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ABSTRACT

Unmanned aerial vehicles (UAVs) can be
powerful Internet of Things components to exe-
cute sensing tasks over the next-generation cel-
lular networks, which are generally referred to as
the cellular Internet of UAVs. However, due to
the high mobility of UAVs and shadowing in air-
to-ground channels, UAVs operate in a dynam-
ic and uncertain environment. Therefore, UAVs
need to improve the quality of service of sensing
and communication without complete information,
which makes reinforcement learning suitable for
use in the cellular Internet of UAVs. In this article,
we propose a distributed sense-and-send protocol
to coordinate UAVs for sensing and transmission.
Then we apply reinforcement learning in the cellu-
lar Internet of UAVs to solve key problems such as
trajectory control and resource management. Final-
ly, we point out several potential future research
directions.

INTRODUCTION

The emerging unmanned aerial vehicles (UAVs)
have been playing an increasing role in military,
public, and civil applications [1]. Specifically,
exploiting UAVs as Internet of Things (IoT) devic-
es to execute sensing tasks has been of particu-
lar interest due to its advantages of on-demand
flexible deployment, large service coverage, and
ability to hover at a high altitude [2]. Such sens-
ing tasks consist of a wide range of critical daily
applications, for example, smart agriculture, secu-
rity monitoring, forest fire detection, and traffic
surveillance, as illustrated in Fig. 1. To realize the
above vision, it is envisaged by the Third Genera-
tion Partnership Project (3GPP) that cellular net-
works are necessary for UAVs to execute sensing
tasks, which we refer to as the cellular Internet of
UAVs [3].

In the cellular Internet of UAVs, UAVs sense
the targets of tasks and then transmit sensory data
to the base stations (BSs) immediately. Therefore,
the sensing and transmission tasks of UAVs are
coupled [4]. Moreover, due to the high mobility
of UAVs and shadowing in air-to-ground chan-
nels, UAVs operate in a dynamic and uncertain
environment [5]. Therefore, UAVs must improve
their quality of service (QoS) in both sensing and

transmission without complete information. Due to

incomplete information, the coordination of multi-

ple UAVs to execute sensing tasks is a challenging
problem.

In this article, we introduce reinforcement
learning approaches and their applications in
the cellular Internet of UAVs. Since reinforce-
ment learning can enable UAVs to improve their
policies to achieve objectives without a priori
knowledge or complete information of the envi-
ronment, it is suitable to address the key problems
in the cellular Internet of UAVs [6]. We focus on
the following three essential parts of the cellular
Internet of UAVs:

* Protocol Design: We present a distributed sense-
and-send protocol to coordinate the UAVs in
sensing and transmission.

* Trajectory Control: We discuss the dynamic tra-
jectory control problem of UAVs and propose
an enhanced multi-UAV Q-learning algorithm
for this problem.

* Resource Management: We introduce different
reinforcement learning approaches and their
applications for resource management prob-
lems, including user association, power man-
agement, and subchannel allocation.
Specifically, to address the trajectory control

and resource management problems, we discuss

the possible implementations of reinforcement
learning approaches in the cellular Internet of

UAVs:

+ Applying multi-armed bandit learning to solve
the user association problem

+ Utilizing Q-learning to solve the trajectory con-
trol problem

+ Using actor-critic learning to solve the power
management problem

+ Applying deep reinforcement learning to solve
the subchannel allocation problem
The rest of the article is organized as follows.

First, we provide an overview of the cellular Inter-
net of UAVs and demonstrate the sense-and-send
protocol. Then we discuss the reinforcement learn-
ing approaches, including the basics and applica-
tions in the cellular Internet of UAVs. Following
that, we elaborate on how to apply Q-learning to
solve the UAV trajectory control problem. Finally,
we draw conclusions and point out several future
research directions.
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OVERVIEW OF THE CELLULAR INTERNET OF UAVS

In this section, we first introduce the cellular Inter-
net of UAVs. Then, to coordinate multiple UAVs
to execute sensing tasks, we propose a distributed
sense-and-send protocol.

