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Abstract

The ability to grasp and manipulate objects requires controlling both finger
movement kinematics and isometric force in rapid succession. Previous work suggests
that these behavioral modes are controlled separately, but it is unknown whether the
cerebral cortex represents them differently. Here, we asked the question of how
movement and force were represented cortically, when executed sequentially with the
same finger. We recorded high-density electrocorticography (ECoG) from the motor and
premotor cortices of seven human subjects performing a movement-force motor task.
We decoded finger movement (0.7+0.3 fractional variance accounted for; FVAF) and
force (0.74£0.2 FVAF) with high accuracy, yet found different spatial representations. In
addition, we used a state-of-the-art deep learning method to uncover smooth, repeatable
trajectories through ECoG state space during the movement-force task. We also
summarized ECoG across trials and participants by developing a new metric, the neural
vector angle. Thus, state-space techniques can help to investigate broad cortical
networks. Finally, we were able to classify the behavioral mode from neural signals with
high accuracy (90+6%). Thus, finger movement and force appear to have distinct
representations in motor/premotor cortices. These results inform our understanding of

the neural control of movement, as well as the design of grasp brain-machine interfaces.



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

70

71

72

73

74

75

76

77

78

79

80

81

82

Significance Statement

The human ability to manipulate objects is central to our daily lives and requires
control of both grasping movement and force. Here, we explored how these motor
activities are represented at the level of the cortex. Understanding these representations
will influence the design of brain-machine interfaces (BMlIs) to restore function after
paralysis. We recorded electrocorticography (ECoG) from seven human subjects who
performed a sequential movement-force motor task. We found differences between the
cortical representations of movement and force using decoding methods, deep learning,
and a new neural ensemble metric. Thus, ECoG could be used in a BMI to control both
movement and force behaviors. These results can potentially accelerate the translation of

BMIs for individuals with paralysis.
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Introduction

The human ability to grasp and manipulate objects is central to our evolutionary
success as tool users. The loss of this ability has a profound negative impact on overall
quality of life. We rely in particular upon our ability to precisely regulate movement and
force, to close our fingers around an object, then exert isometric force sufficient to
prevent slippage without crushing it. However, the neural origin of this process is not yet
clear. In the current study, we sought to identify how movement and force are encoded at
the cortical level when both are performed sequentially.

There is longstanding evidence for cortical representations of both movement
(Moran and Schwartz, 1999) and force (Evarts, 1968). There is also indirect evidence
that distinct neural control states are used for kinematics (movement) and kinetics (force).
For example, motor learning of kinematics and kinetics in reaching occur independently
of each other (Flanagan et al., 1999). Kinematic and kinetic control can be disrupted
independently (Chib et al., 2009), and their errors can be separated during adaptation
(Danion et al., 2013). Perhaps most relevant, Venkadesan and Valero-Cuevas (2008),
found that electromyogram (EMG) activity patterns transitioned between separate,
incompatible states during a one-finger, sequential movement-force task. Importantly,
these transitions occurred prior to the fingertip’s contact with a surface, implying that
changing neural states may “prepare” finger muscle activations for their upcoming role in
regulating force. Here, we hypothesized that the transition between movement and force
is encoded in motor and premotor cortical networks.

The specifics of cortical movement and force encoding are also relevant to brain-

machine interface (BMI) design (Downey et al., 2018; Branco et al., 2019a; Slutzky,
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2019; Rastogi et al., 2020). Restoration of hand grasp functionality is a high priority for
individuals with paralysis (Blabe et al., 2015). Currently, BMIs using motor cortical
signals control robotic or prosthetic hands (Hochberg et al., 2012; Yanagisawa et al.,
2012; Wodlinger et al., 2014; Hotson et al., 2016), or functional electrical stimulation of
paralyzed limbs (Pfurtscheller et al., 2003; Bouton et al., 2016; Ajiboye et al., 2017).
However, most BMIs that have decoded grasp intent have focused on decoding
kinematics of grasp aperture. One exception improved BMI-prosthetic hand control by
scaling the neuronal firing rates (Downey et al., 2017), but did not examine the
movement-force transition. Here, we hypothesized that force and kinematics of the hand
are governed by different neural states in cortex.

In the current study, we used a sequential movement-force task to investigate
changes in human cortical activity during transitions in behavioral mode: from pre-
movement (preparation) to movement to force. We recorded subdural surface potentials
(electrocorticography; ECoQG), finger kinematics, and applied force. We used ECoG
spectral modulations to measure changes in the spatial patterns of movement- and force-
based decoding, and to classify the behavioral mode of the subject. We found evidence
of distinct movement and force encoding.

Recent work has characterized changes in cortical network activity during
kinematic tasks as the temporal evolution of a dynamical system (Churchland et al.,
2012; Pandarinath et al., 2018). Here, we examined whether neural state space changes
accompanied behavioral mode transitions (from pre-movement to movement to force).
We used latent factor analysis via dynamical systems (LFADS), a deep-learning method

that uses sequential autoencoders to uncover trajectories in a low-dimensional neural
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state space from high-dimensional neural data (Pandarinath et al., 2018). We also
calculated changes in a neural vector angle (NVA), obtained by treating the spectral
features as elements of a high-dimensional neural vector. Both approaches showed that
activity across a broad area of motor and premotor cortices exhibited tightly clustered
trajectories through neural state space that were time-locked to the behavior. The NVA
enabled us to average responses across subjects and create a generalized temporal profile
of neural state space activity during the movement and force modes of human grasp.
Together, these analyses indicate that distinct cortical states correspond to the distinct

movement and force modes of grasp.

