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ABSTRACT: Intensity—duration—frequency (IDF) analyses of rainfall extremes provide critical information to mitigate,
manage, and adapt to urban flooding. The accuracy and uncertainty of IDF analyses depend on the availability of historical
rainfall records, which are more accessible at daily resolution and, quite often, are very sparse in developing countries.
In this work, we quantify performances of different IDF models as a function of the number of available high-resolution
(N,) and daily (No4y) rain gauges. For this aim, we apply a cross-validation framework that is based on Monte Carlo
bootstrapping experiments on records of 223 high-resolution gauges in central Arizona. We test five IDF models based on
(two) local, (one) regional, and (two) scaling frequency analyses of annual rainfall maxima from 30-min to 24-h durations
with the generalized extreme value (GEV) distribution. All models exhibit similar performances in simulating observed
quantiles associated with return periods up to 30 years. When N, > 10, local and regional models have the best accuracy; bias
correcting the GEV shape parameter for record length is recommended to estimate quantiles for large return periods.
The uncertainty of all models, evaluated via Monte Carlo experiments, is very large when N, < 5; however, if N4, = 10
additional daily gauges are available, the uncertainty is greatly reduced and accuracy is increased by applying simple scaling
models, which infer estimates on subdaily rainfall statistics from information at daily scale. For all models, performances
depend on the ability to capture the elevation control on their parameters. Although our work is site specific, its results
provide insights to conduct future IDF analyses, especially in regions with sparse data.
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1. Introduction

Urban flooding is being increasingly recognized as a pressing
global challenge because of growing population concentra-
tion in urban regions, the rapid conversion of natural land-
scapes into impervious surfaces, and climate change (National
Academies of Sciences, Engineering, and Medicine 2019;
Zhang et al. 2018). As a result of the complex combination
of these factors, urban areas have been suffering significant
socioeconomic impacts from flooding not only due to cata-
strophic events (e.g., hurricanes; NWS 2019), but also after
more frequent and less intense storms (University of Maryland
College Park and Texas A&M University 2018). A key task
to mitigate, manage, and adapt to urban flooding is the
characterization of rainfall extreme statistics at different
durations, with focus on short time accumulations (<24h)
that—in several cases—represent the hydrologic response
times of urban watersheds. In water resources engineering, this
statistical information is synthesized through intensity—
duration—frequency (IDF) curves, which provide an estimate
of rainfall intensities i(Tg, 7) for different time durations
7 and frequencies F, usually expressed as return periods
Tgr =1/(1 = F).

The generation of IDF curves has been the subject of several
studies, mainly in the areas of technical and stochastic
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hydrology (e.g., Burlando and Rosso 1996; Koutsoyiannis
et al. 1998; Madsen et al. 2002; Requena et al. 2019; Tyralis and
Langousis 2019; and many others). When rainfall records are
available at sufficiently fine temporal resolutions at a given site,
the most common approach to conduct local IDF analyses
consists of estimating i(T, 7) via frequency analysis of annual
rainfall maxima at different 7 with parametric statistical dis-
tributions. For example, as suggested by the extreme value
theory (Coles 2001), the generalized extreme value (GEV)
distribution has been shown to be able to model well annual
rainfall maxima at several locations (e.g., Papalexiou and
Koutsoyiannis 2013; Blanchet et al. 2016). If historical rainfall
records are available at multiple sites, regional IDF curves
are often generated by (i) spatially interpolating i(Tg, T) or
parameters of the statistical distributions from local or at-site
estimations, or (ii) applying regionalization techniques that
merge rain gauges into homogeneous regions to increase ro-
bustness in the estimate of the statistical distribution pa-
rameters (Hosking and Wallis 1997). As a notable example,
the regionalization technique proposed by Hosking and Wallis
(1997) was adopted in the National Oceanic and Atmospheric
Administration (NOAA) Atlas 14 to generate IDF curves for
most of the conterminous United States (CONUS; Bonnin
et al. 2004).

The accuracy and uncertainty of IDF analyses are depen-
dent on quality and availability of historical records. In de-
veloped countries, rainfall data are in general available;
however, data availability is higher at daily scale compared to
subdaily resolutions in terms of both spatial density and record
length. As a result, the uncertainty of IDF estimates tends to be
higher for subdaily durations. In several developing countries,
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where urbanization proceeds at fast rates (Cohen 2006) and
IDF curves are urgently needed, the problem of data avail-
ability is even more critical, since rainfall records are available
at sparse locations (Sane et al. 2018) and almost exclusively at
daily resolution (Lumbroso et al. 2011; Liew et al. 2014). These
challenges have significantly limited the ability to carry out
IDF analyses, so that recent studies have proposed the use of
satellite (Ombadi et al. 2018), reanalysis products (Courty et al.
2019), and weather radars (Marra and Morin 2015) to com-
plement observations from sparse rain gauges.

A strategy to address the lack of rain gauges at subdaily
resolution is to infer estimates of i(Tg, 7) for 7 < 24h from
information on the rainfall statistics at the daily scale,
which—as said—is more largely available (Koutsoyiannis and
Foufoula-Georgiou 1993; Burlando and Rosso 1996; Menabde
et al. 1999; Koutsoyiannis et al. 1998). A class of statisti-
cal models, known as scaling models, utilizes the evidence
of temporal scaling properties of rainfall processes (Lovejoy
and Schertzer 1985; Deidda et al. 1999; Venugopal et al. 1999;
Mascaro et al. 2013, 2014) to derive simple relations linking
parameters of the probability distributions of rainfall maxima
at different subdaily durations to those estimated at daily scale.
While the theoretical background of scaling models has been
outlined more than two decades ago (e.g., Burlando and Rosso
1996), these techniques have been mainly applied for analyses
at distinct locations, because of the lack of networks of long-
term high-resolution rain gauges. Notable exceptions are the
studies by Yu et al. (2004), Borga et al. (2005), Bara et al.
(2010), and Blanchet et al. (2016) who used scaling models to
derive regional IDF relationships in areas of northern Taiwan
(~7400 km?), northern Italy (~6400km?), western Slovakia
(~14000km?), and southern France (~38000km?) with 46,
91, 19, and ~300 rain gauges, respectively. More recently,
Sane et al. (2018) applied a scaling model with 14 rain
gauges to derive IDF curves for the entire country of Senegal
(~197 000 km?).