CELLULAR INTERNET OF UAVS

As shown in Fig. 2, in a cellular Internet of UAVs,
multiple UAVs execute a set of sensing tasks.
Each task has one target to be sensed, and the
targets are at different locations. The tasks are
pre-assigned to the UAVs, and the UAVs sense
the targets of their tasks and transmit the results
to the BSs continuously. To be specific, the UAVs
execute the tasks through two steps: UAV sensing
and UAV transmission.

UAYV Sensing: Each UAV is equipped with an
onboard sensor to sense its target. Due to the lim-
ited sensing capability of the sensor, the sensing is
not always successful.! If the sensing is successful,
the sensory data collected by the UAV is referred
to as valid; otherwise, it is referred to as invalid. In
general, the probability of successful sensing is neg-
atively related to the distance between the sensor
and the target [71.

UAYV Transmission: Each UAV is associated
with one BS and uses the uplink subchannels allo-
cated by the BS to transmit the sensory data.? Each
BS owns a limited number of subchannels to sup-
port UAV transmission. The frequency bands used
by different BSs can be overlapped or orthogo-
nal, determined by the deployment of the network
operators. In consequence, the UAVs associated
with different BSs may interfere with each other in
the uplink transmission, as shown in Fig. 2, which
is referred to as inter-cell interference. Since UAVs
are likely to have line-of-sight (LoS) channels to
multiple BSs due to their high altitudes, the inter-
cell interference may be severe in the cellular Inter-
net of UAVs.

DISTRIBUTED SENSE-AND-SEND PROTOCOL

To coordinate multiple UAVs to execute the sens-
ing tasks in a distributed manner, we propose the
following distributed sense-and-send protocol based
on [8]. In this protocol, UAVs perform sensing and
transmission in a synchronized iterative manner in
the unit of a sense-and-send cycle, or cycle in short.
In each cycle, UAVs need to sense their targets and
transmit the sensory data to the BSs. As shown in
Fig. 3, a cycle contains three phases: the beacon-
ing phase, the sensing phase and the transmission
phase, which are explained as follows.

Beaconing Phase: At the beginning of the bea-
coning phase, each BS first broadcasts a beacon-
ing frame on the wireless control channel, which
contains the identity of the BS. To synchronize
the UAVs and the BSs, the synchronization signals
adopted by the cellular communications can be
used in the beaconing frames [9]. After receiving
the beaconing frames, all the UAVs are synchro-
nously informed that a new cycle has begun. Then
the UAVs send back their state information to their
associated BSs on the control channels, which
includes their locations and the channel conditions
toward the BSs. The BSs will exchange the state
information of the UAVs with each other and then
broadcast it on the wireless control channel, which
can then be received by the UAVs.
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FIGURE 1. Cellular Internet of UAVs for various kinds of sensing tasks.
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By this means, the BSs can obtain necessary
information from the UAVs to perform subchannel
allocation. Further, based on the information pro-
vided by the BSs, the UAVs can make decisions on
their sensing and transmission in a distributed man-
ner, including their user associations, trajectories,
and transmit power levels. This decision making
process takes place at the end of each beacon-
ing phase. Moreover, as the duration of a cycle is
pre-defined, the UAVs know when to expect the
next beaconing frames from the BSs, and thus the
synchronization will not be lost.

Sensing Phase: In the sensing phase, UAVs
sense the targets of the tasks and collect sensory
data. We assume that the UAVs cannot deter-
mine whether the sensing was successful or not
based on their sensory data due to their limit-
ed onboard processing abilities. Therefore, the

1 For example, the sensing is
considered to be successful
when the sensor successfully
detects an event (e.g,, a traffic
jam at a crossroads) or cor-
rectly measures the condition
of a target (e.g,, the air quality
at a certain location).

