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Abstract— This paper studies an n-dimensional additive
Gaussian noise channel with a peak-power-constrained input. It is
well known that, in this case, when n = 1 the capacity-achieving
input distribution is discrete with finitely many mass points,
and when n > 1 the capacity-achieving input distribution
is supported on finitely many concentric shells. However, due
to the previous proof technique, not even a bound on the
exact number of mass points/shells was available. This paper
provides an alternative proof of the finiteness of the number
mass points/shells of the capacity-achieving input distribution
while producing the first firm bounds on the number of mass
points and shells, paving an alternative way for approaching
many such problems. The first main result of this paper is an
order tight implicit bound which shows that the number of mass
points in the capacity-achieving input distribution is within a
factor of two from the number of zeros of the downward shifted
capacity-achieving output probability density function. Next, this
implicit bound is utilized to provide a first firm upper on the
support size of optimal input distribution, an O(A2) upper
bound where A denotes the constraint on the input amplitude.
The second main result of this paper generalizes the first one to
the case when n > 1, showing that, for each and every dimension
n ≥ 1, the number of shells that the optimal input distribution
contains is O(A2). Finally, the third main result of this paper
reconsiders the case n = 1 with an additional average power
constraint, demonstrating a similar O(A2) bound.

Index Terms— Amplitude constraint, power constraint,
additive vector Gaussian noise channel, capacity, discrete
distributions.

I. INTRODUCTION

WE CONSIDER an additive noise channel for which the
input-output relationship is given by

Y = X + Z, (1)
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where the input X ∈ Rn is independent of the standard
Gaussian noise Z ∈ Rn. We are interested in finding the
capacity of the channel in (1) subject to the constraint that
X ∈ B0(A) where B0(A) is an n-ball centered at zero with
radius A (i.e., amplitude or peak-power constrained input),
that is

Cn(A) = max
X : X∈B0(A)

I(X; Y ). (2)

In his seminal paper [1] (see also [2]), for the case of
n = 1, Smith has shown that an optimizing distribution
in (2) is unique, symmetric around the origin, and perhaps
surprisingly, discrete with finitely many mass points. Using
tools such as the Identity Theorem from complex analysis,
Smith has proven that the cardinality of the support set of the
optimal input distribution cannot be infinite, and, thus, must
be finite. Employing this proof by contradiction, Shamai and
Bar-David [3] have extended the method of Smith to n = 2,
and showed that, in this setting, the maximizing input random
variable is given by

X� = R� ·U� (3)

where the magnitude R� is discrete with finitely many points
and the random unit vector U�, which is independent of R�,
has a uniform phase on [0, 2π). In other words, the support
is given by finitely many concentric shells, e.g., Fig. 1.
As a matter of fact, this phenomena that the optimal input
distribution lies on finitely many concentric spheres remains
true for any n ≥ 2, cf. [4], [5] and [6].

Regrettably, the method of proof by contradiction does not
lead to a characterization of the number of spheres (number
of mass points when n = 1) in the capacity-achieving input
distribution. In fact, as of the writing of this paper, very little
is known about the structure of that distribution, and a very
simple question remains open about 50 years after Smith’s
contribution:

When n = 1, what is the cardinality of the support of the
optimal input distribution as a function of A?

In this work, we provide the first firm upper bound on the
number of points for n = 1 and the number of shells for every
n > 1, partially answering the above question. Furthermore,
for the case of n = 1, using similar methods, we also provide

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Princeton University. Downloaded on September 27,2020 at 00:01:26 UTC from IEEE Xplore.  Restrictions apply. 



DYTSO et al.: CAPACITY ACHIEVING DISTRIBUTION FOR THE AMPLITUDE CONSTRAINED ADDITIVE GAUSSIAN CHANNEL 2007

Fig. 1. An example of a support of an optimal input distribution for n = 2.

an upper bound on the cardinality of the support of the
distribution achieving

C(A, P) = max
X : |X|≤A

E[X2]≤P

I(X ; Y ). (4)

A. Prior Work

The history of the problem begins with Shannon who was
the first to consider an amplitude constraint on the input [7].
Shannon’s original paper proposes both upper and lower
bounds on the capacity and shows that peak-power capacity
and average power capacity have the same asymptotic behavior
at the low signal to noise ratio. The next major breakthrough
is the seminal paper of Smith [1], where Smith proves the
discreteness of the capacity-achieving input distribution and
also shows the optimality of the equiprobable binary input on
{±A} so long as A ≤ 0.1. Sharma and Shamai [8] extend
the result of Smith, and argue1 that an equiprobable input on
{±A} is optimal if and only if A ≤ Ā ≈ 1.665. The proof
of the result in [8], which generalizes to vector channels,
is shown in [9]. Also, based on numerical evidence, Sharma
and Shamai [8] conjectured that the number of mass points
increases by at most one and a new point always appears at
zero. Based on this conjecture, in [8] it has been shown that
a ternary input distributed on {−A, 0, A} is optimal for all
Ā ≤ A ≤ ¯̄A ≈ 2.786.

A progress on the algorithmic aspect of computing the
optimal input distribution was made in [10] which proposed an
iterative procedure that converges to the a capacity achieving
distribution based on the cutting-plane method. The bound on
the number of mass points found in our work is particularly
relevant for numerical methods as it reduces the optimization
space for algorithms such as the one contained in [10].

1The formal proof is incomplete as the argument in [8] uses a conjecture
which presumes that the number of points in the optimal distribution increases
by 1 as the amplitude constraint is relaxed. Proof of this fact was later shown
to be true in [9].

A number of papers have also focused on upper and lower
bounds on the capacity in (2). Broadly speaking, there are
three types of capacity upper bounding approaches. The first
approach uses the maximum entropy principle [11, Chapter 12]
and upper bounds the output differential entropy, h(Y ), subject
to some moment constraint [12]. The second approach uses a
dual capacity characterization2 where the maximization of the
mutual information over the input distribution is replaced by
minimization of the relative entropy over the output distrib-
ution. A suboptimal choice of an output distribution in the
dual capacity expression results in an upper bound on the
capacity [15]–[18]. The third approach uses a characterization
of the mutual information as an integral of the minimum
mean square error (MMSE) [19], and leads to an upper
bound by replacing the optimal estimator in the MMSE term
by a suboptimal one [9]. As for the lower bounds on the
capacity, the first one relevant to our setting, as mentioned
above, was proposed by Shanon in [7] which was based on
the entropy power inequality. Other important lower bounds
include Ozarow-Wyner bounds [20], [21], and bounds based
on Jensen’s inequality [22].

There is also a substantial literature that extends the
proof recipe of Smith to the other channels. For example,
the approach of Smith for showing discreteness of an optimal
input distribution has been extended to complex Gaussian
channels [3], additive noise channels where noise has a
sufficiently regular pdf [23], Rayleigh fading channels [24],
and Poisson channels [25]. For an overview of the literature
on various optimization methods that show discreteness of a
capacity-achieving distribution the interested reader is referred
to [6]. Moreover, a comprehensive account of capacity results
for point-to-point Gaussian channels can be found in [26].

One of the ingredients of our proof is the Oscillation
Theorem of Karlin [27]. In the past, Karlin’s theorem has been
used to study extreme distributions; however, not to the same
degree as it is used in this paper. For example, in the context of
a Bayesian estimation problem [28], Oscillation Theorem has
been used to show the necessary and sufficient conditions for a
binary distribution to be the least favorable. In [9], in a vector
version of the optimization in (2), Oscillation Theorem has
been used to show the necessary and sufficient conditions for
a uniform distribution on a single sphere to be optimal.

B. Contributions and Paper Outline

In what follows:
1) Section II presents our main results;
2) Section III provides the proof of the first part of our

main result for the case of n = 1. There, it is shown
that the number of zeros of the shifted optimal output
probability density function (pdf) is within a factor of
two from the number of mass points of the optimal
input distribution. The main element of this part relies
on Karlin’s Oscillation Theorem;

3) Section IV provides the proof of the second part of the
main result for the case of n = 1. Specifically, an explicit

2Also known as Redundancy-Capacity Theorem (see, e.g., [13], [14].)
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upper bound on the number of extreme points of an arbi-
trary output pdf of the Gaussian channel described in (1)
is derived. The proof of this result exploits the analyticity
of the Gaussian density together with Tijdeman’s Number
of Zeros Lemma [29, Lemma 1]. The proof for the vector
case (n > 1) follows along the same lines as the proof
for the scalar case (n = 1), albeit with a more involved
algebra, therefore it is relegated to the Appendix; and

4) Section V concludes the paper with some final remarks.

C. Notation

Throughout the paper, the deterministic scalar quantities
are denoted by lower-case letters, deterministic vectors are
denoted by bold lowercase letters, random variables are
denoted by uppercase letters, and random vectors are denoted
by bold uppercase (e.g., x, x, X , X). We denote the dis-
tribution of a random vector X by PX . Moreover, we say
that a point x is in the support, denoted by supp(PX ),3 of
the distribution PX if for every open set O � x we have that
PX(O) > 0. We refer to symmetric random variables as those
that are symmetric with respect to the origin.