The present study has the main goal of rigorously testing the
accuracy of different models for IDF analysis as a function of
the number of rain gauges available at different temporal
resolutions. To pursue this goal, we use data from a high-
resolution network of 223 gauges with record lengths from
20 to 40 years located in an area of ~29600km? in central
Arizona including the Phoenix metropolitan region (Mascaro
2017, 2018). We apply existing IDF models based on local
(or at-site), regional, and scaling frequency analyses with the
GEV distribution. In addition, we (i) evaluate the effect of bias
correcting local estimates of the GEV shape parameter for
record length (Papalexiou and Koutsoyiannis 2013) and (ii)
propose and test for the first time a simple IDF model that
applies the scaling theory to the regional growth curves defined
by Hosking and Wallis (1997). The IDF models vary in terms of
number of regional and spatially interpolated parameters.
While all models require high-resolution rainfall records for
their calibration, scaling models also take advantage of the
availability of additional daily gauges. We first quantify the
performance of all methods using all available gauges.
Performance is assessed through metrics measuring the
ability to simulate empirical and at-site quantiles. We then apply a
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cross-validation framework based on Monte Carlo bootstrapping
experiments to quantify the uncertainty of model perfor-
mances under different combinations of available high-
resolution and daily rain gauges. Finally, we discuss our find-
ings in the context of the rainfall regime of our study region and
investigate the physical factors affecting performances of the
different models. Results of this work will be useful, in future
applications, to guide the selection of the technique for IDF
generation that provides the best accuracy and lowest uncer-
tainty under a given combination of available daily and high-
resolution rain gauges.

2. Study area and dataset

The study area is located in a region in central Arizona that
includes the Phoenix metropolitan area (Fig. 1a). The majority
of the region is part of the Sonoran Desert where elevation is
low (from 200 to 600 m MSL), while a minor portion is located
in the transition zone to the Colorado Plateau, where elevation
reaches up to 2000m MSL in the Mogollon Rim. Climate is
arid and characterized by a strong seasonality affecting the
rainfall regime. In the summer months from July to September,
the occurrence of the North American monsoon leads to local-
ized convective thunderstorms with high rainfall intensity over
short durations (<1h). From November to March (hereinafter
called winter), prolonged dry periods are interrupted by cold
fronts that cause widespread storms lasting for up to multiple
days. As a result of these different rainfall-generating mecha-
nisms, annual rainfall maxima occur mainly in winter for 7 =
12h and almost exclusively in summer for 7 < 2h (Fig. 1b).
Mascaro (2017, 2018) found also that annual rainfall maxima
tend to increase with elevation and that the orographic control is
more significant for larger time accumulations.

We use records of the Automated Local Evaluation in Real
Time (ALERT) rain gauge network of the Flood Control
District of the Maricopa County (FCDMC), installed to
monitor in real time regional and localized storms, and support
flood and flash-flood forecasting. The gauges have been grad-
ually deployed since the beginning of the 1980s; as of 2020,
their number is 365. In this study, 223 gauges with more
than 20 years of observation are selected for the analysis
(Figs. 1c,d). These gauges cover an area of ~29 600 km?, with a
mean density of ~1 gauge every 100km? that increases to
4.3 gauges in urban areas covering ~2000 km?. The gauge el-
evations range from 220 to 2325 m MSL with the majority (195)
installed below 800 m. All gauges are of the tipping-bucket
type, with an accumulated rain depth of 1 mm. More details on
this dataset and the characteristics of the study region are
provided by Mascaro (2017, 2018), who used these rainfall
records to investigate the spatiotemporal variability of rainfall
statistical properties and the seasonality of daily extremes.

The FCDMC provides gauge data in raw format containing
the tipping instants in seconds. We derive the cumulative
rainfall signal for each year from the tipping instants with
the technique described by Mascaro et al. (2013; see the
appendix), which allows avoiding the discretization caused by
the box counting method, that is often applied, and generating
instead a smoother and more realistic signal. From this, the
annual maximum rainfall intensities (mmh™') are extracted
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FIG. 1. (a) Study area within the county boundaries in Arizona. (b) Percent occurrence of annual rainfall maxima,
averaged across the 223 gauges, for different time accumulations 7 in summer (July-September), winter
(November-March), and other months. (c) Digital elevation model (derived from the U.S. Geological Survey
National Elevation Dataset) of the study region in Maricopa, La Paz, Yavapai, and Pinal Counties along with
locations of the rain gauges of the FCDMC network, with colors indicating the corresponding record length.

Urbanized areas are also shown. (d) Distribution of the intergauge distance.

for = 30min, 1, 2, 3, 6, 12, and 24 h through a moving window
with duration 7. These durations are selected because a single
scaling regime, which is needed to apply the IDF scaling
models, emerges from 24 h to 30 min, consistent with previous
applications (Menabde et al. 1999). We note that another re-
gime appears in many stations for durations below 30 min,
which are typical of single storms and cells. The existence of
separate regimes at lower durations has been also reported by
Innocenti et al. (2017) in an analysis of ~2700 stations in North
America. In particular, these authors found a breaking point at
~1h, which is higher than ours; this difference can be attrib-
uted to the diverse resolution of their datasets (15-min rainfall
data with resolution of 2.54 mm). The approach proposed
by Blanchet et al. (2016), in turn based on Papalexiou and
Koutsoyiannis (2013), is adopted to retain or discard the an-
nual rainfall maxima in years with missing data. The idea of this
method is that, even if some data are missing in a given year,
the annual maximum could have still been observed on that
year and this value should be preserved. Assuming that N years
without missing data are available and that a given year has a
fraction f of missing data, the method involves the following
steps: (i) the annual maxima of the N years are sorted, (ii) for
a year with missing data, the annual maximum rainfall is
extracted and its rank in the N sorted values is found, and
(iii) this record is discarded or preserved if its rank is below
or above fN, respectively. This procedure is applied for each

duration 7. The resulting dataset includes a total of 44781
annual rainfall maxima for seven durations over 223 gauges.

