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ABSTRACT: Intensity–duration–frequency (IDF) analyses of rainfall extremes provide critical information to mitigate,

manage, and adapt to urban flooding. The accuracy and uncertainty of IDF analyses depend on the availability of historical

rainfall records, which are more accessible at daily resolution and, quite often, are very sparse in developing countries.

In this work, we quantify performances of different IDF models as a function of the number of available high-resolution

(Nt) and daily (N24h) rain gauges. For this aim, we apply a cross-validation framework that is based on Monte Carlo

bootstrapping experiments on records of 223 high-resolution gauges in central Arizona. We test five IDF models based on

(two) local, (one) regional, and (two) scaling frequency analyses of annual rainfall maxima from 30-min to 24-h durations

with the generalized extreme value (GEV) distribution. All models exhibit similar performances in simulating observed

quantiles associatedwith return periods up to 30 years.WhenNt. 10, local and regionalmodels have the best accuracy; bias

correcting the GEV shape parameter for record length is recommended to estimate quantiles for large return periods.

The uncertainty of all models, evaluated via Monte Carlo experiments, is very large when Nt # 5; however, if N24h $ 10

additional daily gauges are available, the uncertainty is greatly reduced and accuracy is increased by applying simple scaling

models, which infer estimates on subdaily rainfall statistics from information at daily scale. For all models, performances

depend on the ability to capture the elevation control on their parameters. Although our work is site specific, its results

provide insights to conduct future IDF analyses, especially in regions with sparse data.
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1. Introduction
Urban flooding is being increasingly recognized as a pressing

global challenge because of growing population concentra-

tion in urban regions, the rapid conversion of natural land-

scapes into impervious surfaces, and climate change (National

Academies of Sciences, Engineering, and Medicine 2019;

Zhang et al. 2018). As a result of the complex combination

of these factors, urban areas have been suffering significant

socioeconomic impacts from flooding not only due to cata-

strophic events (e.g., hurricanes; NWS 2019), but also after

more frequent and less intense storms (University of Maryland

College Park and Texas A&M University 2018). A key task

to mitigate, manage, and adapt to urban flooding is the

characterization of rainfall extreme statistics at different

durations, with focus on short time accumulations (,24h)

that—in several cases—represent the hydrologic response

times of urban watersheds. In water resources engineering, this

statistical information is synthesized through intensity–

duration–frequency (IDF) curves, which provide an estimate

of rainfall intensities i(TR, t) for different time durations

t and frequencies F, usually expressed as return periods

TR 5 1/(1 2 F).

The generation of IDF curves has been the subject of several

studies, mainly in the areas of technical and stochastic

hydrology (e.g., Burlando and Rosso 1996; Koutsoyiannis

et al. 1998; Madsen et al. 2002; Requena et al. 2019; Tyralis and

Langousis 2019; and many others). When rainfall records are

available at sufficiently fine temporal resolutions at a given site,

the most common approach to conduct local IDF analyses

consists of estimating i(TR, t) via frequency analysis of annual

rainfall maxima at different t with parametric statistical dis-

tributions. For example, as suggested by the extreme value

theory (Coles 2001), the generalized extreme value (GEV)

distribution has been shown to be able to model well annual

rainfall maxima at several locations (e.g., Papalexiou and

Koutsoyiannis 2013; Blanchet et al. 2016). If historical rainfall

records are available at multiple sites, regional IDF curves

are often generated by (i) spatially interpolating i(TR, t) or

parameters of the statistical distributions from local or at-site

estimations, or (ii) applying regionalization techniques that

merge rain gauges into homogeneous regions to increase ro-

bustness in the estimate of the statistical distribution pa-

rameters (Hosking and Wallis 1997). As a notable example,

the regionalization technique proposed by Hosking andWallis

(1997) was adopted in the National Oceanic and Atmospheric

Administration (NOAA) Atlas 14 to generate IDF curves for

most of the conterminous United States (CONUS; Bonnin

et al. 2004).

The accuracy and uncertainty of IDF analyses are depen-

dent on quality and availability of historical records. In de-

veloped countries, rainfall data are in general available;

however, data availability is higher at daily scale compared to

subdaily resolutions in terms of both spatial density and record

length. As a result, the uncertainty of IDF estimates tends to be

higher for subdaily durations. In several developing countries,
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where urbanization proceeds at fast rates (Cohen 2006) and

IDF curves are urgently needed, the problem of data avail-

ability is even more critical, since rainfall records are available

at sparse locations (Sane et al. 2018) and almost exclusively at

daily resolution (Lumbroso et al. 2011; Liew et al. 2014). These

challenges have significantly limited the ability to carry out

IDF analyses, so that recent studies have proposed the use of

satellite (Ombadi et al. 2018), reanalysis products (Courty et al.

2019), and weather radars (Marra and Morin 2015) to com-

plement observations from sparse rain gauges.

A strategy to address the lack of rain gauges at subdaily

resolution is to infer estimates of i(TR, t) for t , 24 h from

information on the rainfall statistics at the daily scale,

which—as said—is more largely available (Koutsoyiannis and

Foufoula-Georgiou 1993; Burlando and Rosso 1996; Menabde

et al. 1999; Koutsoyiannis et al. 1998). A class of statisti-

cal models, known as scaling models, utilizes the evidence

of temporal scaling properties of rainfall processes (Lovejoy

and Schertzer 1985; Deidda et al. 1999; Venugopal et al. 1999;

Mascaro et al. 2013, 2014) to derive simple relations linking

parameters of the probability distributions of rainfall maxima

at different subdaily durations to those estimated at daily scale.

While the theoretical background of scaling models has been

outlined more than two decades ago (e.g., Burlando and Rosso

1996), these techniques have been mainly applied for analyses

at distinct locations, because of the lack of networks of long-

term high-resolution rain gauges. Notable exceptions are the

studies by Yu et al. (2004), Borga et al. (2005), Bara et al.

(2010), and Blanchet et al. (2016) who used scaling models to

derive regional IDF relationships in areas of northern Taiwan

(;7400 km2), northern Italy (;6400 km2), western Slovakia

(;14 000 km2), and southern France (;38 000 km2) with 46,

91, 19, and ;300 rain gauges, respectively. More recently,

Sane et al. (2018) applied a scaling model with 14 rain

gauges to derive IDF curves for the entire country of Senegal

(;197 000 km2).

