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ABSTRACT

Deep neural networks have become increasingly popular in radar micro-Doppler classification; yet, a key challenge,
which has limited potential gains, is the lack of large amounts of measured data that can facilitate the design
of deeper networks with greater robustness and performance. Several approaches have been proposed in the
literature to address this problem, such as unsupervised pre-training and transfer learning from optical imagery
or synthetic RF data. This work investigates an alternative approach to training which involves exploitation of
“datasets of opportunity” — micro-Doppler datasets collected using other RF sensors, which may be of a different
frequency, bandwidth or waveform - for the purposes of training. Specifically, this work compares in detail the
cross-frequency training degradation incurred for several different training approaches and deep neural network
(DNN) architectures. Results show a 70% drop in classification accuracy when the RF sensors for pre-training,
fine-tuning, and testing are different, and a 15% degradation when only the pre-training data is different, but
the fine-tuning and test data are from the same sensor. By using generative adversarial networks (GANs), a
large amount of synthetic data is generated for pre-training. Results show that cross-frequency performance
degradation is reduced by 50% when kinematically-sifted GAN-synthesized signatures are used in pre-training.
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1. INTRODUCTION

In recent years, micro-Doppler classification has been exploited in a variety of applications, including border
control and security, monitoring activities of daily living, sensing for smart environments, intruder detection, as-
sisted living, and man-machine interfaces via gesture recognition. The primary focus of assisted living and remote
health applications has been fall detection,'™® gait abnormality recognition,® concussion detection,” physical ther-
apy and rehabilitation,® non-contact measurement® of heart rate'®!! and respiration,'?'? as well as detection
of related conditions, such as sleep apnea'? or sudden infant death syndrome.'?

In all the aforementioned applications, Deep Neural Networks (DNNs) have been an enabling technology in
the advancement of radar micro-Doppler classification algorithms. However, a common challenge in radar-based
human activity recognition is how to deal with the limitations of small datasets, especially when training DNNs,
which are quite data-hungry for supervised learning.' One approach for dealing with low sample support is to
use sparsely connected layers, as opposed to fully connected layers, to reduce the total number of parameters
in the network.!” Convolutional autoencoders (CAE) have also been proposed as a DNN architecture that uses
unsupervised pre-training to mitigate measured data requirements in micro-Doppler classification.'® However, a
recent study has'® shown that when only a meager amount of training data is available, e.g. less than 650 training
samples, CAEs have been outperformed by transfer learning from other domains, such as optical imagery.

In transfer learning, knowledge gained from a different domain is transfered to initialize the weights of the
DNN. Pre-training the network usually gives a better starting point for optimizing network weights than random
initialization, as it is more likely for the local minimum attained to be closer to the true minima in a global sense.
Thus, transfer learning can be a powerful technique when the amount of training data is insufficient and have
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been effective in enabling numerous novel applications, including activity recognition, voice recognition,?
and gesture recognition.?® This, of course, presumes that the data used in pre-training relates to the classification
task at hand. The phenomenology of radar signals, however, fundamentally differs from that of optical signals.
While pre-training on optical imagery may guide the network in recognizing generic spatial information, it is
does not inform the network on micro-Doppler specific features. Fine-tuning with real RF data significantly
boosts performance after pre-training on optical imagery.

This has thus motivated interest in the generation of synthetic data for pre-training, which would offer better
initialization than use of generic images. The use of motion capture (MOCAP) data to synthesize micro-Doppler
data®* has become more popular in recent years. MOCAP data can be used to animate a skeleton model of
the human body and enable it to move in accordance to the MOCAP data. However, acquisition of MOCAP
data still requires recruitment of participants with different body types, heights, weights, gender, and gait styles
to obtain a sufficient amount of data with adequate statistical diversity. To minimize the amount of human
effort required to generate a diverse training dataset, a method for applying data augmentation directly to the
underlying skeletal model was recently proposed.?® Scaling of the skeletal tracking data along the time axis was
used to speed up or slow down motion, while scaling of physical dimensions used to represent people of different
sizes. Perturbations were also applied to the motion trajectories of each body part to generate statistically
independent variations in the resulting gait signature. In this way, just a small amount of measured MOCAP
data was needed to generate a large amount of diversified MOCAP data, which better spanned expected target
profiles. It has been shown that this method surpasses alternative methods using transfer learning on networks
pre-trained with ImageNet, CAEs, and CNNs.2% 26