Materials and Methods
Subjects and recordings

Seven human subjects participated in the study (all male; ages 26-60, ordered
chronologically). Six of the subjects required awake intraoperative mapping prior to
resection of low-grade gliomas. Their tumors were located remotely to the cortical areas
related to hand grasp, and no upper extremity sensorimotor deficits were observed in
neurological testing. Subject S6 underwent extraoperative intracranial monitoring prior
to resection surgery for treatment of medication-refractory epilepsy. All human subjects
were recruited at Northwestern University. The experiments were performed under
protocols approved by the institutional review board. All subjects gave written informed
consent before participating in the study. Subjects were recruited for the study if the site
of their craniotomy, or their monitoring array was expected to include coverage of

primary motor cortex.
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In all subjects except S6, we used 64 electrode (8x8) high-density ECoG arrays,
with 1.5-mm exposed recording site diameter and 4-mm inter-electrode spacing (Integra,
Inc.). Arrays were placed over hand motor areas, which we defined by: 1) anatomical
landmarks, e.g., “hand knob’ in primary motor cortex; 2) pre-operative fMRI or
transcranial magnetic stimulation to identify functional motor areas; and 3) direct
electrocortical stimulation mapping. Intraoperative recordings took place after direct
stimulation mapping. Intraoperative MRI navigation was performed with Curve
(BrainLab, Inc., Munich, Germany). The recording arrays covered primary motor cortex,
premotor cortex, and usually part of primary somatosensory cortex as well (Figure 1A).
In S6, electrode placement was determined by clinical need. For this subject, we used a
32-electrode (8x4) array with the same electrode size and spacing as our 64-electrode
arrays.

We sampled ECoG at 2 kHz using a Neuroport Neural Signal Processor
(Blackrock Microsystems, Inc.). Signals were bandpass filtered between 0.3 Hz and 500
Hz prior to sampling. Finger kinematics were recorded using a 22-sensor CyberGlove
(Immersion). We recorded force with a custom-built load cell sensor. Kinematic and

kinetic data were both sampled at the same rate as ECoG.

Experimental protocol

The subjects executed repeated trials of a one-finger task that required isotonic movement
and isometric force in sequence (Figure 1B). At the beginning of each trial, the subjects
were instructed to hold their index finger in a neutral posture (the “pre-movement”

behavioral mode). After a cue, they executed a self-paced flexion movement, which
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brought the palmar surface of the index finger into contact with the force sensor. Upon
contact, subjects were instructed to apply force to the sensor, thereby controlling a cursor
on a monitor. Their task was to match the cursor’s vertical position to that of a force
target presented on the monitor. Target force levels varied randomly from trial to trial
(random-target pursuit task). Following a successful match (or a timeout of 2s), the trial
was complete, and the subject extended their finger back to the baseline (neutral)
position. The next trial began after a delay of 1s. Target presentation and cursor
feedback were carried out by the open-source BCI2000 software (Schalk et al., 2004).
The time resolution for both kinematic data acquisition and force cursor control was
50ms.

Our task was designed to elicit movement by, and force using one finger, keeping
the other fingers motionless in a flexed position. Therefore, our kinematic data consisted
of the CyberGlove sensors that measured the motion of the index finger (Figure 1C,
highlighted). Dominant kinematic features were extracted via principal component
analysis (PCA). We performed PCA only on data from the highlighted sensors in Figure
1C, retaining the 1* component to identify movement onset (the cyan trace in Figure 1B

shows an example of the movement signal we used).

Feature extraction

For all analyses, we extracted spectral features from each ECoG electrode. Here,
each feature was the mean spectral power in a frequency band of interest. The sampling
rate was 2000 Hz. To compute spectral power, we applied a Hanning window function to

256-ms segments of data, followed by a Fourier transform. We normalized the log of this
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power by subtracting the log of the mean power over the entire file, then extracted
spectral features by averaging within frequency bands of interest (see below). The
resolution of the frequency axis was 3.9 Hz. Each data segment (or time bin, to borrow
nomenclature from past single-neuron studies) overlapped the previous by 231 ms, giving
the analysis an effective temporal resolution of 25 ms.

We identified the feature boundaries (frequency bands of interest) by computing
the event-related spectral perturbation (ERSP) for each electrode around the time of force
onset. We then averaged the ERSPs for all electrodes in our dataset, and identified the
frequency bands of interest: broadband low frequency (8-55 Hz) and broadband high
frequency (70-150 Hz). Subsequent analyses were performed on the feature matrix for
each subject. Each feature matrix was size NxM, where N is the number of time bins in
the record, and M is 2*(number of electrodes)* 10, where 10 was the number of time bins

into the past (causal bins only).

Population decoding of continuous movement and force

We decoded continuous movement kinematics and continuous isometric force,
using all (non-noisy) electrodes from PM and M1 in each subject. For continuous
decoding, the feature matrix served as input to a Wiener cascade decoder (Hunter and
Korenberg, 1986). In the Wiener cascade, the output of a linear Wiener filter is
convolved with a static nonlinearity (here, a 3" order polynomial). We employed ridge
regression to reduce the likelihood of overfitting due to the large feature space, as in
(Suminski et al., 2010). We evaluated decoding accuracy using the fraction of variance

accounted for (FVAF). We employed 11-fold cross-validation, using 9 folds for training,

10



o)

.

>CI

dild

Vi

e

= 0

CCEPT

Neuro A

=

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

1 fold for parameter validation (e.g., optimizing the free parameter in the ridge
regression; Fagg et al., 2009), and 1 fold for testing. We report the median + interquartile
range (IQR) of FVAF across test folds. Movement and force were treated as separate,
independent sources of information for continuous decoding. All sampled times were
used to decode movement, whether the subject was in pre-movement, movement, force,
or between trials. Likewise, all sampled times were used to decode force. The purpose
of decoding continuous movement and force was to validate the information content of
the ECoG signals. Thus, a high FVAF indicated that the ECoG signals encode
information about times of active behavior (movement or force) as well as rest periods,

and transitions among behavioral modes.

