The primary goal of this study is to provide an understanding of economic implications of real-time pricing
mechanisms in a large energy-using industrial setting. This paper presents a production model for a
representative cement manufacturing plant including energy-intensive flow and batch processes (e.g. raw milling,
kiln, finish grinding). A mathematical programming model is developed to study alternative electricity demand
scenarios in the context of the overall economic choices for the facility. The analysis specifically considers the
Midcontinent Independent System Operator (MISO) territory market conditions and operational factors, as well
as characteristics of cement manufacturing in the Midwest region. A multi-period stochastic programming
framework is used to capture the sequential nature of the production processes, the use and availability of
processing equipment, and the stochastic and real-time nature of electricity prices. The objectives of this research
are to show a) how energy management under real-time pricing can influence operating profit of a cement
manufacturing plant, b) how electricity consumption might change in response to real-time pricing, and c) how
this change in electricity consumption alters the facility’s CO, profile operating in the MISO territory.

This paper makes several contributions to the discussion of the economics of real-time pricing. The modeling
framework is designed to analyze the adoption of real-time pricing by large manufacturing plants, including
assessments of the relative efficiency of energy use and curtailment of electricity consumption in various stages
of production as real-time electricity prices change. Numerous researchers have employed empirical methods to
analyze the behavioral impact of dynamic pricing. However, analytical approaches incorporating large demand
shifting potential have been limited (Rosenthal, 2017; Lijesen, 2007), particularly because of the limited
knowledge of customers’ varying electricity use. This study addresses this limitation within a specific setting of
an energy intensive industrial customer. More specifically, the analysis provides useful production process
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management information to cement manufacturing plants regarding the impacts of real-time pricing and its
implications for profitability. The model developed in this study demonstrates an analysis of strategic and
operational practices involving production capacity decisions, production scheduling and finally management of
electricity consumption during production under real-time electricity pricing.

Following the background section, the paper is organized as follows: an analytical framework section provides
an in-depth explanation of the modeling assumptions and model framework, and is followed by details of the
analysis and data. The results section includes the explanation of the optimal production plans for three
electricity markets and various market conditions. Following an interpretation of the results, some possible
directions for future research are discussed.

2. Background
2.1 Cement Industry and Energy Management

The cement industry was selected for an analysis of real-time pricing for several reasons. First, it is one of the
highest energy and emissions intensive manufacturing industries in the U.S. because the production processes
use large quantities of fossil fuels (Hanle, 2004). Approximately 50% of the production cost comes from energy
inputs such as coal, natural gas and electricity (KEMA, 2005). As opposed to the other fuels, electricity
consumption is more flexible in a cement production process. Thus, allowing cement plants to track real-time
prices and curtail electricity use when electricity price is high may have significant economic and energy
efficiency impacts.

Second, while the market price of cement has been increasing, cement production has slowed in the past few
years (Van Oss, 2014). One of the major reasons for slower cement production is recent environmental
regulations, particularly the 2010 National Emissions Standards for Hazardous Air Pollutants (NESHAP)
protocol for cement plants. Cost pressures stemming from regulation has also encouraged research on energy
efficiency in cement plants and opportunities for clean ways of manufacturing cement in the United States (Van
Oss, 2014).

Finally, cement plants typically operate 24 hours-a-day. Their use of electricity, compared to the other fuels, is
highly interruptible during several stages of the operation where electricity is used intensively and often when
the electricity price is high (Olsen et al., 2010). Thus, this study posits that it is possible for cement producers to
profitably respond to real-time pricing by altering the scheduling of these processes.

2.2 Cement Production Process

Cement production includes three major production processes: raw milling, kiln and finish grinding (or cement
milling). Cement production is mostly a flow process with finish grinding a batch process. Initially, all raw
materials are brought to a raw milling process, which can be a wet or dry process. With the wet process, water is
used for grinding raw materials and the grinding is less energy-intensive than dry raw milling, where no water is
being used. Thus, we assume a wet processing method in this analysis. The intermediate product of raw milling is
raw mix. In the second stage, the raw mix is burned during the kiln process, which typically uses a mix of different
energy sources including coal, electricity natural gas and oil. The kiln is the most energy and emissions intensive
production activity in the entire cement production cycle. The intermediate product of the kiln is called kiln feed,
which is directly transferred into the finish grinding coolers -- all of electricity in this production activity is used to
move the kiln feed to the coolers. The hot clinker is cooled clinker coolers, which moves the combustion air
towards the hot clinker (IEA, 2010), and the air is moved with the help of large fans, which are the primary
electricity consumers in this stage. The final stage of production is the finish grinding, the most electricity
intensive stage of the production cycle after kiln, where electricity is used to grind clinker, the cooled kiln feed, to
produce cement (Olsen et al., 2010; IEA, 2010). Cement manufacturing is cyclical (Olsen et al., 2010), and
production operations may shut down due to lower market demand for cement or if maintenance is required.
Storage of intermediate products is possible, between the kiln and finish grinding processes and finally, after the
finish grinding process to store the final product.

To demonstrate the stochastic, multi-period mathematical programming approach, the model is constructed to
allow for a delay (i.e., reduction of production) in the finish grinding process to manage electricity consumption —
a process that uses a significant proportion of the facility’s electricity consumption. Later, other potential
management decisions to manage electricity use, including scheduling and input substitution, will be discussed
within the framework of the model. Finally, transportation costs can become significant component of costs — for
example, cement plants are usually located close to the raw material supplies to minimize transportation costs.
Therefore, the model assumes constant transportation costs in this analysis. Figure 1 illustrates one-cycle of
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cement production with the associated input requirement coefficients to produce one ton of cement.
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Figure 1. Cement production process

Note. This figure illustrates the cement production and disaggregates different production activities.

Approximately 30% to 40% of total energy use in cement production comes from coal. The remaining energy
sources are: electricity (11%-25%), natural gas (7% to 30%), petroleum coke (13%) and fuel oil (35%) (Madlool
et al., 2011; Madlool et al., 2013 (Note 1)). Electricity and natural gas is consumed during almost all of the
production processes, while petroleum coke is mostly used as an alternative type of fuel during the kiln activity.
The overall cement production process is highly automated. All raw materials are used - there are no by-products
during the production process, except clinker dust, which is cleared with vacuums in the end of the production
and is not reused during production.