The principle disadvantage of this approach, however, is that the MOCAP data only models target motion.
Thus, only the target component of the real measurement can be synthesized - sensor artifacts, clutter, and
noise are not included in the simulation. An alternative approach for generating synthetic data, which can
potentially bridge this deficiency, is adversarial learning.?”2? Recent studies?”>3? show that auxiliary conditional
GANs (ACGANS) are effective in modeling both sensor imperfections and clutter in a through-the-wall sensing
scenario. However, the main challenge in application of GANs has been the lack of kinematic fidelity in a
significant percentage of signatures generated. The resulting discrepancy between the target profiles of the
synthetic versus real signatures causes a significant amount of degradation - as much as 10% - in classification
accuracy. This is because GANs view the data as real images, and do not have any means for knowing the
underlying physical constraints that limit possible human motion. It is possible, therefore, for GANs to generate
synthetic samples that may appear visually similar, but are in fact incompatible with possible human motion.

In this paper, we consider yet another alternative for training micro-Doppler signatures, which involves
exploitation of “datasets of opportunity” - data collected at a different location, with different participants,
under different experimental scenarios (e.g. perspectives and distances), for different classes, and with different
sensors. As low-cost, embedded RF sensors have become more ubiquitous, an increasing number of researchers
are making RF data they have acquired publicly available.?! This paper specifically considers the problem of
performance degradation due to mismatch in the frequency and bandwidth of the RF sensors, when other factors,
such as the motion classes, are the same.

Cross-frequency compatibility is a key aspect sensing that has seen limited discussion in the literature,3? 33
as most works focus on single frequency systems. In a smart environments, however, multiple RF sensors may be
deployed, while operating at different transmit frequencies to prevent interference between sensors. Vishwakarma
et. al.33 proposed a dictionary learning approach for classification across multiple frequency, which was motivated
by cognitive radar applications. However, only four easily discernable classes were considered with transmit
frequencies varying by just 2.5 GHz. When the difference between transmit frequency is great, important
differences in micro-Doppler signatures measured can be observed. While the general shape of motion may be
the same, the signatures will differ in resolution, Doppler spread, electronic noise, clutter, and sensor artifacts
due to the change in scattering mechanism, e.g. how moving targets, objects, and clutter reflect waves differently
at different wavelengths.

In this paper, we aim at evaluating the extent of performance degradation incurred due to such discrepancies,
and examining whether simply increasing the amount of training data can mitigate these performance losses.
Section 2 describes the experimental setup, data collection and the data processing methods employed. The



network architectures and classification performances under a variety of cross-frequency training scenarios are
detailed in Section 3, while key conclusions are summarized in Section 4.

2. EXPERIMENTAL DATASET

This section describes the RF sensors utilized for acquisition of micro-Doppler signatures for activities of daily
living, as well as the pre-processing steps used on the data prior to classification.

2.1 Test Setup

Three different RF sensors were used in this study:

o 77 GHz FMCW radar: The Texas Instruments IWR1443 Frequency Modulated Continuous Wave (FMCW)
transceiver was set at a 77 GHz center frequency and 750 MHz bandwidth.

e 24 GHz FMCW radar: An Ancortek SDR-Kit was set to transmit an FMCW waveform at 24 GHz center
frequency and 1500 MHz bandwidth.

e XeThru UWB impulse radar: The XeThru X4 sensor transmits across a band of roughly 7 GHz - 10 GHz.

All sensors were placed side-by-side on top of a table of 1-meter height from the ground, with the test subject
moving about 0.5-3 meters from the sensors. Figure 1 illustrates the sensors positioning. The Xethru and 24
GHz sensors were operated from one laptop, whereas a separate, dedicated laptop was used to operate 77 GHz
sensor. Each sensor has its own graphical user interface and a common graphical user interface has been used
to enable synchronization across the sensors and simultaneous data collection.

2.2 Activity Datasets Acquired

Six participants of various ages, heights and weights were involved in this study. A total of 11 different activities
and ambulatory gaits were considered, as listed in Figure 1. The choice of these activities were motivated by
smart environment applications, where monitoring of activities of daily living are required to support health
monitoring and gesture recognition. Each participant conducted 10 repetitions of each activity, resulting in a
total of 60 samples per class per sensor. Additionally, data previously acquired at an earlier date from the 24
GHz sensor was used to enrich the dataset with an additional 180 samples per class. All activities were conducted
along the radar line-of-sight.