Spatial mapping of decoding performance

We quantified the difference in the spatial representations of movement and force
using two measures: (1) change in location of the peak single-electrode decoding
performance, and (2) change in the overall spatial distribution of single-electrode
decoding performance. For both analyses, we decoded continuous movement for each
individual ECoG electrode using Wiener cascade decoders, as in the previous section. As
above, all data (regardless of behavioral mode) were used to evaluate decoding accuracy
using the cross-validated FVAF. The spatial distribution of single-electrode movement
decoding performance formed a “map” for the array. In a similar manner, we constructed
a “map” of force decoding performance. We then analyzed these maps to reveal
differences between movement and force spatial representation patterns on the cortical

surface.

11
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We compared the location of the overall peak of each decoding map for
movement to that of force within each cross-validation fold. We report the absolute
displacement between the peak performance location from force decoding vs. that from
movement decoding. Peak performance displacement quantifies the shift in location
between movement and force in units of distance (here, in millimeters).

In addition, we compared the overall decoding map patterns. The map for a
single fold can be treated as an image, with FVAF values corresponding to pixel
intensities. We measured similarity among maps using a differencing metric common to
image processing (Euclidean distance). We calculated the distance (D) between pairs of
maps for individual folds. For example, a value of Dy 3-4(forcey=0, Where D is the
difference metric, would indicate that the force decoding maps in folds 3 and 4 were
identical. We compared the inter-map distances across behavioral modes (movement vs.
force, Dineer) to find the average decoding map difference between movement and force
encoding on the cortex. We compared these to within-modality distances
(Dintra(force)sDintra(mvyy), Which vary only due to time. That is, Djyr. measured map
differences within a behavioral mode, which can be attributed to variance in task
performance across trials. Thus, Diya values served as controls for Diyger, which
measured the map differences attributable to behavioral mode (movement or force).
When calculating these distance metrics between performance maps, we scaled by the
maximum possible distance between the maps, so that both Diyer and Diyg, ranged from 0

to 1.

12
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Latent factor analysis via dynamical systems

We used a deep learning algorithm known as latent factor analysis via dynamical
systems (LFADS) to denoise ECoG features (Sussillo et al., 2016; Pandarinath et al.,
2018). LFADS denoises neural activity based on the assumption that the observed
patterns of neural modulation can be described as noisy observations of an underlying
low-dimensional dynamical system. LFADS aims to extract a set of low-dimensional
latent factors that describe neural population activity on a single-trial basis. When
previously applied to spiking activity from populations of neurons, LFADS modeled
observed spikes for each neuron as samples from an inhomogeneous Poisson process
(called the firing rate), and attempted to infer this underlying firing rate for each neuron.
In this study, since the ECoG features are continuous rather than discrete variables, the
underlying distribution was taken to be Gaussian instead of Poisson. Specifically, the data
was pre-processed by z-scoring each spectral feature. Then, the data was modeled

following the equations in Sussillo et al. (2016), with the key modifications that:

1, =W () M
o, =W"(f) )
X~ N(/ur,t’ O-rz,t) P (3)

where x, represents the vector of z-scored spectral features at each timestep, and f;
represents the latent factors output by the LFADS recurrent neural network. For a given
spectral feature 7, u,. and o, ; represent the inferred time-varying mean and variance,

respectively, for the z-scored spectral feature at each time step. W/ and W/4¢2 are

13
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matrices that map the latent factors onto y,.; and o, ., respectively. These matrices have
fixed weights across all time points. For each subject, the number of latent factors
allowed was approximately half the total number of ECoG channels used. After applying
LFADS, we used principal component analysis to produce low-dimensional
visualizations of the denoised ECoG features.
Neural vector angle

To compactly represent the overall response of a subject’s feature set, we
computed neural vector angles (NVAs) for each trial. This quantity is similar to the
“muscle coordination pattern” angle of Venkadesan and Valero-Cuevas (2008). We
selected features to include in the NVA calculations using the following method: first, we
averaged the ECoG spectral intensity across trials, aligned to force onset. We then used
unsupervised k-means clustering (3 clusters) to partition the trial-averaged spectral power
from the complete set of features. All M1/PM features served as inputs to the clustering
algorithm. We evaluated this algorithm with 2-5 input clusters in each subject, using
silhouette values to judge the quality of clustering. Grouping the features into 3 clusters
produced the best groupings (with zero negative silhouette values in most subjects). Of
the three output clusters, we selected the two that were well-modulated with movement
and/or force: a cluster of low-frequency features and a cluster of high-frequency features.
These groupings for well-modulated features (low- and high-frequency) emerged natively
from the unsupervised procedure, typically leaving one additional cluster of poorly-
modulated features. Clustering was used only as a means of selecting ECoG features to

include in NVA computations.
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We calculated the NVA separately for the low- and high-frequency features, as
follows: a cluster of features with n members can be represented at time t as
m(t)=[f1,,...,f;], where fis the value of an individual feature. We smoothed m(t) over 5
time bins (total 125 ms), then calculated the neural vector angle

|| m(2)¢ m'Y

2= (o™

4)

where m™ is the average value of m(t) over the 250-ms period before the time of
maximum force exertion in the trial. We computed the neural vector angle at each time
bin over trials in each of the emergent clusters (low- and high-frequency modulating), for
each subject. Since the neural vector angle transformed the data from feature values to a
common coordinate system (angle between vectors, in degrees), it enabled us to average
this quantity across subjects. To quantify differences in NVA values due to behavioral
mode, we used the Kruskal-Wallis test of unequal medians on NVAs during “pre-

LEINT3

movement”, “movement”, and “force” modes (illustrated in Figure 1B). See also the

following section for details of the behavioral mode labelling procedure.

