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to be effective.

While the emphasis on ASL translation contributes towards

facilitating interaction between hearing and Deaf individuals,

it overlooks issues surrounding the way technology will impact

the daily lives of Deaf individuals. Wearables are invasive

devices, which limit signer’s freedom in conducting daily

activities and is not designed with ASL movements and

language constraints in mind, while video cameras trigger

concerns over privacy and potential surveillance. Previous

investigations of prototypes for ASL translation often fail to

involve participants or investigators fluent in ASL, leading to a

deficiency in addressing the best way technology can be used

to serve the needs the Deaf community - a goal that is broader

than translation and relates to the design of smart environments

for the Deaf. This includes, for example, the design of smart

Deaf spaces augmented with sensors that can respond to the

natural language of the Deaf community for the purposes of

environment control, remote health, and security.

In this context, RF sensors have several important ad-

vantages over alternative sensing modalities, which make

them uniquely desirable for facilitation of human-computer

interaction (HCI). RF sensors are non-contact and completely

private, fully operational in the dark, and can even be used

for through-the-wall sensing. Most importantly, RF sensors

can acquire a new source of information that is inaccessible

to optical sensors: visual representation of kinematic patterns

of motion via the micro-Doppler (µD) signature [5], as well

as radial velocity measurements and range profiles. This has

enabled the use of RF sensing across a variety of applications

[6], including fall detection [7], activity recognition [8], [9],

pedestrian detection [10], gesture recognition [11]–[15], as

well as heart rate, respiration, and sleep monitoring [16], [17].

ASL signs have been used as example classes in Wi-Fi based

gesture recognition studies [18], while imitation signing was

utilized in two other Wi-Fi studies [19] [20].

This paper presents an in-depth examination of RF sens-

ing for the recognition of ASL for Deaf-centric design of

smart environments. To the best of our knowledge, this study

represents the first study of RF-based recognition of native

ASL signing. In Section II, we discuss the importance of

including perspectives of those in the Deaf community through

organizational partnerships and present the results of a focus

group that reveals the way existing technologies for ASL

translation are perceived. Section III presents the methodology

and experimental design for measurement of ASL signs using

RF sensors, including distinction between native signing and

imitation signing. In Section IV, the micro-Doppler signature

of ASL signs acquired from different RF sensors are discussed.

The linguistic properties of ASL that are observable via RF

sensing is presented in detail in Section V. This includes

investigation of the information content of ASL versus daily

gestures via fractal complexity analysis, as well as differences

between native and imitation signing. In Section VI, a variety

of handcrafted features are extracted and the resulting clas-

sification accuracy compared for up to 20 ASL signs. Key

conclusions are summarized in Section VII.

II. PARTNERSHIPS & FOCUS GROUP

A common problem with information communicative de-

vices (ICTs) that are developed to assist people who are deaf

and hard of hearing is that the developers often know virtually

nothing about deafness or Deaf culture, are not fluent in ASL,

and bring a hearing perspective to design features. There have

been many previous attempts to create new technologies for

communication with ASL users, such as signing gloves that

were designed with the intention of interpreting sign and

translating it into written text requiring users to wear gloves

to communicate. However, as this would be akin to wearing a

mask to speak to someone using a different oral language and

might be uncomfortable, technologies such as signing gloves

have been rejected by and evoked negative feedback from the

Deaf community for their lack of cultural and user sensitivity.

Thus, the active involvement of community stakeholders

can make important contributions not only through shared

knowledge, but also by ensuring researchers understand the

problems that matter the most to the community. In the spirit

of the expression “Nothing about us without us” [21], [22] we

have espoused a Deaf-centric design philosphy: our research

team includes one member who identifies as Culturally Deaf

and is fluent in ASL, while faculty and staff at the Alabama

Institute for Deaf and Blind (AIDB) and Gallaudet University

provide cultural and linguistic information throughout the

research process (from planning to execution).

Our study of RF sensing as a means for facilitating the

design of smart environments was motivated by a focus con-

ducted in collaboration with AIDB with 7 Deaf participants.

While a detailed discussion of all responses is beyond the

scope of this paper, we do feel it significant to share that

many participants indicated a need for technologies that will

help ease the communication issues they encounter, especially

in times of emergency or with regard to security matters.

Participants expressed frustration with wearable gloves that

they described as “inaccurate” and invasive. Multiple focus

group attendees also raised concerns about surveillance if

video is used in the home (as opposed to cell phones, which

they found quite helpful for communications). Furthermore,

the participants indicated a desire for Deaf-friendly personal

assistants, which could aid in everyday operations such as

scheduling, remotely turning on and off lights, or even making

phone calls through the use of ASL. They were also thrilled

with the idea that a non-invasive smart-environment responsive

to ASL could be designed.

