
Research Article: New Research | Sensory and Motor Systems

The representation of finger movement and force in human motor and premotor cortices

<https://doi.org/10.1523/ENEURO.0063-20.2020>

Cite as: eNeuro 2020; 10.1523/ENEURO.0063-20.2020

Received: 19 February 2020

Revised: 6 May 2020

Accepted: 21 May 2020

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2020 Flint et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

- 1 1. **Manuscript Title: The representation of finger movement and force in human**
- 2 **motor and premotor cortices**
- 3 2. Abbreviated title: Finger movement and force in human M1 and PM
- 4 3. Author names and affiliation: Robert D. Flint*^{1,2}, Matthew C. Tate^{1,3}, Kejun Li⁴,
- 5 Jessica W. Templer¹, Joshua M. Rosenow^{1,3,5}, Chethan Pandarinath^{6,7,8}, Marc W.
- 6 Slutzky^{1,2,5,9,10}
- 7 ¹Department of Neurology, Northwestern University, Chicago IL 60611, USA,
- 8 ²Shirley Ryan AbilityLab, Northwestern University, Chicago IL 60611, USA,
- 9 ³Department of Neurological Surgery, Northwestern University, Chicago IL 60611,
- 10 USA, ⁴Computation and Neural Systems Program, California Institute of Technology,
- 11 Pasadena, California 91125, USA, ⁵Department of Physical Medicine &
- 12 Rehabilitation, Northwestern University, Chicago IL 60611, USA, ⁶Department of
- 13 Biomedical Engineering, Emory University and Georgia Institute of Technology,
- 14 Atlanta GA 30322, USA, ⁷Department of Neurosurgery, Emory University, Atlanta
- 15 GA 30322, USA, ⁸Emory Neuromodulation and Technology Innovation Center
- 16 (ENTICe), Emory University, Atlanta GA 30322, USA, ⁹Department of Physiology,
- 17 Northwestern University, Chicago IL 60611, USA. ¹⁰Department of Biomedical
- 18 Engineering, Northwestern University, Chicago IL 60611, USA
- 19 4. Author contributions: RDF and MWS designed research; RDF, MCT, JWT, JMR,
- 20 and MWS performed research; RDF, KL, CP, and MWS analyzed data; RDF, KL,
- 21 CP, and MWS wrote the paper.
- 22
- 23

24 5. Correspondence should be addressed to:
25 Robert D Flint
26 Research Assistant Professor, Neurology
27 Feinberg School of Medicine
28 Northwestern University
29 r-flint@northwestern.edu

30 6. Number of Figures: 6
31 7. Number of Tables: 2
32 8. Number of Multimedia: 0
33 9. Number of words for Abstract: 200
34 10. Number of words for Significance Statement: 117
35 11. Number of words for Introduction: 650
36 12. Number of words for Discussion: 1946
37 13. Acknowledgements: This work was supported by the following sources: Craig H
38 Nielsen Foundation fellowship (RDF); Emory College Computational
39 Neuroscience training grant (KL); Burroughs Wellcome Fund Collaborative
40 Research Travel Grant (CP); National Science Foundation NCS 1835364 (CP);
41 Emory Neuromodulation Technology Innovation Center (CP); Doris Duke
42 Charitable Foundation Clinical Scientist Development Award (MWS);
43 Northwestern Memorial Foundation Dixon Translational Research Grant
44 Program (supported in part by NIH Grant UL1RR025741) (MWS); National
45 Institutes of Health R01NS094748 (MWS). We would like to thank our research
46 subjects for their participation, and Mukta Vaidya for helpful comments on the

47 manuscript.

48 14. Conflict of Interest: Authors report no conflict of interest

49

50

51 **Abstract**

52 The ability to grasp and manipulate objects requires controlling both finger
53 movement kinematics and isometric force in rapid succession. Previous work suggests
54 that these behavioral modes are controlled separately, but it is unknown whether the
55 cerebral cortex represents them differently. Here, we asked the question of how
56 movement and force were represented cortically, when executed sequentially with the
57 same finger. We recorded high-density electrocorticography (ECoG) from the motor and
58 premotor cortices of seven human subjects performing a movement-force motor task.
59 We decoded finger movement (0.7 ± 0.3 fractional variance accounted for; FVAF) and
60 force (0.7 ± 0.2 FVAF) with high accuracy, yet found different spatial representations. In
61 addition, we used a state-of-the-art deep learning method to uncover smooth, repeatable
62 trajectories through ECoG state space during the movement-force task. We also
63 summarized ECoG across trials and participants by developing a new metric, the neural
64 vector angle. Thus, state-space techniques can help to investigate broad cortical
65 networks. Finally, we were able to classify the behavioral mode from neural signals with
66 high accuracy ($90 \pm 6\%$). Thus, finger movement and force appear to have distinct
67 representations in motor/premotor cortices. These results inform our understanding of
68 the neural control of movement, as well as the design of grasp brain-machine interfaces.

69

70 **Significance Statement**

71 The human ability to manipulate objects is central to our daily lives and requires
72 control of both grasping movement and force. Here, we explored how these motor
73 activities are represented at the level of the cortex. Understanding these representations
74 will influence the design of brain-machine interfaces (BMIs) to restore function after
75 paralysis. We recorded electrocorticography (ECoG) from seven human subjects who
76 performed a sequential movement-force motor task. We found differences between the
77 cortical representations of movement and force using decoding methods, deep learning,
78 and a new neural ensemble metric. Thus, ECoG could be used in a BMI to control both
79 movement and force behaviors. These results can potentially accelerate the translation of
80 BMIs for individuals with paralysis.

81

82

83 **Introduction**

84 The human ability to grasp and manipulate objects is central to our evolutionary
85 success as tool users. The loss of this ability has a profound negative impact on overall
86 quality of life. We rely in particular upon our ability to precisely regulate movement and
87 force, to close our fingers around an object, then exert isometric force sufficient to
88 prevent slippage without crushing it. However, the neural origin of this process is not yet
89 clear. In the current study, we sought to identify how movement and force are encoded at
90 the cortical level when both are performed sequentially.

91 There is longstanding evidence for cortical representations of both movement
92 (Moran and Schwartz, 1999) and force (Evarts, 1968). There is also indirect evidence
93 that distinct neural control states are used for kinematics (movement) and kinetics (force).
94 For example, motor learning of kinematics and kinetics in reaching occur independently
95 of each other (Flanagan et al., 1999). Kinematic and kinetic control can be disrupted
96 independently (Chib et al., 2009), and their errors can be separated during adaptation
97 (Danion et al., 2013). Perhaps most relevant, Venkadesan and Valero-Cuevas (2008),
98 found that electromyogram (EMG) activity patterns transitioned between separate,
99 incompatible states during a one-finger, sequential movement-force task. Importantly,
100 these transitions occurred prior to the fingertip's contact with a surface, implying that
101 changing neural states may "prepare" finger muscle activations for their upcoming role in
102 regulating force. Here, we hypothesized that the transition between movement and force
103 is encoded in motor and premotor cortical networks.

104 The specifics of cortical movement and force encoding are also relevant to brain-
105 machine interface (BMI) design (Downey et al., 2018; Branco et al., 2019a; Slutsky,

106 2019; Rastogi et al., 2020). Restoration of hand grasp functionality is a high priority for
107 individuals with paralysis (Blabe et al., 2015). Currently, BMIs using motor cortical
108 signals control robotic or prosthetic hands (Hochberg et al., 2012; Yanagisawa et al.,
109 2012; Wodlinger et al., 2014; Hotson et al., 2016), or functional electrical stimulation of
110 paralyzed limbs (Pfurtscheller et al., 2003; Bouton et al., 2016; Ajiboye et al., 2017).
111 However, most BMIs that have decoded grasp intent have focused on decoding
112 kinematics of grasp aperture. One exception improved BMI-prosthetic hand control by
113 scaling the neuronal firing rates (Downey et al., 2017), but did not examine the
114 movement-force transition. Here, we hypothesized that force and kinematics of the hand
115 are governed by different neural states in cortex.

116 In the current study, we used a sequential movement-force task to investigate
117 changes in human cortical activity during transitions in behavioral mode: from pre-
118 movement (preparation) to movement to force. We recorded subdural surface potentials
119 (electrocorticography; ECoG), finger kinematics, and applied force. We used ECoG
120 spectral modulations to measure changes in the spatial patterns of movement- and force-
121 based decoding, and to classify the behavioral mode of the subject. We found evidence
122 of distinct movement and force encoding.