2 n the cellular Internet

of UAVs, since the UAVs

are loT devices, the uplink
transmission for sensory data
dominates. Therefore, in this
article, we focus on the uplink
transmission of the UAVs.
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UAVs need to send their sensory data to the BSs,
and the BSs will decide whether the sensory data
are valid or not.

Transmission Phase: In order to synchro-
nize the transmissions of UAVs, the transmission
phase of each cycle is further divided into frames,
the basic time unit for subchannel allocation.
The UAVs transmit their sensory data to the BSs
through allocated subchannels in each frame. As
shown in Fig. 3, for each UAV, there are four pos-
sible situations that can take place in each frame of
the transmission phase:

+ No subchannel assigned: The UAV is allocated
no subchannel and needs to wait for the next
frame.

* Failed transmission: The UAV is allocated a sub-
channel by the BS. However, the uplink trans-
mission fails due to low received signal power
or interference from other UAVs’ transmissions.
Therefore, the UAV needs to transmit again in
the following frames.

+ Successful transmission: The UAV is allocated a
subchannel and transmits the sensory data to
the BS successfully.

« Idle: The UAV keeps idle and will not transmit
as it has already sent the sensory data to the BS
successfully in the previous frames.

Since the spectrum resources are scarce, the
subchannels of a BS may not be sufficient to sup-
port all the associated UAVs to transmit their sen-
sory data at the same time. To handle this problem,
the BSs need to adopt efficient subchannel alloca-
tion mechanisms to allocate the limited number
of subchannels to the UAVs. An example of the
subchannel allocation mechanisms is to allocate
the subchannels to the UAVs that have the highest
probabilities of successful transmission, which is
adopted in [8]. Reinforcement learning can also
be applied for subchannel allocation, which is dis-
cussed later.

REINFORCEMENT LEARNING FOR THE
CELLULAR INTERNET OF UAVS

To better understand the applicability of reinforce-
ment learning in the cellular Internet of UAVs,
we start by introducing the basics of reinforce-
ment learning. We then categorize reinforcement
learning approaches into four types: multi-armed-
bandit learning, Q-learning, actor-critic learning,
and deep reinforcement learning, and give a brief
introduction to each. Finally, we discuss possible
applications of reinforcement learning to solve
key problems in the cellular Internet of UAVs.

BASICS OF REINFORCEMENT LEARNING

Reinforcement learning is a learning process in
which agents make decisions, observe the results,
and then automatically adjust their policies to
achieve their objectives [10]. To be specific,
reinforcement learning is based on the Markov
decision process (MDP), which consists of an
environment and some agents. At each time step,
the environment is at a certain state, and each
agent selects a certain action according to its poli-
cy. Then the environment transits into a new state,
which is determined by its previous state and the
actions of the agents. A reward is generated for
each agent, which quantifies how well the objec-
tive of the agent is achieved. Due to the capability
of modeling state transitions, the MDP is wide-
ly applied to model sequential decision making
problems in dynamic environments.

Also, in contrast to centralized scheduling
approaches and supervised machine learning, rein-
forcement learning does not rely on accurate prior
knowledge of the environment or historical labeled
data. Instead, in reinforcement learning, the agents
can automatically learn from the environment and
their own past experiences through the rewards
they obtain in order to improve their policies. This
property makes reinforcement learning suitable for
application in the cellular Internet of UAVs, where
the UAVs face a rather dynamic and complex envi-
ronment. Generally, reinforcement learning can
be categorized into four types: multi-armed ban-
dit learning, Q-learning, actor-critic learning, and
deep reinforcement learning. In the following, we
will elaborate on these four reinforcement learning
approaches.

