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Abstract
Unmanned aerial vehicles (UAVs) can be 

powerful Internet of Things components to exe-
cute sensing tasks over the next-generation cel-
lular networks, which are generally referred to as 
the cellular Internet of UAVs. However, due to 
the high mobility of UAVs and shadowing in air-
to-ground channels, UAVs operate in a dynam-
ic and uncertain environment. Therefore, UAVs 
need to improve the quality of service of sensing 
and communication without complete information, 
which makes reinforcement learning suitable for 
use in the cellular Internet of UAVs. In this article, 
we propose a distributed sense-and-send protocol 
to coordinate UAVs for sensing and transmission. 
Then we apply reinforcement learning in the cellu-
lar Internet of UAVs to solve key problems such as 
trajectory control and resource management. Final-
ly, we point out several potential future research 
directions.

Introduction 
The emerging unmanned aerial vehicles (UAVs) 
have been playing an increasing role in military, 
public, and civil applications [1]. Specifically, 
exploiting UAVs as Internet of Things (IoT) devic-
es to execute sensing tasks has been of particu-
lar interest due to its advantages of on-demand 
flexible deployment, large service coverage, and 
ability to hover at a high altitude [2]. Such sens-
ing tasks consist of a wide range of critical daily 
applications, for example, smart agriculture, secu-
rity monitoring, forest fire detection, and traffic 
surveillance, as illustrated in Fig. 1. To realize the 
above vision, it is envisaged by the Third Genera-
tion Partnership Project (3GPP) that cellular net-
works are necessary for UAVs to execute sensing 
tasks, which we refer to as the cellular Internet of 
UAVs [3]. 

In the cellular Internet of UAVs, UAVs sense 
the targets of tasks and then transmit sensory data 
to the base stations (BSs) immediately. Therefore, 
the sensing and transmission tasks of UAVs are 
coupled [4]. Moreover, due to the high mobility 
of UAVs and shadowing in air-to-ground chan-
nels, UAVs operate in a dynamic and uncertain 
environment [5]. Therefore, UAVs must improve 
their quality of service (QoS) in both sensing and 

transmission without complete information. Due to 
incomplete information, the coordination of multi-
ple UAVs to execute sensing tasks is a challenging 
problem. 

In this article, we introduce reinforcement 
learning approaches and their applications in 
the cellular Internet of UAVs. Since reinforce-
ment learning can enable UAVs to improve their 
policies to achieve objectives without a priori 
knowledge or complete information of the envi-
ronment, it is suitable to address the key problems 
in the cellular Internet of UAVs [6]. We focus on 
the following three essential parts of the cellular 
Internet of UAVs: 
•	 Protocol Design: We present a distributed sense-

and-send protocol to coordinate the UAVs in 
sensing and transmission. 

•	 Trajectory Control: We discuss the dynamic tra-
jectory control problem of UAVs and propose 
an enhanced multi-UAV Q-learning algorithm 
for this problem. 

•	 Resource Management: We introduce different 
reinforcement learning approaches and their 
applications for resource management prob-
lems, including user association, power man-
agement, and subchannel allocation. 
Specifically, to address the trajectory control 

and resource management problems, we discuss 
the possible implementations of reinforcement 
learning approaches in the cellular Internet of 
UAVs: 
•	 Applying multi-armed bandit learning to solve 

the user association problem 
•	 Utilizing Q-learning to solve the trajectory con-

trol problem 
•	 Using actor-critic learning to solve the power 

management problem 
•	 Applying deep reinforcement learning to solve 

the subchannel allocation problem
The rest of the article is organized as follows. 

First, we provide an overview of the cellular Inter-
net of UAVs and demonstrate the sense-and-send 
protocol. Then we discuss the reinforcement learn-
ing approaches, including the basics and applica-
tions in the cellular Internet of UAVs. Following 
that, we elaborate on how to apply Q-learning to 
solve the UAV trajectory control problem. Finally, 
we draw conclusions and point out several future 
research directions. 