3. Methods

a. The GEV distribution

The GEV distribution is used to describe the frequency of
annual rainfall maxima at different durations 7 in all IDF
models tested here. If I is the random variable of the rainfall
maxima, the cumulative distribution function (CDF) of the
GEV is defined as

F(x;k_,u o) =Pr(I =x)

_ ~ 1k,
exp [— (1 Ty 0“7) ] k. #0

T

exp [—exp (—%)] k. =0
)]

where k, € (—o, +%) is the shape parameter, w, € (—%, +) is
the location parameter, and o, > 0 is the scale parameter. For
k, = 0, the GEV is of type I or Gumbel (exponential) and x is
defined in the set —o < x < . For k, > 0, the GEV is of type II
or Fréchet and is “heavy tailed” (subexponential); in this case,
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TABLE 1. Overview of the IDF statistical models. Symbols are defined in the main text. On the basis of the categories described in
section 3, At-site and At-siteBC are local models, Reg is a regional model, Sc is a local scaling model, and RegSc is a regional scaling
model. The estimate of variables identified by (*) is improved when additional daily gauges are available.

Data required for application at

No. of regional parameters (P)

Model Description of parameter estimation ungauged sites and maps (M)
At-site For each 7, local estimation of k., u,, Estimates of k., u,, and o, from P=0;M=3D
and o, interpolated maps
At-siteBC  For each 7, bias correction of k, and local ~ Estimates of k., u,, and o, from P=0;M=3D
reestimation of u, and o, interpolated maps
Reg For each 7, regional estimation of k., w,, Regional k., u,, and o, of growth curves P=2D;M =D
and o, of growth curves for each 7; estimates of X, from
interpolated maps
Sc Local estimation of 1, k*, w0, and Estimates of k*(*), ,U,1(-(+)), o', and 7 from P=0M=4
00 (10 = 24 1) interpolated maps
RegSc Regional estimation of k, u, and o of a Regional k, u, and o of the single growth P=2M=2

single growth curve valid for all 77,
regional estimation of 7 for X,

curve; estimates of )?53 ) and 7 from
interpolated maps

mr — (0k;) = x = o If k. < 0, the GEV is of type III or
Weibull and is bounded above so that —o < x =< u, — (0,/k,).
The quantile of the GEV for a given return period T = 1/(1 — F)
is computed as

T 1 &
wogfie et )] ) ko
—o_log|—lo 1—i k=0.
u, o log| ~log(1—7 :

@

Prior to applying the IDF models, we assess the suitability
of the GEV through L-moments ratio diagrams and goodness-
of-fit (GOF) tests, including Lilliefors, Anderson-Darling,
and Cramér—von Mises. The GOF tests are applied locally
following the modification proposed by Deidda and Puliga
(2006) to account for the data discretization at 1-mm
resolution. To account for results of multiple tests, the
false discovery ratio test of Wilks (2006) is then used to
evaluate the field or global significance with the resulting p
values. The false discovery ratio test is performed at a
global significance level a,gpa = 0.05; to consider the pres-
ence of spatial correlation of the rainfall records (Mascaro
2017), we conduct the local test at the significance level aoca =
2-aigiobal, as suggested by the synthetic experiments of Wilks
(2016; his Fig. 4). Since some of the IDF models tested here are
based on regionalization techniques, the GOF metric Z pro-
posed by Hosking and Wallis (1997) is also computed. This
metric quantifies the degree to which the L-moments of the
fitted GEV distribution match the regional averages of the
sampling L-moments. The fitted GEV is considered adequate
if | Z] = 1.64.

i(T,,7)=

b. Statistical models of rainfall IDF analysis

We apply two IDF models based on at-site estimations, one
IDF model based on a regionalization technique, and two IDF
simple scaling models. The models are described in the next
sections, and their main features are summarized in Table 1.

1) IDF MODELS BASED ON LOCAL
PARAMETER ESTIMATION

The simplest IDF model (hereinafter labeled as At-site)
consists of locally estimating the GEV parameters k., u,, and
o, for each 7, using the probability-weighted moments (PWM)
method, which has been shown to perform better than alter-
native techniques for relatively short sample sizes (Hosking
and Wallis 1997). In an analysis of long-term global daily
rainfall, Papalexiou and Koutsoyiannis (2013) showed that the
Fréchet distribution (k, > 0) is the best suited to model annual
maxima and proposed a set of analytical equations to bias
correct k, as a function of the sample size. Here, to account for
the sample size effect, an additional at-site IDF model is in-
troduced where k, at each gauge is bias corrected using the
relations proposed by Papalexiou and Koutsoyiannis (2013),
and w,, o, are reestimated conditioned on the bias-corrected
k. This IDF model is labeled At-siteBC (or At-site bias cor-
rected). For both At-site and At-siteBC models, estimates of
i(Tg, 7) at ungauged locations can be obtained by spatially
interpolating &, u,, and o, and, then, applying Eq. (2). If D is
the total number of durations, the application of these methods
requires then 3D maps (Table 1).

2) IDF MODEL BASED ON REGIONAL
PARAMETER ESTIMATION

Regionalization techniques have been proposed to increase
the robustness of parameter estimation by combining records
of multiple stations located in a region where the underlying
statistical distribution of the annual rainfall maxima can be
considered the same except for the mean. Here, we use the
regionalization technique based on the index flood procedure
proposed by Hosking and Wallis (1997) and used in several
studies (Fowler and Kilsby 2003; Bonnin et al. 2004; Liu et al.
2015; Garcia-Marin et al. 2019; among others). This method
requires the estimation of a regional dimensionless distribu-
tion, known as growth curve, using the weighted averages of
the L-moments calculated from records of all stations in the
region (the weights are the sample sizes at each station). Local
estimates of i(Tg, 7) are then obtained by multiplying the Tg
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FIG. 2. The L-moment ratio diagrams (i.e., relation between L-skewness and L-kurtosis) for (a)—(c) observed records of annual rainfall
maxima at durations 7 = 1, 6, and 24 h and (d)—(f) the corresponding synthetic records generated with the kappa distribution (see appendix
for details). The sampling L-moment ratios are color coded on the basis of the sample length and are plotted along with the corresponding
means (square). Theoretical relationships are plotted for the Gumbel (triangle), generalized Pareto (GP), generalized logistic (GL),
generalized extreme value (GEV), lognormal (LN), and Pearson Type III (PT3).