Multi-Armed Bandit Learning: As shown in
Fig. 4a, in multi-armed bandit learning, the agent
selects actions without recognizing the state of
the environment. After each time step, a reward
is received by the agent, which is relevant to the
action performed in the time step. Based on the
received reward for each action, the agent main-
tains a table of estimates of the potential rewards
associated with the actions. The agent updates the
potential reward estimates by a linear combination
of the previous values in the table and the latest
received reward. The objective of the agent is to
obtain the maximum total reward, and thus the
agent needs to select the current best action with
the highest estimated reward. Nevertheless, as it
is necessary for the agent to explore the poten-
tial reward associated with each action in order to
choose the best one, there is a trade-off between
exploration and exploitation. Consequently, the

118

IEEE Wireless Communications * February 2020

Authorized licensed use limited to: Princeton University. Downloaded on September 26,2020 at 23:57:15 UTC from IEEE Xplore. Restrictions apply.



agent needs to decide whether to take the current
best action or search for a better one.

Since the state transition of the environment
has not been considered, multi-armed bandit
learning is inefficient in dealing with fast-changing
environments. However, this disadvantage can
be compensated for by its very low complexity in
implementation due to its low memory and com-
putation requirements. To be specific, suppose that
the maximum number of available actions of the
agent is N, and the agent only needs to store the
N potential rewards associated with the actions. At
each time step, the agent needs to select the cur-
rent best action or a random one and then update
the potential reward associated with the selected
action. Therefore, the computational complexity in
each time step is O(N). In summary, multi-armed
bandit learning has very low memory requirements
and computational complexity.

Q-Learning: As shown in Fig. 4b, the agent in
Q-learning selects actions based on the Q-table.
To be specific, the value in the Q-table, that is, the
Q-value, for each state-action pair represents the
estimated total rewards for the agent under its cur-
rent policy after executing the action at the state.
Here, the policy of the agent is to select the action
that currently has the largest Q-value at each state.
To train the Q-table to be more accurate, the agent
updates its Q-table based on the observed reward
after each time step. Based on the updated Q-ta-
ble, the policy of the agent also updates. By this
means, the Q-value and the policy of the agent
update iteratively, and it has been proved that the
policy will eventually converge to the optimal poli-
cy of the agent [6].

To implement Q-learning, the agent who has
N available actions and M states needs to store
a Q-table involving N x M elements for all the
state-action pairs. As for the computations of the
agent in each time step, they are similar to those
of multi-armed bandit learning, which indicates that
the computational complexity is O(N). It can be
observed that the memory requirements and com-
putational complexity of the Q-learning are low.

Actor-Critic Learning: As shown in Fig. 4c, the
agents in actor-critic learning are logically split into
two roles, that is, a critic and an actor. The actor
represents the action selection policy, which is a
probability distribution function (PDF) over the
action space. The critic observes the states and
rewards from the environment and evaluates the
state values, that is, the expected total rewards
that will be received in the future passing through
the states. In this sense, the critic can be consid-
ered as a state value function with respect to the
state. The critic is used to improve the efficiency
and stability for the training of the actor to perform
optimal action selection. Specifically, after each
time step, the critic updates the state value of the
current state based on the observed reward. Then
the actor updates its policy for the previous state
based on the updated state value. Compared to
other reinforcement learning algorithms, actor-critic
learning does not search the action space for the
action with the highest expected reward. Instead,
the action is selected randomly following the PDF
represented by the actor. Therefore, the com-
plexity of action selection does not grow with the
size of the action space. This characteristic makes
actor-critic learning more efficient in handling large

or even continuous action spaces compared to the
other reinforcement learning approaches.

To implement actor-critic learning, the agent
needs to store the action selection policy and the
state value function. The action selection policy
and state value function are both represented by
parametrized functions, and thus the amount of
memory to store them is determined by the num-
ber of parameters quantifying them. In each time
step, the agent needs to select an action accord-
ing to the policy and compute the gradients of the
action selection policy and state value function
with respect to the parameters in order to improve
the actor and critic. In general, the action selec-
tion policy and the state value function are the
combinations of basic functional elements (e.g.,
linear, cosine, and exponent functions) weighted
by the parameters, and the number of parameters
is small. Therefore, both the memory requirements
and computational complexity of the actor-critic
learning are low.