Discrete classification of behavioral mode

Our classification of behavioral mode utilized the same frequency-based features
as we used in our continuous decoding analysis. Here, the data were selected and labeled
as follows: time bins from target presentation to the start of finger flexion were labeled as
“pre-movement”’; time bins from the start of flexion to contact with the force sensor were
labeled “movement”; time bins beginning at contact with the force sensor, continuing for

0.5 s were labeled “force”. An example of this behavioral mode labelling for a single

15
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trial of data is shown in Figure 1B. We limited the length of the force window to obtain
more balanced class sizes. Data outside of the described time windows were discarded.
The data were classified using two methods: support vector machines and boosted
aggregate (bagged) trees. The classification analyses used 5-fold cross

validation. Within each fold, we trained on (or tested) every individual 25-ms time

bin. The reported accuracy measures are the median + IQR of correctly classified time
bins across all test folds. Because the class sizes were not exactly equal, the chance level
performance of the 3-class classifier was not necessarily 1/3. We calculated the true
chance level performance by shuffling the class labels and then performing the analyses

as above. We repeated this procedure 1000 times for each recording.

Experimental design and statistical analysis

We conducted the experiments and analyzed the data using a within-subject
design. We used non-parametric statistics to report continuous kinematics and
continuous force decoding accuracy, as the decoding accuracy values (FVAF) were
distributed non-normally across cross-validation folds. To compare maps of decoding
performance, we conducted a one-tailed Wilcoxon signed-rank test, with Bonferroni
correction for multiple comparisons. Differences in NVA during behavioral modes were
tested using a Kruskal-Wallis test. For the discrete decoding of behavioral mode, we also
used a Kruskal-Wallis test to identify statistical differences between ECoG feature-based

decoding and LFADS-cleaned feature decoding.

Results

16
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We recorded ECoG from seven human subjects with brain tumors or epilepsy
who required intraoperative or extraoperative mapping as part of their clinical treatment.
In all subjects, ECoG coverage included at least part of primary motor and premotor
cortices (Brodmann areas 4 and 6). In some cases, coverage also included prefrontal
and/or postcentral cortices (Figure 1A). However, we restricted our analyses to
electrodes covering primary motor and premotor cortices. The subjects performed a cued
one-finger task requiring an isotonic flexion movement, followed by isometric flexion to
specified force targets. Movement and isometric flexion were performed sequentially
(Figure 1B). This task was adapted from Venkadesan and Valero-Cuevas (2008). We
recorded the finger joint kinematics (based on the sensors highlighted in Figure 1C) as

well as the force generated by isometric flexion.

ECoG feature modulations were time-locked with movement and force

Following Collard et al. (2016), we used event-aligned plots to visualize event-
related changes in ECoG spectral features, specifically to understand how tightly these
features modulated with behavioral events. We examined modulation with respect to (1)
the start of finger flexion movement and (2) the start of isometric force exertion. For
each feature, we constructed an “intensity raster” by windowing the feature’s data, then
plotting as trial number vs. peri-event time. We sorted trials by the elapsed time between
events.

We constructed intensity raster plots for each feature in our dataset (2 features per
non-noise electrode, 722 total features in the dataset). Overall, we found a diverse set of

activity patterns during movement and force production. Figure 2A shows an example of
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a high frequency feature that appears to encode both movement and force, showing
increased activity at the transition from pre-movement to movement (Figure 2A, left of
dashed line) and decreased activity after force onset (right of blue circles). Some high
frequency feature modulations were time-locked only to force execution (Figure 2B,C).
Examples of low frequency features exhibiting power decreases at movement onset are
shown in Figure 2D.E. Low-frequency power decrease could also be time-locked to the
start of force, instead (Figure 2F). Note that Figures 2B and 2E show high- and low-
frequency features from the same ECoG electrode, illustrating that two behavioral modes
can be encoded differently by high- and low-frequency information on the same
electrode. Overall, the results exemplified in Figure 2 indicate a heterogeneous set of
spectral feature responses to movement and force; in fact, we did not find a simple way to
combine feature intensity data that completely summarized the individual features’
responses across high- or low-frequency domains. Therefore, we also examined
population-level measures to obtain a more generalized description of how M1/PM

represents kinematic-kinetic behavior.

Continuous movement and force were decoded with high accuracy using ECoG

We used a Wiener cascade approach to build multi-input, single-output models
for decoding behavior. We built one such model to decode the continuous time course of
finger movement kinematics using both high and low spectral features from all (M1/PM)
electrodes. A separate model was built to decode continuous isometric force from the
same electrodes. Both movement and force were decoded at all times (not only during

active movement or active force) using a cross-validated design. The resulting decoding
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accuracy was high for both force and kinematics: the fraction of variance accounted for
(FVAF) ranged from 0.4+0.1 (median+IQR) to 0.840.1 for the individual subjects.
Across subjects, the overall median FVAF was 0.7+0.2 for force decoding, and 0.7+0.3
for movement decoding. Statistically, the null hypothesis that movement kinematics and
force were decoded with equivalent accuracy could not be rejected (Kruskal-Wallis test,
p=0.6); thus, any differences between movement and force representations were not due

simply to decoding one quantity better than the other.

Spatial mapping of decoding performance shows different cortical representations
of movement and force

We next quantified the difference in the spatial representations of force and
movement on the cortical surface, using two metrics: (1) change in location of the peak
decoding performance electrode (Table 1), and (2) change in overall decoding map
pattern (Figure 3). A previous study found that decoding maps’ peak performance
locations differed when two different fingers were used for an isometric force task (Flint
etal., 2014). Here, we found that the peak performance location was different for
movement and force decoding. The displacement (between movement and force) of the
peak decoding performance ranged from 3.2+5.4 mm to 16.5+£8.8 mm across subjects
(mean £ SD over folds; Table 1). The mean (+SE) displacement of peak performance for

all subjects was 9.9£2.0 mm.

19



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

425

426

427
428
429

430

431

432

433

434

435

436

437

438

439

mean + S.D.

S1 161 + 4.1

S2 165 + 88

S3 32 £ 54

S4 102 + 84

S5 42 + 6.6

S6 88 + 54

S7 107 + 8.0

Table 1. Displacement of peak location (in mm) for movement decoding performance relative to
force decoding performance in each subject.

To place these distances in context, a standard ECoG array for epilepsy use has an inter-
electrode distance of 10 mm, highlighting the advantages of using high-density ECoG
arrays (the electrode arrays used here had an inter-electrode distance of 4 mm). See also
Wang et al. (2016).