The number of zeros of a function f : R→ R on the interval
I is denoted by4 N(I, f). Similarly, if f : C→ C is a function
on the complex domain, N(D, f) denotes the number of its
zeros within the region D.

Finally, while the relative entropy between X and Y is
denoted by D(X�Y ), the entropy of a discrete random vari-
able X is denoted by H(X) and the differential entropy of a
continuous random variable X is denoted by h(X).

II. MAIN RESULTS

Theorem 1, stated below, gives the first firm upper bound on
the support size of the capacity-achieving input of the scalar
additive Gaussian channel with an amplitude constraint.

Theorem 1. Consider the amplitude constrained scalar
additive Gaussian channel Y = X + Z where the input X ,
satifying |X | ≤ A, is assumed to be independent from the noise
Z ∼ N (0, 1). Assuming A ≥ 1, let PX� be the optimizing
input distribution for this channel. Then, PX� is a symmetric
discrete distribution with

1
2
N ([−R, R], fY � − κ1) ≤ |supp(PX�)| (5)

≤ N([−R, R], fY � − κ1) (6)

<∞, (7)

where κ1 = e−C(A)−h(Z) and5 R = A + log
1
2

(
1

2πκ2
1

)
.

Moreover, √
1 +

2A2

πe
≤ |supp(PX�)| (8)

≤ N([−R, R], fY � − κ1) (9)

≤ a2A
2 + a1A + a0, (10)

3Also known as “points of increase of PX ” or “spectrum of PX .”
4The definition N(I, f) is blind to the multiplicities of the zeros.
5Unless otherwise stated, the logarithms in this paper are of base e.

with

a2 = 9e + 6
√

e + 5, (11)

a1 = 6e + 2
√

e, (12)

a0 = e + 2 log
(
4
√

e + 2
)

+ 1. (13)

Since it consists of two parts, the proof of Theorem 1 is
divided into two sections. While Section III proves the order
tight bounds (5) and (6), Section IV finds the lower and upper
bounds presented in (8) and (10).

Remark 1. Observe that the bounds in (5) and (6) are order
tight. While the same cannot be said about the bounds in (8)
and (10), we conjecture that the order of the lower bound in (8)
is the one that is tight. A possible approach for tightening the
upper bound is discussed in Section IV along with a figure that
supports our conjecture, see Figure 2.

Theorem 2. Consider the amplitude constrained vector
additive Gaussian channel Y = X + Z where the input X ,
satisfying �X� ≤ A, is assumed to be independent from the
white Gaussian noise Z ∼ N (0, In). Let X� ∼ PX� be
the optimizing input for this channel. Then, PX� is unique,
radially symmetric, and the distribution of its amplitude,
namely P�X��, is a discrete distribution with∣∣supp

(
P�X��

)∣∣ ≤ an2A
2 + an1A + an0 , (14)

where, denoting the gamma function by Γ,

an2 = 4 + 4e +
√

8e + 4, (15)

an1 =
(
3 + 4e +

√
2e + 1

)
n +

√
32

n− 1
, (16)

an0 = log
e2
√

π Γ
(

n
2

)
Γ
(

n−1
2

)
+
(
3 + 4e +

√
2e + 1

)(n

2
+ log

√
π Γ
(

n
2

)
Γ
(

n−1
2

) ) . (17)

The proof of Theorem 2 benefits from the same technique
that is used in the proof of Theorem 1. For this reason, its
presentation is postponed to Appendix A.

Remark 2. Note that when the vector channel is of dimen-
sion 2, Theorem 2 gives an upper bound on the number of
shells of the optimal input distribution for the additive complex
Gaussian channel with an amplitude constraint.

For the sake of demonstrating the versatility of our novel
method, proven next is an upper bound on the support size of
the optimal input distribution for the scalar additive Gaussian
channel with both an amplitude and a power constraint.

Theorem 3. Consider the amplitude and power constrained
scalar additive Gaussian channel Y = X + Z where the
input X , satisfying |X | ≤ A and E[|X |2] ≤ P, is assumed to
be independent from the noise Z ∼ N (0, 1). Assuming A ≥ 1,
let PX� be the optimizing input distribution for this channel.
Then, PX� is a symmetric discrete distribution with√

1 +
2 min {A2, 3P}

πe
≤ |supp(PX�)| (18)
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≤ aP2
A2

P + aP1
AP + aP0

, (19)

where

AP =
AP

P− log(1 + P)1 {P < A2} , (20)

aP2
= (1 + 2λP)(9e + 6

√
e + 1) + 2(2− λP)(1− 2λP),

(21)

aP1
= (1 + 2λP)(6e + 2

√
e), (22)

aP0
= (1 + 2λP)e + 2 log

(
2 + 4

√
e(1 + 2λP)

1− 2λP

)
+ 1, (23)

λP =
log(1 + P)

2P
· 1{P < A2

}
. (24)

With only small alterations, proof of Theorem 3 imitates
that of Theorem 1 and is shown in Appendix C.

Remark 3. In the case when P ≥ A2, the power con-
straint becomes inactive and Theorem 3 recovers the result
of Theorem 1.

III. PROOF FOR THE FIRST PART OF THEOREM 1

This section proves the first part of our main result in
Theorem 1, namely the bounds in (5) and (6).

A. On Equations Characterizing the Support of PX�

The first ingredient of the proof is the following
characterization of the optimal input distribution shown
in [1, Corollary 1].

Lemma 1. Consider the amplitude constrained scalar
additive Gaussian channel Y = X+Z where the input X , sat-
isfying |X | ≤ A, is independent from the noise Z ∼ N (0, 1).
Then, PX� is the capacity-achieving input distribution if and
only if the following two equations are satisfied:

i(x; PX�) = C(A), x ∈ supp(PX�), (25)

i(x; PX�) ≤ C(A), x ∈ [−A, A], (26)

where C(A) denotes the capacity of the channel, and

i(x; PX�) =
∫

R

e−
(y−x)2

2√
2π

log
1

fY �(y)
dy − h(Z), (27)

with h(Z) = log
√

2πe denoting the differential entropy of
the standard Gaussian distribution, and fY �(y) denoting the
output pdf induced by the input PX� , that is, for X ∼ PX� ,

fY �(y) =
1√
2π

E

[
e−

(y−X)2

2

]
. (28)

Remark 4. An immediate consequence of Lemma 1 is the
fact that

supp(PX�) ⊆ {x : i(x; PX�)− C(A) = 0} ,

which leads to the following inequalities on the size of the
support:

|supp(PX�)| ≤ N([−A, A], ΞA(·; PX�)) (29)

≤ N(R, ΞA(·; PX�)), (30)

where the function Ξ(·; PX�) : R→ R is defined as

ΞA(x; PX�) = i(x; PX�)− C(A). (31)

Note that, as it stands, the upper bound in (29) does not yet
reveal any information on the discreteness of PX� as the right
side might just as well be ∞.

B. Connecting the Number of Oscillations of fY � to the
Number of Masses in PX�

This section gives an alternative proof that PX� is discrete
by relating the cardinality of supp(PX�) to the number of
zeros of the shifted output pdf fY � − e−C(A)−h(Z). The
following definition sets the stage.

Definition 1. Sign Changes of a Function. The number of
sign changes of a function ξ is given by

S (ξ) = sup
m∈N

{
sup

y1<···<ym

N {ξ(yi)}mi=1

}
, (32)

where N {ξ(yi)}mi=1 is the number of changes of sign of the
sequence {ξ(yi)}mi=1.

Proven in [27], the following theorem is the main tool in
connecting the number of zeros of a shifted output pdf fY �

to the number of mass points of a capacity-achieving input
distribution PX� .

Theorem 4. Oscillation Theorem [27]. Given open intervals
I1 and I2, let p : I1 × I2 → R be a strictly totally positive
kernel.6 For an arbitrary y, suppose p(·, y) : I1 → R is an
n-times differentiable function. Assume that μ is a measure
on I2, and let ξ : I2 → R be a function with S (ξ) = n. For
x ∈ I1, define

Ξ(x) =
∫

ξ(y)p(x, y)dμ(y). (33)

If Ξ: I1 → R is an n-times differentiable function, then either
N(I1, Ξ) ≤ n, or Ξ ≡ 0.

Note that Theorem 4 is applicable in our setting as the
Gaussian distribution is a strictly totally positive kernel [27].
The following result shows the connection between the support
size of PX� and the number of zeros of the shifted optimal
output pdf fY � and recovers the bounds in (5) and (6).

Theorem 5. The support set of the capacity-achieving input
distribution PX� satisfies

1
2
N ([−R, R], fY � − κ1) ≤ |supp(PX�)| (34)

≤ N([−R, R], fY � − κ1) (35)

<∞, (36)

where κ1 = e−C(A)−h(Z) and7 R > A + log
1
2

(
1

2πκ2
1

)
.

6A function f : I1 × I2 → R is said to be strictly totally positive kernel
of order n if det

�
[f(xi, yj)]

m
i,j=1

�
> 0 for all 1 ≤ m ≤ n, and for all

x1 < · · · < xm ∈ I1, and y1 < · · · < ym ∈ I2. If f is strictly totally
positive kernel of order n for all n ∈ N, then f is called a strictly totally
positive kernel.