All of the cement production processes described above are included in the multi-period mathematical
programming model of a representative cement plant. The model includes discrete, thirty minute long production
periods over a three month long (i.e., seasonal) planning horizon. The model assumes that the real-time
electricity price fluctuations in a day are observable by the plant, and so it is possible to manage electricity use in
a production cycle responding to price fluctuations through the scheduling of finish grinding. Real-time pricing
signals are observed by the plant every thirty minutes. The plant is a price-taker, which means that changes in the
electricity consumption of the plant do not influence the prices of electricity. (Note 2) Further details on the
model parameters are presented in Section 4.1, 4.2 and Appendix Table 1.

2.3 Wholesale Electricity Markets

The wholesale electricity market includes buyers and sellers of power between generators and resellers. Regional
Transmission Organizations (RTOs) and Independent System Operators (ISOs), such as MISO, operate
wholesale electricity markets and set the clearing price for electricity. The process includes matching electricity
supply to demand at various pricing nodes across the ISO territory. Generators bid based on how much supply is
available and MISO sorts thee bids from lowest to highest and dispatch at the relevant hour. The market clearing
price is based on the marginal unit of generation required to meet demand.

MISO determines electricity prices primarily through two markets: real-time market and day-ahead market.
Real-time market is a spot market, which balances real-time supply and demand in the MISO market. Day-ahead
market is a forward market, which reflects participants’ expectations for the next day. (Note 3) MISO uses
Security Constrained Economic Dispatch - SCED model for its real-time and future operations (i.e., a continuous
process for balancing the least cost demand and supply while recognizing current or future operating conditions
in the market, see Note 4). MISO uses load forecasts and generator offers to balance the market instantaneously.

We use real-time electricity prices to develop the cement producer’s problem under the assumption that the
cement producer instantly receives the clearing price of electricity in the MISO market. (i.e., large industrial
customer is a bidder in the real-time market). Large industrial electricity customers are still not fully equipped to
track real-time electricity prices. This study aims to demonstrate the energy management implications if a
cement producer paid known, real-time electricity prices based on MISO market data. Doing so focuses the
discussion on ways electricity use could be managed in response to real-time price. We follow this with a
discussion of the nature of electricity price risk and possible modeling approaches for firms using electricity and
facing input price risk from real-time pricing.
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3. Method
3.1 A Mixed Integer Programming Model of Cement Production

A mathematical programming model of cement plant operation is developed to study alternative demand
reduction policies in the context of the overall economic choices of cement producers. Firm-level mathematical
programming models are widely used to study the impacts on producers of changing market conditions,
technology and public policies (Mendez-Pinero & Colon-Vazquez, 2016; Hillier, 2012; McCarl & Spreen, 2013;
Rosenthal, 2017). A multi-period framework is used here to capture the sequential nature of the production
processes, the use and availability of processing equipment, and the stochastic nature of energy prices -
characteristics that are central to cement production and the electricity demand reduction problem. Integer,
process-scheduling variables are used to capture discrete choices involving shutting down or altering production
processes in order to manage energy use in the context of prevailing electricity pricing policies. A general
algebraic statement of the model follows:

Maximize:
Z = -heop 2t eopRMy ZMyy - Xy o, RNy ZNy + g €040, 21 c0, PMg YMg, + o 9, PNy YN, (1)

Subject to:
i oy €omy 2 €0 AZM g XPyjy, + i oy 2 k € 0ys 2 € 07y AZS ity XSipy - ZMyy = 0; h €0z t €07 (2)

ity omy 2 e AZNjny XPyy - ZNy = 0; h €0y 3)
_ZiE'QXZfEGXMZtIEGTXAY%jgfII XPy, + Yl - Ylg(t-l) + YMy, =0, g EOyy tEO; 4
-Dicoy ey ety AYNygy XPyy - YN, = 0; g €0yy (5)
XP XS, YILZM,ZN > 0,
IM < ZMyei ZN < ZNpaei ZM > YMypi: YN'> YNy Y1 < Vi ©6)
XS Integer

where the sets are defined as 0x Production Activities; 0y Production Methods; 6; Time Periods; 6,y
Multi-Period Inputs; 0,y Non-Multi-Period Inputs; 6y, Multi-Period Products; 6yy Non-Multi-Period
Products; 6xy Methods mapped to Production Activities; 0rx Production Activities mapped to Initial
Processing Periods; XPyy, is the level of production process activity i, using method j, and beginning in time
period t;.

By including alternative process methods, the model can allow for alternative input combinations for a particular
process including alternative energy sources (e.g., distributed on-site generation) or combinations of raw
materials. The alternative methods can also be used to capture the various fees and prices associated with a
demand reduction policy. (Note 5) Each process can take place over several production periods with multi-period
input requirements indicated by matrix AZM and non-multi-period input requirements given by AZN. Integer
variable XS is used to capture discrete process scheduling decisions (i.e., this variable is operating as an on
and off switch for the cement operations). For example, using available processing equipment and making
production capacity available for use by processing activities, XP. The transfer of equipment resources to
processing capacity is accomplished with coefficients matrix AZS. Inputs and products may be multi-period, if
supply and demand conditions vary by production period, or classified as non-multi-period to manage model size
when the time period of availability, use or production is not critical. Input use or purchase variables are ZM and
ZN for multi-period and non-multi-period inputs, respectively. Output or product sales are represented by
variables YM (multi-period) and YN (non-multi-period). Quantity restrictions on input use or product demand
are captured through upper and lower bounds (constraints are defined in (6)). Using input price parameters RM
and RN and product price parameters PM and PN, the objective function (1) is total net revenue. The objective
function is to maximize net revenue from production. Ending inventory variables YI capture the storage of
products, with storage capacity indicated by upper bounds YI,.« (equation (6). The inventory variables can
account for the storage of final products for later sale or the storage of intermediate products between processes.
The latter is an important feature for modeling the disruption of a process to reduce electricity use.