Jingzhi Hu, Hongliang Zhang, Lingyang Song, Zhu Han, and H. Vincent Poor 

Reinforcement Learning for a  
Cellular Internet of UAVs: Protocol Design, 

Trajectory Control, and Resource Management

INTELLIGENT RADIO: WHEN ARTIFICIAL INTELLIGENCE MEETS THE RADIO NETWORK

Jingzhi Hu and Lingyang Song are with Peking University; Hongliang Zhang is with Peking University, and also with the University of  
Houston; Zhu Han is with the University of Houston, and also with Kyung Hee University; H. Vincent Poor is with Princeton University.

Digital Object Identifier:
10.1109/MWC.001.1900262

Authorized licensed use limited to: Princeton University. Downloaded on September 26,2020 at 23:57:15 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Wireless Communications • February 2020 117

INTELLIGENT RADIO: WHEN ARTIFICIAL INTELLIGENCE MEETS THE RADIO NETWORK Overview of the Cellular Internet of UAVs
In this section, we first introduce the cellular Inter-
net of UAVs. Then, to coordinate multiple UAVs 
to execute sensing tasks, we propose a distributed 
sense-and-send protocol. 

Cellular Internet of UAVs 
As shown in Fig. 2, in a cellular Internet of UAVs, 
multiple UAVs execute a set of sensing tasks. 
Each task has one target to be sensed, and the 
targets are at different locations. The tasks are 
pre-assigned to the UAVs, and the UAVs sense 
the targets of their tasks and transmit the results 
to the BSs continuously. To be specific, the UAVs 
execute the tasks through two steps: UAV sensing 
and UAV transmission.

UAV Sensing: Each UAV is equipped with an 
onboard sensor to sense its target. Due to the lim-
ited sensing capability of the sensor, the sensing is 
not always successful.1 If the sensing is successful, 
the sensory data collected by the UAV is referred 
to as valid; otherwise, it is referred to as invalid. In 
general, the probability of successful sensing is neg-
atively related to the distance between the sensor 
and the target [7]. 

UAV Transmission: Each UAV is associated 
with one BS and uses the uplink subchannels allo-
cated by the BS to transmit the sensory data.2 Each 
BS owns a limited number of subchannels to sup-
port UAV transmission. The frequency bands used 
by different BSs can be overlapped or orthogo-
nal, determined by the deployment of the network 
operators. In consequence, the UAVs associated 
with different BSs may interfere with each other in 
the uplink transmission, as shown in Fig. 2, which 
is referred to as inter-cell interference. Since UAVs 
are likely to have line-of-sight (LoS) channels to 
multiple BSs due to their high altitudes, the inter-
cell interference may be severe in the cellular Inter-
net of UAVs. 

Distributed Sense-and-Send Protocol 
To coordinate multiple UAVs to execute the sens-
ing tasks in a distributed manner, we propose the 
following distributed sense-and-send protocol based 
on [8]. In this protocol, UAVs perform sensing and 
transmission in a synchronized iterative manner in 
the unit of a sense-and-send cycle, or cycle in short. 
In each cycle, UAVs need to sense their targets and 
transmit the sensory data to the BSs. As shown in 
Fig. 3, a cycle contains three phases: the beacon-
ing phase, the sensing phase and the transmission 
phase, which are explained as follows.

Beaconing Phase: At the beginning of the bea-
coning phase, each BS first broadcasts a beacon-
ing frame on the wireless control channel, which 
contains the identity of the BS. To synchronize 
the UAVs and the BSs, the synchronization signals 
adopted by the cellular communications can be 
used in the beaconing frames [9]. After receiving 
the beaconing frames, all the UAVs are synchro-
nously informed that a new cycle has begun. Then 
the UAVs send back their state information to their 
associated BSs on the control channels, which 
includes their locations and the channel conditions 
toward the BSs. The BSs will exchange the state   
information of the UAVs with each other and then 
broadcast it on the wireless control channel, which 
can then be received by the UAVs.

By this means, the BSs can obtain necessary 
information from the UAVs to perform subchannel 
allocation. Further, based on the information pro-
vided by the BSs, the UAVs can make decisions on 
their sensing and transmission in a distributed man-
ner, including their user associations, trajectories, 
and transmit power levels. This decision making 
process takes place at the end of each beacon-
ing phase. Moreover, as the duration of a cycle is 
pre-defined, the UAVs know when to expect the 
next beaconing frames from the BSs, and thus the 
synchronization will not be lost. 