7See Remark 8 and observe that κ1 ∈ �
0, 1√

2π

�
.
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Proof: To see (35) and (36), observe that ΞA(x; PX�),
defined in (31), can be written as follows:

ΞA(x; PX�) =
∫

R

ξA(y)√
2π

e−
(y−x)2

2 dy, (37)

where

ξA(y) = log
1

fY �(y)
− C(A)− h(Z). (38)

First, observe that it is impossible for ΞA(x; PX�) = 0 for all
x ∈ R since otherwise ξA(y) would be zero for all y ∈ R.
Furthermore, using the fact that the Gaussian distribution is a
strictly totally positive kernel,

|supp(PX�)| ≤ N(R, ΞA(·; PX�)) (39)

≤ S (ξA) (40)

≤ N(R, ξA) (41)

= N(R, fY � − κ1) (42)

= N([−R, R], fY � − κ1) (43)

<∞, (44)

where (39) is a consequence of Lemma 1 (see Remark 4); (40)
follows from Theorem 4; (41) follows because the number of
zeros is an upper bound on the number of sign changes; (42)
follows by observing that ξA(y) = 0 if and only if fY �(y) =
κ1; and finally (43) and (44) follow from Lemma 2 in
Section IV.

To see (34), using the fact that supp(PX�) is a finite set,
suppose |supp(PX�)| = n, let x1 < . . . < xn the elements of
supp(PX�), and write

fY �(y) =
1√
2π

n∑
i=1

PX�(xi) exp
(
−1

2
(y − xi)2

)
, (45)

where, by the definition of supp(PX�), the probabilities sat-
isfy PX�(xi) > 0 for each i = 1, . . . , n. Observing that the
number of zeros of fY �(y)−κ1 is the same as the number of
zeros of the right-shifted function fY �(y− |x1| − 1)− κ1, let

f(y) = fY �(y − |x1| − 1)− κ1 (46)

=
n∑

i=1

ai exp
(
−1

2
(y − ui)2

)
− a0, (47)

where for i = 0, 1, . . . , n both ai > 0 and ui > 0 as

ui = xi + |x1|+ 1 for i = 1, . . . n, (48)

ai =

{
κ1 i = 0

1√
2π

PX�(xi) i = 1, . . . , n.
(49)

Given arbitrary 0 < �1 < · · · < �n, consider the perturbed
function

f̃(y, �1, . . . , �n) =
n∑

i=1

ai exp
(
−1

2
(1 + �i)(y − ui)2

)
− a0.

(50)

Note that

e−
1
2 y2

f̃(y, �1, . . . , �n) =
n∑

i=0

bi exp
(
− (2 + �i)

2
(y − vi)2

)
,

(51)

where

�0 = −1, (52)

bi =

{−a0 i = 0,

ai exp
(
− 1+�i

2(2+�i)
u2

i

)
i = 1, . . . , n,

(53)

vi =

{
0 i = 0,
1+�i

2+�i
ui i = 1, . . . , n,

(54)

is a linear combination of n + 1 distinct Gaussians with
distinct variances and therefore has at most 2n zeros [30,
Proposition 7]. Since this holds for any arbitrary choice of
�i’s and since f̃(y, �1, . . . , �n) → f(y) as (�1, . . . , �n) →
(0, . . . , 0), it follows that

2|supp(PX�)| ≥ N(R, f(y)) (55)

= N(R, fY �(y)− κ1) (56)

= N([R, R], fY �(y)− κ1). (57)

Remark 5. With a different approach than the one taken
in [1], observe that Theorem 5 recovers the result of Smith [1]
showing that the support set of PX� is finite; hence, PX�

is discrete with finitely many mass points. An advantage of
the proof presented here is that the Fourier analysis required
in the proof provided by [1] is now completely avoided.
Another advantage is that, since the presented proof is of the
constructive nature, one can indeed attempt at counting the
zeros of fY � − κ1, which is the topic of the next section.

Remark 6. Theorem 5 proves that the number of zeros of
the shifted optimal output pdf fY � − κ1 gives an order tight
upper bound on the support size of the optimal input pmf
|supp(PX�)|. This result can be considered as the main result
of this paper.

IV. PROOF OF THE EXPLICIT BOUNDS IN (8) AND (10)

Section III demonstrates that the number of mass points
of PX� is within a factor of two of the number of zeros of
fY � − κ1 where κ1 = e−C(A)−h(Z). In this section, we first
provide an upper bound on the number of zeros of fY �−κ1 and
establish (10). Additionally, through the use of entropy-power
inequality, we also provide a lower bound on the support size
of PX� , yielding (8).

Remark 7. A critical observation here is that, due to the
lack of knowledge of the optimal input distribution PX� or
the capacity expression C(A), we do not know the optimal
output distribution fY � nor the constant κ1 = e−C(A)−h(Z).
Therefore, we must instead work with generic fY and κ1

throughout this section.

A. Bounds on the Number of Extreme Points
of a Gaussian Convolution

The aim of this subsection of the paper is to study the
following problem: given an unknown constant 0 ≤ κ1 ≤
maxb fY (b), find a worst-case upper bound on the number of
zeros of the shifted output pdf

fY − κ1,
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where fY denotes the pdf of the random variable Y = X +Z ,
with X being an arbitrary zero mean8 random variable at
the input of the channel satisfying the amplitude constraint:
|X | ≤ A; Z being the standard Gaussian random variable
independent from X ; and Y being the random variable induced
by the input X at the output of this additive Gaussian channel.

As a starting point, before chasing after the number of zeros
of fY − κ1, the following lemma shows that the zeros of
fY − κ1 are always contained on an interval that is only
“slightly” larger than [−A, A].

Lemma 2. On the Location and Finiteness of Zeros. For a
fixed κ1 ∈

(
0, 1√

2π

]
there exists some Bκ1 = Bκ1(A) < ∞

such that

N(R, fY − κ1) = N ([−Bκ1 , Bκ1 ], fY − κ1) (58)

<∞. (59)

In other words, there are finitely many zeros of fY (y) − κ1

all of which are contained within the interval [−Bκ1 , Bκ1 ].
Moreover, Bκ1 can be upper bounded as follows:

Bκ1 ≤ A + log
1
2

(
1

2πκ2
1

)
. (60)

Proof: Using the monotonicity of e−u, for all |y| > A,

fY (y) =
1√
2π

E

[
e−

(y−X)2

2

]
(61)

≤ 1√
2π

e−
(y−A)2

2 . (62)

Since the right side of (62) is a decreasing function for all
|y| > A, it follows that

fY (y)− κ1 < 0 (63)

for all

|y| > A + log
1
2

(
1

2πκ2
1

)
. (64)

This means that there exists Bκ1 satisfying (60) such that all
zeros of fY − κ1 are located within the interval [−Bκ1 , Bκ1 ].

To see that there are finitely many zeros, recall the fact that
a convolution with a Gaussian distribution preserves analyt-
icity [31, Proposition 8.10]; hence fY is an analytic function
on R. Standard methods (e.g., invoking Bolzano-Weierstrass
Theorem and the Identity Theorem) yield the fact that analytic
functions have finitely many zeros on a compact interval,
which is the desired result.

Since the exact value of the constant κ1 is unknown,
in counting the number of zeros of fY − κ1, a worst-case
approach needs to be taken. In an attempt at doing so,
the following elementary result from calculus provides a bound
on the number of zeros of a function in terms of the number
of its extreme points. As simple as it is, Lemma 3 is one of
the key steps in this paper. It states that, to find a bound on
the number of zeros of fY − κ1, it suffices to find a bound

8Since the channel is symmetric, the capacity-achieving input is symmetric.
Therefore, there is no loss of optimality in restricting attention to zero mean
inputs.

on that of f �
Y , eliminating the dependence on the nuisance

constant κ1.

Lemma 3. Suppose that f is continuous on [−R, R] and
differentiable on (−R, R). If N([−R, R], f) <∞, then

N([−R, R], f) ≤ N([−R, R], f �) + 1, (65)

where f � denotes the derivative of f .

Proof: Let x1 < . . . < xn0 denote the zeros of f .
By Rolle’s Theorem, each of the intervals (xi, xi+1) for
i = 1, . . . , n0 − 1 contains at least one extreme point.

Thanks to Lemma 3, to upper bound the number of zeros
of fY − κ1, all that is needed is to find an upper bound on
the number of zeros of the derivative of fY , namely

f �
Y (y) =

1√
2π

E

[
(X − y) exp

(
− (y −X)2

2

)]
. (66)

At this point, there are several trajectories that one could
follow. For example, using the fact that f �

Y is an analytic
function (cf. [2, Appendix B]) and letting f̆ �

Y denote its
complex analytic extension,

N([−R, R], f �
Y ) ≤ inf

�>0
N(DR+�, f̆

�
Y ) (67)

= inf
�>0

1
2πi

∮
∂DR+ε

f̆ ��
Y (z)

f̆ �
Y (z)

dz (68)

≤ inf
�>0

(R + �) max
|z|=R+�

∣∣∣∣∣ f̆ ��
Y (z)

f̆ �
Y (z)

∣∣∣∣∣ , (69)

where in (67) Dt ⊂ C is an open disc9 of radius t centered at
the origin and the inequality follows because f �

Y (y) = 0 =⇒
f̆ �

Y (y) = 0; in (68) ∂Dt denotes the boundary of the disc
Dt and equality follows from Cauchy’s argument principle
(e.g., [32, Corollary 10.9]); and finally (69) follows from the
ML inequality for the contour integral [32, Chapter 4.10].