III. EXPERIMENT DESIGN AND RF DATASETS ACQUIRED

Machine learning algorithms are data greedy methods that

require large amounts of training samples to enable the net-

work to learn complex models. Thus, some researchers have

resorted to acquiring data from non-native signers, who may

not know any ASL, as an expeditious source of data. Although

ASL is often likened to gesturing, it is important to recognize

that ASL is a language, and not reduce signing to mechanical

hand and arm movements that can be easily imitated. Thus,

while gestures can be made using any participant, studies

of ASL require participants for whom sign language is their
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native language, e.g. Deaf / Hard-of-Hearing individuals. Con-

sequently, two distinct datasets were acquired for comparative

study: 1) native ASL data from Deaf participants and 2)

imitation data from hearing individuals imitating ASL signs

based on copy-signing videos.

A. Experiment Design and Procedure

Two blocks of experiments were conducted in this study:

Experiment 1 consisted of individual words/signs, while Ex-

periment 2 involved sequence of sentences. The individ-

ual words were selected from the ASL-LEX database [23]

(http://asl-lex.org/), choosing words that are higher frequency,

but not phonologically related to ensure a more diverse dataset.

Sentences were chosen from those used in previous linguistic

studies of ASL by one of the co-authors [24]. Figure 1 pro-

vides a listing of the words and sentences used in experiments.

A total of 3 Deaf participants took part in the ASL data

collection, while imitation data was captured from 10 hearing

participants. In all experiments, participants were asked to

begin with their hands placed on their thighs, and to return

to this position once done signing. The study lasted approxi-

mately 75 minutes for each participant and was comprised of

the following steps:

1) Participants entered a conference room, read, and signed

an informed consent form.

2) An experimenter introduced participants to the RF sens-

ing system and provided an overview of the study

procedures during a 30-minute informative session.

3) Participants entered a lab outfitted with RF sensors

and were introduced to the test environment. To ensure

comfort with their surroundings, participants were also

offered the opportunity to ask questions about RF sens-

ing.

4) [Imitation Study Only] Hearing participants practiced

ASL signs during a 15 minute training session with a

Child-of-Deaf Adult (CODA) fluent in ASL until they

were comfortable responding to visual prompts.

5) [Imitation Study Only] Hearing participants were shown

a copy-signing video where a CODA enacted the de-

sired sign, after which the participant was expected to

repeat the same sign. Participants were presented with a

random ordering of single-word signs (Fig. 1) to foster

independence in each repetition of the signs.

6) Deaf participants were prompted with text-based visuals

and asked to demonstrate the ASL sign for the individual

word (Fig. 1) shown on the monitor. Words appeared

for 4s, with an inter-stimulus interval of 2s. Three

repetitions of each word were collected per participant.

7) Deaf participants were next asked to sign 10 ‘sequences

of sentences’ (Fig. 1) in response to text-based prompts.

Each sequence of sentences was collected once per

participant, resulting in 3 samples per sentence. Due to

the variation of time needed to complete the sentence

sequences, stimulus intervals were manually controlled.

8) Participants engaged in semi-structured interviews de-

signed to learn more about their experiences.

B. Test Setup of RF Network

RF sensors operating at three different transmit frequencies

are considered in this work. The Xethru sensor is a low-power

ultra-wide band (UWB) impulse radar with a transmission

frequency range of 7.25 - 10.2 GHz as well as 65◦ azimuth and

elevation beamwidth. The range resolution of an RF sensor is

given by c/2β, where c is the speed of light and β is the

bandwidth. Thus, the Xethru sensor has about 5 cm range

resolution. Frequency modulated continuous wave (FMCW)

radars at 24 GHz and 77 GHz were also deployed. The 24 GHz

system by Ancortek was operated with bandwidth of 1.5 GHz,

while the 77 GHz Texas Instruments device transmitted with a

bandwidth of 750 MHz. This resulted in range resolutions of

10 cm and 20 cm, respectively. It is important to note that

RF sensors can have finer resolution as devices of greater

bandwidth become increasingly widespread and low cost.

Several RF sensors and a Kinect sensor were deployed

at various positions to observe the participant from different

perspectives, as shown in Fig. 2. Participants were asked to

sit on a bar stool facing a computer monitor, which was used

relay prompts indicating the signs to measured. The monitor

was placed just behind the RF and Kinect sensors so that

the visual cues would ensure the participant remained facing

forward throughout the experiment. The Kinect data were used

for comparison with radar data, and to annotate the RF micro-

Doppler signatures and optical flow plots given in this paper.