Sensing Phase: In the sensing phase, UAVs 
sense the targets of the tasks and collect sensory 
data. We assume that the UAVs cannot deter-
mine whether the sensing was successful or not 
based on their sensory data due to their limit-
ed onboard processing abilities. Therefore, the 

FIGURE 1. Cellular Internet of UAVs for various kinds of sensing tasks.
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1 For example, the sensing is 
considered to be successful 
when the sensor successfully 
detects an event (e.g., a traffic 
jam at a crossroads) or cor-
rectly measures the condition 
of a target (e.g., the air quality 
at a certain location).

2 In the cellular Internet 
of UAVs, since the UAVs 
are IoT devices, the uplink 
transmission for sensory data 
dominates. Therefore, in this 
article, we focus on the uplink 
transmission of the UAVs.
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UAVs need to send their sensory data to the BSs, 
and the BSs will decide whether the sensory data 
are valid or not. 

Transmission Phase: In order to synchro-
nize the transmissions of UAVs, the transmission 
phase of each cycle is further divided into frames, 
the basic time unit for subchannel allocation. 
The UAVs transmit their sensory data to the BSs 
through allocated subchannels in each frame. As 
shown in Fig. 3, for each UAV, there are four pos-
sible situations that can take place in each frame of 
the transmission phase: 
•	 No subchannel assigned: The UAV is allocated 

no subchannel and needs to wait for the next 
frame. 

•	 Failed transmission: The UAV is allocated a sub-
channel by the BS. However, the uplink trans-
mission fails due to low received signal power 
or interference from other UAVs’ transmissions. 
Therefore, the UAV needs to transmit again in 
the following frames. 

•	 Successful transmission: The UAV is allocated a 
subchannel and transmits the sensory data to 
the BS successfully. 

•	 Idle: The UAV keeps idle and will not transmit 
as it has already sent the sensory data to the BS 
successfully in the previous frames. 
Since the spectrum resources are scarce, the 

subchannels of a BS may not be sufficient to sup-
port all the associated UAVs to transmit their sen-
sory data at the same time. To handle this problem, 
the BSs need to adopt efficient subchannel alloca-
tion mechanisms to allocate the limited number 
of subchannels to the UAVs. An example of the 
subchannel allocation mechanisms is to allocate 
the subchannels to the UAVs that have the highest 
probabilities of successful transmission, which is 
adopted in [8]. Reinforcement learning can also 
be applied for subchannel allocation, which is dis-
cussed later. 

Reinforcement Learning for the  
Cellular Internet of UAVs 

To better understand the applicability of reinforce-
ment learning in the cellular Internet of UAVs, 
we start by introducing the basics of reinforce-
ment learning. We then categorize reinforcement 
learning approaches into four types: multi-armed-
bandit learning, Q-learning, actor-critic learning, 
and deep reinforcement learning, and give a brief 
introduction to each. Finally, we discuss possible 
applications of reinforcement learning to solve 
key problems in the cellular Internet of UAVs. 

Basics of Reinforcement Learning 
Reinforcement learning is a learning process in 
which agents make decisions, observe the results, 
and then automatically adjust their policies to 
achieve their objectives [10]. To be specific, 
reinforcement learning is based on the Markov 
decision process (MDP), which consists of an 
environment and some agents. At each time step, 
the environment is at a certain state, and each 
agent selects a certain action according to its poli-
cy. Then the environment transits into a new state, 
which is determined by its previous state and the 
actions of the agents. A reward is generated for 
each agent, which quantifies how well the objec-
tive of the agent is achieved. Due to the capability 
of modeling state transitions, the MDP is wide-
ly applied to model sequential decision making 
problems in dynamic environments.

Also, in contrast to centralized scheduling 
approaches and supervised machine learning, rein-
forcement learning does not rely on accurate prior 
knowledge of the environment or historical labeled 
data. Instead, in reinforcement learning, the agents 
can automatically learn from the environment and 
their own past experiences through the rewards 
they obtain in order to improve their policies. This 
property makes reinforcement learning suitable for 
application in the cellular Internet of UAVs, where 
the UAVs face a rather dynamic and complex envi-
ronment. Generally, reinforcement learning can 
be categorized into four types: multi-armed ban-
dit learning, Q-learning, actor-critic learning, and 
deep reinforcement learning. In the following, we 
will elaborate on these four reinforcement learning 
approaches.