123 Recent work has characterized changes in cortical network activity during
124 kinematic tasks as the temporal evolution of a dynamical system (Churchland et al.,
125 2012; Pandarinath et al., 2018). Here, we examined whether neural state space changes
126 accompanied behavioral mode transitions (from pre-movement to movement to force).
127 We used latent factor analysis via dynamical systems (LFADS), a deep-learning method
128 that uses sequential autoencoders to uncover trajectories in a low-dimensional neural

129 state space from high-dimensional neural data (Pandarinath et al., 2018). We also
130 calculated changes in a neural vector angle (NVA), obtained by treating the spectral
131 features as elements of a high-dimensional neural vector. Both approaches showed that
132 activity across a broad area of motor and premotor cortices exhibited tightly clustered
133 trajectories through neural state space that were time-locked to the behavior. The NVA
134 enabled us to average responses across subjects and create a generalized temporal profile
135 of neural state space activity during the movement and force modes of human grasp.
136 Together, these analyses indicate that distinct cortical states correspond to the distinct
137 movement and force modes of grasp.

138

139 **Materials and Methods**

140 **Subjects and recordings**

141 Seven human subjects participated in the study (all male; ages 26-60, ordered
142 chronologically). Six of the subjects required awake intraoperative mapping prior to
143 resection of low-grade gliomas. Their tumors were located remotely to the cortical areas
144 related to hand grasp, and no upper extremity sensorimotor deficits were observed in
145 neurological testing. Subject S6 underwent extraoperative intracranial monitoring prior
146 to resection surgery for treatment of medication-refractory epilepsy. All human subjects
147 were recruited at Northwestern University. The experiments were performed under
148 protocols approved by the institutional review board. All subjects gave written informed
149 consent before participating in the study. Subjects were recruited for the study if the site
150 of their craniotomy, or their monitoring array was expected to include coverage of
151 primary motor cortex.

152 In all subjects except S6, we used 64 electrode (8x8) high-density ECoG arrays,
153 with 1.5-mm exposed recording site diameter and 4-mm inter-electrode spacing (Integra,
154 Inc.). Arrays were placed over hand motor areas, which we defined by: 1) anatomical
155 landmarks, e.g., ‘hand knob’ in primary motor cortex; 2) pre-operative fMRI or
156 transcranial magnetic stimulation to identify functional motor areas; and 3) direct
157 electrocortical stimulation mapping. Intraoperative recordings took place after direct
158 stimulation mapping. Intraoperative MRI navigation was performed with Curve
159 (BrainLab, Inc., Munich, Germany). The recording arrays covered primary motor cortex,
160 premotor cortex, and usually part of primary somatosensory cortex as well (Figure 1A).
161 In S6, electrode placement was determined by clinical need. For this subject, we used a
162 32-electrode (8x4) array with the same electrode size and spacing as our 64-electrode
163 arrays.

164 We sampled ECoG at 2 kHz using a Neuroport Neural Signal Processor
165 (Blackrock Microsystems, Inc.). Signals were bandpass filtered between 0.3 Hz and 500
166 Hz prior to sampling. Finger kinematics were recorded using a 22-sensor CyberGlove
167 (Immersion). We recorded force with a custom-built load cell sensor. Kinematic and
168 kinetic data were both sampled at the same rate as ECoG.

169

170 **Experimental protocol**

171 The subjects executed repeated trials of a one-finger task that required isotonic movement
172 and isometric force in sequence (Figure 1B). At the beginning of each trial, the subjects
173 were instructed to hold their index finger in a neutral posture (the “pre-movement”
174 behavioral mode). After a cue, they executed a self-paced flexion movement, which

175 brought the palmar surface of the index finger into contact with the force sensor. Upon
176 contact, subjects were instructed to apply force to the sensor, thereby controlling a cursor
177 on a monitor. Their task was to match the cursor's vertical position to that of a force
178 target presented on the monitor. Target force levels varied randomly from trial to trial
179 (random-target pursuit task). Following a successful match (or a timeout of 2s), the trial
180 was complete, and the subject extended their finger back to the baseline (neutral)
181 position. The next trial began after a delay of 1s. Target presentation and cursor
182 feedback were carried out by the open-source BCI2000 software (Schalk et al., 2004).
183 The time resolution for both kinematic data acquisition and force cursor control was
184 50ms.

185 Our task was designed to elicit movement by, and force using one finger, keeping
186 the other fingers motionless in a flexed position. Therefore, our kinematic data consisted
187 of the CyberGlove sensors that measured the motion of the index finger (Figure 1C,
188 highlighted). Dominant kinematic features were extracted via principal component
189 analysis (PCA). We performed PCA only on data from the highlighted sensors in Figure
190 1C, retaining the 1st component to identify movement onset (the cyan trace in Figure 1B
191 shows an example of the movement signal we used).

192

193 **Feature extraction**

194 For all analyses, we extracted spectral features from each ECoG electrode. Here,
195 each feature was the mean spectral power in a frequency band of interest. The sampling
196 rate was 2000 Hz. To compute spectral power, we applied a Hanning window function to
197 256-ms segments of data, followed by a Fourier transform. We normalized the log of this

198 power by subtracting the log of the mean power over the entire file, then extracted
199 spectral features by averaging within frequency bands of interest (see below). The
200 resolution of the frequency axis was 3.9 Hz. Each data segment (or time bin, to borrow
201 nomenclature from past single-neuron studies) overlapped the previous by 231 ms, giving
202 the analysis an effective temporal resolution of 25 ms.

203 We identified the feature boundaries (frequency bands of interest) by computing
204 the event-related spectral perturbation (ERSP) for each electrode around the time of force
205 onset. We then averaged the ERSPs for all electrodes in our dataset, and identified the
206 frequency bands of interest: broadband low frequency (8-55 Hz) and broadband high
207 frequency (70-150 Hz). Subsequent analyses were performed on the feature matrix for
208 each subject. Each feature matrix was size NxM, where N is the number of time bins in
209 the record, and M is 2*(number of electrodes)*10, where 10 was the number of time bins
210 into the past (causal bins only).

211

212 **Population decoding of continuous movement and force**

213 We decoded continuous movement kinematics and continuous isometric force,
214 using all (non-noisy) electrodes from PM and M1 in each subject. For continuous
215 decoding, the feature matrix served as input to a Wiener cascade decoder (Hunter and
216 Korenberg, 1986). In the Wiener cascade, the output of a linear Wiener filter is
217 convolved with a static nonlinearity (here, a 3rd-order polynomial). We employed ridge
218 regression to reduce the likelihood of overfitting due to the large feature space, as in
219 (Suminski et al., 2010). We evaluated decoding accuracy using the fraction of variance
220 accounted for (FVAF). We employed 11-fold cross-validation, using 9 folds for training,

221 1 fold for parameter validation (e.g., optimizing the free parameter in the ridge
222 regression; Fagg et al., 2009), and 1 fold for testing. We report the median \pm interquartile
223 range (IQR) of FVAF across test folds. Movement and force were treated as separate,
224 independent sources of information for continuous decoding. All sampled times were
225 used to decode movement, whether the subject was in pre-movement, movement, force,
226 or between trials. Likewise, all sampled times were used to decode force. The purpose
227 of decoding continuous movement and force was to validate the information content of
228 the ECoG signals. Thus, a high FVAF indicated that the ECoG signals encode
229 information about times of active behavior (movement or force) as well as rest periods,
230 and transitions among behavioral modes.

231

232 **Spatial mapping of decoding performance**

233 We quantified the difference in the spatial representations of movement and force
234 using two measures: (1) change in location of the peak single-electrode decoding
235 performance, and (2) change in the overall spatial distribution of single-electrode
236 decoding performance. For both analyses, we decoded continuous movement for each
237 individual ECoG electrode using Wiener cascade decoders, as in the previous section. As
238 above, all data (regardless of behavioral mode) were used to evaluate decoding accuracy
239 using the cross-validated FVAF. The spatial distribution of single-electrode movement
240 decoding performance formed a “map” for the array. In a similar manner, we constructed
241 a “map” of force decoding performance. We then analyzed these maps to reveal
242 differences between movement and force spatial representation patterns on the cortical
243 surface.

244 We compared the location of the overall peak of each decoding map for
245 movement to that of force within each cross-validation fold. We report the absolute
246 displacement between the peak performance location from force decoding vs. that from
247 movement decoding. Peak performance displacement quantifies the shift in location
248 between movement and force in units of distance (here, in millimeters).