Parameters AZM and AZN are matrices of net resource requirements per unit of production activities XP, and
AZS are per unit net resource requirements for scheduling variables XS. Input constraints (2) and (3), then,
balance net input use by production activities plus net use by scheduling activities (multi-period inputs only)
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with input purchases or fixed resource availability. Per unit product yields for production activities are matrices
AYM (multi-period) and AYN (non-multi-period). For multi-period products, inventory from the previous period
plus production during the period must balance with product sales plus ending inventory by constraints (4). For
non-multi-period products, equation (5) balances production and sales.

The operations model described above is used in a stochastic programming analysis of energy management.
Discrete stochastic programming (DSP, sometimes called stochastic programming with recourse), is well suited
to the analysis because we allow the plant to observe real-time prices of electricity and have the option to shut
down operation for every thirty minute at finish grinding stage of production. (Note 6) A two stage decision
process is assumed. In stage one, processing and cement storage capacity decisions are made. Also, any
agreements on electricity pricing are made in stage one. Stage one decisions are made with energy price states in
stage two of nature unknown subject to capacity and pricing decisions made in the first stage, optimal operating
decisions are made in stage two for each energy price state of nature. Stage two decisions include levels of
processing activities by mode and period and storage activities by intermediate product and time period, as
shown in the algebraic model above. This multi-stage stochastic programming framework is designed to account
for changes in electricity prices and other stochastic events influencing input prices, product prices, resource
availabilities, input requirements or process yields. This framework is illustrated in Figure 2, which represents
the theoretical firm’s problem in a decision tree. With the DSP model, the stochastic nature of problem
parameters, such as electricity prices, are characterized with several discrete —states of nature”, represented by
the stage two branches of the decision tree.

Stage I Stage IT

Decision Vanables: Decision Vanables:
Proces:si.ng, Handling and Storage Equipment Processing, Inventory and Storage Activities
Selection Input Use and Purchasing Activities
Electricity Pricing Agreement Process Shutdown

- co State of Nt 1 aj

Price State of Nature 2

State of N
5] Cn

Figure 2. Decision tree illustrating the stochastic programming framework

Note. The a values represent the probabilities of the joint events associated with each terminal branch.

Further, the DSP framework allows for a sequence of production, resource use and product marketing decisions
over time as random events occur. Decisions made at a particular point in time are made with probabilistic
knowledge of future states of nature, and the consequences of current decisions for future decisions is captured
through the constraints of the optimization model. For example, in cement processing, the curtailment of a
process for purposes of reducing electricity use when rates are high would lead to an accumulation of
intermediate product inventories for input to the curtailed subsequent process, and depletion of inventories of the
output of the process. To analyze demand reduction policies for electricity, electricity price states of nature will
be defined to represent the stochastic nature of these prices. This might be accomplished by using historical price
series as states, or by constructing a simulation model as a state generator driven by weather and other important
determinants of electricity prices. For this analysis, stage one decisions involve the level of finish grinding
capacity. Once grinding capacity is selecting, processing storage decisions are optimized for each electricity
price state.

The model was build using GAMS, the Generalized Algebraic Modeling System, (Chattopadhyay, 1999;
Williams, 2013). GAMS is a high-level language for building, solving and analyzing mathematical programming
models. A wide range of solution algorithms may be used for solving large scale optimization problems. The
model used in this study is a mixed integer, linear programming model. The model was optimized using the
GUROBI solver. (Note 7) The exact dimensions of the model vary slightly by scenario, but included
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approximately 75 thousand constraints and 128 thousand variables, approximately 4,500 of which were integer.
(Note 8).

To simplify the problem, stage two decisions were optimized in GAMS for each of several discrete levels of
grinding capacity. An overall optimal strategy for each capacity level was found, then, by solving the stage two
problem for each electricity price state of nature.

3.2 Analysis and Model Parameters

To demonstrate the use of the stochastic programming model of production planning of a representative cement
plant, an analysis was conducted focusing on scheduling of the finish grinding operation due to relatively
flexible nature of electricity consumption during this stage of production. The model allows for adjusting the
timing of finish grinding, a stage two decision (See Figure 2), in response to changing electricity prices under
different price states of nature. Stage one decisions involve the level of finish grinding capacity, set at discrete
levels from 100%, the baseline capacity scenario which is balanced to match the kiln processing rate, to 105%,
110% and 115% capacity scenarios, which allow for finish grinding to be delayed to avoid electricity use when
price, and the market demand for electricity, is high without reducing cement output. The model is solved for
thirty minute time periods over a three month planning horizon. (Note 9) To explore seasonal differences in price
patterns, summer and winter planning horizons are analyzed (e.g., higher real-time prices in summer than winter
in MISO market). Three years of observed electricity prices (i.e. 2016, 2017 and 2018) are used as states of
nature, each assumed equally likely (Note 10).

3.3 Raw Materials and Electricity Use

The primary raw materials for producing cement are limestone and clay. To produce one ton of cement,
approximately 1.372kg of limestone, 187.5kg of clay, and 37.7kg of other materials are required. (Note 11)
There may be some loss in the total amount of inputs used during some of the production activities and, therefore,
the production coefficients in each step may vary depending on the equipment. Input requirements used in the
model, collected from the Portland Cement Association, USGS Reports and other sources (Note 12), are
summarized in Table Al of the Appendix (Olsen et al., 2010; Madlool et al., 2011; Madlool et al., 2013) (Note
13).