Unfortunately, due to the implicit definitions of the functions
f ��

Y and f �
Y , the maximization of the ratio f̆ ��

Y /f̆ �
Y in the right

side of (69) does not seem to have a tractable explicit solution.
Luckily, there are alternative, more tractable methods that yield
an explicit upper bound on the number of zeros of f̆ �

Y . The
method used in this paper is based on Tijdeman’s Number of
Zeros Lemma, which is presented next.

Lemma 4. Tijdeman’s Number of Zeros Lemma [29]. Let
R, s, t be positive numbers such that s > 1. For the complex
valued function f �= 0 which is analytic on |z| < (st+s+t)R,
its number of zeros N(DR, f) within the disk DR = {z : |z| ≤
R} satisfies

N(DR, f)

≤ 1
log s

(
log max

|z|≤(st+s+t)R
|f(z)| − log max

|z|≤tR
|f(z)|

)
.

(70)

9In fact, DR can be any open connected set that contains the interval
[−R, R]. For example, a rectangle of width 2(R + �) and arbitrary hight
2� is a typical choice.
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The following two lemmas find upper and lower bounds on
absolute value of the complex analytic extension10 of f �

Y over
a disc of finite radius centered at the origin.

Lemma 5. Suppose f �
Y : R → R is as in (66) and let

f̆ �
Y : C→ C denote its complex extension. Then,

max
|z|≤B

∣∣∣f̆ �
Y (z)

∣∣∣ ≤ 1√
2π

(A + B) exp
(

B2

2

)
. (71)

Proof: Using the standard rectangular representation of a
complex number, let z = ξ + iη ∈ C,

max
|z|≤B

∣∣∣f̆ �
Y (z)

∣∣∣
= max

|z|≤B

{
1√
2π

∣∣∣∣E [(X − z) exp
(
− (z −X)2

2

)]∣∣∣∣} (72)

≤ max
|z|≤B

{
1√
2π

E

[
|X − z|

∣∣∣∣exp
(
− (z −X)2

2

)∣∣∣∣]} (73)

= max
|z|≤B

{
1√
2π

E

[
|X − z| exp

(
η2 − (ξ −X)2

2

)]}
(74)

≤ max
|z|≤B

{
1√
2π

E

[
(|X |+ |z|) exp

(
η2

2

)]}
(75)

≤ 1√
2π

(A + B) exp
(

B2

2

)
, (76)

where (73) follows from Jensen’s inequality; (75) follows from
triangle inequality; and finally (76) is because |X | ≤ A, and
|z| ≤ B implies |η| ≤ B.

Lemma 6. Suppose f �
Y : R → R is as in (66) and

let f̆ �
Y : C → C denote its complex extension. For any

|X | ≤ A ≤ B,

max
|z|≤B

∣∣∣f̆ �
Y (z)

∣∣∣ ≥ A√
2π

exp
(−2A2

)
. (77)

Proof: Thanks to the suboptimal choice of z = A ≤ B,

max
|z|≤B

∣∣∣f̆ �
Y (z)

∣∣∣ ≥ 1√
2π

∣∣∣∣E [(X − A) exp
(
− (A−X)2

2

)]∣∣∣∣
(78)

≥ 1√
2π

E
[
(A−X) exp

(−2A2
)]

(79)

=
A√
2π

exp
(−2A2

)
, (80)

where (79) follows because |X | ≤ A; and (80) is a conse-
quence of E[X ] = 0.
By assembling the results of Lemmas 4, 5 and 6, Theorem 6
below provides an upper bound on the number of oscillations
of a Gaussian convolution.

Theorem 6. Bound on the Number of Oscillations of fY . Let
|X | ≤ A < R for some fixed R. Then, the number of extreme
points of fY , namely the number of zeros of f �

Y , within the
interval [−R, R] satisfies

N([−R, R], f �
Y )

10The fact that the complex extension of fY , and hence that of f ′
Y ,

is analytic on C is proven in [2, Appendix B].

≤ min
s>1

⎧⎨⎩
(

((A+R)s+A)2

2 + 2A2 + log
(
2 + (A+R)s

A

))
log s

⎫⎬⎭ .

(81)

Proof: Let DR ⊂ C be a disk of radius R centered at
z0 = 0, and note that

N([−R, R], f �
Y )

≤ N(DR, f̆ �
Y ) (82)

≤ min
s>1, t≥ A

R

⎧⎪⎨⎪⎩
log max|z|≤(st+s+t)R |f̆ ′

Y (z)|
max|z|≤tR |f̆ ′

Y (z)|
log s

⎫⎪⎬⎪⎭ (83)

≤ min
s>1, t≥ A

R

⎧⎨⎩
(st+s+t)2R2

2 + 2A2 + log
(
1 + (st+s+t)R

A

)
log s

⎫⎬⎭
(84)

= min
s>1

⎧⎨⎩
((A+R)s+A)2

2 + 2A2 + log
(
2 + (A+R)s

A

)
log s

⎫⎬⎭ , (85)

where (82) follows because zeros of f �
Y are also

zeros of its complex extension f̆ �
Y ; (83) is a

consequence of Lemma 4; (84) follows from
Lemmas 5 and 6; and finally, in (85), we use the
fact that t = A

R is the minimizer in the right hand
side of (84).

Finally, combining the results of Lemmas 2 and 3, and
Theorem 6, the following corollary presents the desired result
of this section.

Corollary 1. Given an arbitrary constant κ1 ∈
(
0, 1

2π

)
,

suppose R > A + log
1
2

(
1

2πκ2
1

)
. Then, the number of zeros of

fY − κ1 satisfies

N(R, fY − κ1)
= N([−R, R], fY − κ1) (86)

≤ 1 + min
s>1

⎧⎨⎩
(

((A+R)s+A)2

2 + 2A2 + log
(
2 + (A+R)s

A

))
log s

⎫⎬⎭ .

(87)

Remark 8. Observe that in presenting the main result of this
section, a “worst-case scenario” approach is taken. Indeed,
the result in (87) is independent of the choice of κ1. If κ1 ≈ 0,
then N(R, fY − κ1) ≤ 2 and the bound above may be quite
loose. In applying Corollary 1 in the next section, we let

κ1 =
e−C(A)

√
2πe

(88)

where C(A) denotes the capacity of the amplitude constrained
additive Gaussian channel. In that case, it can be shown that(

2πe
(
1 + A2

))− 1
2 ≤ κ1 ≤

(
2πe + 4A2

)− 1
2 , (89)

and the result presented above is more relevant.
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Fig. 2. Plot of the logarithm (in base A) of the number of zeros of f ′
Y . The

solid black line uses the upper bound on the number of zeros in Corollary 1
with the bound on κ1 in (89) and the dashed-dotted line is the asymptote
of this upper bound. The dashed line is the conjectured asymptote in (90).
The dotted line is the number of zeros found through an exhaustive numerical
search.

Remark 9. We believe that the bound can be further tight-
ened. In fact, we conjecture that11

max
X∈[−A,A]

N(R, f �
Y ∗) = Θ(A). (90)

Fig. 2 demonstrates a result of an extensive computer search
that supports the claim in (90) and compares it to the current
best upper bound in Corollary 1.

B. Proof of the Upper Bound in (10)

We begin by simplifying the previously provided
upper bound on Bκ1 . Note that an amplitude constraint
|X | ≤ A induces a second moment constraint E[X2] ≤ A2,
and therefore

C(A) = max
|X|≤A

E[X2]≤A2

I(X ; Y ) (91)

≤ 1
2

log
(
1 + A2

)
. (92)

Since the differential entropy of a standard normal distribution
is h(Z) = 1

2 log(2πe), (92) implies that

1
κ1

= exp(C(A) + h(Z)) (93)

≤
√

2πe (1 + A2). (94)

Capitalizing on the bound in (60),

Bκ1 ≤ A +
√

1 + log(1 + A2) (95)

11Let f(x) and g(x) be two nonnegative valued functions. Then, f is
Θ(g(x)) if and only if c1 g(x) ≤ f(x) ≤ c2 g(x) for some c1, c2 > 0 and
all x > x0.

≤ 2A + 1, (96)

where the last inequality follows because log(1 + x) ≤ x and√
a + b ≤ √a +

√
b.

As the finalizing step, letting R← (2A + 1) in Theorem 5
above, an application of Corollary 1 in Section IV yields

N([−Bκ1 , Bκ1 ], fY � − κ1)− 1
= N([−2A− 1, 2A + 1], fY � − κ1)− 1 (97)

≤ min
s>1

⎧⎨⎩
(

((3A+1)s+A)2

2 + 2A2 + log
(
2 + (3A+1)s

A

))
log s

⎫⎬⎭
(98)

≤ min
s>1

{
1

log s

(
((3s + 1)A + s)2

2
+ 2A2 + log (2 + 4s)

)}
(99)

≤ (e +2log
(
4
√

e + 2
)

+(4e + 2
√

e)A +(5 + 4
√

e + 4e)A2
)

(100)

= a2A
2 + a1A + a0 − 1, (101)

where (99) follows because 3A + 1 ≤ 4A for12 A ≥ 1;
(100) follows by choosing a suboptimal value s =

√
e in the

minimization; and (101) follows by letting a2 = 9e+6
√

e+5,
a1 = 6e + 2

√
e and a0 = e + 2 log (4

√
e + 2) + 1.