quantiles of the growth curve, igc(Tx, 7), by the index flood, a
variable representative of local rainfall characteristics. In this
study, the GEV distribution is used to model the growth curve
and the mean annual rainfall maxima at duration 7, X, is uti-
lized as index flood, leading to

(T ) =X i o(Tps 7). (3)

The application of the regionalization method at ungauged
sites can be achieved by spatially interpolating the sample in-
dex floods at available stations. This IDF model is labeled as
Reg; its application requires 2D regional parameters (two
GEV parameters of the growth curves for D durations; note
that, since the mean of the growth curve is 1, the third pa-
rameter is calculated as a function of the first two) and D maps
of X, (Table 1). Here, we apply the Reg IDF model using a
single homogenous region, whose existence is tested by com-
puting, for each considered duration, the heterogeneity mea-
sure H* proposed by Hosking and Wallis (1997) and described
in the appendix.

3) LOCAL AND REGIONAL IDF SCALING MODELS

A brief theoretical overview of simple scaling models is first
provided. Based on empirical findings, Koutsoyiannis et al.
(1998) proposed a mathematical formula to link (7T, 7) with
7and Tg:

(T, 7)=a(T)(r+6)", “4)

where a(Tg) is determined from the probability distribution of
the maximum rainfall intensity (e.g., the GEV), and § = 0 and
0 < m =1 are nonnegative coefficients to be estimated at the
target site. By separating Tk from 7, an important advantage of
Eq. (4) is that it allows relating rainfall intensities at different
durations (e.g., 7 and 7o) for the same Tg:

_(r+o)"

l(T ,T)*W

(T, 7)) ®)
For 6 = 0, it has been shown (e.g., Burlando and Rosso 1996;
Blanchet et al. 2016) that, when applied to random variables,
Eq. (5) corresponds to the hypothesis of simple scaling:

1L (rin) "L, (6)
0

where the symbol £ indicates equality in distribution and 7
is the scaling exponent. Equation (6), in turn, implies that

moments of order g are related as
E(I9) = (s/7)) E(1Y). %)
A simple scaling model can be derived from Eq. (7) using
the GEV distribution under the assumption of a constant
shape parameter for all durations (i.e., k, = k*). In this
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case, Eq. (7) leads to the following scaling relations for w,
and o

W, = (1'/7'0)7”;1,70 and (8a)

_ -
o =(1/1,) o (8b)

Equations (8) imply that, if the GEV parameters are known
at a coarse scale 1y (here, 24 h), then GEV parameters can be
derived at smaller scales 7 via the scaling exponent 7. Recently,
the accuracy of this scaling model was tested by Innocenti et al.
(2017) on ~2700 gauges located in North America, showing
adequate performances over different scaling regimes from 1 h
to 7 days. In this study, we follow the application of the GEV
scaling model of Blanchet et al. (2016), which requires the
estimation of w9, 0,9, k*, and n at each gauge by maximizing
the log-likelihood function that includes all durations at the
same time (Blanchet et al. 2016). To apply this model (here-
inafter labeled Sc) at ungauged sites, the four parameters have
to be spatially interpolated; as a result, the model requires four
spatial maps (Table 1). When available, records of additional
daily gauges can be used to improve the accuracy of the spatial
maps of u.g, 0,0, and k*.

In addition to the at-site scaling model Sc, we develop here
(to our knowledge, for the first time) a regional simple scaling
model by combining the scaling relations in Egs. (5) and (7)
to Eq. (3) linking the quantiles of local distribution and
growth curve. Using Eq. (3), the ratio between the quantiles
of the local distributions for two durations 7 and 7 can be
expressed as

i(T,,T)
i(TR,TO)

% focTwn). ©)
X igc(Tgo7))

Per Eq. (5) with 6 = 0: i(Tg, 7)/i(Tg, T0) = (7/79) " It is also

easy to note that, for ¢ = 1, Eq. (7) implies that

X, /zfo = (r/7,)7". (10)

As a result, Eq. (9) reduces to igc(Tr, 7) = icc(Tr, 7o),
which shows that, under the simple scaling hypothesis, the
regional growth curve is the same for all durations. This
implies that rainfall intensity quantiles can be derived at
each location and for any duration 7 as a function of X, the
scaling exponent 1 of Eq. (10), and the GEV parameters of
the single growth curve:

(T, 7)= )_C_‘_D(T/TO)_niGC(TR, o) (11)

This IDF model, labeled RegSc, requires two regional pa-
rameters of the GEV distribution modeling the single growth
curve and two spatial maps of X,, and n (Table 1). The avail-
ability of additional daily rain gauges allows improving the
accuracy of the spatial maps of X;,.

¢. Monte Carlo bootstrapping simulations

The IDF models are assessed as a function of different
numbers of available high-resolution and daily rain gauges
through cross validation with Monte Carlo simulations based
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TABLE 2. Minimum and maximum values across the 223 gauges
of the local and bias-corrected (in parentheses) estimates of the
GEV parameters used for the At-site and At-siteBC models,
respectively. The ranges reported in italics for 7 = 24h are for
parameters k*, w,, and o, of the Sc scaling model.

r k, e (mmh™) o, (mmh)
30 min ~0.38-0.40 14.7-45.6 7.2-19.1
(—0.01-0.20) (14.7-45.4) (7.6-18.3)
1h ~0.27-0.41 8.5-28.2 40-12.3
(0.02-0.19) (8.6-27.9) (4.5-11.7)
2h ~0.26-0.37 5.2-16.6 1.9-75
(0.03-0.19) (5.3-16.1) (2.0-6.7)
3h ~0.35-0.39 40-11.7 14-55
(0.00-0.19) (4.1-11.4) (1.4-4.9)
6h ~0.39-0.44 25-6.8 0.9-2.8
(~0.03-0.21) (2.6-6.7) (0.9-2.6)
12h ~0.32-0.39 1.5-45 0.5-2.0
(0.00-0.20) (1.5-4.4) (0.5-1.7)
24h ~0.36-0.33 0.9-2.6 03-13
(0.00-0.18) (0.9-2.6) (0.3-13)
(—0.44-0.44) (0.9-2.6) (0.3-1.1)

on bootstrap resampling. The simulations consist of the
following steps:

1) First Ny, = 100 high-resolution gauges are randomly se-
lected from the N = 223 available and are used as inde-
pendent sites for validation.