Cement production requires various energy sources during the production process: coal, electricity, fuel and
natural gas (Olsen et al., 2010). Coal is primarily used in the kiln process for melting raw mix, while electricity is
used across all of the production activities. (Note 14) Approximately 140 kWh of electricity is used to produce a
ton of cement, excluding use for in-plant lighting and dust-collection (Madlool et al., 2011). The majority of the
electricity is used in the kiln (86 kWh/ton), whereas approximately 15 kWh/ton of electricity is used during raw
milling and 37 kWh/ton of electricity is used during finish grinding. Plant lights and dust-collection consume
approximately 10 kWh/ton. More specifically, raw milling uses approximately 11%, kiln uses approximately 50%
and finish grinding uses approximately 33% of the total electricity consumed to produce a ton of cement. The
distribution of electricity consumption across production activities is shown in Figure 3.
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Figure 3. Electricity consumption during cement production

3.4 Real-Time Electricity Prices

Real-time electricity price data for the analysis is from the Midcontinent Independent System Operator (MISO)
electricity market. Electricity prices vary throughout the day across regional pricing hubs (i.e., MN, IL, IN).
Daily real-time prices are the highest during on-peak hours, which are often between 8am and 10pm in the MISO
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region. Similarly, off-peak hours are defined as the times when real-time electricity prices are the lowest.
Off-peak hours are when the market demand for electricity is lower. Further, there is variation in real-time prices
across seasons, and MISO region is known as summer peaking. Although average prices in winter were higher
between 2016 and 2018, MISO market often has higher on-peak real-time prices in summer. Figure 4 illustrates
the real-time market prices on summer and winter using the historical MISO market prices in 2016, 2017 and
2018.

Summer Winter
IL, 2016 IL, 2017 IL, 2018 IL, 2016 IL, 2017 IL, 2018
MI, 2016 MI, 2017 MI, 2018 MI, 2016 M, 2017 MI, 2018
2 2
< % < 9
By )A )A )A £l o A %A@%
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MN, 2016 MN, 2017 MN, 2018 MN, 2016 MN, 2017 MN, 2018

)
)
)
|
|
é?i

Hour Hour

Price Price (fitted) ‘ ‘ Price Price (fitted) ‘

Figure 4. Real-time electricity prices of summer and winter seasons in MISO sub-regional electricity market
hubs

Historical 5-minute real-time market prices are collected between 2016 and 2018, with each year used as states
of nature that are assumed to be equally likely (i.e. each electricity price state of nature has a probability of 1/3).
To conform to the 30 minute price periods used in the model, the price in the first five minutes of each period is
used in each year (state of nature) and in three pricing hubs: Minnesota, Illinois and Michigan. Descriptive
statistics for daily average real-time prices are shown in Table 1 for summer and winter, and for each of the three
markets.

Table 1. Hourly average real-time prices in the MISO market: summer and winter

Summer (cents/kWh) Winter (cents/kWh)
2016 2017 2018 2016 2017 2018
Minnesota 25 23 2.5 1.9 23 2.6
Michigan 32 29 3.0 22 2.8 3.1
Illinois 2.9 2.7 2.8 2.3 2.5 2.6

4. Results

The solution of this cement production model determines the processing and resource use schedule that
maximizes expected net revenue. In the baseline scenario (i.e. 100% finish grinding capacity), the plant has
capacities for each stage of production that are matched, so electricity use can only be reduced by producing less
cement in the three month planning horizon. When excess finish grinding capacity is added (i.e. 105% and 110%
finish grinding capacity), it becomes possible to delay finish grinding without reducing total cement production
so long as sufficient capacity is available in later periods to complete production. More importantly, it also
means that electricity consumption is curtailed during the interruption period and electricity consumption is
deferred to be used when the real-time price of electricity is at off-peak. The intermediate product of the kiln and
cooling processes, clinker, is held in inventory when finish grinding is delayed. Results of particular interest
include the electricity cost in a production cycle, and the amount of time the cement plant shuts down, or
otherwise delays the finish grinding activity. These outcomes depend on the facility location, season, and
electricity price state of nature, as well as the finish grinding capacity.

Under baseline scenario, the expected net revenue in summer is approximately 1% higher than the expected
revenue in winter for all regions. This is consistent with higher real-time prices in summer than in winter. The
highest expected net revenue from production occurs in the summer for all regions. Figure 5, presents the
comparison of expected net revenues for summer and winter for the baseline capacity scenario.
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Figure 5. Expected net revenue for baseline capacity — Minnesota, Illinois and Michigan

Further, with higher excess finish grinding capacity, expected net revenue increases because finish grinding may
be rescheduled to avoid the highest electricity prices. However, note that as more capacity is added, net revenue
increases at a decreasing rate because the most extreme price events have already been avoided. The benefit of
added capacity must be weighed against the associated capital recovery costs and maintenance costs. We focused
here on the operating income benefit since the equipment changes and associated capital recovery costs would
require additional engineering analyses that were beyond the scope of this study. To be profitable, the additional
expected operating income must exceed the capital recovery cost of the additional finish grinding capacity.
Figure 6 illustrates the expected net revenue, as well as net revenue under each electricity price state, at different
finish grinding capacities with winter prices in Minnesota.

51,290,000

1,285,000

Net Revepue, 1000

$1,280,000

4 2016 2017

$1,270,000
100.0% 102.5% 105.0% 107.5% 110.0% 112.5% 115.0%
Finish Grinding Capacity

Figure 6. Expected net revenue for different capacity in Minnesota — Summer

Note that with higher excess capacity for finish grinding, the total number of hours of delay in finish grinding
use also increases, allowing electricity use to be reduced when electricity prices, and generating costs, are high.
There may be up to 397 operating periods (i.e., equivalent of 199 hours in a summer period) of delay in summer
in the 10% excess finish grinding capacity scenario. In 15% excess capacity scenario, up to 570 operating
periods (equivalent of 285 hours in a summer period) are delayed. The total duration of interruption during finish
grinding is always higher in summer, when the average real-time peak prices are often higher than in winter.

Further, the finish grinding activity is often interrupted (i.e., production operation is delayed) at the times when
the real-time prices are at peak. In figure 7, we plot the time periods, when the Minnesota plant delays finish
grinding in summer excess capacity in finish grinding activity. Each item in Figure 7 represents a thirty minute
processing period: the combination of time of day and electricity price that the finish grinding activity is
interrupted. Analysis results show that majority of the interruption occur during on-peak hours, between 8am and
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10pm for each excess capacity scenario. The average real-time electricity prices in Minnesota ranges between
[$23.2/MWh-$25.2/MWh] in summer (See Table 1), while we find delays in operation are at the highest
electricity prices (e.g., higher than $2000/MWh).