249 In addition, we compared the overall decoding map patterns. The map for a
250 single fold can be treated as an image, with FVAF values corresponding to pixel
251 intensities. We measured similarity among maps using a differencing metric common to
252 image processing (Euclidean distance). We calculated the distance (D) between pairs of
253 maps for individual folds. For example, a value of $D_{\text{intra},3-4(\text{force})}=0$, where D is the
254 difference metric, would indicate that the force decoding maps in folds 3 and 4 were
255 identical. We compared the inter-map distances across behavioral modes (movement vs.
256 force, D_{inter}) to find the average decoding map difference between movement and force
257 encoding on the cortex. We compared these to within-modality distances
258 ($D_{\text{intra}(\text{force})}, D_{\text{intra}(\text{mvt})}$), which vary only due to time. That is, D_{intra} measured map
259 differences within a behavioral mode, which can be attributed to variance in task
260 performance across trials. Thus, D_{intra} values served as controls for D_{inter} , which
261 measured the map differences attributable to behavioral mode (movement or force).
262 When calculating these distance metrics between performance maps, we scaled by the
263 maximum possible distance between the maps, so that both D_{inter} and D_{intra} ranged from 0
264 to 1.

265
266

267

268 **Latent factor analysis via dynamical systems**

269 We used a deep learning algorithm known as latent factor analysis via dynamical
270 systems (LFADS) to denoise ECoG features (Sussillo et al., 2016; Pandarinath et al.,
271 2018). LFADS denoises neural activity based on the assumption that the observed
272 patterns of neural modulation can be described as noisy observations of an underlying
273 low-dimensional dynamical system. LFADS aims to extract a set of low-dimensional
274 latent factors that describe neural population activity on a single-trial basis. When
275 previously applied to spiking activity from populations of neurons, LFADS modeled
276 observed spikes for each neuron as samples from an inhomogeneous Poisson process
277 (called the firing rate), and attempted to infer this underlying firing rate for each neuron.
278 In this study, since the ECoG features are continuous rather than discrete variables, the
279 underlying distribution was taken to be Gaussian instead of Poisson. Specifically, the data
280 was pre-processed by z-scoring each spectral feature. Then, the data was modeled
281 following the equations in Sussillo et al. (2016), with the key modifications that:

282
$$\mu_{r,t} = \mathbf{W}^{fac1}(\mathbf{f}_t) \quad (1)$$

283
$$\sigma_{r,t} = \mathbf{W}^{fac2}(\mathbf{f}_t) \quad (2)$$

284
$$x_t \sim N(\mu_{r,t}, \sigma_{r,t}^2), \quad (3)$$

285 where \mathbf{x}_t represents the vector of z-scored spectral features at each timestep, and \mathbf{f}_t
286 represents the latent factors output by the LFADS recurrent neural network. For a given
287 spectral feature r , $\mu_{r,t}$ and $\sigma_{r,t}$ represent the inferred time-varying mean and variance,
288 respectively, for the z-scored spectral feature at each time step. \mathbf{W}^{fac1} and \mathbf{W}^{fac2} are

289 matrices that map the latent factors onto $\mu_{r,t}$ and $\sigma_{r,t}$, respectively. These matrices have
290 fixed weights across all time points. For each subject, the number of latent factors
291 allowed was approximately half the total number of ECoG channels used. After applying
292 LFADS, we used principal component analysis to produce low-dimensional
293 visualizations of the denoised ECoG features.

294 **Neural vector angle**

295 To compactly represent the overall response of a subject's feature set, we
296 computed neural vector angles (NVAs) for each trial. This quantity is similar to the
297 "muscle coordination pattern" angle of Venkadesan and Valero-Cuevas (2008). We
298 selected features to include in the NVA calculations using the following method: first, we
299 averaged the ECoG spectral intensity across trials, aligned to force onset. We then used
300 unsupervised k-means clustering (3 clusters) to partition the trial-averaged spectral power
301 from the complete set of features. All M1/PM features served as inputs to the clustering
302 algorithm. We evaluated this algorithm with 2-5 input clusters in each subject, using
303 silhouette values to judge the quality of clustering. Grouping the features into 3 clusters
304 produced the best groupings (with zero negative silhouette values in most subjects). Of
305 the three output clusters, we selected the two that were well-modulated with movement
306 and/or force: a cluster of low-frequency features and a cluster of high-frequency features.
307 These groupings for well-modulated features (low- and high-frequency) emerged natively
308 from the unsupervised procedure, typically leaving one additional cluster of poorly-
309 modulated features. Clustering was used only as a means of selecting ECoG features to
310 include in NVA computations.

311 We calculated the NVA separately for the low- and high-frequency features, as
312 follows: a cluster of features with n members can be represented at time t as
313 $\mathbf{m}(t) = [f_1, f_2, \dots, f_n]$, where f is the value of an individual feature. We smoothed $\mathbf{m}(t)$ over 5
314 time bins (total 125 ms), then calculated the neural vector angle

315
$$\theta(t) = \cos^{-1} \left(\frac{\mathbf{m}(t) \cdot \mathbf{m}^{ref}}{\|\mathbf{m}(t)\| \|\mathbf{m}^{ref}\|} \right) \quad (4)$$

316 where \mathbf{m}^{ref} is the average value of $\mathbf{m}(t)$ over the 250-ms period before the time of
317 maximum force exertion in the trial. We computed the neural vector angle at each time
318 bin over trials in each of the emergent clusters (low- and high-frequency modulating), for
319 each subject. Since the neural vector angle transformed the data from feature values to a
320 common coordinate system (angle between vectors, in degrees), it enabled us to average
321 this quantity across subjects. To quantify differences in NVA values due to behavioral
322 mode, we used the Kruskal-Wallis test of unequal medians on NVAs during “pre-
323 movement”, “movement”, and “force” modes (illustrated in Figure 1B). See also the
324 following section for details of the behavioral mode labelling procedure.

325

326 **Discrete classification of behavioral mode**

327 Our classification of behavioral mode utilized the same frequency-based features
328 as we used in our continuous decoding analysis. Here, the data were selected and labeled
329 as follows: time bins from target presentation to the start of finger flexion were labeled as
330 “pre-movement”; time bins from the start of flexion to contact with the force sensor were
331 labeled “movement”; time bins beginning at contact with the force sensor, continuing for
332 0.5 s were labeled “force”. An example of this behavioral mode labelling for a single

333 trial of data is shown in Figure 1B. We limited the length of the force window to obtain
334 more balanced class sizes. Data outside of the described time windows were discarded.
335 The data were classified using two methods: support vector machines and boosted
336 aggregate (bagged) trees. The classification analyses used 5-fold cross
337 validation. Within each fold, we trained on (or tested) every individual 25-ms time
338 bin. The reported accuracy measures are the median \pm IQR of correctly classified time
339 bins across all test folds. Because the class sizes were not exactly equal, the chance level
340 performance of the 3-class classifier was not necessarily 1/3. We calculated the true
341 chance level performance by shuffling the class labels and then performing the analyses
342 as above. We repeated this procedure 1000 times for each recording.

343

344 **Experimental design and statistical analysis**

345 We conducted the experiments and analyzed the data using a within-subject
346 design. We used non-parametric statistics to report continuous kinematics and
347 continuous force decoding accuracy, as the decoding accuracy values (FVAF) were
348 distributed non-normally across cross-validation folds. To compare maps of decoding
349 performance, we conducted a one-tailed Wilcoxon signed-rank test, with Bonferroni
350 correction for multiple comparisons. Differences in NVA during behavioral modes were
351 tested using a Kruskal-Wallis test. For the discrete decoding of behavioral mode, we also
352 used a Kruskal-Wallis test to identify statistical differences between ECoG feature-based
353 decoding and LFADS-cleaned feature decoding.

354

355 **Results**

356 We recorded ECoG from seven human subjects with brain tumors or epilepsy
357 who required intraoperative or extraoperative mapping as part of their clinical treatment.
358 In all subjects, ECoG coverage included at least part of primary motor and premotor
359 cortices (Brodmann areas 4 and 6). In some cases, coverage also included prefrontal
360 and/or postcentral cortices (Figure 1A). However, we restricted our analyses to
361 electrodes covering primary motor and premotor cortices. The subjects performed a cued
362 one-finger task requiring an isotonic flexion movement, followed by isometric flexion to
363 specified force targets. Movement and isometric flexion were performed sequentially
364 (Figure 1B). This task was adapted from Venkadesan and Valero-Cuevas (2008). We
365 recorded the finger joint kinematics (based on the sensors highlighted in Figure 1C) as
366 well as the force generated by isometric flexion.