2) From the (N — N,,) remaining gauges, N, stations are
randomly selected as high-resolution gauges and used to
calibrate all models. Performance metrics (see section 3d)
are computed at the N, validation gauges.

3) From the (N — Ny, — N,) remaining gauges, N,y gauges
are randomly extracted and used as additional daily gauges.
To quantify the value of increasing information available at
daily scale, N4, = 1 gauge is initially selected and, then,
other gauges are recursively added until Ny, = 50, result-
ing in the tested values Noyp, = 1, 2, ..., 10, 20, ..., 50. This
implies that, for example, the gauges selected for Ny, = 30
include the stations extracted for N,4, = 20. Note that daily
records are simply obtained by aggregating the high-resolution
records.

4) For a given combination of N, and N4y, stations, the Sc and
RegSc scaling models are calibrated using the N, high-
resolution and N,y daily stations and performance metrics
at the calibration gauges are quantified.

5) Step 1 is repeated 10 times to characterize the sampling
variability of the validation gauges. For each Ny, step 2 is
repeated 10 times for eight values of N, ranging from 1 to
50 to characterize the sampling variability of the high-
resolution gauges once the validation stations are fixed. For
given Ny, and N,, steps 3 and 4 are repeated 10 times to
characterize the sampling variability of the daily gauges.
Overall, 10 X 10 X 8 X 10 = 8000 Monte Carlo iterations
are performed.

The application of the IDF models at ungauged sites (i.e., the
Ny validation gauges) involves the spatial interpolation of the
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FIG. 3. Relation between shape parameter &, and sample size n
for 7 = 1, 6, and 24 h. The shaded area is the region of sampling
variability for k, identified by Papalexiou and Koutsoyiannis
(2013) as wi(n) * ox(n), with ux(n) = 0.114 — 0.69n "% and
ox(n) = 0.045 + 1.27n°7°. For each r, the empirical densities are
shown for &, estimated with PWM at each site and bias corrected as
k.pc(n) = 0.114 + [0.045/04(n)][k, — mi(n)], where k.(n) and
k.pc(n) are the original and bias-corrected parameters, respec-
tively (Papalexiou and Koutsoyiannis 2013). These values of k, are
used in the At-site and At-siteBC IDF models.

model parameters (see Table 1 and section 3b), which can be
achieved with several techniques (see, e.g., Watkins et al.
2005). Since evaluating the performance of the spatial inter-
polation method is out of the scope of this study, here we apply
the inverse distance weighting interpolation method, which is
widely known and easy to implement while being relatively
accurate in our region (analyses not shown).

d. Model diagnostic

The statistical models are diagnosed through a set of
metrics proposed by Hosking and Wallis (1997). For a given
T, rainfall duration 7, and site j, the mth IDF model returns
the quantile of annual maximum rainfall intensity i]’.”(TR, 7).

MASCARO 1525

TABLE 3. Parameters of the GEV growth curves used in the Reg
IDF model and corresponding mean used for the single GEV
growth curve in the RegSc IDF model.

T kT Mz (') Or (')
30 min 0.04 0.77 0.38
1h 0.08 0.75 0.38
2h 0.10 0.76 0.35
3h 0.11 0.77 0.33
6h 0.12 0.78 0.32
12h 0.06 0.79 0.32
24h 0.04 0.79 0.34
Mean 0.08 0.77 0.34

The relative bias from a reference intensity iJREF(TR, 7) is de-
fined as

rp 2 1 Ten) = (T 1)
i iR (T, 7)

X 100. (12)

To provide an overall picture of the model performance, the
mean relative bias and relative root-mean-square error can be
respectively computed as

1 N
RB:N- 1RB]. and (13)
=
1 N 12
RRMSE = (NZRB}> , (14)
j=1

where N is the total number of validation stations. Note that,
for simplicity, the symbols m, 7, and Tk have been omitted in
RB;, RB, and RRMSE. Here, the performance metrics are
computed using two references: (i) the quantiles of the em-
pirical distributions for Tz up to 30 years and (ii) the quantiles
of the At-site IDF model for T extending through 200 years.
In such a way, we test the models’ ability to simulate observed
records and quantiles derived for large, nonobserved Tk, that
are often needed for infrastructure design.

4. Results

a. Evaluation of the GEV hypothesis

Figures 2a—c show the L-moment ratio diagrams for records
of annual rainfall maxima at 7 = 1, 6, and 24 h, respectively, of
the 223 rain gauges (results are similar at other durations). In
all cases, the sample estimates are scattered around the GEV
line, suggesting that this distribution appears to be best can-
didate to model annual rainfall maxima at all durations. This is
corroborated by the facts that (i) stations with shorter (longer)
records tend to be located farther from (closer to) the GEV
line, and (ii) the sample means are located very close to or lie
exactly on the GEV line. Results of the GOF tests confirm the
suitability of the GEV distribution with at-site and bias-
corrected parameters (see section 4b). For both estimation
methods and all durations, the false discovery ratio test applied
to all GOF tests indicates that the global null hypothesis (i.e.,
the sample is drawn from a GEV distribution) cannot be
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FI1G. 4. Evidence of scaling for (a)-(c) GEV location (u,) and (d)—
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(f) scale (o) parameters, and (g)—(i) for the mean of annual rainfall

maxima (X,) in three representative gauges [identifiers (top) 52800, (middle) 68200, and (bottom) 41500]. The symbols are empirical
estimates of the corresponding variable, and the line is the linear regression. For u, and o, At-site and At-siteBC estimates are shown.