040
&.035 AN\

>
@.030 /NS Pt
&.025 /\ /\/\/V \‘
K JV VvV \—\
':p.OZO e
%.015
o
2.010
0.005
0.000

0 1 2 3 4 5 6 7 8 9 10 11Hd2r13 14 15 16 17 18 19 20 21 22 23 24

1450

1400

g
1350 SHARS A Pf/:’_
y /AN Rf
1300 N A\
RANY //
1250 A
— 100% \

/
' N 4

1200 ——105% \ 6 /
—110% /\

—115%
"\

0 1 2 3 4 5 6 7 891011Hc;l.qu131415161718192021222324

‘
Z

Average Electricity Use

1150

"

2

1100

Figure 7. Average real time electricity prices by time of day for Minnesota, Summer 2018, and Average

Note. Optimal Electricity Use by the Cement Plant with 100%, 105%, 110% and 115% Finish Grinding Capacity.

Results show that if a cement plant is given the option to track real-time prices in the market rather than paying a
fixed retail rate, it is economical for this plant to reschedule electricity consumption when the electricity prices
are at their peak during finish grinding. The plant also makes roughly 20% additional net revenue, less the
capital recovery cost of added finish grinding capacity, under the real-time pricing contract, while the total
amount of cement production remains constant. This shows that the electricity consumption is scheduled the
times when the cost of electricity is lower and the plant does not have to give up on planned production levels
under 15% excess finish grinding capacity scenario.

Tables 2 and 3, below, summarize the expected net revenue value ($), total cement production (metric tons), total
number of thirty minute delays, total electricity consumed (kWh) during production cycle and the average price
paid for electricity ($/KWh) for each states of nature for each capacity scenario. Specifically, results for
Minnesota winter and Minnesota summer are presented in Table 2 and Table 3, respectively. Results for Illinois
winter and Illinois summer are presented in Appendix Table 2 and in Table 3, respectively. Results for Michigan
winter and Michigan summer are presented in Appendix Table 4 and in Table 5, respectively.

Finally, it is important to note that in the baseline scenario results should be interpreted carefully. Any
operational delay other than finish grinding would be achieved by producing less cement and this is only optimal
when it happens at the end of each season, so the processes before the finish grinding, as well as other operations,
can be shut down early. For example, this happens when the plant does not need to restart kiln at the very end of
the production period and when the electricity prices are high during the last time period. The baseline scenario
results are presented in order to provide a comparison to the excess capacity scenarios, which provide the
primary outcomes of this analysis.
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Table 2. Summary of optimal solutions by finish grinding capacity for minnesota winter electricity price states of
nature

Finish Grinding Electricity Cement Production Finish Grinding Average Electricity
Capacity Price State of Nature Net Revenue MT Delay, Hours Price Paid, cents/KWH

100% 2015-2016 $1,278,615 36,414 0.1 1.90
2016-2017 $1,256,181 36,414 0.1 2.29

2017-2018 $1,236,565 36,337 9.1 2.59

Expected Values”

$1,257,120 36,388 3.1 2.26

105% 2015-2016 $1,280,549 36,414 203.5 1.87
2016-2017 $1,259,616 36,414 203.5 2.23

2017-2018 $1,242,991 36,414 203.5 2.52

Expected Values”

$1,261,052 36,414 203.5 2.21

110% 2015-2016 $1,281,113 36,414 388.4 1.86
2016-2017 $1,260,560 36,414 388.4 2.22

2017-2018 $1,244,090 36,414 388.4 2.50

Expected Values”

$1,261,921 36,414 388.4 2.19

115% 2015-2016 $1,281,527 36,414 557.3 1.85
2016-2017 $1,261,201 36,414 557.3 2.20

2017-2018 $1,244,775 36,414 557.3 2.49

Expected Values”
$1,262,501 36,414 557.3 2.18

Note. Price states of nature are assumed to be equally likely, so the probability of each state is 1/3.

Table 3. ummary of optimal solutions by finish grinding capacity for minnesota summer electricity price states of
nature

Finish Grinding Electricity Cement Production  Finish Grinding Average Electricity
Capacity Price State of Nature Net Revenue MT Delay, Hours Price Paid, cents/ KWH
100% 2015-2016 $1,272,000 37,232 0.1 2.51
2016-2017 $1,281,129 37,156 9.1 231
2017-2018 $1,271,168 37,232 0.1 2.52
Expected Values™
$1,274,766 37,207 3.1 245
105% 2015-2016 $1,277,972 37,232 208.1 2.41
2016-2017 $1,286,883 37,232 208.1 225
2017-2018 $1,275,226 37,232 208.1 245
Expected Values™
$1,280,027 37,232 208.1 2.37
110% 2015-2016 $1,279,379 37,232 397.1 2.38
2016-2017 $1,288,121 37,232 397.1 223
2017-2018 $1,276,378 37,232 397.1 243
Expected Values™
$1,281,293 37,232 397.1 2.35
115% 2015-2016 $1,280,324 37,232 569.8 2.37
2016-2017 $1,289,010 37,232 569.8 222
2017-2018 $1,277,146 37,232 569.8 242
Expected Values™
$1,282,160 37,232 569.8 2.34

Note. Price states of nature are assumed to be equally likely, so the probability of each state is 1/3.

4.1 Comparing Emissions and Electricity Use

Using the optimal electricity consumption levels for every thirty minute production period, we show the
relationship between the plant’s hourly electricity usage (kWh), the real-time prices and hourly CO, emissions,
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which are obtained from the Environmental Protection Agency’s Continuous Emissions Monitoring System data
by state for Summer 2018 in Minnesota. Table 4 presents the total electricity cost under baseline capacity and
electricity cost given the optimal processing schedules with excess processing capacities of 105%, 110% and 115%.
The total level of hourly CO, emissions (tonnes) associated with the optimal schedule of electricity use is also
shown. The plant starts to alter electricity use during the highest electricity price hours, while the plant does not
change the total amount of electricity use with baseline capacity since there is no flexibility in production to
interrupt without altering production levels.