The present study has the main goal of rigorously testing the

accuracy of different models for IDF analysis as a function of

the number of rain gauges available at different temporal

resolutions. To pursue this goal, we use data from a high-

resolution network of 223 gauges with record lengths from

20 to 40 years located in an area of ;29 600 km2 in central

Arizona including the Phoenix metropolitan region (Mascaro

2017, 2018). We apply existing IDF models based on local

(or at-site), regional, and scaling frequency analyses with the

GEV distribution. In addition, we (i) evaluate the effect of bias

correcting local estimates of the GEV shape parameter for

record length (Papalexiou and Koutsoyiannis 2013) and (ii)

propose and test for the first time a simple IDF model that

applies the scaling theory to the regional growth curves defined

byHosking andWallis (1997). The IDFmodels vary in terms of

number of regional and spatially interpolated parameters.

While all models require high-resolution rainfall records for

their calibration, scaling models also take advantage of the

availability of additional daily gauges. We first quantify the

performance of all methods using all available gauges.

Performance is assessed through metrics measuring the

ability to simulate empirical and at-site quantiles.We then apply a

cross-validation framework based on Monte Carlo bootstrapping

experiments to quantify the uncertainty of model perfor-

mances under different combinations of available high-

resolution and daily rain gauges. Finally, we discuss our find-

ings in the context of the rainfall regime of our study region and

investigate the physical factors affecting performances of the

different models. Results of this work will be useful, in future

applications, to guide the selection of the technique for IDF

generation that provides the best accuracy and lowest uncer-

tainty under a given combination of available daily and high-

resolution rain gauges.

2. Study area and dataset
The study area is located in a region in central Arizona that

includes the Phoenix metropolitan area (Fig. 1a). The majority

of the region is part of the Sonoran Desert where elevation is

low (from 200 to 600mMSL), while a minor portion is located

in the transition zone to the Colorado Plateau, where elevation

reaches up to 2000m MSL in the Mogollon Rim. Climate is

arid and characterized by a strong seasonality affecting the

rainfall regime. In the summermonths from July to September,

the occurrence of the North American monsoon leads to local-

ized convective thunderstorms with high rainfall intensity over

short durations (,1 h). From November to March (hereinafter

called winter), prolonged dry periods are interrupted by cold

fronts that cause widespread storms lasting for up to multiple

days. As a result of these different rainfall-generating mecha-

nisms, annual rainfall maxima occur mainly in winter for t $

12h and almost exclusively in summer for t # 2 h (Fig. 1b).

Mascaro (2017, 2018) found also that annual rainfall maxima

tend to increase with elevation and that the orographic control is

more significant for larger time accumulations.

We use records of the Automated Local Evaluation in Real

Time (ALERT) rain gauge network of the Flood Control

District of the Maricopa County (FCDMC), installed to

monitor in real time regional and localized storms, and support

flood and flash-flood forecasting. The gauges have been grad-

ually deployed since the beginning of the 1980s; as of 2020,

their number is 365. In this study, 223 gauges with more

than 20 years of observation are selected for the analysis

(Figs. 1c,d). These gauges cover an area of;29 600 km2, with a

mean density of ;1 gauge every 100 km2 that increases to

4.3 gauges in urban areas covering ;2000 km2. The gauge el-

evations range from 220 to 2325mMSLwith themajority (195)

installed below 800m. All gauges are of the tipping-bucket

type, with an accumulated rain depth of 1mm. More details on

this dataset and the characteristics of the study region are

provided by Mascaro (2017, 2018), who used these rainfall

records to investigate the spatiotemporal variability of rainfall

statistical properties and the seasonality of daily extremes.

The FCDMC provides gauge data in raw format containing

the tipping instants in seconds. We derive the cumulative

rainfall signal for each year from the tipping instants with

the technique described by Mascaro et al. (2013; see the

appendix), which allows avoiding the discretization caused by

the box counting method, that is often applied, and generating

instead a smoother and more realistic signal. From this, the

annual maximum rainfall intensities (mmh21) are extracted
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for t5 30min, 1, 2, 3, 6, 12, and 24 h through a moving window

with duration t. These durations are selected because a single

scaling regime, which is needed to apply the IDF scaling

models, emerges from 24 h to 30min, consistent with previous

applications (Menabde et al. 1999). We note that another re-

gime appears in many stations for durations below 30min,

which are typical of single storms and cells. The existence of

separate regimes at lower durations has been also reported by

Innocenti et al. (2017) in an analysis of;2700 stations in North

America. In particular, these authors found a breaking point at

;1 h, which is higher than ours; this difference can be attrib-

uted to the diverse resolution of their datasets (15-min rainfall

data with resolution of 2.54mm). The approach proposed

by Blanchet et al. (2016), in turn based on Papalexiou and

Koutsoyiannis (2013), is adopted to retain or discard the an-

nual rainfall maxima in years withmissing data. The idea of this

method is that, even if some data are missing in a given year,

the annual maximum could have still been observed on that

year and this value should be preserved. Assuming thatN years

without missing data are available and that a given year has a

fraction f of missing data, the method involves the following

steps: (i) the annual maxima of the N years are sorted, (ii) for

a year with missing data, the annual maximum rainfall is

extracted and its rank in the N sorted values is found, and

(iii) this record is discarded or preserved if its rank is below

or above fN, respectively. This procedure is applied for each

duration t. The resulting dataset includes a total of 44 781

annual rainfall maxima for seven durations over 223 gauges.

3. Methods

a. The GEV distribution
The GEV distribution is used to describe the frequency of

annual rainfall maxima at different durations t in all IDF

models tested here. If It is the random variable of the rainfall

maxima, the cumulative distribution function (CDF) of the

GEV is defined as
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where kt 2 (2‘,1‘) is the shape parameter, mt 2 (2‘,1‘) is
the location parameter, and st . 0 is the scale parameter. For

kt 5 0, the GEV is of type I or Gumbel (exponential) and x is

defined in the set2‘, x,‘. For kt . 0, the GEV is of type II

or Fréchet and is ‘‘heavy tailed’’ (subexponential); in this case,

FIG. 1. (a) Study area within the county boundaries inArizona. (b) Percent occurrence of annual rainfall maxima,

averaged across the 223 gauges, for different time accumulations t in summer (July–September), winter

(November–March), and other months. (c) Digital elevation model (derived from the U.S. Geological Survey

National Elevation Dataset) of the study region in Maricopa, La Paz, Yavapai, and Pinal Counties along with

locations of the rain gauges of the FCDMC network, with colors indicating the corresponding record length.