2.3 Data Processing

The data acquired by each RF sensor is a time-stream of complex I/Q data. After reshaping the data matrix
according to the pulse repetition frequency (PRF), phase corrections on I & Q channels are applied. Afterwards,
a moving target indication (MTI) filter is employed to suppress stationary returns, such as from ground clutter.
The magnitude of the Short-Time Fourier Transform (STFT) of the signal is then applied to generate a 2D
time-frequency representation of the signal.

RF Sensors Human Motion Classes
pedes — D Activity D Activity
WLKT | Walking towards the radar WLKA | Walking away from the radar
PICK | Picking up an object from the ground BEND | Bending
SIT Sitting on a chair KNEEL | Kneeling
CRWL | Crawling towards the radar LIMP | Limping with right leg stiff
WTOES | Walking on both toes SHSTEP | Walking with short steps
SCSSR | Scissor gait

Figure 1: Test setup and description of experiments.



A simplified block diagram summarizing the pre-processing steps is shown in Figure 2. The micro-Doppler
signatures from all the three RF sensors are illustrated in Figure 3.
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Figure 2: Pre-processing steps for micro-Doppler signature generation.
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Figure 3: Micro-Doppler signatures for each activity class as acquired by each RF sensor.

3. CROSS-FREQUENCY CLASSIFICATION RESULTS
In this paper, the performance of several different deep neural networks (DNNs) and pre-training approaches is
considered when comparing cross-frequency classification performance.
3.1 Transfer Learning from Optical Imagery

With transfer learning (TL), instead of starting the learning process from scratch, we start with patterns that
have been learned from solving a different problem. TL utilizes the weights generated by a deep neural network
pre-trained on a large dataset®® from a different domain, which allows the detection of edges, curves and other



image patterns/properties. This network can then be exploited for classification of data from a different domain,
by re-training the networks weights using a smaller set of labeled data from the desired, target domain. This
is referred to as fine-tuning the network. In this way, TL mitigates the necessity of a large amount of target
domain data for training, as well as reducing the amount of time required to train the classifier.

In past work,'” we have found the VGG16 architecture to be more effective in classification of radar micro-
Doppler than other networks, such as AlexNet or GoogleNet. Thus, in this paper, the VGG16 architecture,®
pre-trained on the ImageNet database, is exploited with modification of the top layer to include a global average
pooling layer followed by two dense layers and a classification layer with SoftMax activation function. The two
dense layers use the Relu activation function, with each of them followed by a dropout of 0.5. Among other
tuning parameters, we have used a batch size of 32, 40 epochs, learning rate of 1le-4, momentum of 0.9 and Adam
optimizer. The results in Table 1 shows that the highest classification accuracy of 89% is obtained when the
network is trained and tested with data from the same RF sensor. When fine-tuned on real data at a different
frequency, the classification drastically drops by over 70%!

Table 1: VGG16 Classification Results
Fine-Tuning | Testing | Accuracy
77 GHz 89.23
77 GHz 24 GHz 16.66
10 GHz 14.28
77 GHz 11.13
24 GHz 24 GHz 85.57
10 GHz 15.55
77 GHz 9.00
10 GHz 24 GHz 14.21
10 GHz 83.01

3.2 Convolutional Autoencoder and Convolutional Neural Network

Convolutional Autoencoders (CAE) have demonstrated their effectiveness in various applications like image
denoising, dimensionality reduction and image search. Whereas convolutional neural networks (CNNs) are
initialized using random weights, CAEs utilize unsupervised pre-training for network weight initialization. CAEs
have been shown to be effective when small, yet reasonable, amounts of real data are available for training.'®

To ascertain the best CAE architecture for our datasets, we evaluated the performance of a combination
of different parameters, such as the number of convolutional layers, number of filters, filter sizes and layer
concatenation. The performance attained for various combinations of these parameters is listed in Table 2 for
the case where the CAE is trained and tested with real data from the same sensor. Each model was trained for
100 epochs with mini-batch size of 16 and max pooling stride of 2 in each convolutional block. After training the
CAE model, the decoder was removed and two fully connected layers with 128 neurons in each were added after
flattening the output of the encoder. At the end, a softmax layer with 11 nodes is employed for classification. It
may be observed that a 5-layer CAE with 64 9x9 & 64 3x3 concatenated filters gives the best performance for
all datasets.