Table 4. lectricity cost and emissions results, given summer 2018 real time prices in Minnesota

Finish Grinding Capacity
100% 105% 110% 115%
Total Electricity Cost and % Change from Base Capacity "
147,502 143,430 142,277 141,509
-2.8% -3.5% -4.1%
Emissions from Electricity Generation and % Change from Base Capacity ™

27,875 27,943 27,995 28,020
(0.24%) (0.43%) (0.52%)

Note. " The values shown for each location represent the total electricity cost by level of finish grinding capacity. Below each result in
parentheses is the percentage change in electricity cost from the base capacity of 100%

** Shown here are the CO, emissions associated with electricity generation for each location and each level of finish grinding capacity. Below
each result in parentheses is the percentage change in emissions from the base capacity of 100%.

As Table 4 shows, CO, emissions increase as excess capacity in finish grinding increases. When the plant
managers are able to shift electricity consumption as a result of increased processing capacity increases and the
plant shifts electricity use to off-peak hours (i.e., during the night). With baseload electricity generation primarily
from coal units, emissions levels are highest in the off-peak hours. Figure 8 illustrates the hourly CO, emissions
profile at baseline and each excess capacity scenario, which suggests that the CO, emissions would go down
slightly while electricity costs are more significantly reduced.

However, the magnitude of the effect may be smaller and the direction of the net effect should certainly be
studied more carefully (i.e., these results are sensitive to the regional market generation mix) in the future
research.
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Figure 8. Total hourly emissions in summer 2018 in Minnesota for baseline capacity (100%) and excess capacity
scenarios (105%, 110% and 115%)

5. Discussion

Dynamic pricing provides electricity users the flexibility to choose to purchase electricity at the times when the
cost of electricity is cheaper, which can provide several economic and potentially environmental benefits. Many
previous studies have demonstrated that customers are able to respond to the electricity price changes, if they are
given the option to track real-time electricity prices (Veall, 1986; Fan & Hyndman, 2011; Lijesen, 2007; Schwarz
& Taylor, 2002; Patrick &Wolak, 2011; Genc, 2016). This study contributes to the literature by proposing a
discrete stochastic mathematical optimization method by specifically modelling real-time cement production
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planning.

Additionally, this study provides a case study that demonstrates economic and potential environmental benefits
of adopting real-time pricing for the cement operations by allowing the plant to adjust electricity consumption
with varying electricity rates rather than fixed time-of-use rates. In this paper, what specifically is shown as
allowing the cement plant to reschedule operation in the finish grinding would be a way to reduce electricity use
when prices are high, shifting that use to a time period when electricity is cheaper. Based on the results of this
study, there are several benefits of real-time pricing to the large energy users like cement plants. First, real-time
pricing lowers the total electricity costs during production. The economic savings are more obvious during
summer, when the prices are considerably higher than average prices in most places. Although we were not able
to show the overall electricity savings due to data limitations, this modelling framework has the potential to
address this question as well. Second, the cement plant in this case study, demonstrates that tracking real-time
pricing provides the cement plant an incentive for adjusting electricity use and scheduling electricity
consumption in association with increasing electricity prices during finish grinding activity. This possibly
decreases the average electricity price paid during finish grinding. Finally, another important finding of this
analysis is that reducing electricity use with real-time pricing does not necessarily alter overall profitability of
the production. The cost savings from altering the processing schedule must be weighed against the cost of
increased finish grinding and clinker storage capacities.

In addition to the benefits of the energy management in an energy intensive industry, this study also informs
electric utilities and market operators on designing their customer pricing programs. For example, this study
demonstrates the importance of considering operational flexibilities, the ability to curtail during finish grinding
activity in this case study, in electricity consumption in certain production processes. Particularly, rescheduling
large electricity consumption can benefit utilities’ operational planning for peak generation and market operators’
decision on generation units, if some of these large users can serve as a capacity resource in the electricity
markets. Finally, if real-time pricing can be adopted by such large industrial customers and these customers are
able to reschedule electricity consumption towards off-peak periods, avoided generation has also a strong
potential environmental implications, while this clearly requires further empirical or analytical research.

5.1 Study Limitations and Topics for Future Research

The best approach to managing model size and data requirements in multi-stage stochastic programming models
is problem specific. In the context of the cement processing model used in this study, the processing decisions in
a particular operating period are influenced by past processing decisions and existing inventories of intermediate
products (clinker), and the implicit, stochastic value of current, processing capacity. Allowing the inventory of
clinker to increase by processing less than the current period clinker production increases the demand for future
finish grinding capacity and limits opportunities to reduce future electricity use by shutting down. The goal in
designing the multi-stage model is to accurately capture the implicit value of future processing capacity. The
implementation of real time electricity price policies would create risk management challenges to electricity
customers and a need for new risk management strategies. Stochastic programming models of the type presented
here could be used to test decision rules that consider the opportunity cost of capturing current electricity cost
savings when doing so reduces future opportunities to do so. For example, the model used in this study could
explore the extent to which adoption of a particular rule for shutting down finish grinding would capture
electricity cost savings occurring in the perfect foresight case. These decision rules would need to consider
current resource and market conditions, such as clinker inventories and electricity prices, a determinants of
future electricity price movements, such as weather forecasts.

We use MISO price data as a first approximation of the electricity price dynamics that could occur under real
time pricing. The dynamics of electricity markets would certainly change under pricing policies that are designed
to make industrial electricity demand more responsive to market conditions. More research focusing on market
behavior under alternative pricing policies is warranted. As a regulated market, opportunities exist to develop
pricing schemes tailored to both the supply and demand sides of the electricity market, including aspects risk
sharing that occur through markets. For instance, some combination of real-time pricing and time of use pricing
could be designed to incent conservation in times of high demand, while dampening the price risk that would
occur if companies paid the prices used to balance electricity generation across the grid.