�
Remark 10. A more careful optimization of (100) over the

parameter s would lead to better absolute constants a0, a1

and a2. However, note that the order A2 in (100) would not
change.

C. Proof of the Lower Bound in (8)

Using the fact that the optimizing input distribution is
discrete with finitely many points and denoting by H(PX�)
the entropy of the optimizing input distribution PX� , it follows
that

1
2

log
(

1 +
2A2

πe

)
≤ max

X : |X|≤A
I(X ; Y ). (102)

≤ H(PX�) (103)

≤ log (|supp(PX�)|) , (104)

where (102) is a lower bound due to Shannon
[7, Section 25]. �

V. CONCLUDING REMARKS

This paper has introduced several new tools for studying
the capacity of the amplitude constrained additive Gaussian
channels. Not only are the introduced tools strong enough
to show that the optimal input distribution is discrete with
finite support, but they are also able to provide concrete
upper bounds on the number of elements in that support. The
main result of this paper is that the number of zeros of the
downward shifted optimal output density provides an implicit

12The unessential assumption that A ≥ 1 is just for simplifying the
presentation. In the case when A ≤ 1, the optimality of PX� that is
equiprobable on X = {−A, A} is known [8].
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upper bound on the support size of the capacity-achieving
input distribution. While this upper bound has been shown
to be tight within a factor of one half, it can also be used
as a means to get an explicit upper bound on the support
size.

As a note on its flexibility, the novel method that is
described in this paper has been demonstrated to be eas-
ily generalizable to other settings such as a scalar additive
Gaussian channel with both peak and average power con-
straints. In addition to the scalar case, the method is shown
to work for a vector Gaussian channel with an amplitude
constraint A. In particular, for an optimal input X�, it has
been shown that its magnitude �X�� is a discrete random
variable with at most O(A2) mass points for any fixed
dimension n.

An interesting direction for further work in this area
would be to sharpen the explicit bounds on the num-
ber of mass points. Indeed, it has been conjectured with
sufficient supporting arguments that the correct order on
the number of points should be O(A) rather than O(A2).
Although, finding a better explicit upper bound will ulti-
mately still be related to finding the maximum number of
oscillations of a Gaussian convolution within a bounded
region.

As has been argued by Smith in [2, p. 40], showing dis-
creteness of the input distribution without providing bounds on
the number of mass points does not reduce the maximization
of the mutual information from an infinite dimensional opti-
mization (i.e., over the space of all distributions) to the finite
dimensional optimization (i.e., over Rn for some fixed n). This
issue has also been pointed out in [10, p. 2346]. The results
of this work, in fact, achieves this objective and reduce the
infinite dimensional optimization over probability spaces to
that in13 R2n where n = O(A2), and where v ∈ R2n consists
v = [p1, . . . , pn, x1, . . . , xn] where pi is the probability mass
of the location xi. This dimensionality reduction potentially
enables applications of efficient optimization algorithms with
convergence guarantees such as the gradient descent and is the
topic of our current investigation.

It is highly likely that the presented approach generalizes
to other (possibly non-additive) channels where channel tran-
sition probability is given by a strictly totally positive kernel
(e.g., Poisson channel); the interested reader is referred to [34]
for a preliminary work on utilizing the techniques of this
paper to non-additive settings. The optimization technique
used in this paper can also be adapted to other functionals
over probability distributions such as the Bayesian minimum
mean squared error; the interested reader is referred to [35]
for this extension.

Finally, it would interesting to see if the results of this paper
can be extended to multiuser channels such as a multiple
access channel with an amplitude constraint on the inputs
where it is known that the discrete inputs are sum-capacity
optimal [36], yet there are no bounds on the number of mass
points of the optimal inputs.

13Considering the symmetries and properties of a distribution, the dimension
of the search space can be reduced to Rn.

APPENDIX A
PROOF OF THEOREM 2

The starting point is the following sufficient and necessary
conditions that can be found in14 [3], [5].

Lemma 7. Consider the amplitude constrained vector
additive Gaussian channel Y = X + Z where the input X ,
satisfying �X� ≤ A, is independent from the white Gaussian
noise Z ∼ N (0, In). If X� is an optimal input, the distribu-
tion of its magnitude, namely PR� = P�X��, satisfies

in(r; PR� ) = Cn(A) + νn, r ∈ supp(PR�), (105)

in(r; PR� ) ≤ Cn(A) + νn, r ∈ [0, A], (106)

where Cn(A) denotes the capacity of the channel, and

in(r; PR� ) =
∫ ∞

0

fχ2
n
(x|r) log

1
gn(x; PR�)

dx, (107)

fχ2
n
(x|r) =

1
2

exp
(
−x + r2

2

)(√
x

r

)n
2 −1

In
2 −1

(
r
√

x
)
,

(108)

gn(x; PR� ) =
∫ A

0

2fχ2
n
(x|r)

x
n
2 −1

dPR�(r), (109)

νn =
n

2
+ log

(
2

n
2 −1 Γ

(n

2

))
, (110)

with In(x) denoting the modified Bessel function of the first
kind of order n.

In a similar spirit to the proof of the scalar case, define

κn = exp(−Cn(A)− νn), (111)

Φn(s; PR�) = in(s; PR�) + log κn, (112)

φn(x; PR�) = log
κn

gn(x; PR�)
, (113)

and observe that

Φn(r; PR�) =
∫ ∞

0

φn(x; PR�)fχ2
n
(x|r)dx, (114)

where fχ2
n
(x|r) is as defined in (108). Note that since fχ2

n
(x|r)

is the density of a non-central chi-squared distribution (with
non-centrality parameter r2, and degrees of freedom n), it is
a strictly totally positive kernel [37]. Hence, following the
footprints of (39)–(43),

|supp(PR�)| ≤ N([0, A], Φn(·; PR�)) (115)

≤ 1 + N ((0,∞), Φn(·; PR�)) (116)

≤ 1 + N ((0,∞), φn(·; PR�)) (117)

= 1 + N((0,∞), gn(·; PR�)− κn) (118)

≤ 1 + N ([0, Bκn ], gn(·; PR�)− κn) (119)

≤ an2A
2 + an1A + an0 , (120)

where (115) is a consequence of Lemma 7; the extra
+1 in (116) is just to account for the possibility that
Φn(0; PR�) = 0; (117) follows from Karlin’s Oscillation
Theorem, see Theorem 4; (118) follows since φn(·; PR�)

14The most general result is shown in [5]. However, a pleasing formulation
such as the one in Lemma 7 is hidden behind the heavy notation of [5].
We apply change of variables to provide much simpler presentation.
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has the same zeros as gn(·; PR�) − κn; (119) follows from
Lemma 9 in Appendix B; and (120) is shown in Lemma 14
that can be found in Appendix B.

APPENDIX B
ADDITIONAL LEMMAS FOR THE UPPER

BOUND PROOF OF THEOREM 2

This section contains several supplementary lemmas that are
used in the upper bound proof of Theorem 2.

Lemma 8. For n ∈ N and z ∈ C

|In(z)| ≤
√

π|z|n
2n Γ(n + 1

2 )
e|Re(z)|. (121)

Proof: Thanks to the integral representation of the modi-
fied Bessel function of the first kind, see [38, 9.6.18],

In(z) =
(1
2z)n

√
π Γ(n + 1

2 )

∫ π

0

ez cos(θ) sin2n(θ)dθ, (122)

it follows from the modulus inequality that

|In(z)| ≤ (1
2 |z|)n

√
π Γ(n + 1

2 )

∫ π

0

|ez cos(θ)|| sin2n(θ)|dθ (123)

≤
√

π|z|n
2n Γ(n + 1

2 )
e|Re(z)|, (124)

where (124) follows because |ez cos(θ)|| sin2n(θ)| ≤
e|Re(z)|.
Similar to its counterpart in Lemma 2, the next lemma
provides a bound on the interval for zeros of the function
gn(·; PR�)− κn.

Lemma 9. On the Location and Finiteness of Zeros of
gn(·; PR)−κn. Given an arbitrary distribution PR, for a fixed
κn ∈ (0, 1] there exists some Bκn <∞ such that

N([0,∞), gn(·; PR)− κn) = N ([0, Bκn ] , gn(·; PR)− κn)
(125)

<∞. (126)

In particular, there are finitely many zeros of gn(·; PR)−κn all
of which are contained within the interval [0, Bκn ]. Moreover,
Bκn can be upper bounded as follows:

Bκn ≤
(

A +

√
A2 + 2 log

(
γn

κn

))2

, (127)

where

γn =
√

π

2
n
2 −1 Γ(n−1

2 )
. (128)

Proof: From the definition of the pdf gn(·; PR) in (109),

gn(x; PR)

=
∫ A

0

exp
(
−x + r2

2

)
In

2 −1

(
r
√

x
)

(r
√

x)
n
2 −1

dPR(r) (129)

≤
∫ A

0

√
π

2
n
2 −1 Γ(n−1

2 )
exp
(
−1

2
(√

x− r
)2) dPR(r) (130)

≤
√

π

2
n
2 −1 Γ(n−1

2 )
exp
(
−x

2
+ A
√

x
)

, (131)

where (130) follows from Lemma 8; and (131) utilizes
r ∈ [0, A]. Since the right side of (131) is decreasing for all
x > A2, it follows that

gn(x; PR)− κn < 0 (132)

for all

x >

(
A +

√
A2 + 2 log

(
γn

κn

))2

. (133)

This means that there exists a Bκn satisfying (127) such that
all zeros of gn(·; PR) − κn are contained within the interval
[0, Bκn ].