The cross-frequency training performance for unsupervised pre-training with the CAE is compared with that
of a randomly initialized, comparable CNN with the same architecture as just the encoding layers of the CAE.
Hyperparameters, such as the number of hidden nodes in dense layers, dropout rate, mini-batch size, learning
rate are further optimized using grid search method. To assess cross-frqeuency performance, the CNN is trained
on Sensor A while tested with Sensor B. In the case of the CAE, all combinations of pre-training, fine-tuning,
and testing are considered: the CAE can be pre-trained on Sensor A, fine-tuned with Sensor B, and tested on
Sensor C. The classification accuracies attained for these training scenarios are summarized in Table 3 and 4.

Notice that for both the CAE and CNN;, the best performance was achieved, not unsuprisingly, for the case
when the training and test data were from the same RF sensor. In this case, a classification accuracy of 91.5%
was achieved. More interesting, however, are the cross-frequency training results of the CAE:



Table 2: Parameter Optimization Table for CAE

Accuracy (%) Accuracy (%)
Filter Size | Depth | Num. of Filters | 10 GHz | 24 GHz | 77 GHz | Depth | Num. of Filters | 10 GHz | 24 GHz | 77 GHz
3 8 79.6 77.8 78.5 5 16 81.6 83.3 83.1
3 16 77.6 79.2 854 5 32 789 84.3 84.6
3x3 - 9x9 3 32 79.6 79.4 83.8 5 64 89.1 86.9 88.5
4 8 76.2 81.6 83.1 6 16 823 84 81.5
4 16 84.4 82.1 854 6 32 83 81.1 86.9
4 32 82.3 84.1 83.1 6 64 83 82.9 81.5
3 8 78.9 75.2 82.3 5 16 76.2 83 84.6
3 16 76.9 78.1 80.7 5 32 86.4 84.1 87.7
3x3 —5x5 3 32 79.6 78.6 76.2 5 64 853 85 87.7
4 8 84.4 76.7 854 6 16 78.9 854 84.6
4 16 76.9 81.6 85.4 6 32 86.4 86.6 85.3
4 32 87.1 84.4 86.9 6 64 83.7 86.6 86.9
3 16 74.8 70.9 79.2 5 16 78.9 76.4 78.5
3 32 76.9 72.6 79.2 5 32 83 78.8 84.6
3x3 3 64 78.9 75.6 76.2 5 64 83.7 83.8 83.1
4 16 75.5 74.1 80 6 16 73.5 76.3 823
4 32 79.6 80.5 83.1 6 32 80.3 80.3 82.3
4 64 80.3 82.5 82.33 6 64 80.3 84.1 83.1

1. Fine-tuning with data that is from the same sensor as the test data if of great importance.
In cross-frequency training cases, where only the pre-training involved data from a different RF sensor, the
classification accuracy dropped by 7% - 15%, as opposed to the 70% drops seen in TL and when there is
mismatch between fine-tuning and testing datasets.

2. The accuracy achieved with VGG16 pre-trained on ImageNet is greater than that obtained
with the CAE in cross-frequency situations. Looking at cases where the data used for fine-tuning
and testing are from the same sensor, at 77 GHz, VGG16 yields 89% whereas the CAE attains 83.8% and
80% with pre-training on 24 GHz and 10 GHz, respectively. At 24 GHz, VGG16 achieves an accuracy of
85%, while the CAE yields 74% and 79% with pre-training on 77 GHz and 10 GHz, respectively. At 10
GHz (Xethru), VGG16 gives 83% accuracy, while the CAE yields 75% and 81% with pre-training on 77
GHz and 24 GHz, respectively.

3. The amount of data used in pre-training VGG16 with ImageNet is orders of magnitude

greater than the cross-frequency RF data used to pre-train the CAE. The ImageNet database
is comprised of a million images, whereas the the real RF data used in pre-training the CAE included 60
samples/class (for a total of 660 samples) of 77GHz or 10 GHz Xethru data and 240 samples/class (for a
total of 2,640 samples) of 24 GHz data. Thus, even though the classification accuracy using pre-training of
VGG16 using ImageNet surpasses that of pre-training on cross-frequency real RF data with the CAE, the
performance improvement of just 2% - 9% is not that much considering the huge difference in pre-training
sample size. One reason for this is that even though at a different frequency, pre-training on data with the
same phenomenology as the test set has great benefits.