Deep Reinforcement Learning: In deep rein-
forcement learning, deep neural networks are uti-
lized to handle high-dimensional state spaces [11].
As shown in Fig. 4d, at each time step, the agent
inputs the feature vector of the current state into
the deep neural network, which can estimate the
Q-value for each action, and thus is referred to as
a deep Q-network (DQN). The agent then selects
the action with the largest estimated Q-value, and
stores the experience, including the state transition
and the reward, into a replay buffer, which is used
to train the DQN to estimate Q-values more accu-
rately.

To implement deep reinforcement learning, the
agent needs to store the DQN and a replay buf-
fer that stores its previous experiences. Generally,
to obtain better results, the sizes of the DQN and
the replay buffer need to be large, which results in
a high memory requirement. The training of the
DQN requires the gradients of estimated Q-val-
ues with respect to the parameters of the DQN,
which leads to high computation complexity given
a large DQN. Therefore, deep reinforcement
learning requires more memory and higher com-
putational complexity than other reinforcement
learning approaches. Nevertheless, to alleviate the
high memory and computational requirements on
the agent, the DQN can be trained in an offline
manner. For example, an agent can upload its
experiences to a server. The server trains the DQN
according to the experiences and returns the
updated DQN to the agent periodically.

APPLICATIONS IN THE CELLULAR INTERNET OF UAVS
Due to the rapid development of UAVs, UAVs
are able to have enough onboard computation
and memory capacities to perform reinforcement
learning approaches, either by having in-built cir-
cuits or carrying additional computing devices.
This allows the implementations of reinforcement
learning approaches to solve key problems in
the cellular Internet of UAVs. In the following,
we discuss the possible implementations of rein-
forcement learning to solve the trajectory control
and resource management problems in the cellu-
lar Internet of UAVs, including user association,
power management, and subchannel allocation.

Multi-Armed Bandit Learning for User Asso-
ciation: In the cellular Internet of UAVs, each

Due to the rapid
development of UAVs,
UAVs are able to have
enough onboard com-
putation and memory

capacities to perform
reinforcement learning
approaches, by either
having built-incircuits
or carrying additional
computing devic-

es. This allows the
implementations of
reinforcement learning
approaches to solve
key problems in the
cellular Internet of
UAVs.
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The onboard batteries
of UAVs are generally
very limited; therefore,
high transmit power
results in the batteries
draining quickly. In
order to maximize the
total number of suc-
cessful transmissions
before the battery runs
out, it is crucial for
each UAV to adopt

efficient approaches for

transmit power man-
agement.

BS is equipped with K subchannels to support at
most K UAVs to transmit simultaneously, and each
UAV needs to choose one BS with which to asso-
ciate. From the protocol proposed above, it can
be observed that the probabilities of successful
transmission for UAVs will decrease with the num-
ber of UAVs associated with the same BS due to
the aggravated competition for the subchannels.
Besides, due to the shadowing in the air-to-ground
channels, the channel conditions from a UAV to
different BSs are usually varying. For example,
when the channel between the UAV and the BS
has an LoS component, its path loss is much lower
than when no LoS component exists [12]. For the
above reasons, the user association is a challenging
problem in the cellular Internet of UAVs.

Since multi-armed bandit learning does not
rely on prior information such as the channel
conditions between the UAVs and the BSs, it is
suitable for the user association problem. In this
problem, each UAV can be considered as an
agent. At the beginning of each beaconing phase,
each UAV decides which BS with which to asso-
ciate. As the objective of the UAV is to maximize
the successful transmission probability, the reward
is 1 if the sensory data is successfully transmitted;
otherwise, the reward is 0. Each UAV optimizes its
action selection policy by estimating the expected
reward for each action and selecting the action
with the highest expected reward. Further, in
order to keep searching for a better action, the
UAV has an exploration probability, with which it
selects an action randomly.