Urbanized areas are also shown. (d) Distribution of the intergauge distance.

SEPTEMBER 2020 MASCARO 1521

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/59/9/1519/5001750/jam

cd200094.pdf by guest on 27 Septem
ber 2020



mt 2 (st/kt) # x # ‘. If kt , 0, the GEV is of type III or

Weibull and is bounded above so that 2‘ , x # mt 2 (st/kt).

The quantile of theGEV for a given return periodTR5 1/(12 F)

is computed as

i(T
R
, t)5

8>>>><
>>>>:

m
t
2

s
t

k
t

�
12

�
2log

�
12

1

T
R

��2kt
�

k
t
6¼ 0

m
t
2s

t
log

�
2log

�
12

1

T
R

��
k
t
5 0

.

(2)

Prior to applying the IDF models, we assess the suitability

of the GEV through L-moments ratio diagrams and goodness-

of-fit (GOF) tests, including Lilliefors, Anderson–Darling,

and Cramér–von Mises. The GOF tests are applied locally

following the modification proposed by Deidda and Puliga

(2006) to account for the data discretization at 1-mm

resolution. To account for results of multiple tests, the

false discovery ratio test of Wilks (2006) is then used to

evaluate the field or global significance with the resulting p

values. The false discovery ratio test is performed at a

global significance level aglobal 5 0.05; to consider the pres-

ence of spatial correlation of the rainfall records (Mascaro

2017), we conduct the local test at the significance level alocal5
2�aglobal, as suggested by the synthetic experiments of Wilks

(2016; his Fig. 4). Since some of the IDFmodels tested here are

based on regionalization techniques, the GOF metric Z pro-

posed by Hosking and Wallis (1997) is also computed. This

metric quantifies the degree to which the L-moments of the

fitted GEV distribution match the regional averages of the

sampling L-moments. The fitted GEV is considered adequate

if jZj # 1.64.

b. Statistical models of rainfall IDF analysis
We apply two IDF models based on at-site estimations, one

IDF model based on a regionalization technique, and two IDF

simple scaling models. The models are described in the next

sections, and their main features are summarized in Table 1.

1) IDF MODELS BASED ON LOCAL

PARAMETER ESTIMATION

The simplest IDF model (hereinafter labeled as At-site)

consists of locally estimating the GEV parameters kt, mt, and

st for each t, using the probability-weighted moments (PWM)

method, which has been shown to perform better than alter-

native techniques for relatively short sample sizes (Hosking

and Wallis 1997). In an analysis of long-term global daily

rainfall, Papalexiou and Koutsoyiannis (2013) showed that the

Fréchet distribution (kt . 0) is the best suited to model annual

maxima and proposed a set of analytical equations to bias

correct kt as a function of the sample size. Here, to account for

the sample size effect, an additional at-site IDF model is in-

troduced where kt at each gauge is bias corrected using the

relations proposed by Papalexiou and Koutsoyiannis (2013),

and mt, st are reestimated conditioned on the bias-corrected

kt. This IDF model is labeled At-siteBC (or At-site bias cor-

rected). For both At-site and At-siteBC models, estimates of

i(TR, t) at ungauged locations can be obtained by spatially

interpolating kt, mt, and st and, then, applying Eq. (2). If D is

the total number of durations, the application of these methods

requires then 3D maps (Table 1).

2) IDF MODEL BASED ON REGIONAL

PARAMETER ESTIMATION

Regionalization techniques have been proposed to increase

the robustness of parameter estimation by combining records

of multiple stations located in a region where the underlying

statistical distribution of the annual rainfall maxima can be

considered the same except for the mean. Here, we use the

regionalization technique based on the index flood procedure

proposed by Hosking and Wallis (1997) and used in several

studies (Fowler and Kilsby 2003; Bonnin et al. 2004; Liu et al.

2015; García-Marín et al. 2019; among others). This method

requires the estimation of a regional dimensionless distribu-

tion, known as growth curve, using the weighted averages of

the L-moments calculated from records of all stations in the

region (the weights are the sample sizes at each station). Local

estimates of i(TR, t) are then obtained by multiplying the TR

TABLE 1. Overview of the IDF statistical models. Symbols are defined in the main text. On the basis of the categories described in

section 3, At-site and At-siteBC are local models, Reg is a regional model, Sc is a local scaling model, and RegSc is a regional scaling

model. The estimate of variables identified by (1) is improved when additional daily gauges are available.

Model Description of parameter estimation

Data required for application at

ungauged sites

No. of regional parameters (P)

and maps (M)

At-site For each t, local estimation of kt, mt,

and st

Estimates of kt, mt, and st from

interpolated maps

P 5 0; M 5 3D

At-siteBC For each t, bias correction of kt and local

reestimation of mt and st

Estimates of kt, mt, and st from

interpolated maps

P 5 0; M 5 3D

Reg For each t, regional estimation of kt, mt,

and st of growth curves

Regional kt, mt, and st of growth curves

for each t; estimates of xt from

interpolated maps

P 5 2D; M 5 D

Sc Local estimation of h, k*, mt0, and

st0 (t0 5 24 h)

Estimates of k*(1), mt0
(1), st0

(1), and h from

interpolated maps

P 5 0; M 5 4

RegSc Regional estimation of k, m, and s of a

single growth curve valid for all t(*);

regional estimation of h for xt

Regional k, m, and s of the single growth

curve; estimates of x
(1)
t0 and h from

interpolated maps

P 5 2; M 5 2
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quantiles of the growth curve, iGC(TR, t), by the index flood, a

variable representative of local rainfall characteristics. In this

study, the GEV distribution is used to model the growth curve

and the mean annual rainfall maxima at duration t, xt , is uti-

lized as index flood, leading to

i(T
R
, t)5 x

t
i
GC

(T
R
, t). (3)

The application of the regionalization method at ungauged

sites can be achieved by spatially interpolating the sample in-

dex floods at available stations. This IDF model is labeled as

Reg; its application requires 2D regional parameters (two

GEV parameters of the growth curves for D durations; note

that, since the mean of the growth curve is 1, the third pa-

rameter is calculated as a function of the first two) andDmaps

of xt (Table 1). Here, we apply the Reg IDF model using a

single homogenous region, whose existence is tested by com-

puting, for each considered duration, the heterogeneity mea-

sureH* proposed by Hosking andWallis (1997) and described

in the appendix.