Multi-Armed Bandit Learning: As shown in 
Fig. 4a, in multi-armed bandit learning, the agent 
selects actions without recognizing the state of 
the environment. After each time step, a reward 
is received by the agent, which is relevant to the 
action performed in the time step. Based on the 
received reward for each action, the agent main-
tains a table of estimates of the potential rewards 
associated with the actions. The agent updates the 
potential reward estimates by a linear combination 
of the previous values in the table and the latest 
received reward. The objective of the agent is to 
obtain the maximum total reward, and thus the 
agent needs to select the current best action with 
the highest estimated reward. Nevertheless, as it 
is necessary for the agent to explore the poten-
tial reward associated with each action in order to 
choose the best one, there is a trade-off between 
exploration and exploitation. Consequently, the 

FIGURE 4. Illustrations of: a) multi-armed bandit learning; b) Q-learning; c) actor-critic learning; d) deep reinforcement learning.
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agent needs to decide whether to take the current 
best action or search for a better one.

Since the state transition of the environment 
has not been considered, multi-armed bandit 
learning is inefficient in dealing with fast-changing 
environments. However, this disadvantage can 
be compensated for by its very low complexity in 
implementation due to its low memory and com-
putation requirements. To be specific, suppose that 
the maximum number of available actions of the 
agent is N, and the agent only needs to store the 
N potential rewards associated with the actions. At 
each time step, the agent needs to select the cur-
rent best action or a random one and then update 
the potential reward associated with the selected 
action. Therefore, the computational complexity in 
each time step is O(N). In summary, multi-armed 
bandit learning has very low memory requirements 
and computational complexity.

Q-Learning: As shown in Fig. 4b, the agent in 
Q-learning selects actions based on the Q-table. 
To be specific, the value in the Q-table, that is, the 
Q-value, for each state-action pair represents the 
estimated total rewards for the agent under its cur-
rent policy after executing the action at the state. 
Here, the policy of the agent is to select the action 
that currently has the largest Q-value at each state. 
To train the Q-table to be more accurate, the agent 
updates its Q-table based on the observed reward 
after each time step. Based on the updated Q-ta-
ble, the policy of the agent also updates. By this 
means, the Q-value and the policy of the agent 
update iteratively, and it has been proved that the 
policy will eventually converge to the optimal poli-
cy of the agent [6].

To implement Q-learning, the agent who has 
N available actions and M states needs to store 
a Q-table involving N  M elements for all the 
state-action pairs. As for the computations of the 
agent in each time step, they are similar to those 
of multi-armed bandit learning, which indicates that 
the computational complexity is O(N). It can be 
observed that the memory requirements and com-
putational complexity of the Q-learning are low.

Actor-Critic Learning: As shown in Fig. 4c, the 
agents in actor-critic learning are logically split into 
two roles, that is, a critic and an actor. The actor 
represents the action selection policy, which is a 
probability distribution function (PDF) over the 
action space. The critic observes the states and 
rewards from the environment and evaluates the 
state values, that is, the expected total rewards 
that will be received in the future passing through 
the states. In this sense, the critic can be consid-
ered as a state value function with respect to the 
state. The critic is used to improve the efficiency 
and stability for the training of the actor to perform 
optimal action selection. Specifically, after each 
time step, the critic updates the state value of the 
current state based on the observed reward. Then 
the actor updates its policy for the previous state 
based on the updated state value. Compared to 
other reinforcement learning algorithms, actor-critic 
learning does not search the action space for the 
action with the highest expected reward. Instead, 
the action is selected randomly following the PDF 
represented by the actor. Therefore, the com-
plexity of action selection does not grow with the 
size of the action space. This characteristic makes 
actor-critic learning more efficient in handling large 

or even continuous action spaces compared to the 
other reinforcement learning approaches.