367

368 **ECoG feature modulations were time-locked with movement and force**

369 Following Collard et al. (2016), we used event-aligned plots to visualize event-
370 related changes in ECoG spectral features, specifically to understand how tightly these
371 features modulated with behavioral events. We examined modulation with respect to (1)
372 the start of finger flexion movement and (2) the start of isometric force exertion. For
373 each feature, we constructed an “intensity raster” by windowing the feature’s data, then
374 plotting as trial number vs. peri-event time. We sorted trials by the elapsed time between
375 events.

376 We constructed intensity raster plots for each feature in our dataset (2 features per
377 non-noise electrode, 722 total features in the dataset). Overall, we found a diverse set of
378 activity patterns during movement and force production. Figure 2A shows an example of

379 a high frequency feature that appears to encode both movement and force, showing
380 increased activity at the transition from pre-movement to movement (Figure 2A, left of
381 dashed line) and decreased activity after force onset (right of blue circles). Some high
382 frequency feature modulations were time-locked only to force execution (Figure 2B,C).
383 Examples of low frequency features exhibiting power decreases at movement onset are
384 shown in Figure 2D,E. Low-frequency power decrease could also be time-locked to the
385 start of force, instead (Figure 2F). Note that Figures 2B and 2E show high- and low-
386 frequency features from the same ECoG electrode, illustrating that two behavioral modes
387 can be encoded differently by high- and low-frequency information on the same
388 electrode. Overall, the results exemplified in Figure 2 indicate a heterogeneous set of
389 spectral feature responses to movement and force; in fact, we did not find a simple way to
390 combine feature intensity data that completely summarized the individual features'
391 responses across high- or low-frequency domains. Therefore, we also examined
392 population-level measures to obtain a more generalized description of how M1/PM
393 represents kinematic-kinetic behavior.

394

395 **Continuous movement and force were decoded with high accuracy using ECoG**

396 We used a Wiener cascade approach to build multi-input, single-output models
397 for decoding behavior. We built one such model to decode the continuous time course of
398 finger movement kinematics using both high and low spectral features from all (M1/PM)
399 electrodes. A separate model was built to decode continuous isometric force from the
400 same electrodes. Both movement and force were decoded at all times (not only during
401 active movement or active force) using a cross-validated design. The resulting decoding

402 accuracy was high for both force and kinematics: the fraction of variance accounted for
403 (FVAF) ranged from 0.4 ± 0.1 (median \pm IQR) to 0.8 ± 0.1 for the individual subjects.
404 Across subjects, the overall median FVAF was 0.7 ± 0.2 for force decoding, and 0.7 ± 0.3
405 for movement decoding. Statistically, the null hypothesis that movement kinematics and
406 force were decoded with equivalent accuracy could not be rejected (Kruskal-Wallis test,
407 $p=0.6$); thus, any differences between movement and force representations were not due
408 simply to decoding one quantity better than the other.

409

410 **Spatial mapping of decoding performance shows different cortical representations
411 of movement and force**

412 We next quantified the difference in the spatial representations of force and
413 movement on the cortical surface, using two metrics: (1) change in location of the peak
414 decoding performance electrode (Table 1), and (2) change in overall decoding map
415 pattern (Figure 3). A previous study found that decoding maps' peak performance
416 locations differed when two different fingers were used for an isometric force task (Flint
417 et al., 2014). Here, we found that the peak performance location was different for
418 movement and force decoding. The displacement (between movement and force) of the
419 peak decoding performance ranged from 3.2 ± 5.4 mm to 16.5 ± 8.8 mm across subjects
420 (mean \pm SD over folds; Table 1). The mean (\pm SE) displacement of peak performance for
421 all subjects was 9.9 ± 2.0 mm.

422

423

424

425

426

	mean	±	S.D.
S1	16.1	±	4.1
S2	16.5	±	8.8
S3	3.2	±	5.4
S4	10.2	±	8.4
S5	4.2	±	6.6
S6	8.8	±	5.4
S7	10.7	±	8.0

427 Table 1. Displacement of peak location (in mm) for movement decoding performance relative to

428 force decoding performance in each subject.

429 To place these distances in context, a standard ECoG array for epilepsy use has an inter-
430 electrode distance of 10 mm, highlighting the advantages of using high-density ECoG
431 arrays (the electrode arrays used here had an inter-electrode distance of 4 mm). See also
432 Wang et al. (2016).433 In addition to changes in peak decoding location, there were differences between
434 movement and force in their respective overall decoding map patterns (Figure 3). The
435 between-mode distance D_{inter} , which measured differences between the movement-force
436 maps (see Methods), was significantly greater than the within-mode distance D_{intra} in 6 of
437 7 subjects ($p < 3 \times 10^{-5}$ except S3, where $p = 0.19$; one-tailed Wilcoxon signed-rank test with
438 Bonferroni correction for multiple comparisons; see Figure 3B). This indicates that the
439 spatial distribution of decoding as a whole changed significantly between movement and

440 force, and that this change was greater than what would be expected from behavioral
441 variation. Taken together, these results indicate that the spatial representations of
442 movement and force on the cortical surface are different.

443

444 **Differences in pre-movement, movement, and force behavioral modes were reflected**
445 **in a dynamical systems model of M1/PM network activity**

446 We next examined the activity of the recorded cortical network as a whole during
447 the movement-force behavior. The preceding spectral/spatial analyses (Figure 2 and 3)
448 treated individual ECoG electrodes as independent sources of information. Here, we
449 instead sought a low-dimensional representation to clarify and summarize the activity of
450 the cortical network during the time course of the behavior. We used latent factor
451 analysis via dynamical systems (LFADS; Pandarinath et al., 2018) to generate low-
452 dimensional representations of single-trial activity in the ECoG feature state space (see
453 Methods). To visually summarize the factors, we computed principal components of the
454 LFADS-denoised ECoG features (labeled LFADS-PCs). Figure 4 shows the underlying
455 dynamics for S5 and S6 during trials of the kinematic-kinetic task, color-coded by
456 behavioral mode. At the start of the task (pre-movement), the high- and low-frequency
457 latent factors tended to be distributed through a relatively broad region of the state space
458 (ex. Figure 4A, red). Prior to the start of movement, the latent factors tended to converge
459 onto a smaller region of state space, and their trajectories through the movement (cyan)
460 and force (blue) periods of the task were more tightly grouped. Moreover, each time
461 period of the task occupied a different part of state space (note the grouping of colors in
462 Figure 4). To illustrate the impact of LFADS in revealing well-ordered, low dimensional

463 state space representations, we also performed PCA directly on the ECoG features (PCA-
464 only; Figure 4, inset boxes). In some cases, PCA-only resulted in a rough grouping of
465 behavioral modes (pre-movement, movement, and force) in neural state space (ex. Figure
466 4A). However, the individual PCA-only trial trajectories remained highly variable,
467 unlike the highly repeatable LFADS-PC trajectories. In other cases, PCA-only did not
468 allow us to resolve a low-dimensional state space representation with identifiable
469 groupings at all (ex. Figure 4D). Contrasting the LFADS-PC plots with the PCA-only
470 plots (i.e., comparing each panel of Figure 4 with its inset) illustrates the benefit of
471 LFADS in visualizing this dataset. We quantified this benefit in Table 2, which shows
472 the number of components required to account for 90% of the variance in the data, with
473 and without LFADS.

474

	PCA-only	LFADS PCs
S01	43 / 66	2 / 66
S02	32 / 48	2 / 48
S03	26 / 44	2 / 44
S04	24 / 32	3 / 32
S05	40 / 74	3 / 74
S06	35 / 72	2 / 72
S07	19 / 36	2 / 36
S08	24 / 40	2 / 40
S09	28 / 38	4 / 38
S10	27 / 36	3 / 36

S11 27 / 36 3 / 36

S12 32 / 78 2 / 78

475 Table 2. Number of principal components (PCs) required to account for 90% of the variance in
476 the ECoG features (PCA-only) or the latent factors (LFADS PCs).