3) LOCAL AND REGIONAL IDF SCALING MODELS

A brief theoretical overview of simple scaling models is first

provided. Based on empirical findings, Koutsoyiannis et al.

(1998) proposed a mathematical formula to link i(TR, t) with

t and TR:

i(T
R
, t)5 a(T

R
)(t1 u)

2h
, (4)

where a(TR) is determined from the probability distribution of

the maximum rainfall intensity (e.g., the GEV), and u $ 0 and

0 , h # 1 are nonnegative coefficients to be estimated at the

target site. By separating TR from t, an important advantage of

Eq. (4) is that it allows relating rainfall intensities at different

durations (e.g., t and t0) for the same TR:

i(T
R
, t)5

(t1 u)
2h

(t
0
1 u)

2h i(TR
, t

0
). (5)

For u 5 0, it has been shown (e.g., Burlando and Rosso 1996;

Blanchet et al. 2016) that, when applied to random variables,

Eq. (5) corresponds to the hypothesis of simple scaling:

I
t
5
d
(t/t

0
)2hI

t0
, (6)

where the symbol 5
d

indicates equality in distribution and h

is the scaling exponent. Equation (6), in turn, implies that

moments of order q are related as

E(Iqt )5 (t/t
0
)2qhE(Iqt0

) . (7)

A simple scaling model can be derived from Eq. (7) using

the GEV distribution under the assumption of a constant

shape parameter for all durations (i.e., kt 5 k*). In this

FIG. 2. The L-moment ratio diagrams (i.e., relation between L-skewness and L-kurtosis) for (a)–(c) observed records of annual rainfall

maxima at durations t5 1, 6, and 24 h and (d)–(f) the corresponding synthetic records generatedwith the kappa distribution (see appendix

for details). The sampling L-moment ratios are color coded on the basis of the sample length and are plotted along with the corresponding

means (square). Theoretical relationships are plotted for the Gumbel (triangle), generalized Pareto (GP), generalized logistic (GL),

generalized extreme value (GEV), lognormal (LN), and Pearson Type III (PT3).
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case, Eq. (7) leads to the following scaling relations for mt

and st:

m
t
5 (t/t

0
)2hm

t0
and (8a)

s
t
5 (t/t

0
)
2h

s
t0

(8b)

Equations (8) imply that, if the GEV parameters are known

at a coarse scale t0 (here, 24 h), then GEV parameters can be

derived at smaller scales t via the scaling exponent h. Recently,

the accuracy of this scaling model was tested by Innocenti et al.

(2017) on ;2700 gauges located in North America, showing

adequate performances over different scaling regimes from 1 h

to 7 days. In this study, we follow the application of the GEV

scaling model of Blanchet et al. (2016), which requires the

estimation of mt0, st0, k*, and h at each gauge by maximizing

the log-likelihood function that includes all durations at the

same time (Blanchet et al. 2016). To apply this model (here-

inafter labeled Sc) at ungauged sites, the four parameters have

to be spatially interpolated; as a result, the model requires four

spatial maps (Table 1). When available, records of additional

daily gauges can be used to improve the accuracy of the spatial

maps of mt0, st0, and k*.

In addition to the at-site scaling model Sc, we develop here

(to our knowledge, for the first time) a regional simple scaling

model by combining the scaling relations in Eqs. (5) and (7)

to Eq. (3) linking the quantiles of local distribution and

growth curve. Using Eq. (3), the ratio between the quantiles

of the local distributions for two durations t and t0 can be

expressed as

i(T
R
, t)

i(T
R
, t

0
)
5

x
t

x
t0

i
GC

(T
R
, t)

i
GC

(T
R
, t

0
)
. (9)

Per Eq. (5) with u 5 0: i(TR, t)/i(TR, t0) 5 (t/t0)
2h. It is also

easy to note that, for q 5 1, Eq. (7) implies that

x
t=xt0 5 (t/t

0
)
2h

. (10)

As a result, Eq. (9) reduces to iGC(TR, t) 5 iGC(TR, t0),

which shows that, under the simple scaling hypothesis, the

regional growth curve is the same for all durations. This

implies that rainfall intensity quantiles can be derived at

each location and for any duration t as a function of xt0, the

scaling exponent h of Eq. (10), and the GEV parameters of

the single growth curve:

i(T
R
, t)5 x

t0
(t/t

0
)2hi

GC
(T

R
, t

0
). (11)

This IDF model, labeled RegSc, requires two regional pa-

rameters of the GEV distribution modeling the single growth

curve and two spatial maps of xt0 and h (Table 1). The avail-

ability of additional daily rain gauges allows improving the

accuracy of the spatial maps of xt0.

c. Monte Carlo bootstrapping simulations
The IDF models are assessed as a function of different

numbers of available high-resolution and daily rain gauges

through cross validation with Monte Carlo simulations based

on bootstrap resampling. The simulations consist of the

following steps:

1) First Nval 5 100 high-resolution gauges are randomly se-

lected from the N 5 223 available and are used as inde-

pendent sites for validation.

2) From the (N 2 Nval) remaining gauges, Nt stations are

randomly selected as high-resolution gauges and used to

calibrate all models. Performance metrics (see section 3d)

are computed at the Nval validation gauges.

3) From the (N 2 Nval 2 Nt) remaining gauges, N24h gauges

are randomly extracted and used as additional daily gauges.

To quantify the value of increasing information available at

daily scale, N24h 5 1 gauge is initially selected and, then,

other gauges are recursively added until N24h 5 50, result-

ing in the tested values N24h 5 1, 2, . . . , 10, 20, . . . , 50. This

implies that, for example, the gauges selected forN24h 5 30

include the stations extracted forN24h 5 20. Note that daily

records are simply obtained by aggregating the high-resolution

records.