Q-Learning for Trajectory Control: When the
UAV executes a sensing task, the successful sens-
ing probability will be higher if it gets closer to the
sensing target. On the other hand, the UAV will
have a higher probability of transmitting the senso-
ry data to the BS successfully if it approaches the
BS. Therefore, sensing and transmission are cou-
pled with its trajectory. However, since accurate
sensing and transmission models are hard to obtain
in the complex and dynamic environment of the
cellular Internet of UAVs, trajectory control is also
challenging.

As Q-learning does not require models of the
sensing and transmission, it is suitable for the tra-
jectory control problem. For applying Q-learning,
the flight space can be abstracted into a finite set
of discrete spatial points, and the trajectory can
be considered as a path through these spatial
points. The state of each UAV is its location, and
the action is its trajectory in each cycle. Since the
objective of each UAV is to send valid sensory data
to the BS, the reward is 1 if the valid sensory data
is received successfully by the BS; otherwise, the
reward is O.

Actor-Critic Learning for Power Management:
In the cellular Internet of UAVs, the UAVs need to
raise their transmit power in order to increase the
successful transmission probability and satisfy the
QoS requirement. However, the onboard batter-
ies of UAVs are generally very limited; therefore,
high transmit power results in the batteries draining
quickly. In order to maximize the total number of
successful transmissions before the battery runs
out, it is crucial for each UAV to adopt efficient
approaches for transmit power management.

Since the transmit power level can take val-
ues from a continuous set, it is suitable to apply

actor-critic learning for the power management
problem. To be specific, in each cycle, the path
loss of the uplink subchannel and remaining bat-
tery capacity can be jointly considered as the state.
At the end of the beaconing phase, the actor of
the UAV selects a transmit power level according
to the current state. After the cycle, the reward
to the UAV is 1 if the transmission was successful;
otherwise, the reward is 0. The experience, consist-
ing of the state transition and the reward, is used
to train the critic to estimate the value of the state
more accurately. Then the actor updates itself to
select a better action by using the critic’s evalua-
tion.

Deep Reinforcement Learning for Subchannel
Allocation: In the cellular Internet of UAVs, the
uplink transmissions of the UAVs may suffer severe
inter-cell interference due to the low path loss of
LoS channels between each UAV and multiple BSs.
To alleviate the inter-cell interference and improve
the probability of successful transmission, the BSs
that share the same frequency band need to per-
form subchannel allocation jointly.

However, in the subchannel allocation, the
channel conditions between multiple BSs and
their associated UAVs need to be taken into con-
sideration. Moreover, since the UAVs that are
idle in the frame do not transmit, the transmis-
sion states of all UAVs should also be considered.
Therefore, the subchannel allocation problem has
a complex and high-dimensional state space. As
deep reinforcement learning is able to solve the
optimal policies for agents facing a high-dimen-
sional state space, it is suitable for the subchan-
nel allocation problem in the cellular Internet of
UAVs.

In this case, the BSs that share a certain frequen-
cy band can be considered as the agent, and the
action of the BSs is the subchannel allocation for
the UAVs. In each frame in the transmission phase,
the state is composed of the following elements:

+ The path loss of the channels between the
involved BSs and their associated UAVs

+ The indicators of whether the UAVs are idle in
the frame

At each frame in the transmission phase, the
BSs form a feature vector representing the current
state and input it into the DQN, which returns the
Q-value for each possible subchannel allocation
of the UAVs. Then the BSs select the subchannel
allocation with the largest Q-value as their action.
After the cycle, the reward given to the agent can
be designed as the number of successful transmis-
sions. The rewards, along with the transition among
states, are stored in the replay buffer of the UAV,
which is then used to train the DQN to estimate
the Q-values for the state-action pairs more accu-
rately.

In Table 1, we summarize the different types
of reinforcement learning approaches with their
characteristics and their applications in the cellular
Internet of UAVs.