477

478 **A neural vector angle summarizes temporal changes across the feature space**

479 Visualizing the low-dimensional state space with LFADS-PCs reinforced the idea
480 that pre-movement, movement, and force behavioral modes are well-represented in
481 neural state space. However, those methods did not allow us to generalize across
482 subjects. Therefore, we used a second metric for summarizing the modulations of feature
483 space across trials and subjects: the NVA. The NVA $\theta(t)$ is the angle at time t between a
484 neural vector $\mathbf{m}(t)$ and its reference direction, \mathbf{m}^{ref} (see Methods). Here, the high-
485 dimensional vector $\mathbf{m}(t)$ was comprised of M1/PM ECoG spectral features. The
486 reference vector \mathbf{m}^{ref} was calculated during a window prior to the moment of peak force
487 in each trial. Therefore $\theta(t)$ measures the dissimilarity between the ECoG features at
488 each moment with their values during peak force generation.

489 To maximize the signal-to-noise ratio of $\theta(t)$, the elements of $\mathbf{m}(t)$ were selected
490 using a cluster analysis (see Methods). The resulting clusters were typically (1) a cluster
491 of well-modulated low-frequency features (ex. Figure 5A), (2) a cluster of well-
492 modulated high-frequency features (ex. Figure 5B), and (3) a cluster of poorly modulated
493 features (not shown). We computed $\theta(t)$ separately for clusters (1) and (2) in each
494 subject (Figure 5C,D). The NVA recasts feature modulations for each trial into a
495 common unit (angular difference in degrees). Therefore, we were able to combine NVA

496 results across all trials in all subjects, yielding a compact study-wide representation of the
497 cortical response to the movement-force transition (Figure 5E,F).

498 Across subjects, average low-frequency NVAs began to decrease immediately
499 after the presentation of the cue to start the trial (Figure 5E, red line), and reached their
500 minimum value approximately at the start of flexion (Figure 5E, cyan line). Accordingly,
501 low-frequency NVA during movement was significantly lower than NVA during the pre-
502 movement period ($p < 10^{-9}$; Kruskal-Wallis test, Tukey HSD post-hoc for all statistical
503 comparisons in this section). By contrast, there was no significant difference between the
504 movement period and force ($t=0$ to $t=0.75$) in the low-frequency NVAs ($p=0.32$). High-
505 frequency NVAs did not deviate from their pre-movement values at target presentation
506 (Figure 5F), instead changing just prior to the start of movement (Figure 5F, cyan line).
507 During movement, high-frequency NVAs were significantly higher than pre-movement
508 NVA ($p < 10^{-9}$), peaking just before the onset of force (Figure 5F, approximately $t= -130$
509 ms relative to force onset). During the force behavioral mode, high-frequency NVA were
510 overall lower than either movement ($p < 10^{-9}$) or pre-movement ($p < 10^{-6}$) periods.

511 Overall, the NVA provided a compact way to summarize cortical state space
512 changes across subjects during the sequential movement-force task. Earlier, Figure 2
513 showed that responses of individual ECoG features could be quite heterogeneous in their
514 modulations to behavioral events. Here, Figure 4 and Figure 5 showed that in spite of
515 that heterogeneity of individual feature modulations, the information conveyed by
516 populations of features exhibited repeatable, statistically significant patterns during these
517 behaviors. Like Figure 2, the NVA results suggest the possibility of different cortical
518 responses by particular parts of the frequency spectrum (low- and high-frequency

519 features). However, the NVA suggests that, while there may be exceptions (as seen in
520 Fig. 2), this distinction may be a general characteristic of M1/PM cortices during the
521 movement-force behavior.

522

523 **ECoG features enabled accurate classification of behavioral modes**

524 Accurately decoding behavioral modes during grasp has potential applications for
525 brain-machine interface (BMI) design. For example, in response to evolving functional
526 goals (e.g., changing from movement to force behavior when picking up an object), a
527 BMI could switch control strategies. To estimate the accuracy such control might
528 achieve, we tested whether the subjects' behavioral modes could be decoded from
529 cortical activity. We used the low- and high-frequency ECoG spectral features to classify
530 each time bin as one of three behavioral modes: pre-movement, movement, or force
531 execution. The ground-truth behavior mode distinctions were labelled according to the
532 movement onset and force onset events (see Figure 1B for an example trial). In parallel
533 with the ECoG feature-based classification, we also classified behavioral mode using the
534 LFADS-denoised features as inputs. This gave us a way to estimate the impact of
535 cortical "noise" on the accuracy of decoding behavioral mode. We used two widely
536 available classifiers: support vector machines (SVM) and boosted aggregate (bagged)
537 decision trees. For each subject, we also calculated a chance decoding value (see
538 Methods). We report classification accuracy for the two types of classifiers separately,
539 evaluating both the features and the LFADS-denoised factors. The three behavioral
540 modes were strongly differentiable in all subjects (Figure 6). Overall, the tree-based
541 classifier outperformed SVM, and LFADS-denoised features were decoded more

542 accurately than the features without denoising ($p=1.9^{-7}$, Kruskal-Wallis test). For the
543 tree-based classifier of LFADS-denoised features, median decoding accuracies for the
544 subjects ranged from $87\%\pm2\%$ to $94\%\pm1\%$, with an overall median value of $90\%\pm6\%$,
545 indicating that these three classes were highly separable. Statistically, the decoding
546 accuracy for all subjects was significantly higher than chance. We emphasize here that
547 each 25 ms time bin was decoded, rather than decoding behavioral modes as blocks of
548 time. Thus, these behavioral modes have separable cortical representations on a 25-ms
549 time scale.

550

551 **Discussion**

552 Manipulating objects dexterously requires controlling both grasp kinematics and
553 isometric force. Even simple activities like turning a doorknob, shaking hands, and
554 lifting a cup of liquid could not be accomplished safely and quickly without both kinds of
555 control. More than two decades ago, investigators began to appreciate that the central
556 nervous system may handle these two vital aspects of motor behavior separately
557 (Flanagan et al., 1999). Here, we found quantifiable differences in how the motor and
558 premotor cortices represented behavioral mode, i.e. pre-movement, flexion movement,
559 and isometric force. We found individual feature modulations that were time-locked to
560 behaviorally relevant events, and could be observed on a single-trial basis (Figure 2). As
561 ensembles, the ECoG modulations constituted a neural state change, accompanying
562 changes in behavioral mode. We were able to model this change using a dynamical
563 systems approach (LFADS), and decode the subjects' behavioral modes with high

564 accuracy. Understanding neural state changes like these in the context of a functional
565 grasp task will inform the design of dexterous grasp brain-machine interfaces.

566 Generally, we achieved highly accurate decoding of the continuous time course of
567 the behavioral variables (movement and force). These results compared favorably with
568 prior studies decoding finger movement kinematics (Acharya et al., 2010; Nakanishi et
569 al., 2014; Xie et al., 2018) and isometric force (Pistohl et al., 2013; Chen et al., 2014;
570 Flint et al., 2014; Vaidya et al., 2019). Importantly, there was no significant difference in
571 our ability to decode force and movement across subjects, implying that any differences
572 in cortical representations of force and movement were not simply expressions of a
573 superior decoding of one or the other.

574 Spatially, human cortical encoding of finger movement takes place over a
575 widespread area (Schieber, 2002), including complex and overlapping representations of
576 individual finger movements (Dechant and Frahm, 2003). ECoG recordings make it
577 possible to examine cortical activity on these relatively large spatial scales (Slutzky and
578 Flint, 2017). We found that the maps of decoding performance altered significantly
579 across movement and force representations (across-mode) in 6 of 7 subjects. We
580 controlled for changes due to time or behavioral variability (within-mode), by comparing
581 the between-mode maps to the within-mode maps. One potential explanation for the
582 spatial map differences could be that the activating regions of the maps are simply
583 shrinking during isometric force. Such an explanation is consistent with evidence
584 pointing to less cortical modulation with isometric force than with movement (Hendrix et
585 al., 2009). However, in this case we found that the peaks of the decoding maps changed
586 location (Table 1), indicating that the maps shifted rather than merely growing or

587 shrinking. These spatial decoding results are relevant to the design of brain-machine
588 interfaces (BMIs), since any BMI that restores grasp should ideally execute both
589 movement and force functions. There is evidence that representations of hand
590 movements are preserved following amputation (Bruurmijn et al., 2017), though it
591 remains to be shown whether the movement-force functional map change will remain in
592 an individual with paralysis. Downey et al. (2017) found that applying a scaling factor to
593 neuronal spike rates facilitated the ability of human BMI users to grasp objects with a
594 prosthetic hand. The utility of such a scaling factor may be a reflection of the functional
595 somatotopy of the cortex, though the current results suggest that amplitude scaling would
596 not necessarily be the ideal method of accounting for the difference in movement and
597 force representations. Here, we found the mean shift in peak decoding location was 9.9
598 mm, a sizeable distance in the cerebral cortex. The overall differences in spatial
599 decoding maps (patterns of decoding), while significant, were not large. However, this
600 was not unexpected for two related motor activities (movement and force, in the context
601 of a grasp-like behavior) performed by the same finger.