4) For a given combination ofNt andN24h stations, the Sc and

RegSc scaling models are calibrated using the Nt high-

resolution and N24h daily stations and performance metrics

at the calibration gauges are quantified.

5) Step 1 is repeated 10 times to characterize the sampling

variability of the validation gauges. For each Nval, step 2 is

repeated 10 times for eight values of Nt ranging from 1 to

50 to characterize the sampling variability of the high-

resolution gauges once the validation stations are fixed. For

given Nval and Nt, steps 3 and 4 are repeated 10 times to

characterize the sampling variability of the daily gauges.

Overall, 10 3 10 3 8 3 10 5 8000 Monte Carlo iterations

are performed.

The application of the IDF models at ungauged sites (i.e., the

Nval validation gauges) involves the spatial interpolation of the

TABLE 2. Minimum and maximum values across the 223 gauges

of the local and bias-corrected (in parentheses) estimates of the

GEV parameters used for the At-site and At-siteBC models,

respectively. The ranges reported in italics for t 5 24 h are for

parameters k*, mt0, and st0 of the Sc scaling model.

t kt mt (mmh21) st (mmh21)

30min 20.38–0.40 14.7–45.6 7.2–19.1

(20.01–0.20) (14.7–45.4) (7.6–18.3)

1 h 20.27–0.41 8.5–28.2 4.0–12.3

(0.02–0.19) (8.6–27.9) (4.5–11.7)

2 h 20.26–0.37 5.2–16.6 1.9–7.5

(0.03–0.19) (5.3–16.1) (2.0–6.7)

3 h 20.35–0.39 4.0–11.7 1.4–5.5

(0.00–0.19) (4.1–11.4) (1.4–4.9)

6 h 20.39–0.44 2.5–6.8 0.9–2.8

(20.03–0.21) (2.6–6.7) (0.9–2.6)

12 h 20.32–0.39 1.5–4.5 0.5–2.0

(0.00–0.20) (1.5–4.4) (0.5–1.7)

24 h 20.36–0.33 0.9–2.6 0.3–1.3

(0.00–0.18) (0.9–2.6) (0.3–1.3)

(20.44–0.44) (0.9–2.6) (0.3–1.1)
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model parameters (see Table 1 and section 3b), which can be

achieved with several techniques (see, e.g., Watkins et al.

2005). Since evaluating the performance of the spatial inter-

polation method is out of the scope of this study, here we apply

the inverse distance weighting interpolation method, which is

widely known and easy to implement while being relatively

accurate in our region (analyses not shown).

d. Model diagnostic
The statistical models are diagnosed through a set of

metrics proposed by Hosking and Wallis (1997). For a given

TR, rainfall duration t, and site j, themth IDF model returns

the quantile of annual maximum rainfall intensity imj (TR, t).

The relative bias from a reference intensity iREF
j (TR, t) is de-

fined as

RB
j
5

imj (TR
, t)2 iREF

j (T
R
, t)

iREF
j (T

R
, t)

3 100: (12)

To provide an overall picture of the model performance, the

mean relative bias and relative root-mean-square error can be

respectively computed as

RB5
1

N
�
N

j51

RB
j

and (13)

RRMSE5

 
1

N
�
N

j51

RB2
j

!1/2

, (14)

where N is the total number of validation stations. Note that,

for simplicity, the symbols m, t, and TR have been omitted in

RBj, RB, and RRMSE. Here, the performance metrics are

computed using two references: (i) the quantiles of the em-

pirical distributions for TR up to 30 years and (ii) the quantiles

of the At-site IDF model for TR extending through 200 years.

In such a way, we test the models’ ability to simulate observed

records and quantiles derived for large, nonobserved TR, that

are often needed for infrastructure design.

4. Results

a. Evaluation of the GEV hypothesis

Figures 2a–c show the L-moment ratio diagrams for records

of annual rainfall maxima at t 5 1, 6, and 24 h, respectively, of

the 223 rain gauges (results are similar at other durations). In

all cases, the sample estimates are scattered around the GEV

line, suggesting that this distribution appears to be best can-

didate to model annual rainfall maxima at all durations. This is

corroborated by the facts that (i) stations with shorter (longer)

records tend to be located farther from (closer to) the GEV

line, and (ii) the sample means are located very close to or lie

exactly on the GEV line. Results of the GOF tests confirm the

suitability of the GEV distribution with at-site and bias-

corrected parameters (see section 4b). For both estimation

methods and all durations, the false discovery ratio test applied

to all GOF tests indicates that the global null hypothesis (i.e.,

the sample is drawn from a GEV distribution) cannot be

TABLE 3. Parameters of the GEV growth curves used in the Reg

IDF model and corresponding mean used for the single GEV

growth curve in the RegSc IDF model.

t kt mt (-) st (-)

30min 0.04 0.77 0.38

1 h 0.08 0.75 0.38

2 h 0.10 0.76 0.35

3 h 0.11 0.77 0.33

6 h 0.12 0.78 0.32

12 h 0.06 0.79 0.32

24 h 0.04 0.79 0.34

Mean 0.08 0.77 0.34

FIG. 3. Relation between shape parameter kt and sample size n

for t 5 1, 6, and 24 h. The shaded area is the region of sampling

variability for kt identified by Papalexiou and Koutsoyiannis

(2013) as mk(n) 6 sk(n), with mk(n) 5 0.114 2 0.69n20.98 and

sk(n) 5 0.045 1 1.27n20.70. For each t, the empirical densities are

shown for kt estimated with PWMat each site and bias corrected as

kt,BC(n) 5 0.114 1 [0.045/sk(n)][kt 2 mk(n)], where kt(n) and

kt,BC(n) are the original and bias-corrected parameters, respec-

tively (Papalexiou and Koutsoyiannis 2013). These values of kt are

used in the At-site and At-siteBC IDF models.
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rejected at aglobal 5 0.05. We also find that the regional GOF

metric Z of Hosking and Wallis (1997) is always lower in ab-

solute value than the suggested threshold of 1.64 (Z# 0.81 for

1# t # 24 h and Z5 1.56 for t 5 30min), thus indicating that

the null hypothesis of a regional GEV cannot be rejected for

any durations.

b. Estimation of local and regional GEV parameters
The local estimation of the GEV parameters conducted

to apply the At-site and At-siteBC models is summarized in

Table 2, which reports minimum and maximum parameter

values for all t (boxplots are also reported in Fig. S1 of the online

supplementalmaterial). Figure 3 also shows the relations between

shape parameter kt and sample size for three representative

durations. In all cases, the sample values of kt havemean larger

than 0 and variability that is captured very well by the relation

proposed by Papalexiou andKoutsoyiannis (2013), depicted by

the shaded area. The bias correction of kt significantly reduces

the variability of the shape parameter, as shown by the histo-

grams and the values in Table 2.