The question then arises, whether or not the cross-frequency training loss might not be overcome by pre-
training on large amounts of synthetic RF data as opposed to optical imagery. To examine this possibility, we
discuss synthetic data generation using generative adversarial networks (GANSs), next.



Table 3: CAE Classification Results

Pre-training Tfuiﬁzg Testing ATcilelali Pre-training Tiﬁﬁg Testing AI; e:‘i:;li

77GHz | 91.5% >4 GHy 77GHz | 77GHz | 83.8%

77GHz | 24 GHz | 22.5% 10GHz | 10GHz | 81.6%

77 GHz 10GHz | 18.9% 10GHz | 91.8%

24GHz | 24GHz | 74.4% 10GHz | 77GHz | 24.1%

10GHz | 10GHz | 75.5% 10 GHz 24GHz | 18.8%

24GHz | 91.2% 77GHz | 77GHz | 80.0%

24 GHz 24GHz | 77GHz | 28.5% 24GHz | 24GHz | 79.1%
10GHz | 40.5%

Table 4: CNN Classification Results
Training | Testing | Accuracy
77 GHz 91.5
77 GHz 24 GHz 27.4
10 GHz 20.4
77 GHz 28.7
24 GHz 24 GHz 91.5
10 GHz 40.6
77 GHz 13.1
10 GHz 24 GHz 32.7
10 GHz 91.2

3.3 Data Synthesis with Auxilliary Conditional GANs (ACGANs)

In general, the architecture of GANs consists of two competing neural networks playing a minmax game. The
generator network samples a predefined latent space and upsamples via transposed or deconvolutional layers to
produce a synthetic image. The discriminator network takes in images as input and attempts to classify them
as being real or fake. Both networks are linked through a combined loss function,

minmax = By, [10g D(@)] + Eanp. - log(1 = D(G(2)))] 1)

where D(x) is the discriminator’s estimate of the probability that the real instance x is real; G(z) is the generator’s
output when given noise z; and D(G(z)) is the discriminator’s estimate of the probability that a fake instance
is real. This loss function is calculated from the discriminator’s output, and seeks to minimize the generator’s
loss while maximizing the discriminators. As a result, the generator gets better at generating images that look
real, and the discriminator gets better at classifying images as real or fake. In the ideal case the loss converges
to 0.5, which represents a point where the discriminator can not tell synthetic and real images apart.

In an Auxiliary Conditional GAN (ACGAN),? the discriminator has an additional parallel network which
attempts to classify images as their respective classes and allows for automatic separation of generated images.
In this way each class of generated images can be studied separately and easily used to augment the existing
training dataset. The generator and discriminator architecture used in this work is shown in Figures 4 and 5.
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Figure 4: Generator Network Architecture Figure 5: Discriminator Network Architecture

3.3.1 PCA-Based Sifting

When analyzing spectrograms of human motions, it is possible to infer certain information from the signal’s
shape and intensity. For example, when someone is walking towards the radar antenna the spectrogram will
have overwhelmingly positive components and an increasing intensity as the person gets closer, which can be seen
in Figure 3. Therefore, a spectrogram with largely negative frequency components would not be able to belong to
the 'walking towards the radar’ class, as it does not match the kinematics of the movement itself. Other examples
of kinematic errors in synthetically generated data include disconnected components, leakage between target
signature and sensor or clutter artifacts, blank space in the middle of the signature corresponding to stopping,
and a blurring of normally distinct periodicities in the signature. When generating synthetic images, the inherent
randomness of the generator’s latent space input can lead to the generation of some kinematically unsound
images, like the examples mentioned above. These kinematically inconsistent signatures can degrade classification
performance when augmenting a training dataset. To maximize the potential of our data augmentation, a
selection criteria needs to be in place for filtering out deviant samples.?® Towards this aim, principal component
analysis (PCA) is used to extract the feature space for each signature.