REINFORCEMENT LEARNING EXAMPLE: Q-LEARNING
FOR TRAJECTORY CONTROL

As an illustrative example, in this section, we intro-
duce how to apply the reinforcement learning
approach to solve the trajectory control problem
in the cellular Internet of UAVs.
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PROBLEM DESCRIPTION * At the beginning of a cycle, each UAV chooses
We consider a cellular Internet of UAVs, which the action that has the maximum Q-value in the
consists of two BSs and three UAVs associated current state.
with each BS. The two BSs are assumed to have + The UAV performs the selected action in the
two subchannels to support the uplink transmis- cycle.
sions of the UAVs, and the frequency bands uti- + At the beginning of the next state, the UAV
lized by the two BSs are different. Moreover, the observes the transition state and is informed
UAVs are flying in a cylindrical space centered at whether valid sensory data has been received
the BS, with minimum and maximum flying alti- by the BS.
tude constraints. + The UAV updates the state-action value in the
To depict the trajectory, we divide the space previous state, and then selects an action for
into a finite set of discrete spatial points, which are the new state.
arranged in a square lattice pattern. The trajectory Moreover, to improve the efficiency of the
control problem can be reformulated as that in Q-learning for trajectory control, we propose an
each cycle. Each UAV selects an adjacent spatial enhanced multi-UAV Q-learning algorithm in [8],
point of its current location which can maximize which is based on the following observations. First,
the total rewards, that is, the number of valid senso- since all the UAVs determine trajectories at the
ry data elements successfully sent to the associated same time, each UAV needs to consider other
BS. The distance from the current position to the UAVs’ action selections when selecting its own.
next one should be less than the UAVs" maximum This can be achieved by each UAV keeping a
flying distance within one cycle. Note that for each record of other UAVs’ action selection statistics in
UAV, the valid sensory data received by the BS in each state [13].
the far future will be worth less than those received Second, it can be observed that if the UAV does
soon, which means the UAVs have discount values not locate near the vertical plane passing through
on their future rewards. the BS and the target, both the successful sensing
and transmission probabilities will decrease. There-
ALGOR”HM DES|GN fore, the available action set of each UAV can be
To solve the trajectory control problem, we uti- reduced to the trajectories toward or on the BS-tar-
lize the Q-learning algorithm where the UAVs get plane.
are considered as agents, the locations of UAVs Third, in the traditional Q-learning algorithms,
are the state, and the cycle is the time step. The agents update their values using the observed
available action set for a UAV consists of all the reward in the last cycle. However, in such a man-
possible direct trajectories to the feasible spatial ner, the estimated Q-values converge slowly, and
points whose distance is less than the maximum the performance of the algorithms are likely to be
flying distance of a UAV within one cycle. The poor. Therefore, in the proposed algorithm, UAVs
state transition is the mapping from the current update their Q-functions based on the probability
locations and actions of UAVs to the locations of ~ of successful valid sensory data transmission, which
the UAVs at the beginning of the next cycle. Final- can be calculated by the algorithm proposed in [8].
ly, the reward is 1 if the BS receives valid sensory To evaluate the performance of the proposed
data from the UAV; otherwise, the reward is 0. enhanced multi-UAV Q-learning algorithm, we
To be specific, the Q-learning algorithm for the compare it to the traditional single-agent and
trajectory control problem can be briefly described opponent modeling Q-learning algorithms [13].
as follows: Figure 5a shows the average per cycle reward of
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As a powerful
approach for UAVs

to automatically

learn optimal deci-
sion-making policies
from past experiences,
reinforcement learning
is promising for the cel-
lular Internet of UAVs.
Nevertheless, there are
still many open issues
in this field, which may
drive future research.
Several potential
research directions are
listed below as exam-
ples.

the UAVs vs. the number of training cycles. It can
be seen that compared to the traditional Q-learn-
ing algorithms, the proposed algorithm converges
faster and to a higher reward. Figure 5b shows the
average per cycle reward of the UAVs vs. the dis-
tance between the targets and the BSs. It indicates
that the probability of successful valid data trans-
mission decreases with the distance between the
targets and the BSs. Nevertheless, the decrement
in the proposed algorithm is less than those in the
other algorithms. This indicates that the proposed
algorithm is more robust to the variance of the tar-
gets’ locations.