A strength of multi-stage, discrete stochastic programming (DSP) models is the potential to capture the
relationship between the sequence of decisions and the flow of information about the uncertain events that
influence those decisions. The two-stage model used in this study supposed a first stage in which the size of
processing machinery (finish grinding capacity) is selected, following by a second stage in which operating
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decisions are made for each of the 30-minute, intra-stage time periods over the three-month planning horizon —
decisions made under each electricity price state of nature. Critical attributes of DSP models involve when the
decision maker know the outcome of random events in each stage relative to the timing of the decisions — what
has been referred to as the information structure of the problem (Rae, 1971). In this study, we assume an
information structure of complete knowledge of the past and present, so the plant manager knows the electricity
price in all operating periods in stage two when operating decisions are made. Doing so allows us to explore the
extent to which the scheduling of processing activities can be used to absorb real-time electricity price
fluctuations. However, it assumes that operating decisions are made with perfect foresight of electricity prices in
future periods, and therefor ignores the input price risk which would be inherent in processing decisions under
real-time pricing. In our cement processing model, the risk associated with real-time electricity prices involves
whether or not to shut down processing now given the known price state or save excess capacity to be used to
shut down and conservation of electricity later. In order to model real time price risk, a multi-stage recourse
model is suggested in which processing levels for the current period are selected with stochastic price states of
nature in future periods. The producer’s recourse, then, occurs in the form of future processing decisions.
Operating periods in the cement plant model could become decision stages, with well-known implications for
model size. The task adequately characterizing in each stage the prospective electricity price states of nature
would arguably be the greatest challenge.

6. Conclusions

This paper provides an analytical framework for the adoption of real-time pricing using a discrete stochastic
production model. A cement production planning model is developed considering the real-time variation in
electricity prices. Results show that the electricity price peaks are higher during summer in the MISO market,
and the analysis shows that the cement plant responds more to peaking prices during the summer compared to
winter season. Although there are regional price variations across the MISO footprint, this analysis shows that
the cement plant consumes electricity when it is cheaper with the real-time pricing. Moreover, the plant reduces
electricity consumption during peak hours and schedules electricity use when the price of electricity is cheaper,
while maintaining the expected net revenue from the total production when there is excess finish grinding
capacity.

This paper studies the economic implications of dynamic pricing in a cement manufacturing plant using
mathematical optimization methods. Although there are data limitations on cement production parameters, this
study provides a novel case on the economic and operational implications of dynamic pricing in a representative
cement plant. This study aims to build improved understanding of a particular industry’s electricity use and
explore adoption of dynamic pricing on production and profitability.

Fuel-switching (alternatively, on-site generation) within the kiln activity, allowing for more efficient use of
electricity during kiln process in addition to relaxing the modelling assumptions on delaying operation finish
grinding could be studied in the future.

Disclaimer

The opinions expressed are author’s and do not reflect the views of Charles River Associates or any of its
respective affiliates.
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Notes

Note 1. These numbers may differ across countries. This study is based on US and Canada cement plant
operations.

Note 2. It should be noted that the benefits reduced electricity use in peak demand times associated with real
time pricing would result from the responses of many industrial users to the price signals. This response could be
analyzed by modeling the electricity market as a whole, for instance using a sector modeling approach.

Note 3. MISO — Market Overview.
https://www.wapa.gov/About/the-source/Documents/2016/discussion-markets-todd-ramey-MISO.pdf
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Note 4. MISO Level 100- Energy and Operating Reserves Markets, April 23, 2014.

https://cdn.misoenergy.org/Level%20100%20-%20Energy%20and%200perating%20Reserves119103.pdf

Note 5. This model is constructed to allow the plant to delay electricity use during the finish grinding stage of
production due to the dimensionality of the programming. This assumption can be relaxed to allow for delaying
decisions using stochastic price states in other production processes. In addition, by including alternative process
methods, the model can allow for alternative input combinations for a particular process — for example,
alternative energy sources or combinations of raw materials. The alternative methods can also be used to capture
the various fees and prices associated with a demand reduction policy. Transportation and labour costs are also
assumed to be constant and negligible (i.e., it is assumed that the cement plant is located near the raw materials
needed for the production process).

Note 6. For a general discussion of stochastic programming applications, see Apland and Hauer, and McCarl and
Spreen.

Note 7. GUROBI is a solver package in GAMS for linear and quadratic programming including quadratically
constrained programming, mixed-integer linear and quadratic programming and mixed-integer quadratically
constrained programming. More information is available at: https://www.gams.com/latest/docs/S GUROBILhtml

Note 8. Note that GAMS allows flexible analytical modelling and the number of constraints and the use of
solvers is specific to this case study. In other words, the model is flexible for modifications in fact, the number of
constraints and the choice of the solver may change depending on the relaxed assumption of the current design
of the model.

Note 9. We used 5-minute real-time market settlement data from MISO. In order to keep the model in a
manageable size, we selected the first 5™ minute clearing prices for each 30 minutes.

Note 10. Winter season for each year is defined as follows: winter 2016 is defined as December 1, 2015 through
February 28, 2016, winter 2017 is defined as December 1, 2016 through February 28, 2017, and winter 2018 is
defined as December 1, 2017 through Feb 28, 2018.

Note 11. We obtained these material and energy input assumptions for Portland cement of which the inventory is
from USLCI provided by National Renewable Energy Labrotaory (NREL).

Note 12. World Business Council for Sustainable Development, 2015. Cement Sustainability Initiative: GNR
Project Reporting CO2. Retrieved from http://www.wbcsdcement.org/GNR-2012/index.html_

Note 13. Note that mass units are converted into metric ton for consistency in the GAMS model.

Note 14. Other references we used for the model parameters on cement production process are Olsen et al. (2010),
Portland Cement Association (PCA) reports, U.S. Geological Survey Cement reports and discussions with
engineers affiliated with PCA.