In addition to changes in peak decoding location, there were differences between
movement and force in their respective overall decoding map patterns (Figure 3). The
between-mode distance Djyr, Which measured differences between the movement-force
maps (see Methods), was significantly greater than the within-mode distance Dipy, in 6 of
7 subjects (p<3*10~° except S3, where p=0.19; one-tailed Wilcoxon signed-rank test with
Bonferroni correction for multiple comparisons; see Figure 3B). This indicates that the

spatial distribution of decoding as a whole changed significantly between movement and
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force, and that this change was greater than what would be expected from behavioral
variation. Taken together, these results indicate that the spatial representations of

movement and force on the cortical surface are different.

Differences in pre-movement, movement, and force behavioral modes were reflected
in a dynamical systems model of M1/PM network activity

We next examined the activity of the recorded cortical network as a whole during
the movement-force behavior. The preceding spectral/spatial analyses (Figure 2 and 3)
treated individual ECoG electrodes as independent sources of information. Here, we
instead sought a low-dimensional representation to clarify and summarize the activity of
the cortical network during the time course of the behavior. We used latent factor
analysis via dynamical systems (LFADS; Pandarinath et al., 2018) to generate low-
dimensional representations of single-trial activity in the ECoG feature state space (see
Methods). To visually summarize the factors, we computed principal components of the
LFADS-denoised ECoG features (labeled LFADS-PCs). Figure 4 shows the underlying
dynamics for S5 and S6 during trials of the kinematic-kinetic task, color-coded by
behavioral mode. At the start of the task (pre-movement), the high- and low-frequency
latent factors tended to be distributed through a relatively broad region of the state space
(ex. Figure 4A, red). Prior to the start of movement, the latent factors tended to converge
onto a smaller region of state space, and their trajectories through the movement (cyan)
and force (blue) periods of the task were more tightly grouped. Moreover, each time
period of the task occupied a different part of state space (note the grouping of colors in

Figure 4). To illustrate the impact of LFADS in revealing well-ordered, low dimensional
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463  state space representations, we also performed PCA directly on the ECoG features (PCA-
464  only; Figure 4, inset boxes). In some cases, PCA-only resulted in a rough grouping of
465  behavioral modes (pre-movement, movement, and force) in neural state space (ex. Figure
466  4A). However, the individual PCA-only trial trajectories remained highly variable,

467  unlike the highly repeatable LFADS-PC trajectories. In other cases, PCA-only did not
468 allow us to resolve a low-dimensional state space representation with identifiable

469  groupings at all (ex. Figure 4D). Contrasting the LFADS-PC plots with the PCA-only
470  plots (i.e., comparing each panel of Figure 4 with its inset) illustrates the benefit of

471  LFADS in visualizing this dataset. We quantified this benefit in Table 2, which shows
472  the number of components required to account for 90% of the variance in the data, with
473  and without LFADS.

474

PCA-only LFADS PCs

S01 43 /66 2/66
S02 32/48 2/48
S03 26 /44 2744
S04 24732 3/32
S05 40/ 74 3/74
S06 35/72 2/72
S07 19/36 2/36
S08 24 /40 2740
S09 28 /38 4/38
S10 27736 3/36
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S11 27736 3/36

S12 32/78 2/78

Table 2. Number of principal components (PCs) required to account for 90% of the variance in

the ECoG features (PCA-only) or the latent factors (LFADS PCs).

A neural vector angle summarizes temporal changes across the feature space

Visualizing the low-dimensional state space with LFADS-PCs reinforced the idea
that pre-movement, movement, and force behavioral modes are well-represented in
neural state space. However, those methods did not allow us to generalize across
subjects. Therefore, we used a second metric for summarizing the modulations of feature
space across trials and subjects: the NVA. The NVA 6(t) is the angle at time t between a
neural vector m(t) and its reference direction, m™ (see Methods). Here, the high-
dimensional vector m(t) was comprised of M1/PM ECoG spectral features. The
reference vector m™ was calculated during a window prior to the moment of peak force
in each trial. Therefore 0(t) measures the dissimilarity between the ECoG features at
each moment with their values during peak force generation.

To maximize the signal-to-noise ratio of 6(t), the elements of m(t) were selected
using a cluster analysis (see Methods). The resulting clusters were typically (1) a cluster
of well-modulated low-frequency features (ex. Figure 5A), (2) a cluster of well-
modulated high-frequency features (ex. Figure 5B), and (3) a cluster of poorly modulated
features (not shown). We computed 0(t) separately for clusters (1) and (2) in each
subject (Figure 5C,D). The NVA recasts feature modulations for each trial into a

common unit (angular difference in degrees). Therefore, we were able to combine NVA
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results across all trials in all subjects, yielding a compact study-wide representation of the
cortical response to the movement-force transition (Figure SE,F).

Across subjects, average low-frequency NVAs began to decrease immediately
after the presentation of the cue to start the trial (Figure 5E, red line), and reached their
minimum value approximately at the start of flexion (Figure 5E, cyan line). Accordingly,
low-frequency NVA during movement was significantly lower than NVA during the pre-
movement period (p<10; Kruskal-Wallis test, Tukey HSD post-hoc for all statistical
comparisons in this section). By contrast, there was no significant difference between the
movement period and force (t=0 to t=0.75) in the low-frequency NVAs (p=0.32). High-
frequency NV As did not deviate from their pre-movement values at target presentation
(Figure 5F), instead changing just prior to the start of movement (Figure 5F, cyan line).
During movement, high-frequency NV As were significantly higher than pre-movement
NVA (p<10”), peaking just before the onset of force (Figure 5F, approximately t=-130
ms relative to force onset). During the force behavioral mode, high-frequency NVA were
overall lower than either movement (p<10~) or pre-movement (p<10®) periods.