To implement actor-critic learning, the agent 
needs to store the action selection policy and the 
state value function. The action selection policy 
and state value function are both represented by 
parametrized functions, and thus the amount of 
memory to store them is determined by the num-
ber of parameters quantifying them. In each time 
step, the agent needs to select an action accord-
ing to the policy and compute the gradients of the 
action selection policy and state value function 
with respect to the parameters in order to improve 
the actor and critic. In general, the action selec-
tion policy and the state value function are the 
combinations of basic functional elements (e.g., 
linear, cosine, and exponent functions) weighted 
by the parameters, and the number of parameters 
is small. Therefore, both the memory requirements 
and computational complexity of the actor-critic 
learning are low.

Deep Reinforcement Learning: In deep rein-
forcement learning, deep neural networks are uti-
lized to handle high-dimensional state spaces [11]. 
As shown in Fig. 4d, at each time step, the agent 
inputs the feature vector of the current state into 
the deep neural network, which can estimate the 
Q-value for each action, and thus is referred to as 
a deep Q-network (DQN). The agent then selects 
the action with the largest estimated Q-value, and 
stores the experience, including the state transition 
and the reward, into a replay buffer, which is used 
to train the DQN to estimate Q-values more accu-
rately.

To implement deep reinforcement learning, the 
agent needs to store the DQN and a replay buf-
fer that stores its previous experiences. Generally, 
to obtain better results, the sizes of the DQN and 
the replay buffer need to be large, which results in 
a high memory requirement. The training of the 
DQN requires the gradients of estimated Q-val-
ues with respect to the parameters of the DQN, 
which leads to high computation complexity given 
a large DQN. Therefore, deep reinforcement 
learning requires more memory and higher com-
putational complexity than other reinforcement 
learning approaches. Nevertheless, to alleviate the 
high memory and computational requirements on 
the agent, the DQN can be trained in an offline 
manner. For example, an agent can upload its 
experiences to a server. The server trains the DQN 
according to the experiences and returns the 
updated DQN to the agent periodically.

Applications in the Cellular Internet of UAVs
Due to the rapid development of UAVs, UAVs 
are able to have enough onboard computation 
and memory capacities to perform reinforcement 
learning approaches, either by having in-built cir-
cuits or carrying additional computing devices. 
This allows the implementations of reinforcement 
learning approaches to solve key problems in 
the cellular Internet of UAVs. In the following, 
we discuss the possible implementations of rein-
forcement learning to solve the trajectory control 
and resource management problems in the cellu-
lar Internet of UAVs, including user association, 
power management, and subchannel allocation.

Multi-Armed Bandit Learning for User Asso-
ciation: In the cellular Internet of UAVs, each 

Due to the rapid 
development of UAVs, 
UAVs are able to have 
enough onboard com-
putation and memory 
capacities to perform 

reinforcement learning 
approaches, by either 
having built-incircuits 
or carrying additional 

computing devic-
es. This allows the 

implementations of 
reinforcement learning 

approaches to solve 
key problems in the 

cellular Internet of 
UAVs.
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BS is equipped with K subchannels to support at 
most K UAVs to transmit simultaneously, and each 
UAV needs to choose one BS with which to asso-
ciate. From the protocol proposed above, it can 
be observed that the probabilities of successful 
transmission for UAVs will decrease with the num-
ber of UAVs associated with the same BS due to 
the aggravated competition for the subchannels. 
Besides, due to the shadowing in the air-to-ground 
channels, the channel conditions from a UAV to 
different BSs are usually varying. For example, 
when the channel between the UAV and the BS 
has an LoS component, its path loss is much lower 
than when no LoS component exists [12]. For the 
above reasons, the user association is a challenging 
problem in the cellular Internet of UAVs.

Since multi-armed bandit learning does not 
rely on prior information such as the channel 
conditions between the UAVs and the BSs, it is 
suitable for the user association problem. In this 
problem, each UAV can be considered as an 
agent. At the beginning of each beaconing phase, 
each UAV decides which BS with which to asso-
ciate. As the objective of the UAV is to maximize 
the successful transmission probability, the reward 
is 1 if the sensory data is successfully transmitted; 
otherwise, the reward is 0. Each UAV optimizes its 
action selection policy by estimating the expected 
reward for each action and selecting the action 
with the highest expected reward. Further, in 
order to keep searching for a better action, the 
UAV has an exploration probability, with which it 
selects an action randomly.