Annotations were performed by a CODA fluent in ASL who

made manual notations of the Kinect video frames, which were

then correlated to the time axis of the radar data.

C. Pre-Processing and Representation of RF Data

The signal received by a radar is, in general, a time-delayed,

frequency-shifted version of the transmitted signal. In many

practical scenarios, it has been shown that the scattering from

the human body can be approximated using the superposition

of returns from K points on the body [5]. Thus,

x[n] =
K
∑

i=1

aiexp

{

− j
4πfc
c

Rn,i

}

, (1)

where Rn,i is the range to the ith body part at time n, fc is

the transmit center frequency, c is the speed of light, and the

amplitude ai is the square root of the power of the received

signal as given by

ai =

√
GtxGrxλ

√
Ptσi

(4π)3/2R2
i

√
Ls

√
La

(2)

Here, Gtx and Grx are the gains of the transmit and receive

antennas, respectively; λ and Pt are the wavelength and power

of the transmitted signal, respectively; σi is the radar cross

section (RCS) of the ith body part; Ls and La are system and

atmospheric losses, respectively.

1) RF Micro-Doppler Signature: The data provided by each

RF sensor is a time-stream of complex in-phase/quadrature

(I/Q) data, as modeled by (1). The effect of kinematics is

predominantly reflected in the frequency modulations of the

received signal. While the distance of the target to the radar
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Fig. 1. Description of ASL experiments: words and temporal presentations.

Fig. 2. Test setup used for acquisition of ASL and imitation datasets.

does affect the received signal power, these variations are

not significant for typical people. Rather, the amplitude of

the received signal is primarily dependent upon the transmit

frequency being used and RCS of target observed. Thus, at

higher frequencies, such as 77 GHz, the received signal power

from a person will be much lower than that of a radar at

lower frequencies, such as 24 GHz or below 10 GHz. Not just

transmit frequency, but also bandwidth, pulse repetition inter-

val (PRI), observation duration, and aspect angle have been

shown to affect the radar received signal and the performance

of machine learning algorithms applied to the RF data [25].

To reveal patterns of motion hidden in the amplitude and

frequency modulations of the received signal, time-frequency

analysis is often employed. The micro-Doppler signature,

or spectrogram, is found from the square modulus of the

Short-Time Fourier Transform (STFT) of the continuous-time

input signal. It reveals the distinct patterns caused by micro-

motions [5], e.g. rotations and vibrations, which result in

micro-Doppler frequency modulations centered about the main

Doppler shift related to translational movement.

2) Removal of Clutter and Noise: Prior to computation of

the spectrogram, a 4th order high pass filter is applied to

remove reflections from stationary objects, such as the walls,

tables, and chairs. The STFT itself is computed using Han-

ning windows with 50% overlap to reduce sidelobes in the

frequency domain and convert the 1D complex time stream

into a 2D µD signature. It is common for there still to be

some noise components in the data due to electronic noise or

other sensor-related artifacts. Such artifacts were particularly

evident in the 24 GHz FMCW and sub-10 GHz UWB sensors,

so an isodata thresholding method was applied to eliminate any

background noise. The isodata algorithm [26] automatically

finds an optimal threshold for a given image. Any time-

frequency bin that has value less than the threshold is set to

zero.

3) Selection of Input Dimensionality: The size of spectro-

gram used in this work is determined based on an analysis

of change in surface area of the feature space as a function

of size. Principal Component Analysis (PCA) is applied to

spectrograms of different dimensions and an n-dimensional
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Fig. 3. Surface area of feature space vs image size.

convex hull applied to determine the boundaries of the PCA-

based feature space. For each sensor, Figure 3 plots the surface

area of the the feature space for different input dimensions. As

the input dimensions increase, the surface area of the convex

hull of the feature space levels off. The 77 GHz sensors

exhibits immediate leveling beyond an input dimension of

65×65, while the 10 GHz and 24 GHz sensors more gradually

level off. Based on this result, we thus reduced the size of the

µD signatures for all sensors to 65× 65.

IV. VISUALIZATION OF RF MEASUREMENTS OF ASL

Illustrative examples of the µD signatures for several ASL

signs are shown in Figure 4. For these examples, each RF

sensor is positioned so as to be directly facing the signer

with a 0◦ aspect angle. Comparing the µD signatures for

different sensors, it may be observed that as the transmit

frequencies increase so does the peak Doppler shift. This result

is consistent with expectations as the Doppler shift resulting

from the motion of an object with velocity v towards a radar

is fD = 2v(fc/c). From the perspective of ASL recognition,

the greater Doppler spread observed at higher frequencies also

results in subtle, small micro-motions being revealed in the

signature; e.g., the 77 GHz µD signatures appear crisper and

more nuanced than those obtained with the lower frequency

devices.