Overall, the NVA provided a compact way to summarize cortical state space
changes across subjects during the sequential movement-force task. Earlier, Figure 2
showed that responses of individual ECoG features could be quite heterogeneous in their
modulations to behavioral events. Here, Figure 4 and Figure 5 showed that in spite of
that heterogeneity of individual feature modulations, the information conveyed by
populations of features exhibited repeatable, statistically significant patterns during these
behaviors. Like Figure 2, the NVA results suggest the possibility of different cortical

responses by particular parts of the frequency spectrum (low- and high-frequency
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features). However, the NV A suggests that, while there may be exceptions (as seen in
Fig. 2), this distinction may be a general characteristic of M1/PM cortices during the

movement-force behavior.

ECoG features enabled accurate classification of behavioral modes

Accurately decoding behavioral modes during grasp has potential applications for
brain-machine interface (BMI) design. For example, in response to evolving functional
goals (e.g., changing from movement to force behavior when picking up an object), a
BMI could switch control strategies. To estimate the accuracy such control might
achieve, we tested whether the subjects’ behavioral modes could be decoded from
cortical activity. We used the low- and high-frequency ECoG spectral features to classify
each time bin as one of three behavioral modes: pre-movement, movement, or force
execution. The ground-truth behavior mode distinctions were labelled according to the
movement onset and force onset events (see Figure 1B for an example trial). In parallel
with the ECoG feature-based classification, we also classified behavioral mode using the
LFADS-denoised features as inputs. This gave us a way to estimate the impact of
cortical “noise” on the accuracy of decoding behavioral mode. We used two widely
available classifiers: support vector machines (SVM) and boosted aggregate (bagged)
decision trees. For each subject, we also calculated a chance decoding value (see
Methods). We report classification accuracy for the two types of classifiers separately,
evaluating both the features and the LFADS-denoised factors. The three behavioral
modes were strongly differentiable in all subjects (Figure 6). Overall, the tree-based

classifier outperformed SVM, and LFADS-denoised features were decoded more
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accurately than the features without denoising (p=1.97, Kruskal-Wallis test). For the
tree-based classifier of LFADS-denoised features, median decoding accuracies for the
subjects ranged from 87%+2% to 94%+1%, with an overall median value of 90%+6%,
indicating that these three classes were highly separable. Statistically, the decoding
accuracy for all subjects was significantly higher than chance. We emphasize here that
each 25 ms time bin was decoded, rather than decoding behavioral modes as blocks of
time. Thus, these behavioral modes have separable cortical representations on a 25-ms

time scale.

Discussion
Manipulating objects dexterously requires controlling both grasp kinematics and

isometric force. Even simple activities like turning a doorknob, shaking hands, and

lifting a cup of liquid could not be accomplished safely and quickly without both kinds of

control. More than two decades ago, investigators began to appreciate that the central
nervous system may handle these two vital aspects of motor behavior separately
(Flanagan et al., 1999). Here, we found quantifiable differences in how the motor and
premotor cortices represented behavioral mode, i.e. pre-movement, flexion movement,
and isometric force. We found individual feature modulations that were time-locked to
behaviorally relevant events, and could be observed on a single-trial basis (Figure 2). As
ensembles, the ECoG modulations constituted a neural state change, accompanying
changes in behavioral mode. We were able to model this change using a dynamical

systems approach (LFADS), and decode the subjects’ behavioral modes with high
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accuracy. Understanding neural state changes like these in the context of a functional
grasp task will inform the design of dexterous grasp brain-machine interfaces.

Generally, we achieved highly accurate decoding of the continuous time course of
the behavioral variables (movement and force). These results compared favorably with
prior studies decoding finger movement kinematics (Acharya et al., 2010; Nakanishi et
al., 2014; Xie et al., 2018) and isometric force (Pistohl et al., 2013; Chen et al., 2014;
Flint et al., 2014; Vaidya et al., 2019). Importantly, there was no significant difference in
our ability to decode force and movement across subjects, implying that any differences
in cortical representations of force and movement were not simply expressions of a
superior decoding of one or the other.

Spatially, human cortical encoding of finger movement takes place over a
widespread area (Schieber, 2002), including complex and overlapping representations of
individual finger movements (Dechent and Frahm, 2003). ECoG recordings make it
possible to examine cortical activity on these relatively large spatial scales (Slutzky and
Flint, 2017). We found that the maps of decoding performance altered significantly
across movement and force representations (across-mode) in 6 of 7 subjects. We
controlled for changes due to time or behavioral variability (within-mode), by comparing
the between-mode maps to the within-mode maps. One potential explanation for the
spatial map differences could be that the activating regions of the maps are simply
shrinking during isometric force. Such an explanation is consistent with evidence
pointing to less cortical modulation with isometric force than with movement (Hendrix et
al., 2009). However, in this case we found that the peaks of the decoding maps changed

location (Table 1), indicating that the maps shifted rather than merely growing or
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shrinking. These spatial decoding results are relevant to the design of brain-machine
interfaces (BMlIs), since any BMI that restores grasp should ideally execute both
movement and force functions. There is evidence that representations of hand
movements are preserved following amputation (Bruurmijn et al., 2017), though it
remains to be shown whether the movement-force functional map change will remain in
an individual with paralysis. Downey et al. (2017) found that applying a scaling factor to
neuronal spike rates facilitated the ability of human BMI users to grasp objects with a
prosthetic hand. The utility of such a scaling factor may be a reflection of the functional
somatotopy of the cortex, though the current results suggest that amplitude scaling would
not necessarily be the ideal method of accounting for the difference in movement and
force representations. Here, we found the mean shift in peak decoding location was 9.9
mm, a sizeable distance in the cerebral cortex. The overall differences in spatial
decoding maps (patterns of decoding), while significant, were not large. However, this
was not unexpected for two related motor activities (movement and force, in the context
of a grasp-like behavior) performed by the same finger.