602 Increasingly, spiking activity in small areas of motor cortex has been modeled as
603 a dynamical system in an effort to parsimoniously describe and understand network-level
604 neuronal activity. In this study, we used LFADS to uncover low-dimensional neural state
605 spaces for each subject. LFADS-PCs were tightly grouped over trials and occupied
606 distinct regions of state space during the pre-movement, movement, and force behavioral
607 modes (Figure 4). Both low-frequency and high-frequency LFADS-PCs were clearly
608 separated in different behavioral modes. Some previous examples of modeling cortical
609 dynamics using latent factors have analyzed single behavioral modes. For example,

610 Vaidya et al. (2015) modeled both reach- and grasp-related neural ensembles as linear
611 dynamical systems to study learning. Also, Gallego et al. (2018) also showed that there
612 were some differences in local M1 neuronal ensemble activity between kinematic and
613 kinetic cursor control tasks. Our results show that dynamical systems modeling can
614 elucidate the latent factors underlying a widespread cortical network in addition to local
615 circuit networks. It was not surprising that latent factor state space trajectories evolved
616 with time during each trial; indeed, this is a fundamental underlying assumption of the
617 dynamical systems model. The significance of the LFADS-derived trajectories was their
618 smooth, repeatable paths through distinct regions of state space during behavioral mode
619 transitions. Compared with PCA-only state space trajectories, LFADS factors clustered
620 more tightly and evolved much more repeatably in pre-movement, movement, and force
621 behavioral modes.

622 We used the NVA to summarize spectro-temporal changes across electrodes and
623 subjects. The average duration of high-frequency neural vector changes (about 300 ms;
624 Figure 5F) was substantially shorter than the average duration of the force-matching part
625 of the behavioral task (about 1 s). A phasic rise in high gamma modulation near the onset
626 of behavior has been shown during other grasp force behaviors (Chen et al., 2014; Branco
627 et al., 2019b), as well as isotonic movement (Flint et al., 2017). Single-neuron studies in
628 nonhuman primates also support the phasic modulation with force onset (Hendrix et al.,
629 2009), or more often, phasic-tonic modulation (Maier et al., 1993; Mason et al., 2002;
630 Intveld et al., 2018). This agreement makes sense when considering that high-gamma
631 activity is often correlated with ensemble spiking. It appears that the onset of force

632 behavior, or perhaps the transition from movement to force, is especially meaningful to
633 the cortex when encoding grasp.

634 Our results support and extend the findings of Venkadesan and Valero-Cuevas
635 (2008), who inferred from muscle activity that the human motor system uses two separate
636 control strategies for movement and isometric force. Importantly, they observed muscle
637 activity changing about 100 ms prior to force onset, ruling out the conclusion that
638 changes in EMG patterns are purely the result of the mechanical constraints of the
639 behavior. In the current study, we chose m^{ref} in part to facilitate comparison with that
640 study. We found similarities between the cortical low-frequency NVA and their angular
641 deviation for muscle coordination patterns (Figure 2A from that study), though our low-
642 frequency NVAs changed earlier: approximately 350 ms prior to force onset, which is
643 compatible with the delay between cortical and muscular activity. Changes in high
644 gamma activity patterns (reflected by the NVA), on the other hand, occurred around 130
645 ms prior to force onset. This time course of changing cortical activity is consistent with
646 the earlier EMG results, and with the concept that control strategies for movement and
647 force are encoded in the motor and premotor cortices, rather than subcortical systems.
648 This argues against the hypothesis that differences in cortical activity during movement-
649 force are due mainly to somatosensory feedback changes in the two states.

650 We believe the present data indicate that the cortical state-spaces are different
651 among pre-movement, movement, and force. One possible hypothesis to explain this
652 difference is that additional muscles (other than index finger flexors) may have been
653 recruited during force mode compared to movement mode, for example to additionally
654 stabilize the wrist. While we were not able to include EMG recordings because of time

655 and access limitations to our participants, recording EMG simultaneously with ECoG
656 might allow us to test such a hypothesis. However, Venkadesan and Valero-Cuevas
657 (2008), who recorded EMG (but not neural activity) in a similar task, found that neural
658 control strategies changed within the scope of finger flexor muscles: that is, the same
659 muscles were used in different recruitment patterns. Overall, these findings are also
660 consistent with prior work showing that M1 neurons display muscle-like encoding (Oby
661 et al., 2013).

662 We note that our behavioral task was chosen to recreate a naturalistic movement-
663 force model of object grasp, and was not designed to systematically explore the finger-
664 movement kinematic-kinetic space. Specifically, we note the caveat that movement
665 behavior was not required to be as variable as force, since no explicit movement “targets”
666 were designated (unlike force targets which varied randomly). Accordingly, we designed
667 the analysis of spatial decoding map differences (Figure 3) in such a way as to control for
668 within-mode variation over time. In addition, we observed much larger differences
669 between movement and force behavioral modes than within mode, in both the latent
670 factor trajectories (Figure 4) and in our statistical analysis of the NVA values (Figure 5).
671 Thus, the data still support distinct cortical modes that correspond to distinct behavioral
672 modes.

673 Our decoding of the subjects’ time-varying behavioral mode has ramifications for
674 BMI design, as demonstrated by Suminski et al. (2013). Suminski et al. addressed a
675 longstanding limitation of BMIs: decoders trained on a given set of motor activities do
676 not predict accurately outside those activities. Hierarchical BMIs, which include multiple
677 decoders operating in parallel with a switching mechanism, may outperform those with a

678 single decoder. In the context of hand function, a decoder trained only on movement data
679 may not provide optimal control of a BMI for grasping and manipulating objects, either
680 with a prosthetic hand or functional electrical stimulation of paralyzed fingers. The most
681 important challenge for current BMI design is to bring this technology more fully into the
682 clinic. Thus, practical considerations, like understanding the differences in the neural
683 representations of imagined and attempted movement (Vargas-Irwin et al., 2018) or force
684 (Rastogi et al., 2020) by an individual with paralysis, are high priorities. In a similar
685 vein, our results—suggesting that decoding the behavioral kinematic/kinetic mode from
686 cortical activity is feasible—could increase the functionality of BMIs during object grasp.
687 In addition, the improvement in behavioral mode decoding by using latent factors
688 indicates that viewing the cortical motor control circuits as a dynamical system can
689 facilitate the task of identifying cortical correlates of multiple behavioral modes. LFADS
690 does not add information to that contained in the ECoG features, so its application may
691 not always result in a large increase in decoding accuracy (especially in a discrete
692 classification task, e.g., Figure 6, S6), despite its effectiveness at uncovering low-
693 dimensional representations (Figure 4B,D, also from S6). However, the success of
694 LFADS in improving decoding in some subjects, especially those with worse initial
695 performance, suggests a potentially important role for denoising procedures such as
696 LFADS in BMI future BMI applications. Improving decoding accuracy of behavioral
697 mode from 77% to 91%, as in S4 (Figure 6), would likely result in greatly improved
698 overall BMI performance, more positive perceptions by the user, and better acceptance of
699 the prosthesis.

700 The ubiquity of object-manipulation behaviors in human life underscores the
701 importance of functioning hand grasp. In this case, however, ubiquity does not mean that
702 the behavior is simple. The current study allowed us to examine the activity in human
703 M1/PM that accompanied the sequential execution of movement and force. We found
704 both movement and force to be quite well represented, allowing us to decode each with
705 high accuracy. Our data also indicate that the movement and force representations are
706 distinct, as we distinguished them in space, with LFADS, via the Neural Vector Angle,
707 and via behavioral mode classification. The current results suggest that a BMI controlled
708 using ECoG could restore both movement and isometric aspects of grasp to individuals
709 with paralysis.

710

711 **References**

712 Acharya S, Fifer MS, Benz HL, Crone NE, Thakor NV (2010) Electrocorticographic
713 amplitude predicts finger positions during slow grasping motions of the
714 hand. *J Neural Eng* 7:046002.

715 Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, Walter BL,
716 Sweet JA, Hoyen HA, Keith MW, Peckham PH, Simeral JD, Donoghue JP,
717 Hochberg LR, Kirsch RF (2017) Restoration of reaching and grasping
718 movements through brain-controlled muscle stimulation in a person with
719 tetraplegia: a proof-of-concept demonstration. *Lancet* 389:1821-1830.