Inferences about kinematics can be made from the µD:

• The starting position of the articulators (hands) affects

the initial and final frequency components measured.

Raising the arms from their initial position on the thighs

results in motion away from the radar, resulting in nega-

tive frequency spikes at the beginning of all samples.

• One-handed or tandem signing can be discerned from

two-handed free signing. A µD signature having either a

positive or negative Doppler frequency at a given time

is indicative of the hand(s) either moving toward or

away from the sensor, as in the one-handed sign YOU

and tandem sign HEALTH. Otherwise, both positive and

negative Doppler are present, as with the signs WALK and

FRIEND, which have two-handed complementary motion.

• When more surface area of the hand(s) faces the radar

line-of-sight, the received power of the signal may be

observed to be greater. For example, the DRINK signature

has two vertical spikes, due to raising and lowering the

cupped hand. The first peak has a greater intensity as the

outside of the hand faces the radar. When the hand is

rotated to its side, the intensity is lessened.

• In signs with reduplicated movements, the number of

cycles can be counted; e.g. KNIFE and WALK.

• The effect of aspect angle between the line-of-sight and

direction of motion can be observed in the signatures. For

example, the sign for HELP involves primarily vertical

movement, which is orthogonal to the radar line-of-sight,

and hence has a low Doppler spread.

• The effects of occlusion can be observed in some sig-

natures. In WRITE, the right hand pretends to hold a

pen while swiping across the inside of the left palm,

which partially shields the right hand from the radar.

This causes reduced Doppler spread in relation to fully

exposed motion, such as in KNIFE.

In speech, quantitatively characterized temporal dynamics

of vocal signal provided insights into mathematical properties

of information exchange. Although quantification of temporal

properties of signed signal is behind that of speech, we know

that dynamic properties of signs (e.g. dominant hand velocity,

temporal contour of motion signature for manual and non-

manual articulators) contribute crucial linguistic information

to the meaning of signs [27]–[29]. Although radar data does

not provide for easy identification of hand shapes and place

of articulation (i.e. static spatial features of signs), it does

allow for improved measurements of the gross spatiotemporal

dynamics of signing (i.e. shape change dynamics), combining

information picked up from the moving hands with the infor-

mation on other articulators (head and body). Remembering

that ASL is a natural language, and not merely gesture,

linguistic features of the RF ASL data can contribute to motion

recognition, while, conversely, machine learning can also be

used to identify linguistic properties.

A. Coarticulation

An important linguistic feature that is visible in the RF

micro-Doppler signatures of ASL is coarticulation: the effect

of the previous sign (more specifically, its place of articulation)

influencing subsequent signs. In sign language, coarticulation

affects both the total distance travelled and the speed of the

articulator motion. These kinematic features can be observed

in the µD signature and result in signs appearing slightly

differently in different sentences. Consider, for example, the

sentence “WRONG YOU. MEETING STARTS TIME TWO. YOU

TELL ME NOON.” depicted in Figure 5, which includes the

sign for YOU twice. This sign is visible in the µD signature

as the two peaks with the greatest positive µD frequency.

The extension and retraction of the hand is reflected as two

separate lines forming the sides of a narrow triangle. However,

comparing the first and second occurrences, it may be observed

that in the second occurrence the sign is entered rapidly, almost

instantly reaching the peak of the µD signature, whereas the



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

Fig. 4. Micro-Doppler signatures of nine ASL signs acquired by three different RF sensors.

Fig. 5. Coarticulation example: µD signature for YOU in different
positions within a sentence.

first occurrence is slower: the micro-Doppler has a finite slope,

indicating that a longer duration was needed to reach peak

speed. This makes sense considering that more time is needed

for the hands to travel from their initial position on the knees

as opposed starting the sign in mid-air. A similar shape for

the sign YOU may be observed in the sentence “YOU ARE

SHORT”, when YOU also is the first sign in the sentence.

In contrast, in mid-sentence occurrences of YOU, as in

“I TOLD YOU TO GO HOME”, the burst is so narrow that

the extension and retraction can no longer be distinguished.

And in the final example “I LOVE YOU.” the sign yields

greater reflected power due to the prior sign involving both

arms crossed over the chest (LOVE). As the arms uncross to

permit the right hand to extend forward, strong reflections are

generated from the arms crossed across the chest. The two

arms uncrossing to permit the right hand to extend forward

results in stronger reflection signal than that observed in the

previous instances of the sign YOU.