Increasingly, spiking activity in small areas of motor cortex has been modeled as
a dynamical system in an effort to parsimoniously describe and understand network-level
neuronal activity. In this study, we used LFADS to uncover low-dimensional neural state
spaces for each subject. LFADS-PCs were tightly grouped over trials and occupied
distinct regions of state space during the pre-movement, movement, and force behavioral
modes (Figure 4). Both low-frequency and high-frequency LFADS-PCs were clearly
separated in different behavioral modes. Some previous examples of modeling cortical

dynamics using latent factors have analyzed single behavioral modes. For example,
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Vaidya et al. (2015) modeled both reach- and grasp-related neural ensembles as linear
dynamical systems to study learning. Also, Gallego et al. (2018) also showed that there
were some differences in local M1 neuronal ensemble activity between kinematic and
kinetic cursor control tasks. Our results show that dynamical systems modeling can
elucidate the latent factors underlying a widespread cortical network in addition to local
circuit networks. It was not surprising that latent factor state space trajectories evolved
with time during each trial; indeed, this is a fundamental underlying assumption of the
dynamical systems model. The significance of the LFADS-derived trajectories was their
smooth, repeatable paths through distinct regions of state space during behavioral mode
transitions. Compared with PCA-only state space trajectories, LFADS factors clustered
more tightly and evolved much more repeatably in pre-movement, movement, and force
behavioral modes.

We used the NVA to summarize spectro-temporal changes across electrodes and
subjects. The average duration of high-frequency neural vector changes (about 300 ms;
Figure 5F) was substantially shorter than the average duration of the force-matching part
of the behavioral task (about 1 s). A phasic rise in high gamma modulation near the onset
of behavior has been shown during other grasp force behaviors (Chen et al., 2014; Branco
et al., 2019b), as well as isotonic movement (Flint et al., 2017). Single-neuron studies in
nonhuman primates also support the phasic modulation with force onset (Hendrix et al.,
2009), or more often, phasic-tonic modulation (Maier et al., 1993; Mason et al., 2002;
Intveld et al., 2018). This agreement makes sense when considering that high-gamma

activity is often correlated with ensemble spiking. It appears that the onset of force
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behavior, or perhaps the transition from movement to force, is especially meaningful to
the cortex when encoding grasp.

Our results support and extend the findings of Venkadesan and Valero-Cuevas
(2008), who inferred from muscle activity that the human motor system uses two separate
control strategies for movement and isometric force. Importantly, they observed muscle
activity changing about 100 ms prior to force onset, ruling out the conclusion that
changes in EM@G patterns are purely the result of the mechanical constraints of the
behavior. In the current study, we chose m™' in part to facilitate comparison with that
study. We found similarities between the cortical low-frequency NVA and their angular
deviation for muscle coordination patterns (Figure 2A from that study), though our low-
frequency NV As changed earlier: approximately 350 ms prior to force onset, which is
compatible with the delay between cortical and muscular activity. Changes in high
gamma activity patterns (reflected by the NVA), on the other hand, occurred around 130
ms prior to force onset. This time course of changing cortical activity is consistent with
the earlier EMG results, and with the concept that control strategies for movement and
force are encoded in the motor and premotor cortices, rather than subcortical systems.
This argues against the hypothesis that differences in cortical activity during movement-
force are due mainly to somatosensory feedback changes in the two states.

We believe the present data indicate that the cortical state-spaces are different
among pre-movement, movement, and force. One possible hypothesis to explain this
difference is that additional muscles (other than index finger flexors) may have been
recruited during force mode compared to movement mode, for example to additionally

stabilize the wrist. While we were not able to include EMG recordings because of time
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and access limitations to our participants, recording EMG simultaneously with ECoG
might allow us to test such a hypothesis. However, Venkadesan and Valero-Cuevas
(2008), who recorded EMG (but not neural activity) in a similar task, found that neural
control strategies changed within the scope of finger flexor muscles: that is, the same
muscles were used in different recruitment patterns. Overall, these findings are also
consistent with prior work showing that M1 neurons display muscle-like encoding (Oby
etal., 2013).

We note that our behavioral task was chosen to recreate a naturalistic movement-
force model of object grasp, and was not designed to systematically explore the finger-
movement kinematic-kinetic space. Specifically, we note the caveat that movement
behavior was not required to be as variable as force, since no explicit movement “targets”
were designated (unlike force targets which varied randomly). Accordingly, we designed
the analysis of spatial decoding map differences (Figure 3) in such a way as to control for
within-mode variation over time. In addition, we observed much larger differences
between movement and force behavioral modes than within mode, in both the latent
factor trajectories (Figure 4) and in our statistical analysis of the NVA values (Figure 5).
Thus, the data still support distinct cortical modes that correspond to distinct behavioral
modes.

Our decoding of the subjects’ time-varying behavioral mode has ramifications for
BMI design, as demonstrated by Suminski et al. (2013). Suminski et al. addressed a
longstanding limitation of BMIs: decoders trained on a given set of motor activities do
not predict accurately outside those activities. Hierarchical BMIs, which include multiple

decoders operating in parallel with a switching mechanism, may outperform those with a
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single decoder. In the context of hand function, a decoder trained only on movement data
may not provide optimal control of a BMI for grasping and manipulating objects, either
with a prosthetic hand or functional electrical stimulation of paralyzed fingers. The most
important challenge for current BMI design is to bring this technology more fully into the
clinic. Thus, practical considerations, like understanding the differences in the neural
representations of imagined and attempted movement (Vargas-Irwin et al., 2018) or force
(Rastogi et al., 2020) by an individual with paralysis, are high priorities. In a similar
vein, our results—suggesting that decoding the behavioral kinematic/kinetic mode from
cortical activity is feasible—could increase the functionality of BMIs during object grasp.
In addition, the improvement in behavioral mode decoding by using latent factors
indicates that viewing the cortical motor control circuits as a dynamical system can
facilitate the task of identifying cortical correlates of multiple behavioral modes. LFADS
does not add information to that contained in the ECoG features, so its application may
not always result in a large increase in decoding accuracy (especially in a discrete
classification task, e.g., Figure 6, S6), despite its effectiveness at uncovering low-
dimensional representations (Figure 4B,D, also from S6). However, the success of
LFADS in improving decoding in some subjects, especially those with worse initial
performance, suggests a potentially important role for denoising procedures such as
LFADS in BMI future BMI applications. Improving decoding accuracy of behavioral
mode from 77% to 91%, as in S4 (Figure 6), would likely result in greatly improved
overall BMI performance, more positive perceptions by the user, and better acceptance of