The values of the scaling exponent 7 are also reported.

rejected at agopa = 0.05. We also find that the regional GOF
metric Z of Hosking and Wallis (1997) is always lower in ab-
solute value than the suggested threshold of 1.64 (Z = 0.81 for
1 =7=24hand Z = 1.56 for 7 = 30 min), thus indicating that
the null hypothesis of a regional GEV cannot be rejected for
any durations.

b. Estimation of local and regional GEV parameters

The local estimation of the GEV parameters conducted
to apply the At-site and At-siteBC models is summarized in
Table 2, which reports minimum and maximum parameter
values for all 7 (boxplots are also reported in Fig. S1 of the online
supplemental material). Figure 3 also shows the relations between

shape parameter k, and sample size for three representative
durations. In all cases, the sample values of k, have mean larger
than 0 and variability that is captured very well by the relation
proposed by Papalexiou and Koutsoyiannis (2013), depicted by
the shaded area. The bias correction of k., significantly reduces
the variability of the shape parameter, as shown by the histo-
grams and the values in Table 2.

To apply the Reg IDF model, we first compute the hetero-
geneity measure H* and find this metric to range from 1.03 to
1.21 across the durations, suggesting that the hypothesis of a
single operationally homogeneous region can be sustained.
This is further supported by comparing visually the L-moment
ratio diagrams of (i) the observed samples (Figs. 2a—c) and (ii)
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synthetic samples generated by a kappa distribution fitted to
the regional L-moments ratios (Figs. 2d—f; see appendix for
details). The regional GEV parameters of the growth curves
for the different durations are presented in Table 3, along
with the means used for the single growth curve in the RegSc
IDF model.

c. Evidence of simple scaling and estimation of GEV

parameters for the scaling models

We find evidence of scaling in the range from 7 = 30 min to
7 = 24 h for w,, o, and mean of annual rainfall maxima X,. This
is quantified by the coefficient of determination, R?, of the
linear regression between the log-transformed variables in
Egs. (8a) and (8b) and (10) being larger than 0.99 for w, and
X, and 0.90 for o,. As an example, Fig. 4 shows evidence of
scaling for three representative gauges with L-moments ratios
close to regional mean (identifier 52800) and in the upper-right
(identifier 68200) and lower-left (identifier 41500) corners of
the L-moments ratio diagram. The slope of the regression line
provides an estimate of the scaling exponent n. The distribu-
tions of n computed for all gauges are presented as boxplots in
Fig. 5. No evident differences exist between At-site and
At-siteBC estimates. The 7 estimates for u, are lower relative
to those for o, (mean n of 0.77 and 0.83 for w, and o, re-
spectively) and are characterized by less variability. While
relatively small, these differences may affect performance of
the simple scaling IDF models, which assume the same value
of n for both location and scale parameters (see discussion in
section 5). The distributions of n for X, and u, are very similar.

Based on the evidence of scaling, we estimate parameters of
the Sc model at each gauge, including k¥, w9, 00 (0 = 24 h),
and the single scaling exponent, 7. As reported in Table 2
(italic font), the ranges of u.o and o, are very close to those of
the local estimates at the same duration. In contrast, the range
of k* spans the values of all local estimates of this parameter
across all durations. This result is expected because the esti-
mate of a constant shape parameter is affected by the vari-
ability of rain rates at all durations. Figure 5 shows that n for
Sc displays the same intergauge variability of the n estimates
for p, and X,.

d. Performance of IDF models using all gauges

The IDF models are first applied using all N = 223 available
gauges. Figure 6 presents examples of the comparison between
the GEV parameterized with the five models and empirical
CDFs for the same three gauges shown in Fig. 4. Results are
shown for 7 = 1, 6, and 24 h. At gauge 52800 (Figs. 6a—c), whose
L-moments are close to the regional means at all durations, all
models capture well the observed records, apart from a slight
underestimation of the right tail by the scaling models (Sc and
ReglSc) for 7 = 1 h; that is, the lines are located to the left of
the circles for larger values of the rainfall rate. At gauge 68200
(Figs. 6d—f), which is characterized by higher L-skewness and
L-kurtosis than the regional means, all models capture well the
bulk of the empirical distributions, but the regional models
(Reg and RegSc) underestimate the right tails at all durations.
At gauge 68200 (Figs. 6g—i), whose L-skewness and L-kurtosis
are lower than the regional means, all models reproduce
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reasonably well all empirical distributions. Performance met-
rics computed on all gauges are summarized in Fig. 7 through
heat maps showing RD and RRMSE for each model as a
function of durations and return periods. Performances are
relatively similar across all models when compared to the ob-
served quantiles up to 7 = 30 years. When At-site quantiles
are used as reference, the At-siteBC and Reg models exhibit
the best performance with negligible (slightly positive) RB but
higher (smaller) RRMSE for the Reg (At-siteBC) model. The
scaling models (Sc and RegSc) have a larger range of RB with
both positive and negative values, and RRMSE up to ~35%
for Tg = 200 years. This lower accuracy using all available
gauges is expected since these models depend on a lower
number of parameters. These results provide an overview of
model accuracy by quantifying their performance at the same
sites used for model calibration. In the Monte Carlo boot-
strapping experiments described next, model accuracy is tested
using 100 randomly selected validation sites and varying the
number of calibration gauges.

e. Performance of IDF models as a function of the number

of gauges

For the sake of conciseness, we present results of the Monte
Carlo simulations for selected values of 7, T, N, and N,4y, that
are representative of the overall outcomes. In the following
figures, the simulation uncertainty is visualized through the
mean and 90% confidence intervals of the metrics and by re-
porting results for three randomly chosen simulations. We
begin by showing in Fig. 8 how performances change with Tx
for 7 = 30 min, N, = 5 high-resolution gauges and no additional
daily gauges. When compared to the observed quantiles
(Fig. 8a), all models display similar results, with RB decreasing
(i.e., the bias becomes more negative) and RRMSE increasing
as Tgrises. Performances are worse for the scaling models that
have more negative RB and larger uncertainty, that is, the
width of the 90% confidence interval is comparatively larger. It
is worth noting that the At-site and At-siteBC models have
very similar accuracy, implying that bias correcting the shape
parameter does not significantly impact the ability of simulat-
ing the observed quantiles for Tg = 30 years. Performances for
larger Ty are explored using the At-site model as reference for
the metrics (Fig. 8b). RRMSE increases significantly for T >
50 years, with similar values across all models. The At-site and
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FIG. 6. Empirical CDFs compared with the GEV distribution parameterized with the IDF models for 7 = (left) 1, (center) 6, and (right)
24h for three representative gauges [identifiers (a)-(c) 52800, (d)—(f) 68200, and (g)-(i) 41500]. Frequencies are plotted as Gumbel

reduced variate.