To apply the Reg IDF model, we first compute the hetero-

geneity measure H* and find this metric to range from 1.03 to

1.21 across the durations, suggesting that the hypothesis of a

single operationally homogeneous region can be sustained.

This is further supported by comparing visually the L-moment

ratio diagrams of (i) the observed samples (Figs. 2a–c) and (ii)

FIG. 4. Evidence of scaling for (a)–(c) GEV location (mt) and (d)–(f) scale (st) parameters, and (g)–(i) for the mean of annual rainfall

maxima (xt) in three representative gauges [identifiers (top) 52800, (middle) 68200, and (bottom) 41500]. The symbols are empirical

estimates of the corresponding variable, and the line is the linear regression. For mt and st, At-site and At-siteBC estimates are shown.

The values of the scaling exponent h are also reported.
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synthetic samples generated by a kappa distribution fitted to

the regional L-moments ratios (Figs. 2d–f; see appendix for

details). The regional GEV parameters of the growth curves

for the different durations are presented in Table 3, along

with the means used for the single growth curve in the RegSc

IDF model.

c. Evidence of simple scaling and estimation of GEV
parameters for the scaling models
We find evidence of scaling in the range from t 5 30min to

t5 24 h for mt, st and mean of annual rainfall maxima xt . This

is quantified by the coefficient of determination, R2, of the

linear regression between the log-transformed variables in

Eqs. (8a) and (8b) and (10) being larger than 0.99 for mt and

xt and 0.90 for st. As an example, Fig. 4 shows evidence of

scaling for three representative gauges with L-moments ratios

close to regional mean (identifier 52800) and in the upper-right

(identifier 68200) and lower-left (identifier 41500) corners of

the L-moments ratio diagram. The slope of the regression line

provides an estimate of the scaling exponent h. The distribu-

tions of h computed for all gauges are presented as boxplots in

Fig. 5. No evident differences exist between At-site and

At-siteBC estimates. The h estimates for mt are lower relative

to those for st (mean h of 0.77 and 0.83 for mt and st, re-

spectively) and are characterized by less variability. While

relatively small, these differences may affect performance of

the simple scaling IDF models, which assume the same value

of h for both location and scale parameters (see discussion in

section 5). The distributions of h for xt and mt are very similar.

Based on the evidence of scaling, we estimate parameters of

the Sc model at each gauge, including k*, mt0, st0 (t0 5 24 h),

and the single scaling exponent, h. As reported in Table 2

(italic font), the ranges of mt0 and st0 are very close to those of

the local estimates at the same duration. In contrast, the range

of k* spans the values of all local estimates of this parameter

across all durations. This result is expected because the esti-

mate of a constant shape parameter is affected by the vari-

ability of rain rates at all durations. Figure 5 shows that h for

Sc displays the same intergauge variability of the h estimates

for mt and xt .

d. Performance of IDF models using all gauges
The IDF models are first applied using allN5 223 available

gauges. Figure 6 presents examples of the comparison between

the GEV parameterized with the five models and empirical

CDFs for the same three gauges shown in Fig. 4. Results are

shown for t5 1, 6, and 24 h. At gauge 52800 (Figs. 6a–c), whose

L-moments are close to the regional means at all durations, all

models capture well the observed records, apart from a slight

underestimation of the right tail by the scaling models (Sc and

Reg1Sc) for t 5 1 h; that is, the lines are located to the left of

the circles for larger values of the rainfall rate. At gauge 68200

(Figs. 6d–f), which is characterized by higher L-skewness and

L-kurtosis than the regional means, all models capture well the

bulk of the empirical distributions, but the regional models

(Reg and RegSc) underestimate the right tails at all durations.

At gauge 68200 (Figs. 6g–i), whose L-skewness and L-kurtosis

are lower than the regional means, all models reproduce

reasonably well all empirical distributions. Performance met-

rics computed on all gauges are summarized in Fig. 7 through

heat maps showing RD and RRMSE for each model as a

function of durations and return periods. Performances are

relatively similar across all models when compared to the ob-

served quantiles up to TR 5 30 years. When At-site quantiles

are used as reference, the At-siteBC and Reg models exhibit

the best performance with negligible (slightly positive) RB but

higher (smaller) RRMSE for the Reg (At-siteBC) model. The

scaling models (Sc and RegSc) have a larger range of RB with

both positive and negative values, and RRMSE up to ;35%

for TR 5 200 years. This lower accuracy using all available

gauges is expected since these models depend on a lower

number of parameters. These results provide an overview of

model accuracy by quantifying their performance at the same

sites used for model calibration. In the Monte Carlo boot-

strapping experiments described next, model accuracy is tested

using 100 randomly selected validation sites and varying the

number of calibration gauges.

e. Performance of IDF models as a function of the number

of gauges
For the sake of conciseness, we present results of the Monte

Carlo simulations for selected values of t, TR,Nt, andN24h that

are representative of the overall outcomes. In the following

figures, the simulation uncertainty is visualized through the

mean and 90% confidence intervals of the metrics and by re-

porting results for three randomly chosen simulations. We

begin by showing in Fig. 8 how performances change with TR

for t5 30min,Nt5 5 high-resolution gauges and no additional

daily gauges. When compared to the observed quantiles

(Fig. 8a), all models display similar results, with RB decreasing

(i.e., the bias becomes more negative) and RRMSE increasing

as TR rises. Performances are worse for the scaling models that

have more negative RB and larger uncertainty, that is, the

width of the 90% confidence interval is comparatively larger. It

is worth noting that the At-site and At-siteBC models have

very similar accuracy, implying that bias correcting the shape

parameter does not significantly impact the ability of simulat-

ing the observed quantiles for TR# 30 years. Performances for

larger TR are explored using the At-site model as reference for

the metrics (Fig. 8b). RRMSE increases significantly for TR .
50 years, with similar values across all models. The At-site and

FIG. 5. Boxplots of h computed for (separated by the vertical

dashed lines) At-site and At-siteBC estimates of mt and st, the Sc

model, and mean of annual rainfall maxima xt .
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Reg models are, on average, unbiased. For the At-siteBC

model, RB increases with TR because bias correcting the shape

parameter makes the tail of the GEV distributions heavier

leading to larger quantiles at higher TR. This also results in lower

uncertainty. The scalingmodels exhibit instead negativemeanRB

for TR . 50 years (more significantly, for the Sc model).