Q-Learning for Trajectory Control: When the 
UAV executes a sensing task, the successful sens-
ing probability will be higher if it gets closer to the 
sensing target. On the other hand, the UAV will 
have a higher probability of transmitting the senso-
ry data to the BS successfully if it approaches the 
BS. Therefore, sensing and transmission are cou-
pled with its trajectory. However, since accurate 
sensing and transmission models are hard to obtain 
in the complex and dynamic environment of the 
cellular Internet of UAVs, trajectory control is also 
challenging.

As Q-learning does not require models of the 
sensing and transmission, it is suitable for the tra-
jectory control problem. For applying Q-learning, 
the flight space can be abstracted into a finite set 
of discrete spatial points, and the trajectory can 
be considered as a path through these spatial 
points. The state of each UAV is its location, and 
the action is its trajectory in each cycle. Since the 
objective of each UAV is to send valid sensory data 
to the BS, the reward is 1 if the valid sensory data 
is received successfully by the BS; otherwise, the 
reward is 0.

Actor-Critic Learning for Power Management: 
In the cellular Internet of UAVs, the UAVs need to 
raise their transmit power in order to increase the 
successful transmission probability and satisfy the 
QoS requirement. However, the onboard batter-
ies of UAVs are generally very limited; therefore, 
high transmit power results in the batteries draining 
quickly. In order to maximize the total number of 
successful transmissions before the battery runs 
out, it is crucial for each UAV to adopt efficient 
approaches for transmit power management.

Since the transmit power level can take val-
ues from a continuous set, it is suitable to apply 

actor-critic learning for the power management 
problem. To be specific, in each cycle, the path 
loss of the uplink subchannel and remaining bat-
tery capacity can be jointly considered as the state. 
At the end of the beaconing phase, the actor of 
the UAV selects a transmit power level according 
to the current state. After the cycle, the reward 
to the UAV is 1 if the transmission was successful; 
otherwise, the reward is 0. The experience, consist-
ing of the state transition and the reward, is used 
to train the critic to estimate the value of the state 
more accurately. Then the actor updates itself to 
select a better action by using the critic’s evalua-
tion.

Deep Reinforcement Learning for Subchannel 
Allocation: In the cellular Internet of UAVs, the 
uplink transmissions of the UAVs may suffer severe 
inter-cell interference due to the low path loss of 
LoS channels between each UAV and multiple BSs. 
To alleviate the inter-cell interference and improve 
the probability of successful transmission, the BSs 
that share the same frequency band need to per-
form subchannel allocation jointly.

However, in the subchannel allocation, the 
channel conditions between multiple BSs and 
their associated UAVs need to be taken into con-
sideration. Moreover, since the UAVs that are 
idle in the frame do not transmit, the transmis-
sion states of all UAVs should also be considered. 
Therefore, the subchannel allocation problem has 
a complex and high-dimensional state space. As 
deep reinforcement learning is able to solve the 
optimal policies for agents facing a high-dimen-
sional state space, it is suitable for the subchan-
nel allocation problem in the cellular Internet of 
UAVs.

In this case, the BSs that share a certain frequen-
cy band can be considered as the agent, and the 
action of the BSs is the subchannel allocation for 
the UAVs. In each frame in the transmission phase, 
the state is composed of the following elements:
•	 The path loss of the channels between the 

involved BSs and their associated UAVs
•	 The indicators of whether the UAVs are idle in 

the frame
At each frame in the transmission phase, the 

BSs form a feature vector representing the current 
state and input it into the DQN, which returns the 
Q-value for each possible subchannel allocation 
of the UAVs. Then the BSs select the subchannel 
allocation with the largest Q-value as their action. 
After the cycle, the reward given to the agent can 
be designed as the number of successful transmis-
sions. The rewards, along with the transition among 
states, are stored in the replay buffer of the UAV, 
which is then used to train the DQN to estimate 
the Q-values for the state-action pairs more accu-
rately.

In Table 1, we summarize the different types 
of reinforcement learning approaches with their 
characteristics and their applications in the cellular 
Internet of UAVs.

