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A False Discovery Rate Oriented Approach to
Parallel Sequential Change Detection Problems

Jie Chen, Wenyi Zhang

Abstract—The problem of sequentially detecting changes in par-
allel data streams is formulated and investigated. Each data stream
may have its own change point at which the underlying probability
distribution of its data changes, and the decision maker needs to
declare, sequentially, which data streams have passed their change
points. With a large number of parallel data streams, the error
metric is the false discovery rate (FDR), which is the expected ratio
of the number of falsely declared data streams to the total number
of declared data streams. A data stream is falsely declared if the
detected change point is ahead of its actual change point. Decision
procedures that are guaranteed to control the FDR level are devel-
oped, and it is also shown that the average decision delays (ADDs)
of these decision procedures do not grow with the number of data
streams. Numerical simulations and case studies are conducted to
corroborate the analytical results, and to illustrate the utility of the
decision procedures.

Index Terms—Average decision delay, false discovery rate, large-
scale inference, multiple change detection, multiple hypothesis
testing.

1. INTRODUCTION

S A fundamental breakthrough beyond the classical fixed-
A sample-size (FSS) binary hypothesis testing, sequential
hypothesis testing, in which the decision maker is allowed to
sequentially observe the data and make his/her decision at a
randomly selected time, has been extensively studied since the
seminal work by Wald [3]. For independent and identically
distributed (i.i.d.) data, compared with the FSS Neyman-Pearson
test [4], the sequential probability ratio test (SPRT) is superior
in terms of the average sample size required for achieving the
same error performance [5].
An important topic in the theory of sequential analysis is
change detection. Suppose that the decision maker is monitoring

Manuscript received July 15, 2019; revised January 21, 2020; accepted
February 20, 2020. Date of publication March 2, 2020; date of current version
March 20, 2020. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Remy Boyer. The work of Jie Chen
and Wenyi Zhang was supported in part by the National Key Research and
Development Program of China under Grant 2018YFA0701603, and in part
by the National Natural Science Foundation of China under Grant 61722114.
The work of H. Vincent Poor was supported by the U.S. National Science
Foundation under Grant CCF-1908308. This article was presented in part at the
50th Annual Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, 2016 [1], and in part at the 55th Annual Allerton Conference
on Communications, Control, and Computing, Monticello, IL, USA, 2017 [2].
(Corresponding author: Wenyi Zhang.)

Jie Chen and Wenyi Zhang are with the CAS Key Laboratory of Wireless-
Optical Communications, and the Department of Electronic Engineering and
Information Science, University of Science and Technology of China, Hefei
230027, China (e-mail: ¢j12@mail.ustc.edu.cn; wenyizha@ustc.edu.cn).

H. Vincent Poor is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA (e-mail: poor @princeton.edu).

Digital Object Identifier 10.1109/TSP.2020.2977466

, Senior Member, IEEE, and H. Vincent Poor

, Fellow, IEEE

a stochastic system, in which at some unknown time there is
an abrupt change of the underlying probability distribution of
the system state. Change detection concerns about methods for
sequentially detecting the occurrence of the change point, and
the goal is to minimize the delay between the actual change
point and the declared time, subject to certain constraint on
the risk of false alarms [6], [7]. In the Bayesian formulation, a
prior probability distribution of the change point is imposed and
exploited when designing the decision procedure; see, e.g., [8].
In the non-Bayesian (or minimax) formulation, there is no prior
knowledge about the change point and the design objective is
to optimize the performance under the worst-case scenario; see,
e.g., [9] where a decision procedure based on the cumulative sum
(CUSUM) statistic [10] was shown to be optimal in an asymp-
totic sense, and [11] where the CUSUM decision procedure was
further shown to be exactly optimal.

In basic formulations of change detection problems, the deci-
sion maker usually only needs to treat a single data stream. But
in many modern applications, the rapid development of sensing
technology allows for the generation of large-scale real-time
streaming data [12], corresponding to a large number of parallel
data streams. Detecting the change points in such parallel data
streams is the situation considered in our work here.

With multiple data streams, a formulation different from ours
is that an unknown subset of the data streams have a common
change point. This setting is mainly motivated by surveillance
applications, in which a system is monitored by multiple sensors
and at an unknown time a disruption leads to a change in the
observations of a subset of deployed sensors; see, e.g., [13]-[19].
In contrast, our formulation considers the scenario where each
data stream has its own change point, and furthermore the data
streams as well as their change points are mutually indepen-
dent. This setting can be suitable for systems whose different
components are essentially independent.

The formulation that a decision maker sequentially detects
independent change points for parallel independent data streams
may seem uninteresting at the first glance, since one may wonder
that this simply boils down to a number of separate single-stream
change detection procedures. Such a formulation, however, be-
comes interesting when the number of data streams becomes
large, and the choice of error metric then turns out to be a key
factor.

Let us start with the formulation of making K hypothesis
tests given K observations, each corresponding to one of the
tests. For any given decision procedure, Table I categorizes the
outcomes of the K tests. A direct definition of the error metric
is the familywise error rate (FWER) [20], [21], which is the
probability of rejecting any null hypothesis, i.e., Pr{V > 1}. A
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TABLE I
OUTCOMES OF K PARALLEL HYPOTHESIS TESTS
Hypothesis Accepted | Rejected | Totals
Null true L \% Ky
Alternative true P S K
Totals w R K

simple decision procedure that guarantees the FWER no greater
than « is Bonferroni’s procedure, which essentially performs K
separate hypothesis tests, each of which guarantees the proba-
bility of rejecting a null (i.e., Type I error probability) no greater
than /K. This requirement is very stringent for detecting weak
signals when K is large, and decision procedures that control the
FWER generally have very low detection power. This motivates
the proposal of an alternative error metric called the false dis-
covery rate (FDR) [22], [23], which is the expected proportion
of falsely rejected hypotheses to all rejected hypotheses, i.e.,
FDR = E[7].