B. Fractal Complexity of Signing Versus Daily Activity

Analysis of information content in speech vs. everyday mo-

tion using the visual properties of the signal and optical flow

[30], [31] has indicated that signers transmit more information
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Fig. 6. RD maps at various times for the sign DRINK.

(in the sense of mathematical entropy) than humans carrying

out dynamic tasks, and that the intelligibility of a signing

stream is crucially dependent on the ability of signers to parse

entropy changes in visual information [32], [33]. Our goal

in the present analysis is to build on current understanding

of human signal parsing for sign language [31], extending

existing analytical approaches for use with data collected using

RF sensors. Thus, we demonstrate that RF data can be used

for distinguishing between signing and biological motion (e.g.

daily activities) that occur in the house.

One way of evaluating the information transfer over time

due to human motion is the fractal complexity [30] of the

optical flow (OF). Optical flow is a technique often used in

computer vision to determine the apparent motion of image

objects between two consecutive video frames caused by either

the movement of the object or camera. Radar data is not

acquired in the form of a video; however, the raw complex

I/Q time stream from RF sensors with linearly frequency

modulated transmissions, such as those used in this study, can

be converted into a range-Doppler-time (RD) data cube by

computing the 2D FFT of the data for each sweep of the

FMCW radar [34]. Then, each slice in time (or frame, as

termed in video processing) is a range-Doppler map. The 3D

RD cubes enable the simultaneous observation of the radial

distance to the radar as well as the radial velocity, and provide

an alternative to µD signatures for visualizing RF ASL data.

1) Radar Data Cube: Consider, the RD data cube for the

sign DRINK, shown in Figure 6 for the 77 GHz sensor. The

response from the torso is observable in the initial RD maps

as strong signal returns at 0 Hz. When the hand(s) move

towards the sensor, a positive Doppler shift is incurred, with

the peak speed given by maximum Doppler shift. The distance

towards the sensor can be found via number of range bins that

the strong returns have shifted. Arm motion is indicated by

multiple peaks at various speeds, e.g. Frame #336 of DRINK.

Negative Doppler occurs for motion away from the sensor.

The number of pixels that are spanned by arm and hand

movements is dependent upon the bandwidth of the RF sensor.

Higher bandwidth results in a smaller distance spanned by

Fig. 7. Comparison of video optical flow in cross plane with intensity
weighted velocity diagram of 77 GHz RF sensor.

each pixel. IN the RD data cube of DRINK, it may be observed

that the hands move about 2 range bins closer to the radar than

the torso. At a bandwidth of 750 MHz for the 77 GHz sensor,

each range bin corresponds to about 20 cm displacement. For a

person with average arm length, during the course of enacting

the DRINK sign, the radial displacement of the arms is about

25-30 cm. This is consistent with the radar measurement of 2

range bins. The range resolution of the radar can be improved

through transmission of a waveform with greater bandwidth,

resulting in more accurate measurement of hand displacement.

2) Intensity-Weighted Velocity (IWV) Diagram: In video, the

2D slice at each time frame represents horizontal and vertical

distance. Thus, computing the optical flow in video reveals

the distance traveled by each pixel as it moves from frame

to frame (i.e., velocity), while the intensity of optical flow is

proportional to area of the moving part.

However, RF sensors measure the radial velocity (v), which

can be found from the x-axis of a RD map using the Doppler

shift (fD) relation, fD = 2vfc/c. The intensity of each pixel

in the RD map relates to the received signal power, which is

proportional to the radar cross section (RCS) of the body part.

RCS depends on a multitude of factors, including frequency,

shape, material properties, aspect angle as well as physical

dimensions. To compute a representation comparable to video

OF, the velocity corresponding to each pixel in the RD map is

weighted according to its intensity and binned. In this way, we

can ensure the information of both the velocity and the area

of moving objects in the same speed range, which correspond

to OF magnitude and the intensity in video OF diagrams,

respectively, are preserved. The resulting intensity-weighted

velocity diagram is shown in Figure 7.

3) Fractal Complexity of RF Data: The fractal complexity at

each IWV is calculated by first finding the power spectral

density (PSD) using Welch’s Method [35], which essentially

computes the Fourier transform of the IWV diagram versus

time, as shown in Figure 8. This results in a magnitude

matrix M(j, f) where (j, f) are velocity and frequency bins,

respectively. The fitting parameter for the fractal complexity,
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Fig. 8. Block diagram showing computation of IWV diagrams and fractal complexity for RF data.