Reg models are, on average, unbiased. For the At-siteBC
model, RB increases with T because bias correcting the shape
parameter makes the tail of the GEV distributions heavier
leading to larger quantiles at higher 7. This also results in lower
uncertainty. The scaling models exhibit instead negative mean RB
for Tr > 50 years (more significantly, for the Sc model).

As a next step, we investigate how performances vary with 7,
reporting results in Figs. 9a and 9b for N, = 5 gauges, no ad-
ditional daily gauges, and Tgx = 10 and 100 years for the

observed and At-site reference quantiles, respectively. When
compared with the empirical quantiles, performances are similar
for At-site, At-siteBC, and Reg models, with small variations of
the metrics across the durations except for a slightly negative
RB for 7 < 12h. The scaling models (Sc and RegSc) exhibit
instead significant negative biases for 7 < 12h; their per-
formances degrade particularly at = = 1h where the mean
RB and RRMSE reach about —15% and 22%, respectively.
Interestingly, for all models the simulation uncertainty increases
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FIG. 7. Heat maps summarizing (a) RD and (b) RRMSE computed for each model using all gauges as a function of Tg and 7. For each of
(a) and (b), the heat maps in the top row show the values calculated using observed quantiles as reference and those in the bottom row
show the values calculated using At-site quantiles as reference. For each case, the minimum and maximum values of the performance

metrics (in percent) computed across all Tk and 7 are reported.

with 7. These findings are largely in line with results for the
case of Tg = 100 years with At-site quantiles used as ref-
erence (Fig. 9b), with the exceptions that (i) the At-site and
At-siteBC models are positively biased, (ii) the Reg model
is unbiased, and (iii) for all models, RRMSE for 7 = 6h is
the largest.

The effect of the number of available gauges on model
performances is explored in Figs. 10-12 . We first evaluate how
accuracy changes with N; when no additional daily gauges are
used, showing in Figs. 10a and 10b results for 7 = 30 min and

= 10 (100 years) for the observed (At-site) reference
quantiles. In all cases, (i) the uncertainty across the simulations
is very large for N, = 1 gauge and decreases dramatically up to
N, =5 and at a lower rate for N, > 5, remaining constant after

N, = 50 gauges (not shown); (ii) the average RB is constant
across N,; and (iii) the mean RRMSE decreases as N, grows,
reducing its value of ~30% when N, increases from 1 to 50. We
subsequently investigate the value of additional information
provided by daily rain gauges, considering the case of N, = 1
and N4, = 10 that mimics the plausible situation of a single
high-resolution gauge available (e.g., at the closest airport)
plus additional daily gauges. Figure 11 displays the relations
between metrics and Ty for At-Site and scaling models with
Nogn = 0 and 10, using the At-Site quantiles as reference. It is
apparent that adding ten daily gauges to the calibration of the
scaling models results in a dramatic reduction of uncertainty,
as quantified by the width of the 90% confidence interval de-
creasing by ~50%, and RRMSE, with reductions ranging
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FIG. 8. Performance metrics of the IDF models as a function of T for 7 = 30 min, N, = 5 high-resolution gauges, and N4, = 0 additional
daily gauges using (a) observed and (b) At-site quantiles as reference. The solid line is the metric mean across the Monte Carlo simu-
lations, and the shaded area is the 90% confidence interval. Three randomly chosen simulations are also shown with dashed, dotted, and

dot—dashed lines.

from —7.6% for Tg = 10 years to —22% for Tk = 200 years. To
summarize results of the simulations, Fig. 12 presents heat
maps of mean and width of the 90% confidence intervals of
RB and RRMSE for all models as a function of N, and N4y,
for 7 = 30min and Tx = 100 years. The key messages are
(i) when Nyg;, = 0, results do not change significantly for N, =
10; and (ii) the largest improvement introduced by the scaling
models is for N, = 5 and Ny, = 10.

5. Discussion

We first interpret our findings in the context of the rainfall
climatology of the study region. Following previous studies
indicating that elevation exerts a moderate to significant con-
trol on rainfall processes and statistical properties in this area
(Mascaro 2017, 2018), we investigate the relations between
IDF model parameters and gauge elevation, z. Figures 13a—c
show these relations for the GEV parameters of the At-site and
Sc models for 7 = 24 h, chosen as an example, while Fig. 13d
presents the corresponding correlation coefficient (CC) as a
function of 7 (results are similar for the other models).
The spatial maps of the parameters for two representative

durations are also reported in Fig. S2 of the online supple-
mental material. The effect of elevation is important for w,
(0.67 = CC = 0.80) and, to a lesser extent, o, (0.26 = CC =
0.65); for both parameters, the p values of the linear regressions
are always lower than 0.01. The shape parameter &, does not
exhibit instead significant orographic or geographic control.
This is also true for the scaling exponent 7 as displayed in Fig. 13e
and quantified by the high p values of the linear regressions with z
(not shown). These findings suggest that terrain affects mainly the
mean of the distributions of annual rainfall maxima, but it does not
induce important effects on the shape of the distributions (i.e., the
right tail) and the rainfall scaling properties. This result is consistent
with Blanchet et al. (2016) for location and scale parameters, while it
differs for shape parameter and scaling exponent that, in their study
region, are affected by topography and distance from the coast.
The different elevation controls on GEV parameters and
scaling exponent are a main factor impacting IDF model per-
formances. In general, since all IDF models require estimates
of u, and o, that are affected by terrain, the ability to repro-
duce extreme rainfall in this region depends on the elevation
range of the available high-resolution gauges. In particular,
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FIG. 9. Asin Fig. 8, but for the performance metrics plotted as a function of 7 for N, = 5, N,4, = 0, and T = 10 or 100 years respectively
using observed or At-site reference quantiles.