CONCLUSIONS AND FUTURE QuTLOOK

In this article, reinforcement learning has been
introduced as a distributed approach to solve key
problems in the cellular Internet of UAVs. We
have introduced the cellular Internet of UAVs and
then proposed a distributed sense-and-send pro-
tocol for the coordination of multiple UAVs to
execute sensing tasks. Following that, we have
introduced the basics of reinforcement learning
and the four types of reinforcement learning
approaches. We have also discussed the potential
applications of reinforcement learning approach-
es to tackle the trajectory control and resource
management problems in the cellular Internet of
UAVs. To provide an example, we have elaborat-
ed on using the enhanced multi-UAV Q-learning
algorithm to solve the trajectory control problem.
As a powerful approach for UAVs to automat-
ically learn optimal decision making policies from
past experiences, reinforcement learning is prom-
ising for the cellular Internet of UAVs. Neverthe-
less, there are still many open issues in this field,
which may drive future research. Several potential
research directions are listed below as examples.

COOPERATIVE CELLULAR INTERNET OF UAVS

When the targets are far away from the cover-
age of the BSs, the UAVs may need cooperation
to execute the tasks. To be specific, a UAV can
choose not to sense any targets, but to work as
a relay that helps another UAV transmit senso-
ry data to the BSs [14]. In this case, the UAVs
need to select their roles in each cycle, with the
objective of maximizing the total number of valid
sensory data received by the BS. To tackle this
problem, Q-learning can be applied. Specifically,
the state can be the locations of the UAVs and
the BSs, and the actions of the UAVs are their
decisions on whether to sense or to relay. More-
over, in accordance with the objective of the
UAVs, the rewards can be defined as the number
of valid sensory data elements received by the BS
in each cycle.

COGNITIVE CELLULAR INTERNET OF UAVS

In some sensing tasks (e.g., live streaming), the
transmission of a large amount of sensory data
generated by UAVs may pose a significant bur-
den on cellular networks. To guarantee the QoS
for traditional cellular users while improving
the QoS of data transmission for UAVs, cogni-
tive radio can be used to enable the UAVs to
opportunistically access the channels nominally
occupied by cellular users. Under such a setting,
cellular users and UAVs serve as the primary
and secondary users, respectively. This channel

access problem can be solved by deep reinforce-
ment learning [15], where UAVs are the agents,
and the previous observations on the subchan-
nels are regarded as the state. To avoid inter-
fering with primary users, the rewards of UAVs
can be designed as weighted sums of successful
transmission probabilities and the interference
caused to the primary users.

MILLIMETER-WAVE CELLULAR INTERNET OF UAV

In the cellular Internet of UAVs, sensory data
need to be transmitted to the BSs in a time-
ly manner, which may require high data rates
between the UAVs and the BSs. Therefore, it is
promising to apply millimeter-wave (mmWave)
communication in the cellular Internet of UAVs,
which can provide abundant frequency spectrum
resources and alleviate the inter-cell interference
due to its high attenuation rate. To implement
mmWave communication, beamforming is
required at UAVs to steer strong signal-to-noise
ratio (SNR) at the BS, in which the UAVs need
to search a large number of beam directions
and find the best angle. To solve this problem,
actor-critic learning can be adopted. Specifical-
ly, the locations of UAVs and BSs can be jointly
considered as the states, and the beam directions
can be considered as the UAVs’ action space. In
each cycle, the UAV selects a beam direction
according to the PDF generated by its actor role.
The rewards for UAVs can be designed as the
received SNR level at the BSs in the cycle, which
is in accordance with the objective of finding the
optimal beam direction.
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