β(j), is related to the magnitude at each velocity bin j as

M(j, f) =
a

∣

∣f
∣

∣

β
−→ ln(M) = ln(a)− βln

∣

∣f
∣

∣, (3)

where a is an amplitude fitting variable [31]. A simple linear

fit is then performed on ln(f) versus ln(M), where β relates

to the slope and ln(a) is the intercept on a log–log plot.

If M(j, f) is integrated over j, an overall velocity spectrum

can be obtained, which, after fitting, yields fractal complexity

parameter, β̄. Note that β̄ is inversely related to fractal

complexity, so that a lower β̄ implies greater information.

4) Comparison of ASL with Daily Activities: Because ASL

is a language for interpersonal communication, it would be

expected that it contain a greater amount of information

than purely kinematic signals, such as obtained from daily

activities. This expectation can be verified through comparison

of the fractal complexity of ASL with that of daily activities.

The fractal complexity for ASL was computed using the

sentence sequences acquired under Experiment 2, which

yielded a total of 30 samples of 8 seconds duration each.

Daily activity data was acquired from two hearing participants

enacting eight different daily activities: 1) building legos, 2)

playing chess, 3) cooking, 4) painting, 5) eating, 6) vacuuming,

7) folding laundry, and 8) ironing clothes. The test area was

equipped with required props so that activities were conducted

just as would be done were the participants at home. Data was

acquired for 10 minutes to ensure participants were moving

about as naturally as possible. This data was then cropped

into 8 second, non-overlapping segments to yield 30 samples

per activity, or a total of 240 samples. The average β̄ values

calculated for ASL and daily activities using video and RF

sensors are given in Table I. For both sensors, the β̄ value

for ASL is less than that for daily activities. Thus, both

RF sensors and video show that ASL signing communicates

greater information than daily activities, and underscores the

importance of not merely equating ASL with gesturing.

TABLE I

β̄ VALUES FOR ASL AND DAILY ACTIVITIES.

C. Imitation versus Native ASL Signing

Perceptual studies indicate that signers and non-signers

differ drastically in their perception of rapidly changing visual

stimuli [36]. It can take learners of sign language at least 3

years to produce signs in a manner that is perceived as fluent

by native signers [37].

1) Comparison of Native ASL and Imitation Signing Data:

It is significant that the differences in signing between native

and imitation signers enumerated in sign language research

literature can be revealed through visual observation and

quantitative analysis of RF ASL data.

ASL is a fluid language that minimizes exertion. But imita-

tion signers are often hesitant or awkward, failing to replicate

temporal tempo of signing. Other errors of imitation signers

include

• replicating signs with an incorrect number of repetitions;

e.g. swiping fingers or moving hands back and forth too

many times (e.g. KNIFE, WRITE, CAR or WALK).

• exaggerating movements along inaccurate trajectories;

e.g. thrusting arm forward rather than pointing via pivot-

ing about the elbow when signing YOU or moving entire

arm to clasp fingers rather than rotating hand about the

wrist FRIEND This causes phonological and lexical errors.

When signing MOUNTAIN, imitation signers move their

hands over a greater distance, with a different tempo, and

open fingers slower than would a native signer; thus, the

prosodic and pragmatic levels of signing are represented

incorrectly.

• making gross motion errors; e.g. shaking hands for-

wards/backwards rather than side to side or pointing

rather than grabbing wrist (EARTHQUAKE), shaking only

one hand (ENGINEER), or shifting entire body to point

fingers over shoulder (COME).

It is important to note that non-signers are not able to

copy-sign connected discourse in sign language, as the speed

and variety of sentence and narrative-level stimuli in sign

language exceeds non-signer threshold of temporal resolu-

tion for non-signers [38]. While this much has been clear

to all researchers (across current literature, only one study,

[39], attempted to have non-signers copy sentences - and

required an intense 3-hour training to accomplish this), it is

worth noting that connected signing motion contains syntactic,

prosodic, and pragmatic information that is absent in indi-

vidual sign production [29], [40]. This detrimentally affects

the spatiotemporal distribution of the information-bearing sig-
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Fig. 9. Comparison of RF data from native ASL users and imitation
signers using PCA and tSNE.

nal that is characteristic of natural languages [41]. In sum,

copysigning by non-signers results in motor production data

that does not approximate sign language production, but is

severely distorted from the spectrotemporal perspective of

sign language representation, and contains linguistic errors

that pervade phonological, semantic, syntactic, prosodic, and

pragmatic representation. Copysigning data can only be used

to study the trajectory of learning sign language – not sign

language per se.