Appendix

Table Al. Model parameters for non-multi period inputs requirements

Inputs Required Amount Unit Price Production Activity
Limestone 0.87640 metric ton $105.23/metric ton RAW
Clay 0.00864 metric ton $10.88/metric ton RAW
Other 0.07683 metric ton $0.01/metric ton RAW
Water 0.023 gallons $1.50/gallons RAW
Gypsum 0.06146 metric ton $9/metric ton CEM-1
Coal 0.06866 metric ton $27.12/metric ton KILN
Fuel Oil 0.04 gallons $2.96/gallons KILN

Table A2. Summary of optimal solutions by finish grinding capacity for illinois winter electricity price states of

nature
Finish Grinding Electricity Cement Production Finish Grinding Average Electricity
Capacity Price State of Nature Net Revenue MT Delay, Hours Price Paid, cents/ KWH
100% 2015-2016 $1,257,445 36,414 0.1 2.27
2016-2017 $1,241,024 36,414 0.1 2.55
2017-2018 $1,233,350 36,337 9.1 2.64
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Expected Values”
$1,243,940 36,388 3.1 2.49
105% 2015-2016 $1,260,596 36,414 203.5 222
2016-2017 $1,244,269 36,414 203.5 2.49
2017-2018 $1,239,032 36,414 203.5 2.59

Expected Values”
$1,247,966 36,414 203.5 243
110% 2015-2016 $1,261,385 36,414 3884 2.20
2016-2017 $1,245,140 36,414 3884 248
2017-2018 $1,240,152 36,414 388.4 2.57

Expected Values”
$1,248,892 36,414 388.4 2.42
115% 2015-2016 $1,261,878 36,414 557.3 2.19
2016-2017 $1,245,717 36,414 557.3 2.47
2017-2018 $1,240,893 36,414 557.3 2.56

Expected Values”

$1,249,496 36,414 557.3 241

Note. Price states of nature are assumed to be equally likely, so the probability of each state is 1/3.

Table A3. Summary of optimal solutions by finish grinding capacity for illinois summer electricity price states of
nature

Finish Grinding Electricity Cement Production Finish Grinding Average Electricity
Capacity Price State of Nature Net Revenue MT Delay, Hours Price Paid, cents/KWH
100% 2015-2016 $1,250,184 37,232 0.1 2.87
2016-2017 $1,255,974 37,156 9.1 2.72
2017-2018 $1,252,261 37,232 0.1 2.83
Expected Values™

$1,252,806 37,207 3.1 2.81
105% 2015-2016 $1,257,145 37,232 208.1 2.75
2016-2017 $1,262,549 37,232 208.1 2.65
2017-2018 $1,257,598 37,232 208.1 2.74

Expected Values”
$1,259,097 37,232 208.1 2.71
110% 2015-2016 $1,258,868 37,232 397.1 2.72
2016-2017 $1,263,811 37,232 397.1 2.63
2017-2018 $1,259,097 37,232 397.1 2.72

Expected Values™
$1,260,592 37,232 397.1 2.69
115% 2015-2016 $1,259,914 37,232 569.8 2.71
2016-2017 $1,264,699 37,232 569.8 2.62
2017-2018 $1,260,084 37,232 569.8 2.7

Expected Values™
$1,261,566 37,232 569.8 2.68

Note. Price states of nature are assumed to be equally likely, so the probability of each state is 1/3.

Table A4. Summary of optimal solutions by finish grinding capacity for michigan winter electricity price states
of nature

Finish Grinding Electricity Cement Production Finish Grinding Average Electricity
Capacity Price State of Nature Net Revenue MT Delay, Hours Price Paid, cents/ KWH

100% 2015-2016 $1,258,714 36,414 0.1 2.24
2016-2017 $1,228,954 36,414 0.1 2.76

2017-2018 $1,211,120 36,337 9.1 3.03

Expected Values”

$1,232,929 36,388 3.1 2.68

105% 2015-2016 $1,260,913 36,414 203.5 22
2016-2017 $1,232,546 36,414 203.5 2.7

2017-2018 $1,218,020 36,414 203.5 2.95
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110% 2015-2016
2016-2017
2017-2018

115% 2015-2016
2016-2017
2017-2018

$1,237,160 36,414
$1,261,461 36,414
$1,233,423 36,414
$1,219,231 36,414
$1,238,038 36,414
$1,261,838 36,414
$1,234,021 36,414
$1,219,964 36,414
$1,238,608 36,414

Expected Values™
203.5 2.62
38384 2.19
38384 2.68
38384 2.93
Expected Values™
38384 2.60
557.3 2.19
557.3 2.67
557.3 2.92
Expected Values™
557.3 2.59

Note. Price states of nature are assumed to be equally likely, so the probability of each state is 1/3.

Table AS5. Summary of optimal solutions by finish grinding capacity for michigan summer electricity price states

of nature
Finish Grinding Electricity Cement Production Finish Grinding Average Electricity
Capacity Price State of Nature Net Revenue MT Delay, Hours Price Paid, cents/KWH

100% 2015-2016 $1,232,197 37,156 9.1 3.13
2016-2017 $1,247,380 37,156 9.1 2.87
2017-2018 $1,241,097 37,232 0.1 3.02

Expected Values”
$1,240,225 37,181 6.1 3.01
105% 2015-2016 $1,241,063 37,232 208.1 3.03
2016-2017 $1,254,135 37,232 208.1 2.80
2017-2018 $1,247,389 37,232 208.1 2.92

Expected Values”
$1,247,529 37,232 208.1 2.92
110% 2015-2016 $1,243,202 37,232 397.1 2.99
2016-2017 $1,255,600 37,232 397.1 2.78
2017-2018 $1,249,120 37,232 397.1 2.89

Expected Values”
$1,249,308 37,232 397.1 2.89
115% 2015-2016 $1,244,554 37,232 569.8 297
2016-2017 $1,256,572 37,232 569.8 2.76
2017-2018 $1,250,181 37,232 569.8 2.87

Expected Values”
$1,250,436 37,232 569.8 2.87

Note. Price states of nature are assumed to be equally likely, so the probability of each state is 1/3.
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