720 Blabe CH, Gilja V, Chestek CA, Shenoy KV, Anderson KD, Henderson JM (2015)
721 Assessment of brain-machine interfaces from the perspective of people with
722 paralysis. *J Neural Eng* 12:043002.

723 Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, Nielson DM,
724 Sharma G, Sederberg PB, Glenn BC, Mysiw WJ, Morgan AG, Deogaonkar M,
725 Rezai AR (2016) Restoring cortical control of functional movement in a
726 human with quadriplegia. *Nature* 533:247-250.

727 Branco MP, de Boer LM, Ramsey NF, Vansteensel MJ (2019a) Encoding of kinetic and
728 kinematic movement parameters in the sensorimotor cortex: A Brain-
729 Computer Interface perspective. *Eur J Neurosci*.

730 Branco MP, Geukes SH, Aarnoutse EJ, Vansteensel MJ, Freudenburg ZV, Ramsey NF
731 (2019b) High-frequency band temporal dynamics in response to a grasp
732 force task. *J Neural Eng* 16:056009.

733 Bruurmijn M, Pereboom IPL, Vansteensel MJ, Raemaekers MAH, Ramsey NF (2017)

734 Preservation of hand movement representation in the sensorimotor areas of

735 amputees. *Brain* 140:3166-3178.

736 Chen C, Shin D, Watanabe H, Nakanishi Y, Kambara H, Yoshimura N, Nambu A, Isa T,

737 Nishimura Y, Koike Y (2014) Decoding grasp force profile from

738 electrocorticography signals in non-human primate sensorimotor cortex.

739 *Neurosci Res* 83:1-7.

740 Chib VS, Krutky MA, Lynch KM, Mussa-Ivaldi FA (2009) The separate neural control

741 of hand movements and contact forces. *J Neurosci* 29:3939-3947.

742 Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI,

743 Shenoy KV (2012) Neural population dynamics during reaching. *Nature*

744 487:51-56.

745 Collard MJ, Fifer MS, Benz HL, McMullen DP, Wang Y, Milsap GW, Korzeniewska A,

746 Crone NE (2016) Cortical subnetwork dynamics during human language

747 tasks. *Neuroimage* 135:261-272.

748 Danion F, Diamond JS, Flanagan JR (2013) Separate contributions of kinematic and

749 kinetic errors to trajectory and grip force adaptation when transporting

750 novel hand-held loads. *J Neurosci* 33:2229-2236.

751 Dechent P, Frahm J (2003) Functional somatotopy of finger representations in

752 human primary motor cortex. *Hum Brain Mapp* 18:272-283.

753 Downey JE, Brane L, Gaunt RA, Tyler-Kabara EC, Boninger ML, Collinger JL (2017)

754 Motor cortical activity changes during neuroprosthetic-controlled object

755 interaction. *Sci Rep* 7:16947.

756 Downey JE, Weiss JM, Flesher SN, Thumser ZC, Marasco PD, Boninger ML, Gaunt RA,
757 Collinger JL (2018) Implicit Grasp Force Representation in Human Motor
758 Cortical Recordings. *Front Neurosci* 12:801.

759 Evarts EV (1968) Relation of pyramidal tract activity to force exerted during
760 voluntary movement. *J Neurophysiol* 31:14-27.

761 Fagg AH, Ojakangas GW, Miller LE, Hatsopoulos NG (2009) Kinetic trajectory
762 decoding using motor cortical ensembles. *IEEE Trans Neural Syst Rehabil
763 Eng* 17:487-496.

764 Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M (1999)
765 Composition and decomposition of internal models in motor learning under
766 altered kinematic and dynamic environments. *J Neurosci* 19:RC34.

767 Flint RD, Rosenow JM, Tate MC, Slutsky MW (2017) Continuous decoding of human
768 grasp kinematics using epidural and subdural signals. *J Neural Eng*
769 14:016005.

770 Flint RD, Wang PT, Wright ZA, King CE, Krucoff MO, Schuele SU, Rosenow JM, Hsu FP,
771 Liu CY, Lin JJ, Sazgar M, Millett DE, Shaw SJ, Nenadic Z, Do AH, Slutsky MW
772 (2014) Extracting kinetic information from human motor cortical signals.
773 *Neuroimage* 101:695-703.

774 Gallego JA, Perich MG, Naufel SN, Ethier C, Solla SA, Miller LE (2018) Cortical
775 population activity within a preserved neural manifold underlies multiple
776 motor behaviors. *Nat Commun* 9:4233.

777 Hendrix CM, Mason CR, Ebner TJ (2009) Signaling of grasp dimension and grasp
778 force in dorsal premotor cortex and primary motor cortex neurons during
779 reach to grasp in the monkey. *J Neurophysiol* 102:132-145.

780 Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu
781 J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people
782 with tetraplegia using a neurally controlled robotic arm. *Nature* 485:372-
783 375.

784 Hotson G, McMullen DP, Fifer MS, Johannes MS, Katyal KD, Para MP, Armiger R,
785 Anderson WS, Thakor NV, Wester BA, Crone NE (2016) Individual finger
786 control of a modular prosthetic limb using high-density electrocorticography
787 in a human subject. *J Neural Eng* 13:026017.

788 Hunter IW, Korenberg MJ (1986) The identification of nonlinear biological systems:
789 Wiener and Hammerstein cascade models. *Biol Cybern* 55:135-144.

790 Intveld RW, Dann B, Michaels JA, Scherberger H (2018) Neural coding of intended
791 and executed grasp force in macaque areas AIP, F5, and M1. *Sci Rep* 8:17985.

792 Maier MA, Bennett KM, Hepp-Reymond MC, Lemon RN (1993) Contribution of the
793 monkey corticomotoneuronal system to the control of force in precision grip.
794 *J Neurophysiol* 69:772-785.

795 Mason CR, Gomez JE, Ebner TJ (2002) Primary motor cortex neuronal discharge
796 during reach-to-grasp: controlling the hand as a unit. *Arch Ital Biol* 140:229-
797 236.

798 Moran DW, Schwartz AB (1999) Motor cortical representation of speed and
799 direction during reaching. *J Neurophysiol* 82:2676-2692.

800 Nakanishi Y, Yanagisawa T, Shin D, Chen C, Kambara H, Yoshimura N, Fukuma R,
801 Kishima H, Hirata M, Koike Y (2014) Decoding fingertip trajectory from
802 electrocorticographic signals in humans. *Neurosci Res* 85:20-27.
803 Oby ER, Ethier C, Miller LE (2013) Movement representation in the primary motor
804 cortex and its contribution to generalizable EMG predictions. *J Neurophysiol*
805 109:666-678.
806 Pandarinath C, O'Shea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann EM,
807 Kaufman MT, Ryu SI, Hochberg LR, Henderson JM, Shenoy KV, Abbott LF,
808 Sussillo D (2018) Inferring single-trial neural population dynamics using
809 sequential auto-encoders. *Nature methods* 15:805-815.
810 Pfurtscheller G, Muller GR, Pfurtscheller J, Gerner HJ, Rupp R (2003) 'Thought'--
811 control of functional electrical stimulation to restore hand grasp in a patient
812 with tetraplegia. *Neurosci Lett* 351:33-36.
813 Pistohl T, Schmidt TS, Ball T, Schulze-Bonhage A, Aertsen A, Mehring C (2013) Grasp
814 Detection from Human ECoG during Natural Reach-to-Grasp Movements.
815 PLoS One 8:e54658.
816 Rastogi A, Vargas-Irwin CE, Willett FR, Abreu J, Crowder DC, Murphy BA, Memberg
817 WD, Miller JP, Sweet JA, Walter BL, Cash SS, Rezaii PG, Franco B, Saab J,
818 Stavisky SD, Shenoy KV, Henderson JM, Hochberg LR, Kirsch RF, Ajiboye AB
819 (2020) Neural Representation of Observed, Imagined, and Attempted
820 Grasping Force in Motor Cortex of Individuals with Chronic Tetraplegia. *Sci
821 Rep* 10:1429.

822 Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a
823 general-purpose brain-computer interface (BCI) system. *IEEE Trans Biomed
824 Eng* 51:1034-1043.

825 Schieber MH (2002) Motor cortex and the distributed anatomy of finger movements.
826 *Adv Exp Med Biol* 508:411-416.

827 Slutzky MW (2019) Brain-Machine Interfaces: Powerful Tools for Clinical Treatment
828 and Neuroscientific Investigations. *Neuroscientist* 25:139-154.