2) Identification of Native ASL versus Imitation Signing:

Machine learning can be used to distinguish between native

versus imitation signing. The feature space spanned by native

and imitation RF data can be compared using the PCA and

T-distributed Stochastic Neighbor Embedding (t-SNE) algo-

rithms, as shown in Figure 8. The t-SNE algorithm converts

similarities between data points into joint probabilities and

tries to minimize the Kullback-Leibler divergence between the

joint probabilities. To remove any bias due to sample size, 180

samples were randomly selected from the imitation data set,

an equal number to the native signing samples utilized. It is

striking that although there there is overlap between the two

datasets, the variance of the imitation signers’ data is greater

than that of the native ASL signers. Moreover, the centroids

of each dataset are clearly shifted relative to one another,

indicating that imitation signing is not truly representative of

native ASL signing.

The difference between imitation and native ASL data

can be further quantified by using a Suppor Vector Machine

(SVM) classifier with Radial Basis Function (RBF) to explic-

itly classify imitation versus native signing data. To mitigate

class imbalance between the datasets, the synthetic minority

[42] technique (SMOTE) [43] was applied. SMOTE equalizes

class data by oversampling minority classes with “synthetic”

samples. SVM was applied on the features generated via PCA

using five-fold cross validation. We found that native and

imitation signing could be distinguished with 99% accuracy.

These results underscore the need to test ASL recognition

algorithms on native ASL data provided by Deaf participants,

rather than rely upon more easily acquired imitation signing

data from hearing participants via copysigning.

V. ASL RECOGNITION USING RF µD SIGNATURES

In this section, the ability of RF sensors to distinguish ASL

signs is demonstrated through µD signature classification.

A. Handcrafted Features

First, a wide range of features, drawn from four principal

groupings, are extracted from the µD signatures:

1) Envelope Features: Envelope features have been shown

to be significant physical features [25], [44] of the µD sig-

nature as they describe the outline and peak response of the

signature. In this work, the maximum, minimum and mean

value of upper and lower envelopes, as well as the difference

between the average values of the upper and lower envelope

are extracted using the percentile technique [45].

2) DCT Coefficients: The Discrete Cosine Transform (DCT)

represents a signal as the sum of sinusoidal functions oscil-

lating at different frequencies. We extracted 500 2-D DCT

coefficients [46] from each µD signature and vectorized them.

3) FWCC Features: Frequency-warped cepstral coefficients

(FWCC) are inspired from mel-frequency cepstral coefficients,

common in speech processing, but whose filter bank is opti-

mized to RF data using genetic algorithms [47].

FWCC features are found by first initializing a filter bank

that contains M triangular filters hm(k). Then, the log-energy

output of each filter, Em, is computed by applying the filter

on the spectrogram (S) as follows:

E(n,m) = log
(

N−1
∑

k=0

S(n, k)hm(k)
)

(4)

for n = 1, 2, ...T , where N is the length of the filter and T is

time index of the spectrogram. We then compute the cepstral

coefficients C by taking the DCT of the filter outputs:

C(j, n) =
M
∑

m=1

E(n,m)cos
(

j(m− 1

2
)
π

M

)

(5)

for j = 1, 2, ...J , where J is the number of cepstral coeffi-

cients. The feature vector, Ci, for ith sample is then obtained

by vectorizing the resulting matrix C(j, n). It should be

noticed that the resulting coefficients depend on the parameters

that we used while creating the filters; namely, its starting,

maximum and end points. The filter bank itself is optimized

using a genetic algorithm, where the length of a chromosome

is equal to three times the total number of filters, 3M , since

we have three parameters to define a filter. The classification

performance of a random forest classifier with 100 decision

trees is employed as the fitness function.

4) LPC Coefficients: Linear predictive coding (LPC) µD

[48] computes the coefficients of a forward linear predictor

by minimizing the prediction error in a least squares sense.

In this work, 100 LPC coefficients were computed from each

µD spectrogram by minimizing the residual error, e[n] in

s[n] =

p
∑

k=1

aks[n− k] + e[n], (6)

where {ak} are pth order linear predictor coefficients and s is

the spectrogram, first on the columns and then the rows.
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Fig. 10. (a) Block diagram of ASL recognition approach using multi-frequency RF sensor network; (b) Features selected by MRMR algorithm
and resulting accuracy with random forest classifier; (c) Comparison of performance given by different classifiers; (d) Comparison of performance
achieved with and without filtering out clutter.