As a next step, we investigate how performances vary with t,

reporting results in Figs. 9a and 9b for Nt 5 5 gauges, no ad-

ditional daily gauges, and TR 5 10 and 100 years for the

observed and At-site reference quantiles, respectively. When

comparedwith the empirical quantiles, performances are similar

for At-site, At-siteBC, and Reg models, with small variations of

the metrics across the durations except for a slightly negative

RB for t , 12h. The scaling models (Sc and RegSc) exhibit

instead significant negative biases for t , 12 h; their per-

formances degrade particularly at t 5 1 h where the mean

RB and RRMSE reach about 215% and 22%, respectively.

Interestingly, for all models the simulation uncertainty increases

FIG. 6. Empirical CDFs compared with the GEV distribution parameterized with the IDFmodels for t5 (left) 1, (center) 6, and (right)

24 h for three representative gauges [identifiers (a)–(c) 52800, (d)–(f) 68200, and (g)–(i) 41500]. Frequencies are plotted as Gumbel

reduced variate.
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with t. These findings are largely in line with results for the

case of TR 5 100 years with At-site quantiles used as ref-

erence (Fig. 9b), with the exceptions that (i) the At-site and

At-siteBC models are positively biased, (ii) the Reg model

is unbiased, and (iii) for all models, RRMSE for t 5 6 h is

the largest.

The effect of the number of available gauges on model

performances is explored in Figs. 10–12 . We first evaluate how

accuracy changes with Nt when no additional daily gauges are

used, showing in Figs. 10a and 10b results for t 5 30min and

TR 5 10 (100 years) for the observed (At-site) reference

quantiles. In all cases, (i) the uncertainty across the simulations

is very large forNt 5 1 gauge and decreases dramatically up to

Nt 5 5 and at a lower rate forNt . 5, remaining constant after

Nt 5 50 gauges (not shown); (ii) the average RB is constant

across Nt; and (iii) the mean RRMSE decreases as Nt grows,

reducing its value of;30%whenNt increases from 1 to 50.We

subsequently investigate the value of additional information

provided by daily rain gauges, considering the case of Nt 5 1

and N24h 5 10 that mimics the plausible situation of a single

high-resolution gauge available (e.g., at the closest airport)

plus additional daily gauges. Figure 11 displays the relations

between metrics and TR for At-Site and scaling models with

N24h 5 0 and 10, using the At-Site quantiles as reference. It is

apparent that adding ten daily gauges to the calibration of the

scaling models results in a dramatic reduction of uncertainty,

as quantified by the width of the 90% confidence interval de-

creasing by ;50%, and RRMSE, with reductions ranging

FIG. 7. Heatmaps summarizing (a) RD and (b) RRMSE computed for eachmodel using all gauges as a function ofTR and t. For each of

(a) and (b), the heat maps in the top row show the values calculated using observed quantiles as reference and those in the bottom row

show the values calculated using At-site quantiles as reference. For each case, the minimum and maximum values of the performance

metrics (in percent) computed across all TR and t are reported.
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from27.6% for TR5 10 years to222% forTR5 200 years. To

summarize results of the simulations, Fig. 12 presents heat

maps of mean and width of the 90% confidence intervals of

RB and RRMSE for all models as a function of Nt and N24h,

for t 5 30min and TR 5 100 years. The key messages are

(i) when N24h 5 0, results do not change significantly for Nt $

10; and (ii) the largest improvement introduced by the scaling

models is for Nt # 5 and N24h $ 10.

5. Discussion
We first interpret our findings in the context of the rainfall

climatology of the study region. Following previous studies

indicating that elevation exerts a moderate to significant con-

trol on rainfall processes and statistical properties in this area

(Mascaro 2017, 2018), we investigate the relations between

IDF model parameters and gauge elevation, z. Figures 13a–c

show these relations for theGEVparameters of theAt-site and

Sc models for t 5 24 h, chosen as an example, while Fig. 13d

presents the corresponding correlation coefficient (CC) as a

function of t (results are similar for the other models).

The spatial maps of the parameters for two representative

durations are also reported in Fig. S2 of the online supple-

mental material. The effect of elevation is important for mt

(0.67 # CC # 0.80) and, to a lesser extent, st (0.26 # CC #

0.65); for both parameters, the p values of the linear regressions

are always lower than 0.01. The shape parameter kt does not

exhibit instead significant orographic or geographic control.

This is also true for the scaling exponent h as displayed in Fig. 13e

and quantified by the high p values of the linear regressions with z

(not shown). These findings suggest that terrain affects mainly the

mean of the distributions of annual rainfall maxima, but it does not

induce important effects on the shape of the distributions (i.e., the

right tail) and the rainfall scaling properties. This result is consistent

withBlanchet et al. (2016) for location and scale parameters, while it

differs for shape parameter and scaling exponent that, in their study

region, are affected by topography and distance from the coast.