To see that there are finitely many zeros of gn(·; PR)−κn,
using the fact that gn(·; PR) is analytic15 suffices, because
non-zero analytic functions can only have finitely many zeros
on a compact interval.
Following the footsteps of the upper bound proof in the scalar
case, the evaluation of the derivative of the function gn(·; PR)
is established next.

Lemma 10. For x ∈ (0,∞)

d
dx

gn(x; PR)

= E

⎡⎣exp
(
−x+R2

2

)
2(R
√

x)
n
2 −1

(
R√
x

In
2
(R
√

x)− In
2 −1(R

√
x)
)⎤⎦ ,

(134)

where R ∼ PR.

Proof: First of all, given r > 0, observe that for u ∈
(0,∞)

tn(u|r) = 2
( r

u

)n−2

exp
(

r2

2

)
fχ2

n

(
u2

r2

∣∣∣∣r) (135)

= e−
u2

2r2
In

2 −1(u)
u

n
2 −1

(136)

is a differentiable function and

d
du

tn(u|r) =
e−

u2

2r2

u
n
2 −1

(
In

2
(u)− u

r2
In

2 −1(u)
)

, (137)

where we have employed the fact that [38, Eqn. (9.6.26)]

d
du

In
2 −1(u) = In

2
(u) +

n− 2
2u

In
2 −1(u). (138)

The desired result then follows from the chain rule as

gn(x; PR) =
∫ A

0

e−r2/2tn(r
√

x|r)dPR(r). (139)

As was the case in the scalar Gaussian channel, we shall
analyze the complex extension of the derivative of gn(x; PR).
For this reason, in what follows, we denote the complex
extension of the derivative of gn(x; PR) by ğ�n(x; PR).

15For a proof, refer to [3, Appendix I] and [5, Propositions 1 and 2] for the
respective cases of n = 2, and n ≥ 2.
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Lemma 11. Given r > 0 and D > 0

In
2 −1(Dr)− r

D
In

2
(Dr)

≥ (Dr)
n
2 −1 21−n

2

Γ(n
2 )

(
1− 2r2

n− 1 +
√

(n− 1)2 + (2Dr)2

)
(140)

> 0. (141)

Proof: Using the fact that In(x) > 0 for x > 0

In
2 −1(Dr)

(
1− r

D

In
2
(Dr)

In
2 −1(Dr)

)
≥ In

2 −1 (Dr)

(
1− 2r2

n− 1 +
√

(n− 1)2 + (2Dr)2

)
(142)

≥ (Dr)
n
2 −1 21−n

2

Γ(n
2 )

(
1− 2r2

n− 1 +
√

(n− 1)2 + (2Dr)2

)
,

(143)

where (142) follows from (see [39, Theorem 1])

In
2
(x)

In
2 −1(x)

≤ 2x

n− 1 +
√

(n− 1)2 + (2x)2
; (144)

and (143) follows from the fact that x−nIn(x) is monotonically
increasing for x > 0 and that16

lim
x→0

x−nIn(x) = 2−n Γ−1 (n + 1) . (145)

To be plugged into the Tijdeman’s Number of Zeros Lemma,
Lemmas 12 and 13 find useful suboptimal lower and upper
bounds for the maximum value of ğ�n (·; PR) on a disc centered
at z0 ∈ C where

z0 =
Bκn

2
+ i 0. (146)

Lemma 12. Suppose D > 0. For Bκn ≤ 2D2

max
|z|≤D2

∣∣∣∣ğ�n(z +
Bκn

2
; PR

)∣∣∣∣ 2 n
2 Γ
(n

2

)
exp
(

D2 + A2

2

)
≥
(

1− 2A2

n− 1 +
√

(n− 1)2 + (2DA)2

)
. (147)

Proof: Observe that for R ∼ PR

max
|z|≤D2

∣∣∣∣ğ�n(z +
Bκn

2
; PR

)∣∣∣∣ ≥ ∣∣ğ�n (D2; PR

)∣∣ (148)

=

∣∣∣∣∣∣E
⎡⎣exp

(
−D2+R2

2

)
2(DR)

n
2 −1

(
R

D
In

2
(DR)− In

2 −1(DR)
)⎤⎦∣∣∣∣∣∣

(149)

≥ E

[
exp
(
−D2 + R2

2

)
2−

n
2

Γ(n
2 )

·
(

1− 2R2

n− 1 +
√

(n− 1)2 + (2DR)2

)]
(150)

≥ 2−
n
2

Γ(n
2 )

exp
(
−D2 + A2

2

)
16See [38, Eqn. (9.6.28)], and [38, Eqn. (9.6.7)], respectively.

·
(

1− 2A2

n− 1 +
√

(n− 1)2 + (2DA)2

)
, (151)

where (148) follows by choosing a suboptimal value of
z = D2 − Bκn

2 ; (150) follows from Lemma 11; and (151)
follows because R ≤ A.

Lemma 13. Suppose M > 0. For Bκn ≤ 2M2

max
|z|≤M2

∣∣∣∣ğ�n(z +
Bκn

2
; PR

)∣∣∣∣
≤ γn

2

(
A2

n− 1
+ 1
)

exp
(

1
2

(
A +
√

2M
)2
)

, (152)

where γn is as defined in (128).

Proof: Capitalizing on the result of Lemma 10, the com-
plex extension of the derivative of gn (x; PR) satisfies

|ğ�n (z; PR)|

=

∣∣∣∣∣∣E
⎡⎣exp

(
− z+R2

2

)
2(R
√

z)
n
2 −1

(
R√
z
In

2
(R
√

z)− In
2 −1(R

√
z)
)⎤⎦
∣∣∣∣∣∣

(153)

≤ E

⎡⎣
∣∣∣∣∣∣
exp
(
− z+R2

2

)
2(R
√

z)
n
2 −1

∣∣∣∣∣∣
(∣∣∣∣ R√

z
In

2
(R
√

z)
∣∣∣∣+∣∣In

2 −1(R
√

z)
∣∣)⎤⎦

(154)

≤ E

[ √
π

2
n
2 Γ(n−1

2 )

(
R2

n− 1
+ 1
)

e
Re

�
− (R±√

z)2

2

�]
, (155)

where (154) follows from subsequent applications of mod-
ulus and triangular inequalities; (155) is a consequence of
Lemma 8. To finalize the proof, using the fact that R ∈ [0, A],
we simply observe that

max
|z|≤M2

∣∣∣∣ğ�n(z +
Bκn

2
; PR

)∣∣∣∣
≤ max

|z|≤M2
E

⎡⎣√π
(

R2

n−1 + 1
)

2
n
2 Γ(n−1

2 )
e
Re

�
− 1

2

�
R±

�
z+

Bκn
2

�2�⎤⎦
(156)

≤ max
|z|≤M2

E

⎡⎣√π
(

R2

n−1 + 1
)

2
n
2 Γ(n−1

2 )
e

1
2

�
|R|+

�
|z|+ Bκn

2

� 1
2
�2
⎤⎦
(157)

≤
√

π

2
n
2 Γ(n−1

2 )

(
A2

n− 1
+ 1
)

exp
(

1
2

(
A +
√

2M
)2
)

,

(158)

where (157) follows after realizing Re(z) ≤ |z|, and applying
the triangle inequality twice.
Assembling the results of Lemmas 9, 12, and 13, togerher
with Tijdeman’s Number of Zeros Lemma, i.e., Lemma 4,
the following result establishes a suboptimal upper bound on
the number of zeros of the function gn(·; PR)− κn.
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Lemma 14. Suppose that supp(PR) ∈ [0, A] and Bκn is as
defined in Lemma 9. The number of zeros of gn(·; PR) − κn

within [0, Bκn ] satisfies

N([0, Bκn ], gn(·; PR)− κn) ≤ an2A
2 + an1A + an0 − 1,

(159)

where an2 , an1 , and an0 are as defined in (15), (16), and (17),
respectively

Proof: In light of Lemma 9, let

Bκn =

(
A +

√
A2 + 2 log

(
γn

κn

))2

, (160)

and note that

N([0, Bκn ], gn(·; PR)− κn)
≤ 1 + N ([0, Bκn ], g�n(·; PR)) (161)

= 1 + N
([
−Bκn

2
,
Bκn

2

]
, g�n

(
·+ Bκn

2
; PR

))
(162)

≤ 1 + N
(
D Bκn

2
, ğ�n

(
·+ Bκn

2
; PR

))
(163)