B. Feature Selection and Classification Results

Due to the curse of dimensionality, an effective subset of

features is oftentimes more beneficial in classification than

blindly using all possible features. While there are many

available methods for feature selection, it has been shown [49]

that for µD classification the minimum redundancy maximum

relevance (mRMR) algorithm [50] yields the best performance

without having any dependency on the specific classifier used,

while also having better generalization capabilities. A total

of 932 features are initially extracted for each RF sensor in

the network: 7 envelope features, 500 DCT coefficients, 325

FWCC features, and 100 LPC coefficients. For all sensors,

features were extracted from the spectrogram both with and

without high pass filtering (HPF). This is because while HPF

removes stationary clutter, there is also the potential for im-

portant low-frequency information to be lost. Next, the mRMR

algorithm was applied to select an optimal subset of features

from each sensor. The number of features selected was varied

between 20 and 250, while four different classifiers considered

to evaluate performance: support vector machines (SVM), k-

nearest neighbors (kNN), linear discriminant analysis (LDA)

using random subspace gradient boosting, and random forest

classifier (RFC). During classification, 75% of the data was

used for training, while 25% was used for testing. An overview

of the proposed approach is given in Figure 10(a).

Table 10(b) shows the selected features and accuracy ob-

tained for classification of 20 ASL signs using RFC, as that

was the classifier that offered the best overall performance.

Notice that significant numbers of all types of features were

selected, with the exception of LPC, which does not appear

to be very effective towards ASL recognition. In contrast,

features that reflect the decomposition of the signature into

different frequency components, such as DCT and FWCC, are

strongly preferred from an information theoretic perspective.

Better performance is achieved at the higher transmit fre-

quencies, with the accuracy of the 24 GHz sensor closely

followed by that of the 77 GHz sensor. Notice that there is a

great benefit to not using a HPF on 77 GHz data, for which

the accuracy without the HPF is increased by 13% whereas

other sensors benefit from the filtering. The ASL recognition

accuracy can be greatly increased by fusing features form all

inputs, and performing a second round of feature selection

with mRMR. This yields a classification accuracy of 72%

for 20 ASL classes - about a 15% - 30% improvement over

the results obtained with just a single sensor. A classification

accuracy of 95% is attained for recognition of 5 ASL signs.

The results obtained for all four classifiers as a function of the

total number of signs discriminated is given in Figure 10(c),

while the impact of HPF is compared in Figure 10(d).

VI. DISCUSSION

It should be emphasized that the results presented in Figure

10 used data obtained from native ASL signers during both

training and testing. While imitation data, which is acquired

by hearing non-signers via copysigning, is easier to collect

and can provide a large data set quickly, imitation data differ

substantially from native signing data, as shown in Section

IV-C. Consequently, machine learning algorithms should be

benchmarked using test data from native ASL signers, while

the use of imitation data during training is not effective for

the classification of native ASL signing data.

Moreover, it is difficult to make a direct comparison be-

tween the results of this RF sensing study versus those attained
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from alternative modalities because published projects (e.g.

[19], [20], [39], [51]–[53]) tended to use imitation data for

both model training and testing. Thus, there are discrepancies

both in terms of amount of available training data and statis-

tical properties of the test set. A large multimodal database of

connected native signing would be needed to draw meaningful

conclusions for technology and algorithm comparison.

The trade-off in data quantity versus fidelity has been very

apparent in our on-going work relating to the development

of domain adaptation algorithms that would facilitate the

exploitation of imitation signing data for the classification

of native ASL signing data. Preliminary results indicate that

this approach can be one way to increase the amount of

suitable training data available and facilitate the design of deep

neural networks that offer a substantial increase in recognition

accuracy of dynamic signing using RF sensors.

VII. CONCLUSION

This paper provides an in-depth, multi-disciplinary per-

spective on ASL recognition with RF sensors, and is (to

the best of our knowledge) the first work on RF sensing of

native ASL signing. We demonstrate that RF sensing can be a

useful tool in linguistic analysis, capturing properties such as

co-articulation and exhibiting greater fractal complexity (i.e.

information content) than daily activities. Significantly, based

on linguistics and machine learning, we show that RF sensors

can reveal a discernible difference between imitation signing

and native signing. Frequency warped cepstral coefficients

(FWCC) are optimized for ASL using genetic algorithms, and

in conjunction with Discrete Cosine Transform (DCT) coeffi-

cients, and envelope features, used to classify up to 20 ASL

signs. Using the minimum redundancy maximum relevance

(mRMR) algorithm, an optimal subset of 150 features are

selected and input to a random forest classifier to achieve

95% recognition accuracy for 5 signs and 72% accuracy for 20

signs. These results demonstrate the potential of RF sensing to

provide non-contact ASL recognition capabilities in support of

ASL-sensitive smart environments, while remaining effective

in the dark and protecting user privacy.
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