829 Slutzky MW, Flint RD, 3rd (2017) Physiological Properties of Brain Machine
830 Interface Input Signals. *J Neurophysiol:jn* 00070 02017.

831 Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback
832 from multiple sensory modalities enhances brain-machine interface control. *J
833 Neurosci* 30:16777-16787.

834 Suminski AJ, Fagg AH, Willett FR, Bodenhamer M, Hatsopoulos NG (2013) Online
835 adaptive decoding of intended movements with a hybrid kinetic and
836 kinematic brain machine interface. *Conf Proc IEEE Eng Med Biol Soc
837* 2013:1583-1586.

838 Sussillo D, Jozefowicz R, Abbott L, Pandarinath C (2016) Lfads-latent factor analysis
839 via dynamical systems. *arXiv preprint arXiv:160806315*.

840 Vaidya M, Kording K, Saleh M, Takahashi K, Hatsopoulos NG (2015) Neural
841 coordination during reach-to-grasp. *J Neurophysiol* 114:1827-1836.

842 Vaidya M, Flint RD, Wang PT, Barry A, Li Y, Ghassemi M, Tomic G, Yao J, Carmona C,
843 Mugler EM, Gallick S, Driver S, Brkic N, Ripley D, Liu C, Kamper D, Do AH,
844 Slutzky MW (2019) Hemicraniectomy in traumatic brain injury: a

845 noninvasive platform to investigate high gamma activity for brain machine
846 interfaces. *IEEE Trans Neural Syst Rehabil Eng.*

847 Vargas-Irwin CE, Feldman JM, King B, Simmeral JD, Sorice BL, Oakley EM, Cash SS,
848 Eskandar EN, Friehs GM, Hochberg LR (2018) Watch, Imagine, Attempt:
849 Motor cortex single unit activity reveals context-dependent movement
850 encoding in humans with tetraplegia. *Front Hum Neurosci* 12:450.

851 Venkadesan M, Valero-Cuevas FJ (2008) Neural control of motion-to-force
852 transitions with the fingertip. *J Neurosci* 28:1366-1373.

853 Wang PT, King CE, McCrimmon CM, Lin JJ, Sazgar M, Hsu FP, Shaw SJ, Millet DE, Chui
854 LA, Liu CY, Do AH, Nenadic Z (2016) Comparison of decoding resolution of
855 standard and high-density electrocorticogram electrodes. *J Neural Eng*
856 13:026016.

857 Wodlinger B, Downey JE, Tyler-Kabara EC, Schwartz AB, Boninger ML, Collinger JL
858 (2014) Ten-dimensional anthropomorphic arm control in a human brain-
859 machine interface: difficulties, solutions, and limitations. *J Neural Eng*
860 12:016011.

861 Xie Z, Schwartz O, Prasad A (2018) Decoding of finger trajectory from ECoG using
862 deep learning. *J Neural Eng* 15:036009.

863 Yanagisawa T, Hirata M, Saitoh Y, Kishima H, Matsushita K, Goto T, Fukuma R, Yokoi
864 H, Kamitani Y, Yoshimine T (2012) Electrocorticographic control of a
865 prosthetic arm in paralyzed patients. *Annals of neurology* 71:353-361.

866

867

868 **Figure/Table legends**

869

870 Figure 1. ECoG array placement, experimental task, and behavioral data. (A) In S1 through S5
871 and S7, we targeted the primary motor and premotor cortices. Array placement for S6 was
872 determined by clinical need. For S1 and S2 we recorded ECoG from the right hemisphere; the
873 other subjects' ECoG were recorded from the left hemisphere. (B) One trial (approximately 2.5s)
874 of the kinematic-kinetic task. At the beginning of the trial, the subjects held their index finger in
875 a neutral position (upper left photograph) until visually cued on a screen. Cyan trace: finger
876 kinematics (amount of flexion; arbitrary units) during the trial. Cyan triangle: time of flexion
877 movement onset. Upon contact with the force sensor (lower inset photograph), the subjects
878 exerted isometric force until matching a force target on the screen with a cursor (not shown).
879 Blue trace: recorded force. Blue circle: time of force onset. At bottom is a schematic
880 representation of behavioral mode segmentation: pre-movement (from target presentation until
881 the start of flexion), movement (start of flexion until start of force), and force (from force onset
882 lasting 500ms). (C) We measured index finger flexion using a CyberGlove; movement onset was
883 identified using the first principal component calculated on the data from the highlighted sensors.

884

885

886 Figure 2. Spectral power modulation during the movement-force grasp task. Each panel shows
887 data from a high- or low-frequency spectral feature taken from an individual ECoG electrode.
888 The single-trial frequency band power (grayscale in each plot) was z-scored and aligned either to
889 movement onset (cyan dashed lines, **A-C,F**) or to force onset (blue dashed lines, **D-E**). Blue
890 circles show force onset times when trials were aligned to movement onset. Cyan triangles show
891 movement onset times when trials were aligned to force onset. High frequency features (**A-C**)
892 exhibited power increases, which could be time locked to both movement and force (**A**) or force
893 only (**B,C**). Low frequency features (**D-F**) exhibited power decreases just preceding, and aligned
894 to, the onset of movement (**D,E**), or aligned to the start of force (**F**).

895 Figure 3. Decoding maps reveal changes in the cortical representations of movement and force.
896 (A) Example decoding maps for S4. Four folds of data are shown, the actual analysis utilized 10
897 folds per recording. Square recording arrays are shown in a rotated perspective for compact
898 visualization. We compared single-electrode decoding maps for movement (top) and force
899 (bottom) using a distance metric D_{inter} for every possible combination of fold pairs. As a
900 control, we calculated D_{intra} between all possible fold pairs, for within-movement and within-
901 force decoding. (B) Boxplot of distance measures for all subjects. The central horizontal line in
902 each box shows the median, while the notches show 95% confidence intervals. Overall, the
903 median D_{inter} was significantly greater than the median D_{intra} in 6 of 7 subjects (red stars). Note
904 that the maps in (A) show 64 channels; for the distance measures in (B), only the PM/M1
905 electrodes were included.

906

907 Figure 4. Modeling ECoG features as an underlying dynamical system using LFADS uncovers
908 repeatable trajectories through a low-dimensional state space during the kinematic-kinetic task.
909 Shown are LFADS-PCs (labeled as “PC” for simplicity) derived from high-frequency (A-B) and
910 low-frequency (C-D) ECoG features. Single-trial trajectories are shown for subjects S5 (78 trials;
911 panel A,C) and S6 (73 trials; panel B,D). Inset boxes in each panel show the trajectories resulting
912 from PCA performed directly on the ECoG features (without LFADS). The color code at bottom
913 defines the portion of each trial corresponding to each behavioral mode.

914

915 Figure 5. The neural vector angle (NVA) summarizes the cortical state change associated with
916 the behavioral mode change from movement to force. (A,B) Electrodes selected for S5, using k-
917 means clustering. CS; central sulcus. Anterior-posterior and superior-inferior are indicated on
918 the rosette; compare to Figure 1A. (A) and (B) represent two of the three resulting clusters; the
919 unsupervised cluster analysis natively divided the responses into low frequency and high
920 frequency responses. (C) The NVA, $\theta(t)$ for the low frequency features selected in (A). The dark

921 red dashed line shows the average time of target appearance, relative to force onset (time=0). The
922 vertical cyan lines show the mean (solid line) and standard deviation (dashed lines) of movement
923 onset, relative to force onset. The vertical black lines show the time of maximum force for each
924 trial (equivalent to the reference period \mathbf{m}^{ref}). **(D)** The NVA for the high frequency features
925 shown in **(B)**. **(E,F)** NVAs calculated across all trials, all subjects in the study. Labeling
926 conventions are the same as in **(C,D)**.

927

928 Figure 6. Decoding behavioral mode from ECoG features before and after LFADS denoising.
929 The median classification accuracy was greater than chance for all subjects. SVM; support vector
930 machines. Tree; boosted aggregate decision tree classifier.

931

932 Table 1. Displacement of peak location for movement decoding performance relative to force
933 decoding performance in each subject.

934

935 Table 2. Number of principal components (PCs) required to account for 90% of the variance in
936 the ECoG features (PCA-only) or the latent factors (LFADS PCs). Note that the number of
937 available features (factors) was equal to twice the number of ECoG electrodes selected for the
938 analysis (those in M1/PM areas).

939