≤ 1 + min
s>1, t>0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log

max|2z|≤(st+s+t)Bκn

���ğ′
n

�
z+

Bκn
2 ;PR

����
max|2z|≤tBκn

���ğ′
n

�
z+

Bκn
2 ;PR

����
log s

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(164)

≤ 1 + max
|2z|≤(2e+1)Bκn

log
∣∣∣∣ğ�n(z +

Bκn

2
; PR

)∣∣∣∣
− max

|2z|≤Bκn

log
∣∣∣∣ğ�n(z +

Bκn

2
; PR

)∣∣∣∣ (165)

≤ log
e
√

π Γ
(

n
2

)
Γ
(

n−1
2

) +
(

3
4

+ e
)

Bκn + A2 +
√

2e + 1AB
1
2
κn

+ log
(

A2

n− 1
+ 1
)

− log

⎛⎝1− 2A2

n− 1 +
√

(n− 1)2 + 2BκnA2

⎞⎠ (166)

≤ log
e
√

π Γ
(

n
2

)
Γ
(

n−1
2

) +
(

3
4

+ e
)

Bκn + A2 +
√

2e + 1AB
1
2
κn

+

√
32

n− 1
A (167)

≤ an2A
2 + an1A + an0 − 1, (168)

where (161) follows from Rolle’s Theorem; in (163) Dr ⊂ C

denotes a disk of radius r centered at the origin and the bound
follows because zeros of g�n are also zeros of its complex
extension ğ�n; (164) follows from Tijdeman’s Number of Zeros
Lemma, see Lemma 4; (165) follows from the suboptimal
choices:

s = e, (169)

t =
Bκn

Bκn

; (170)

(166) follows from Lemmas 12 and 13 with

D2 ← 1
2
Bκn , (171)

M2 ← 2e + 1
2

Bκn ; (172)

(167) follows from a tedious algebra where we first note, from
their definitions in (111) and (128), that the ratio γn/κn > 1,
implying Bκn > 2A2, implying

1− 2A2

n− 1 +
√

(n− 1)2 + 2BκnA2

≥
(

2A2

n− 1
+ 1
)−1

,

(173)

and allowing us to upper bound the last two “log" terms in
the right side of (166) by

2 log
(

2A2

n− 1
+ 1
)
≤
(

32
n− 1

) 1
2

A; (174)

finally (168) follows from the definitions of κn, γn (in (111),
and (128), respectively) and the facts that

A

√
A2 + 2 log

(
γn

κn

)
≤ A2 + log

(
γn

κn

)
, (175)

Cn(A) ≤ n

2
log(1 + A2) ≤ nA. (176)

APPENDIX C
PROOF OF THEOREM 3

A. Proof of the Upper Bound in Theorem 3

The first ingredient of the upper bound proof is once again
due to Smith [1, Corollary 2] who characterizes the optimal
input distribution as follows.

Lemma 15. Consider the amplitude and power constrained
scalar additive Gaussian channel Y = X +Z where the input
X , satisfying |X | ≤ A and E[|X |2] ≤ P, is independent from
the noise Z ∼ N (0, 1). Then, PX� is the capacity-achieving
input distribution if and only if the following conditions are
satisfied:

i(x; PX�) = C(A, P) + λ(x2 − P), x ∈ supp(PX�), (177)

i(x; PX�) ≤ C(A, P) + λ(x2 − P), x ∈ [−A, A], (178)

0 = λ(P− E[X2]), (179)

where C(A, P) denotes the capacity of the channel, and
i(x; PX�) is as defined in (27).

Remark 11. Hidden in our notation for typographic reasons,
the Lagrange multiplier λ in fact depends on amplitude and
power constraints, namely A and P. Indeed, since |X | ≤ A,
if P > A2, the power constraint is inactive, implying λ = 0.
In this case, the problem reduces to additive Gaussian channel
with only amplitude constraint, and we recover Lemma 1.

As a corollary to above lemma, note that if x is a point of
support of PX� (i.e., x ∈ supp(PX�)), then x is a zero of the
function

ΞA, P(x; PX�) = i(x; PX�)− C(A, P) − λ(x2 − P). (180)
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In other words,

|supp(PX�)| ≤ N([−A, A], ΞA, P(·; PX�)) (181)

≤ N(R, ΞA, P(·; PX�)). (182)

Observe that, since

x2 =
∫

R

y2 − 1√
2π

e−
(y−x)2

2 dy, (183)

we can write

ΞA, P(x; PX�) =
∫

R

ξA, P(y)√
2π

e−
(y−x)2

2 dy, (184)

where

ξA, P(y) = log
1

fY �(y)
− h(Z)− C(A, P) + λP− λ(y2 − 1).

(185)

Keeping the steps (39)–(43) in mind, define

F�
A, P(y) = eλy2

fY �(y)− κA, P, (186)

with17

κA, P = exp(−h(Z)− C(A, P) + λ(P + 1)). (187)

Using the fact that the Gaussian distribution is a strictly totally
positive kernel, and resuming from (182)

|supp(PX�)| ≤ N(R, ΞA, P(·; PX�)) (188)

≤ N(R, ξA, P) (189)

= N
(
R, F�

A, P

)
(190)

= N
(
[−BκA, P

, BκA, P
], F�

A, P

)
(191)

≤ aP2
A2

P + aP1
AP + aP0

, (192)

where (189) follows from Karlin’s Oscillation Theorem, see
Theorem 4; (190) follows because ξA, P(y) = 0 if and
only if F�

A, P(y) = 0; (191) is a consequence Lemma 17
in Appendix D; finally (192) follows from Lemma 21 in
Appendix D. �

B. Proof of the Lower Bound in Theorem 3

Invoking entropy-power inequality,

I(X ; Y ) = h(X + Z)− h(Z) (193)

≥ 1
2

log
(
e2h(X) + e2h(Z)

)
− h(Z) (194)

=
1
2

log
(

1
2πe

e2h(X) + 1
)

. (195)

Therefore,

log |supp(PX�)| ≥ H(PX�) (196)

≥ max
X:|X|≤A, E[X2]≤P

I(X ; Y ) (197)

≥ max
X:|X|≤A, E[X2]≤P

1
2

log
(

e2h(X)

2πe
+ 1
)

(198)

17Note that 0 ≤ i(0; PX�) ≤ C(A, P)−λP, and λ < 1/2, cf. Lemma 16.
This implies that κA, P < 1/

√
2μ.

≥ max
|a|≤A, a2

3 ≤P

1
2

log
(

2a2

πe
+ 1
)

(199)

=
1
2

log

(
2 min

{
A2, 3P

}
πe

+ 1

)
, (200)

where (199) follows by sub-optimally choosing X to be
uniform on [−a, a]. �

APPENDIX D
ADDITIONAL LEMMAS FOR THE UPPER

BOUND PROOF OF THEOREM 3

Crucial to the proofs that follow, the next lemma provides
a bound on the value of the Lagrange multiplier λ in Smith’s
result [1, Corollary 2].

Lemma 16. Bound on the Value of λ. The Lagrange multiplier
λ that appears in Lemma 15 satisfies

λ ≤ log(1 + P)
2P

· 1{P < A2
}

. (201)

Proof: If P ≥ A2, the power constraint in (4) is not active,
implying that the Lagrange multiplier λ = 0. Suppose P < A2.
It follows from Lemma 15 that

λP ≤ C(A, P) − i(0; PX�) (202)

≤ 1
2

log(1 + P), (203)

where (203) is because C(A, P) ≤ C(∞, P) = 1
2 log(1 + P),

and i(0; PX�) = D(Z�Y ) ≥ 0.
Similar to its counterpart in Lemma 2, the next lemma

provides a bound on the interval for the zeros of the
function F�

A, P.

Lemma 17. Location and Finiteness of Zeros of
eλy2

fY (y) − κA, P. For a fixed κA, P ∈
(
0, 1√

2π

]
, there exists

some BκA, P
= BκA, P

(A, P) <∞ such that

N
(

R, eλy2
fY (y)− κA, P

)
= N

(
[−BκA, P

, BκA, P
], eλy2

fY (y)− κA, P

)
(204)

<∞. (205)

In other words, there are finitely many zeros of eλy2
fY (y)−

κA, P which are contained within the interval [−BκA, P
, BκA, P

].
Moreover,

BκA, P
≤ A

1− 2λ
+

(
1

1− 2λ
log

1
2πκ2

A, P

+
2λA2

(1− 2λ)2

) 1
2

.

(206)

Proof: Using the monotonicity of e−u, for |y| > A,

eλy2
fY (y)

=
eλy2

√
2π

E

[
exp
(
− (y −X)2

2

)]
(207)

≤ eλy2

√
2π

exp
(
− (y − A)2

2

)
(208)
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=
1√
2π

exp

(
−1− 2λ

2

(
y − A

1− 2λ

)2

+
λA2

1− 2λ

)
.

(209)

Since λ ∈ [0, 1/2), cf. Lemma 16, the right side of (209) is a
decreasing function for all |y| > A

1−2λ and we have

eλy2
fY (y)− κA, P < 0 (210)

for all

|y| > A

1− 2λ
+

(
2

1− 2λ
log

1
κA, P

√
2π

+
2λA2

(1− 2λ)2

) 1
2

.