The different elevation controls on GEV parameters and

scaling exponent are a main factor impacting IDF model per-

formances. In general, since all IDF models require estimates

of mt and st that are affected by terrain, the ability to repro-

duce extreme rainfall in this region depends on the elevation

range of the available high-resolution gauges. In particular,

FIG. 8. Performancemetrics of the IDFmodels as a function ofTR for t5 30min,Nt5 5 high-resolution gauges, andN24h5 0 additional

daily gauges using (a) observed and (b) At-site quantiles as reference. The solid line is the metric mean across the Monte Carlo simu-

lations, and the shaded area is the 90% confidence interval. Three randomly chosen simulations are also shown with dashed, dotted, and

dot–dashed lines.
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At-site, At-siteBC and Reg models use information on pa-

rameter variability based on gauge elevation to estimate

quantiles at each duration. Scaling models derive instead

quantiles at the different durations through the scaling expo-

nent h, which exhibits spatial random variations. As a result,

when a sufficient number of high-resolution gauges is available

to capture the orographic control on mt and st (e.g., Nt $ 10),

At-site, At-siteBC and Reg models overperform scaling

models because, for these, that number of gauges does not

allow describing in detail the spatial variability of h. An ad-

ditional factor conditioning the accuracy of simple scaling

models is the adoption of a single scaling exponent, which

may not hold at all gauges, as shown in Fig. 5.

6. Conclusions
The comparison of local, regional, and simple scalingmodels

for rainfall IDF analysis conducted in this study using 223 rain

gauges in central Arizona makes it possible to draw the fol-

lowing recommendations supporting the generation of IDF

curves in other regions:

1) Performances of IDFmodels are impacted by the control of

rainfall regime and local geographic features on the spatial

variability of model parameters. In our study region, ele-

vation controls the mean of the annual rainfall maxima

distributions, which is related to theGEV scale and location

parameters. The shape parameter and scaling exponent do

not exhibit instead clear spatial patterns. These features lead

to distinct impacts on model performance that may vary at

other sites with different rainfall regimes. Future work based

on synthetic experiments should investigate the relative

importance of eachmodel parameter under different scenar-

ios where the corresponding spatial variability is assumed to

be random or linked to geographic features (e.g., latitude,

longitude, elevation, and distance from the coast).

2) As expected, model uncertainty andRRMSE decrease with

the number of high-resolution gauges Nt used for calibra-

tion. This reduction is dramatic from Nt 5 1 to Nt 5 5, less

significant for Nt . 5, and negligible after Nt 5 50. The

mean bias is mostly constant with Nt.

3) All models exhibit similar performances in the ability

to simulate observed quantiles of relatively short records

(#30 years), apart from the scaling models that display

slightly negative biases at shorter durations.

4) If Nt is large enough to allow capturing with sufficient

details the spatial variability of the GEV scale and location

FIG. 9. As in Fig. 8, but for the performance metrics plotted as a function of t forNt 5 5,N24h 5 0, and TR 5 10 or 100 years respectively

using observed or At-site reference quantiles.
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parameters at different durations, the At-site, At-siteBC

andRegmodels have the best performances when compared

to quantiles of the GEV distributions estimated locally

(the At-site quantiles). In our study region, this occurs

when Nt $ 10. The Reg and At-site model are unbiased

and slightly positively biased, respectively. The bias

correction of the shape parameter based on global rain-

fall records performed in the At-siteBC model leads to

FIG. 11. Mean and 90% confidence interval of performance metrics of the At-Site, Sc, and RegSc IDF models as a function of TR for

t 5 30min, Nt 5 1 high-resolution gauge, and N24h 5 0 and 10 additional daily gauges using At-site quantiles as reference.

FIG. 10. As in Fig. 8, but for the performance metrics plotted as a function of Nt for t 5 30min, N24h 5 0, and TR 5 10 or 100 years

respectively using observed or At-site reference quantiles.
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positive biases at larger TR. Since these return periods are

used for design of critical infrastructure, the use of the At-

siteBC model is recommended. Future work should focus

on (i) investigating whether the relations for correcting the

bias of shape parameter estimates change for durations

below 24 h and (ii) incorporating the shape parameter bias

correction in regionalization techniques.

5) The accuracy of scaling models is affected by two main

factors, including the ability to capture the spatial vari-

ability of the scaling exponent, and the possibility that the

FIG. 12. Heat maps showing (left) mean and (right) width of the 90% confidence interval (CI) of

(a), (b) RB and (c), (d) RRMSE for all models as a function of Nt (rows) and N24h (columns) for t 5 30 min,

TR 5 100 years, and At-site quantiles used as reference. The vertical gray lines separate the regions with

N24h 5 0, 1 # N24h # 10, and N24h 5 20.
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assumption of a single scaling exponent may not hold. This

may require the use of more complicated multiple scaling

models (Burlando andRosso 1996; Van de Vyver 2018). In

our study site, simple scaling IDF models overperform

local and regional models when Nt # 5 and more than 10

additional daily gauges are available. These conditions can

be very common in developing countries.
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APPENDIX

Heterogeneity Measure
Following Hosking and Wallis (1997), let tR, tR3 , and tR4 be

the regional L-coefficient of variation (L-CV), L-skewness,

and L-kurtosis, computed by averaging the sampling

L-moments ratios of records of N gauges with weights

given by the sample size. Let also V be the weighted standard

deviation of the sample L-CVs (labeled Vsam). The compu-

tation of the heterogeneity measure requires the follow-

ing steps:

1) The kappa distribution is fitted to the regional L-moment

ratios. This four-parameter distribution is chosen for its

ability to represent many distributions used for rainfall

extremes. In such a way, no commitment is made on the

underlying distribution.

2) Then Nens 5 2000 statistical simulations are conducted. In

each simulation, N variates are generated from the kappa

distribution using the same record lengths of the original

gauges. Figures 2d–f show examples of scatterplots of

L-skewness versus L-kurtosis for one simulation of kappa

covariates for three durations.

3) CalculateV for each simulation, and from these 2000 values

compute the mean, mV.

4) Compute the heterogeneity measure H* 5 Vsam/mV, which

allows detection of operationally homogeneous regions

when a large number of gauges is used, as in this case where

N 5 223.

Values of H* close to 1 indicate that the sample L-CVs exhibit

similar variability to those generated by a single homogenous

region.

FIG. 13. (a)–(c) Relation between GEV parameters and gauge elevation z for t 5 24 h and At-Site and Sc models,

(d) CC between GEV parameters and z as a function of t for At-Site and Sc (available only for t 5 24 h) models, and

(e) relation between scaling exponent and z for Sc model and mean of annual rainfall maxima xt used in RegSc.
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