the prosthesis.
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The ubiquity of object-manipulation behaviors in human life underscores the
importance of functioning hand grasp. In this case, however, ubiquity does not mean that
the behavior is simple. The current study allowed us to examine the activity in human
M1/PM that accompanied the sequential execution of movement and force. We found
both movement and force to be quite well represented, allowing us to decode each with
high accuracy. Our data also indicate that the movement and force representations are
distinct, as we distinguished them in space, with LFADS, via the Neural Vector Angle,
and via behavioral mode classification. The current results suggest that a BMI controlled
using ECoG could restore both movement and isometric aspects of grasp to individuals

with paralysis.
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Figure/Table legends

Figure 1. ECoG array placement, experimental task, and behavioral data. (A) In S1 through S5
and S7, we targeted the primary motor and premotor cortices. Array placement for S6 was
determined by clinical need. For S1 and S2 we recorded ECoG from the right hemisphere; the
other subjects’ ECoG were recorded from the left hemisphere. (B) One trial (approximately 2.5s)
of the kinematic-kinetic task. At the beginning of the trial, the subjects held their index finger in
a neutral position (upper left photograph) until visually cued on a screen. Cyan trace: finger
kinematics (amount of flexion; arbitrary units) during the trial. Cyan triangle: time of flexion
movement onset. Upon contact with the force sensor (lower inset photograph), the subjects
exerted isometric force until matching a force target on the screen with a cursor (not shown).
Blue trace: recorded force. Blue circle: time of force onset. At bottom is a schematic
representation of behavioral mode segmentation: pre-movement (from target presentation until
the start of flexion), movement (start of flexion until start of force), and force (from force onset
lasting 500ms). (C) We measured index finger flexion using a CyberGlove; movement onset was

identified using the first principal component calculated on the data from the highlighted sensors.

Figure 2. Spectral power modulation during the movement-force grasp task. Each panel shows
data from a high- or low-frequency spectral feature taken from an individual ECoG electrode.
The single-trial frequency band power (grayscale in each plot) was z-scored and aligned either to
movement onset (cyan dashed lines, A-C,F) or to force onset (blue dashed lines, D-E). Blue
circles show force onset times when trials were aligned to movement onset. Cyan triangles show
movement onset times when trials were aligned to force onset. High frequency features (A-C)
exhibited power increases, which could be time locked to both movement and force (A) or force
only (B,C). Low frequency features (D-F) exhibited power decreases just preceding, and aligned

to, the onset of movement (D,E), or aligned to the start of force (F).
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Figure 3. Decoding maps reveal changes in the cortical representations of movement and force.
(A) Example decoding maps for S4. Four folds of data are shown, the actual analysis utilized 10
folds per recording. Square recording arrays are shown in a rotated perspective for compact
visualization. We compared single-electrode decoding maps for movement (top) and force
(bottom) using a distance metric D;y ., for every possible combination of fold pairs. As a
control, we calculated D;,;,, between all possible fold pairs, for within-movement and within-
force decoding. (B) Boxplot of distance measures for all subjects. The central horizontal line in
each box shows the median, while the notches show 95% confidence intervals. Overall, the
median Dj;,;. Was significantly greater than the median D;,;,-, in 6 of 7 subjects (red stars). Note
that the maps in (A) show 64 channels; for the distance measures in (B), only the PM/M1

electrodes were included.

Figure 4. Modeling ECoG features as an underlying dynamical system using LFADS uncovers
repeatable trajectories through a low-dimensional state space during the kinematic-kinetic task.
Shown are LFADS-PCs (labeled as “PC” for simplicity) derived from high-frequency (A-B) and
low-frequency (C-D) ECoG features. Single-trial trajectories are shown for subjects S5 (78 trials;
panel A,C) and S6 (73 trials; panel B,D). Inset boxes in each panel show the trajectories resulting
from PCA performed directly on the ECoG features (without LFADS). The color code at bottom

defines the portion of each trial corresponding to each behavioral mode.

Figure 5. The neural vector angle (NVA) summarizes the cortical state change associated with
the behavioral mode change from movement to force. (A,B) Electrodes selected for S5, using k-
means clustering. CS; central sulcus. Anterior-posterior and superior-inferior are indicated on
the rosette; compare to Figure 1A. (A) and (B) represent two of the three resulting clusters; the
unsupervised cluster analysis natively divided the responses into low frequency and high

frequency responses. (C) The NVA, 0(t) for the low frequency features selected in (A). The dark
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red dashed line shows the average time of target appearance, relative to force onset (time=0). The
vertical cyan lines show the mean (solid line) and standard deviation (dashed lines) of movement
onset, relative to force onset. The vertical black lines show the time of maximum force for each
trial (equivalent to the reference period m™). (D) The NVA for the high frequency features
shown in (B). (E,F) NVAs calculated across all trials, all subjects in the study. Labeling

conventions are the same as in (C,D).

Figure 6. Decoding behavioral mode from ECoG features before and after LFADS denoising.
The median classification accuracy was greater than chance for all subjects. SVM; support vector

machines. Tree; boosted aggregate decision tree classifier.

Table 1. Displacement of peak location for movement decoding performance relative to force

decoding performance in each subject.

Table 2. Number of principal components (PCs) required to account for 90% of the variance in
the ECoG features (PCA-only) or the latent factors (LFADS PCs). Note that the number of
available features (factors) was equal to twice the number of ECoG electrodes selected for the

analysis (those in M1/PM areas).
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