At-site, At-siteBC and Reg models use information on pa- variability of model parameters. In our study region, ele-
rameter variability based on gauge elevation to estimate vation controls the mean of the annual rainfall maxima
quantiles at each duration. Scaling models derive instead distributions, which is related to the GEV scale and location
quantiles at the different durations through the scaling expo- parameters. The shape parameter and scaling exponent do
nent 7, which exhibits spatial random variations. As a result, not exhibit instead clear spatial patterns. These features lead
when a sufficient number of high-resolution gauges is available to distinct impacts on model performance that may vary at
to capture the orographic control on w, and o (e.g., N, = 10), other sites with different rainfall regimes. Future work based
At-site, At-siteBC and Reg models overperform scaling on synthetic experiments should investigate the relative
models because, for these, that number of gauges does not importance of each model parameter under different scenar-
allow describing in detail the spatial variability of 5. An ad- ios where the corresponding spatial variability is assumed to
ditional factor conditioning the accuracy of simple scaling be random or linked to geographic features (e.g., latitude,
models is the adoption of a single scaling exponent, which longitude, elevation, and distance from the coast).

may not hold at all gauges, as shown in Fig. 5. 2) Asexpected, model uncertainty and RRMSE decrease with

the number of high-resolution gauges N, used for calibra-
tion. This reduction is dramatic from N, = 1 to N, = 5, less
significant for N, > 5, and negligible after N, = 50. The
mean bias is mostly constant with N,.

3) All models exhibit similar performances in the ability
to simulate observed quantiles of relatively short records
(=30 years), apart from the scaling models that display
slightly negative biases at shorter durations.

1) Performances of IDF models are impacted by the controlof ~ 4) If N, is large enough to allow capturing with sufficient
rainfall regime and local geographic features on the spatial details the spatial variability of the GEV scale and location

6. Conclusions

The comparison of local, regional, and simple scaling models
for rainfall IDF analysis conducted in this study using 223 rain
gauges in central Arizona makes it possible to draw the fol-
lowing recommendations supporting the generation of IDF
curves in other regions:
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FIG. 10. As in Fig. 8, but for the performance metrics plotted as a function of N, for 7 = 30 min, N4, = 0, and Tx = 10 or 100 years
respectively using observed or At-site reference quantiles.

parameters at different durations, the At-site, At-siteBC
and Reg models have the best performances when compared
to quantiles of the GEV distributions estimated locally
(the At-site quantiles). In our study region, this occurs

when N, = 10. The Reg and At-site model are unbiased
and slightly positively biased, respectively. The bias
correction of the shape parameter based on global rain-
fall records performed in the At-siteBC model leads to

=30 min; N, = 1; reference: observed quantiles
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FIG. 11. Mean and 90% confidence interval of performance metrics of the At-Site, Sc, and RegSc IDF models as a function of Tk for
7 = 30min, N, = 1 high-resolution gauge, and N4, = 0 and 10 additional daily gauges using At-site quantiles as reference.
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(a), (b) RB and (c), (d) RRMSE for all models as a function of N, (rows) and N4, (columns) for 7 = 30 min,
Tr = 100 years, and At-site quantiles used as reference. The vertical gray lines separate the regions with

N24h = 0, 1= N24h = 10, and N24h = 20.

positive biases at larger T. Since these return periods are
used for design of critical infrastructure, the use of the At-
siteBC model is recommended. Future work should focus
on (i) investigating whether the relations for correcting the
bias of shape parameter estimates change for durations

below 24 h and (ii) incorporating the shape parameter bias
correction in regionalization techniques.

5) The accuracy of scaling models is affected by two main
factors, including the ability to capture the spatial vari-
ability of the scaling exponent, and the possibility that the
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FI1G. 13. (a)—(c) Relation between GEV parameters and gauge elevation z for 7 = 24 h and At-Site and Sc models,
(d) CC between GEV parameters and z as a function of 7 for At-Site and Sc (available only for 7 = 24 h) models, and
(e) relation between scaling exponent and z for Sc model and mean of annual rainfall maxima X, used in RegSc.

assumption of a single scaling exponent may not hold. This
may require the use of more complicated multiple scaling
models (Burlando and Rosso 1996; Van de Vyver 2018). In
our study site, simple scaling IDF models overperform
local and regional models when N, = 5 and more than 10
additional daily gauges are available. These conditions can
be very common in developing countries.
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APPENDIX

Heterogeneity Measure
Following Hosking and Wallis (1997), let ¢%, £, and £ be
the regional L-coefficient of variation (L-CV), L-skewness,

and L-kurtosis, computed by averaging the sampling
L-moments ratios of records of N gauges with weights
given by the sample size. Let also V be the weighted standard
deviation of the sample L-CVs (labeled Vi,p,). The compu-
tation of the heterogeneity measure requires the follow-
ing steps:

1) The kappa distribution is fitted to the regional L-moment
ratios. This four-parameter distribution is chosen for its
ability to represent many distributions used for rainfall
extremes. In such a way, no commitment is made on the
underlying distribution.

2) Then N, = 2000 statistical simulations are conducted. In
each simulation, N variates are generated from the kappa
distribution using the same record lengths of the original
gauges. Figures 2d-f show examples of scatterplots of
L-skewness versus L-kurtosis for one simulation of kappa
covariates for three durations.

3) Calculate V for each simulation, and from these 2000 values
compute the mean, wy.

4) Compute the heterogeneity measure H* = V,/uy, which
allows detection of operationally homogeneous regions
when a large number of gauges is used, as in this case where
N = 223.

Values of H* close to 1 indicate that the sample L-CVs exhibit
similar variability to those generated by a single homogenous
region.
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