PCA is linear transform which is often used in data compression and as a machine learning (ML) classification
method. The transform aims to reduce a collection of data samples into a set of principal components, each of
which represents a varying level of the original data’s variance. The first component contains the most variance,
second has the second most, and so on. Because the majority of information in spectrograms comes from the
sections with the most variance, it is possible to represent the majority of an image with a much smaller subset
of values. Before processing, all data was standardized to have zero mean and scaled variance. By running 3
component PCA on the the real data for each class separately, we generated a collection of reduced feature points
representing kinematically viable motions. Then a Delaunay Convex hull®” was created in 3D space for each
class’ set of PCA components. The last step in the process involved running PCA on our generated synthetic
data and checking if it falls within the convex hull boundaries for that given class. If it does not, it is considered
to be unsound, and it is not saved for later augmentation. Of 10,000 images synthesized using the ACGAN,
the PCA-based sifting algorithm rejected 4,000 of them, leaving a final synthetic dataset size of 6,000 images
spread out among 11 classes with approximately 600 samples per class. Some sample synthetic images and their
corresponding class’ Delauney hulls are shown in Figure 6.

3.3.2 Cross Frequency Training with Synthetic Data

To evaluate the cross-frequency training degradation incurred when a large database of ACGAN-synthesized
data is used for pre-training, a CAE was used to compare classification accuracies. First, our CAE model was
pre-trained on 77 GHz synthetic data for 100 epochs. Next, fine-tuning was done using real training data from
each sensor separately for 20 epochs. Lastly, the model was tested using all 3 frequencies of data.
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Figure 6: Generated Images and Their Respective Class’ Delauny Hulls: Class 1 (left) and Class 2 (right)

Prior to fine tuning, the model gave a 53.85% accuracy for 77 GHz data, 11.55% for 24 GHz, and 4.80%
accuracy for the 10 GHz test data. After fine tuning, the 77 GHz test dataset gave an accuracy of 85.4%, which is
comparable with previous results using training with real data. Table 5 shows all cross-frequency training results
obtained for the case of pre-training on synthetic 77 GHz micro-Doppler signatures. As before, discrepancies
between the data used for fine-tuning and testing result in over %70 drop in classification accuracy. However,
pre-training with a large amount of synthetic data has reduced the cross-frequency training loss when there is only
a difference in frequency between pre-training and fine-tuning/testing. When pre-training on real 77 GHz data,
fine-tuning and training on 24 GHz and 10 GHz data incurred about 16%-17% performance degradation relative
to all the data being from the same sensor. In contrast, when pre-training on synthetic 77 GHz data, but fine-
tuning and testing on 10 GHz and 24 GHz data, degradation of only 5% and 7% were incurred. Thus, increasing
the amount of training data, even if synthetic, did serve to significantly reduce the performance degradation due
to cross-frequency training, while also increasing the overall cross-training classification accuracy by 3%-5%.

However, notice that the overall classification accuracy for the case when all data is from the same sensor
has been degraded. This is mostly likely due to mismatch between the distributions of the synthetic and real
data that remain despite sifting. Improving the kinematic fidelity of GAN-synthesized data® could be one way
of mitigating this problem.

Pre-Training Fine-Tuning Testing Testing Accuracy
77 GHz 85.40%
77 GHz 24 GHz 8.85%
Synthetic 77 GHz 10 GHz 7.20%
24 GHz 24 GHz 77.15%
10 GHz 10 GHz 80.80%

Table 5: Cross-Frequency Training Results with Synthetic 77 GHz Data



4. CONCLUSION

This work presented a detailed study of the exploitation of “datasets of opportunity,” such as data acquired
from RF sensors with different frequencies, bandwidth, and waveform. The accuracies obtained from three
different network initialization approaches were compared: randomly initializaed CNN, VGG16 pre-trained on
ImageNet, and CAE pre-trained on real RF data. In cases when the RF frequency of the data used for fine-
tuning differed from that used in testing, drastic drops in accuracy over 70% were observed irrespective of the
data used in pre-training. However, when the same data was used for fine-tuning and testing, the degradation
incurred from pre-training on RF data of a different frequency was observed to be as high as 15%. Generation
of a large amount of synthetic training data using a PCA-sifted ACGAN reduced the degradation by 50% while
also increasing the overall classification accuracies by about 3% - 5%. Future work in improving the kinematic
fidelity of GAN-synthesized data could help in further increasing classification accuracies.
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