(211)

This means that there exists BκA, P
satisfying (206) such that

all zeros of FA, P(y) = eλy2
fY (y)−κA, P are contained within

the interval [−BκA, P
, BκA, P

].
To see the finiteness of the number of zeros of FA, P(y),

it suffices to show that FA, P is analytic on R as analytic func-
tions have finitely many zeros on a compact interval. However,
it is easy to see that FA, P is analytic because convolution with
a Gaussian preserves analyticity [31, Proposition 8.10].

Lemma 18. For κA, P as defined in (187), the bound on the
location of the zeros in Lemma 17 can be loosened as

BκA, P
< 2AP + 1, (212)

where

AP =
AP

P− log(1 + P) · 1{P < A2} . (213)

Proof: We may assume that P < A2, otherwise see (96).
In that case, observe that

C(A, P) ≤ 1
2

log(1 + P), (214)

and hence,

κA, P = exp(−h(Z)− C(A, P) + λ(P + 1)) (215)

≥ exp(λ(P + 1))√
2πe(1 + P)

. (216)

Combining (206) and (216)

BκA, P

≤ A

1− 2λ
+
(

1 +
log(1 + P)

1− 2λ
+

2λ

1− 2λ

(
A2

1− 2λ
− P

)) 1
2

(217)

≤ AP + (1 + 2λA2
P)

1
2 (218)

< 2AP + 1, (219)

where (218) follows from Lemma 16 as the right side of (217)
is increasing in λ ≤ log(1+P)

2P ; and (219) follows because
λ < 1

2 , cf. Lemma 16.

Lemma 19. Suppose FA, P : R→ R is such that FA, P(y) =
eλy2

fY (y) − κA, P. The complex extension of its derivative
F̆�

A, P : C→ C satisfies

max
|z|≤B

∣∣∣F̆�
A, P(z)

∣∣∣

≤ 1√
2π

(A + (1 + 2λP)B) exp
(

(1 + 2λP)B2

2

)
(220)

<
1√
2π

(A + 2B) exp
(
B2
)

, (221)

where in (220) λP = log(1+P)
2P · 1{P < A2}.

Proof: Denote by f̆Y and f̆ �
Y the analytic complex

extensions of the probability density function fY and its
derivative f �

Y , respectively. Then,

max
|z|≤B

∣∣∣F̆�
A, P(z)

∣∣∣
= max

|z|≤B

∣∣∣eλz2
(
f̆ �

Y (z) + 2λzf̆Y (z)
)∣∣∣ (222)

≤ eλB2
max
|z|≤B

∣∣∣f̆ �
Y (z) + 2λzf̆Y (z)

∣∣∣ (223)

≤ eλB2
(

max
|z|≤B

∣∣∣f̆ �
Y (z)

∣∣∣+ max
|z|≤B

∣∣∣2λzf̆Y (z)
∣∣∣) (224)

≤ eλB2

√
2π

(
(A + B) exp

(
B2

2

)
(225)

+ max
|z|≤B

∣∣∣∣2λzE

[
exp
(
− (z −X)2

2

)]∣∣∣∣) (226)

≤ eλB2

√
2π

(
(A + B) exp

(
B2

2

)
(227)

+2λB max
|z|≤B

E

[∣∣∣∣exp
(
− (z −X)2

2

)∣∣∣∣]) (228)

≤ eλB2

√
2π

(
(A + B) exp

(
B2

2

)
+ 2λB max

|z|≤B
exp
(

Im2(z)
2

))
(229)

≤ 1√
2π

(A + (1 + 2λ)B) exp
(

(1 + 2λ)B2

2

)
, (230)

where (222) follows from definitions of the functions
involved; (223) is because |z| ≤ B implies

∣∣eλz2 ∣∣ ≤
eλB2

; (224) follows from the triangle inequality; (226) fol-
lows from Lemma 5; (228) follows from the modulus
inequality.

The desired result is a consequence of the fact that
the Lagrange multiplier satisfies λ ≤ λP < 1/2,
cf. Lemma 16.

Lemma 20. Let B ≥ A/(1− 2λ). Suppose FA, P : R→ R is
such that FA, P(y) = eλy2

fY (y)−κA, P. The complex extension
of its derivative F̆�

A, P : C→ C satisfies

max
|z|≤B

∣∣∣F̆�
A, P(z)

∣∣∣ ≥ A√
2π

exp
(
− 2− λP

1− 2λP
A2

)
, (231)

where λP = log(1+P)
2P · 1{P < A2}.

Proof: Note that

max
|z|≤B

∣∣∣F̆�
A, P(z)

∣∣∣
= max

|z|≤B

∣∣∣eλz2
(
f̆ �

Y (z) + 2λzf̆Y (z)
)∣∣∣ (232)

= max
|z|≤B

1√
2π

∣∣∣E [(X − (1− 2λ)z)e−
1−2λ

2 (z− X
1−2λ )2

+ λX2
1−2λ

]∣∣∣
(233)
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N
(
[−BκA, P

, BκA, P
], FA, P

)
≤ 1 + N

(
[−BκA, P

, BκA, P
], F�

A, P

)
(239)

≤ 1 + N
(
DBκA, P

, F̆�
A, P

)
(240)

≤ 1 + min
s>1, t≥ AP

BκA, P

{
1

log s

(
log max

|z|≤(st+s+t)BκA, P

∣∣∣F̆�
A, P

∣∣∣− log max
|z|≤tBκA, P

∣∣∣F̆�
A, P

∣∣∣)} (241)

≤ 1 + min
s>1, t≥ AP

BκA, P

{
1

log s

(
(st + s + t)2B2

κA, P

2/(1 + 2λP)
+

2− λP

1− 2λP
A2 + log

(
1 +

(st + s + t)BκA, P

A/(1 + 2λP)

))}
(242)

= 1 + min
s>1

{
1

log s

(
((AP + BκA, P

)s + AP)2

2/(1 + 2λP)
+

2− λP

1− 2λP
A2 + log

(
2

1− 2λP
+

(AP + BκA, P
)s

A/(1 + 2λP)

))}
(243)

≤ 1 + min
s>1

{
1

log s

(
((3AP + 1)s + AP)2

2/(1 + 2λP)
+

2− λP

1− 2λP
A2 + log

(
2

1− 2λP
+

(3AP + 1)s
A/(1 + 2λP)

))}
(244)

≤ 1 + 2
(

((3
√

e + 1)AP +
√

e)2

2/(1 + 2λP)
+

2− λP

1− 2λP
A2 + log

(
2

1− 2λP
+

(3AP + 1)
√

e
A/(1 + 2λP)

))
(245)

≤ 1 + 2
(

((3
√

e + 1)AP +
√

e)2

2/(1 + 2λP)
+ (2− λP)(1 − 2λP)A2

P + log
(

2 + 4
√

e(1 + 2λP)
1− 2λP

))
, (246)

≥ 1√
2π

∣∣∣∣E [(X − A) exp
(−A2 + 2AX − (1− 2λ)X2

2− 4λ

)]∣∣∣∣
(234)

≥ 1√
2π

E

[
(A−X) exp

( −3A2

2− 4λ
− 1

2
A2

)]
(235)

=
A√
2π

exp
(
−
(

1
2

+
3

2− 4λ

)
A2

)
(236)

≥ A√
2π

exp
(
− 2− λP

1− 2λP
A2

)
, (237)

where (234) follows from the suboptimal choice of z =
A

1−2λ ≤ B; (235) follows because |X | ≤ A; (236) is a
consequence of E[X ] = 0; and finally, (237) follows because
λ ≤ λP, see Lemma 16.

Lemma 21. Bound on the Number of Oscillations of F�
A, P.

Suppose that F�
A, P is as defined in (186) and BκA, P

be as
defined in Lemma 17. The number of zeros of F�

A, P within the
interval [−BκA, P

, BκA, P
] satisfies

N
(
[−BκA, P

, BκA, P
], FA, P

) ≤ aP2
A2

P + aP1
AP + aP0

, (238)

where AP, aP2
, aP1

, aP0
, and λP are as defined

in (20), (21), (22), (23), and (24).

Proof: We may assume P < A2, otherwise see the proof of
the upper bound in Theorem 1. For an arbitrary output density
fY define FA, P : R → R such that FA, P(y) = eλy2

fY (y) −
κA, P and let F�

A, P : R→ R be the derivative of FA, P. Consider
the disk DR ⊂ C of radius R centered at the origin and note
the following sequence of inequalities (239)–(246), shown
at the top of this page.

There, (239) follows from Rolle’s Theorem, see
Lemma 3; (240) follows because the zeros of
F�

A, P : R → R are also the zeros of its complex extension
F̆�

A, P : C → C; (241) is a consequence of Tijdeman’s

Number of Zeros Lemma, namely Lemma 4; (242) follows
by invoking Lemmas 19 and 20 above; (243) follows
because t = AP

BκA, P
is the minimizer in the right side

of (242); (244) follows from the fact that BκA, P
< 2AP + 1,

see Lemma 18; (245) is a consequence of the suboptimal
choice s =

√
e; and finally, (246) follows from the assumption

that A > 1.
Algebraic manipulations in the right side of (246) yield the

desired result in (238).
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