Reinforcement Learning Example: Q-Learning 
for Trajectory Control

As an illustrative example, in this section, we intro-
duce how to apply the reinforcement learning 
approach to solve the trajectory control problem 
in the cellular Internet of UAVs.

The onboard batteries 
of UAVs are generally 
very limited; therefore, 
high transmit power 
results in the batteries 
draining quickly. In 
order to maximize the 
total number of suc-
cessful transmissions 
before the battery runs 
out, it is crucial for 
each UAV to adopt 
efficient approaches for 
transmit power man-
agement.
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Problem Description
We consider a cellular Internet of UAVs, which 
consists of two BSs and three UAVs associated 
with each BS. The two BSs are assumed to have 
two subchannels to support the uplink transmis-
sions of the UAVs, and the frequency bands uti-
lized by the two BSs are different. Moreover, the 
UAVs are flying in a cylindrical space centered at 
the BS, with minimum and maximum flying alti-
tude constraints.

To depict the trajectory, we divide the space 
into a finite set of discrete spatial points, which are 
arranged in a square lattice pattern. The trajectory 
control problem can be reformulated as that in 
each cycle. Each UAV selects an adjacent spatial 
point of its current location which can maximize 
the total rewards, that is, the number of valid senso-
ry data elements successfully sent to the associated 
BS. The distance from the current position to the 
next one should be less than the UAVs’ maximum 
flying distance within one cycle. Note that for each 
UAV, the valid sensory data received by the BS in 
the far future will be worth less than those received 
soon, which means the UAVs have discount values 
on their future rewards.

Algorithm Design
To solve the trajectory control problem, we uti-
lize the Q-learning algorithm where the UAVs 
are considered as agents, the locations of UAVs 
are the state, and the cycle is the time step. The 
available action set for a UAV consists of all the 
possible direct trajectories to the feasible spatial 
points whose distance is less than the maximum 
flying distance of a UAV within one cycle. The 
state transition is the mapping from the current 
locations and actions of UAVs to the locations of 
the UAVs at the beginning of the next cycle. Final-
ly, the reward is 1 if the BS receives valid sensory 
data from the UAV; otherwise, the reward is 0.

To be specific, the Q-learning algorithm for the 
trajectory control problem can be briefly described 
as follows: 

•	 At the beginning of a cycle, each UAV chooses 
the action that has the maximum Q-value in the 
current state.

•	 The UAV performs the selected action in the 
cycle.

•	 At the beginning of the next state, the UAV 
observes the transition state and is informed 
whether valid sensory data has been received 
by the BS.

•	 The UAV updates the state-action value in the 
previous state, and then selects an action for 
the new state.
Moreover, to improve the efficiency of the 

Q-learning for trajectory control, we propose an 
enhanced multi-UAV Q-learning algorithm in [8], 
which is based on the following observations. First, 
since all the UAVs determine trajectories at the 
same time, each UAV needs to consider other 
UAVs’ action selections when selecting its own. 
This can be achieved by each UAV keeping a 
record of other UAVs’ action selection statistics in 
each state [13].

Second, it can be observed that if the UAV does 
not locate near the vertical plane passing through 
the BS and the target, both the successful sensing 
and transmission probabilities will decrease. There-
fore, the available action set of each UAV can be 
reduced to the trajectories toward or on the BS-tar-
get plane.

Third, in the traditional Q-learning algorithms, 
agents update their values using the observed 
reward in the last cycle. However, in such a man-
ner, the estimated Q-values converge slowly, and 
the performance of the algorithms are likely to be 
poor. Therefore, in the proposed algorithm, UAVs 
update their Q-functions based on the probability 
of successful valid sensory data transmission, which 
can be calculated by the algorithm proposed in [8].

To evaluate the performance of the proposed 
enhanced multi-UAV Q-learning algorithm, we 
compare it to the traditional single-agent and 
opponent modeling Q-learning algorithms [13]. 
Figure 5a shows the average per cycle reward of 

FIGURE 5. UAVs’ average per cycle reward vs.: a) number of training cycles; b) distance between the targets and the BSs.
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the UAVs vs. the number of training cycles. It can 
be seen that compared to the traditional Q-learn-
ing algorithms, the proposed algorithm converges 
faster and to a higher reward. Figure 5b shows the 
average per cycle reward of the UAVs vs. the dis-
tance between the targets and the BSs. It indicates 
that the probability of successful valid data trans-
mission decreases with the distance between the 
targets and the BSs. Nevertheless, the decrement 
in the proposed algorithm is less than those in the 
other algorithms. This indicates that the proposed 
algorithm is more robust to the variance of the tar-
gets’ locations.

Conclusions and Future Outlook
In this article, reinforcement learning has been 
introduced as a distributed approach to solve key 
problems in the cellular Internet of UAVs. We 
have introduced the cellular Internet of UAVs and 
then proposed a distributed sense-and-send pro-
tocol for the coordination of multiple UAVs to 
execute sensing tasks. Following that, we have 
introduced the basics of reinforcement learning 
and the four types of reinforcement learning 
approaches. We have also discussed the potential 
applications of reinforcement learning approach-
es to tackle the trajectory control and resource 
management problems in the cellular Internet of 
UAVs. To provide an example, we have elaborat-
ed on using the enhanced multi-UAV Q-learning 
algorithm to solve the trajectory control problem.

As a powerful approach for UAVs to automat-
ically learn optimal decision making policies from 
past experiences, reinforcement learning is prom-
ising for the cellular Internet of UAVs. Neverthe-
less, there are still many open issues in this field, 
which may drive future research. Several potential 
research directions are listed below as examples.

Cooperative Cellular Internet of UAVs
When the targets are far away from the cover-
age of the BSs, the UAVs may need cooperation 
to execute the tasks. To be specific, a UAV can 
choose not to sense any targets, but to work as 
a relay that helps another UAV transmit senso-
ry data to the BSs [14]. In this case, the UAVs 
need to select their roles in each cycle, with the 
objective of maximizing the total number of valid 
sensory data received by the BS. To tackle this 
problem, Q-learning can be applied. Specifically, 
the state can be the locations of the UAVs and 
the BSs, and the actions of the UAVs are their 
decisions on whether to sense or to relay. More-
over, in accordance with the objective of the 
UAVs, the rewards can be defined as the number 
of valid sensory data elements received by the BS 
in each cycle.

Cognitive Cellular Internet of UAVs
In some sensing tasks (e.g., live streaming), the 
transmission of a large amount of sensory data 
generated by UAVs may pose a significant bur-
den on cellular networks. To guarantee the QoS 
for traditional cellular users while improving 
the QoS of data transmission for UAVs, cogni-
tive radio can be used to enable the UAVs to 
opportunistically access the channels nominally 
occupied by cellular users. Under such a setting, 
cellular users and UAVs serve as the primary 
and secondary users, respectively. This channel 

access problem can be solved by deep reinforce-
ment learning [15], where UAVs are the agents, 
and the previous observations on the subchan-
nels are regarded as the state. To avoid inter-
fering with primary users, the rewards of UAVs 
can be designed as weighted sums of successful 
transmission probabilities and the interference 
caused to the primary users.

Millimeter-Wave Cellular Internet of UAV
In the cellular Internet of UAVs, sensory data 
need to be transmitted to the BSs in a time-
ly manner, which may require high data rates 
between the UAVs and the BSs. Therefore, it is 
promising to apply millimeter-wave (mmWave) 
communication in the cellular Internet of UAVs, 
which can provide abundant frequency spectrum 
resources and alleviate the inter-cell interference 
due to its high attenuation rate. To implement 
mmWave communication, beamforming is 
required at UAVs to steer strong signal-to-noise 
ratio (SNR) at the BS, in which the UAVs need 
to search a large number of beam directions 
and find the best angle. To solve this problem, 
actor-critic learning can be adopted. Specifical-
ly, the locations of UAVs and BSs can be jointly 
considered as the states, and the beam directions 
can be considered as the UAVs’ action space. In 
each cycle, the UAV selects a beam direction 
according to the PDF generated by its actor role. 
The rewards for UAVs can be designed as the 
received SNR level at the BSs in the cycle, which 
is in accordance with the objective of finding the 
optimal beam direction.
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