Compared with FWER-oriented decision procedures, deci-
sion procedures that control the FDR are more powerful in
identifying alternative hypotheses [12], at the cost of increased
error rates. The most widely known FDR-oriented decision
procedure is the Benjamini-Hochberg (BH) procedure [23].
These two error criteria have been widely and successfully
used in applications with large-scale data streams or when
many comparisons are needed, notably biological and medical
signal processing, including high throughput gene and protein
expression data, brain imaging, and clinical trials; see [12] for
a variety of examples. There have been a few studies about the
application of FDR and FWER in sequential testing of multiple
hypotheses; see, e.g., [24] and [25]. Therein the focus is mainly
about extending the metrics of FDR and FWER to sequential
multiple hypotheses testing problems, rather than change detec-
tion. Some techniques in [24] have inspired our current work
on sequential change detection of multiple data streams. As for
the application to sequential change detection over multiple data
streams, [26] considered a setting with multiple changes between
two known distributions and extended the setting to multiple
data streams. The work established an FDR control, but did not
analyze average detection delay within multiple data streams.

Returning to our problem of sequential change detection over
parallel data streams, a rejection corresponds to declaring a
change point for a data stream, and a false rejection, i.e., a
rejection of anull, corresponds to declaring a change point before
the actual change point of the data stream. Thus the FWER is the
probability of making an early change decision for at least one
of the data streams. Similar to the multiple hypothesis testing
scenario in the previous paragraph, to guarantee a prescribed
level of the FWER, the change detection for each data stream is
highly strict in declaring a change, in turn leading to excessively
large decision delays when the number of data streams is large.
To remedy this, we propose to use the FDR as the error metric,
which quantifies the expected ratio between the number of
false rejections and the total number of rejections. As will be
shown in this work, FDR-oriented decision procedures substan-
tially reduce the average decision delay (ADD) compared with
FWER-oriented decision procedures. In fact, for FDR-oriented
decision procedures, the ADD does not grow with the number
of data streams, in sharp contrast with FWER-oriented decision
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procedures for which the ADD grows logarithmically with the
number of data streams.

The main contributions of this work are as follows.

1) We formulate the problem of change detection for parallel
data streams, extend the FDR error metric to this problem,
and develop the corresponding decision procedure, which
is motivated by the classical BH procedure.

2) For the developed FDR-oriented decision procedure, we
establish a theoretical guarantee for the FDR. Further-
more, we obtain the asymptotic behavior of the ADD
as the number of data streams grows large, which does
not grow with the number of data streams; in contrast,
the ADD of FWER-oriented decision procedures grows
logarithmically with the number of data streams.

3) To cope with the scenario where the post-change statistics
are under multiple possible hypotheses, we extend the
problem formulation of change detection to change detec-
tion and isolation, for parallel data streams, and develop
the corresponding decision procedures and performance
guarantees.

4) We test the developed decision procedures for simulated
data sets as well as an application related to cognitive ra-
dios, to corroborate the analytical results, and to illustrate
the utility of the decision procedures.

In our earlier work [27], we considered the non-Bayesian
minimax problem formulation where no prior knowledge about
change points is assumed, and developed a decision procedure
which does not take into account truncation of data. In the
current work, we consider the Bayesian problem formulation,
and take into account the effect of truncation when analyzing
the performance.

The remaining part of this paper is organized as follows.
Section II describes the system model, formulates the multi-
ple change detection problem, and introduces the key defini-
tions. Section III presents the decision procedures that aim at
controlling the FDR and the FWER, respectively. Section IV
establishes the FDR guarantee and the asymptotic behavior of
the ADD. Section V extends the problem formulation, decision
procedures, as well as their analysis to the multiple change
detection and isolation problem. Section VI presents the sim-
ulation results, and Section VII presents a case study where we
apply the developed decision procedures to the multichannel
dynamic spectrum access problem for cognitive radios. Finally
Section VIII concludes this paper.

II. PROBLEM SETUP

Consider K > 2 parallel data streams:

x,x0, xS x ) fork e [K1={1,...,K).
(1)
Denote the data at time epoch n by XK=
XM x@ . X% For the k-th data stream, there exists a
time epoch t® > 1 called its change point. In particular, we
allow r® = 0o that is, the underlying statistics of a data stream
may never change, and thus a data stream may not have any
(finite) change point.
For a measurable space (€2, F), consisting of a sample space
Q and a o-field F of events, consider a family {P®), k € [K]}
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of probability measures to describe the prior distribution of t*)
and the distribution of {X,fk), kelK],n=1,2,...}. Under P](rk),
™ is a random variable with prior distribution 7,, = Pr{t® =
m}; conditioned upon *, Xl(k), Xz(k), .. Xt((’;)) , are i.i.d. with

a (pre-change) distribution Ay, and Xt((f)),Xt((lk? 410 -+~ are Lid.
with another (post-change) distribution 4; and independent of
Xl(k), Xz(k), . ,Xl((f))_]. In Section V we will address detection
and isolation problems where there are multiple possible post-
change distributions. We assume mutual independence among
the K data streams, and that /g and h; are probability densities
with respect to some measure P on (2, 7).
Define the Kullback-Leibler (KL) divergence as

B 1)
I = / 1(x)log <h0(x)> P(dx), 2)
the mean change point as
i =E[tP)® < oo], 3)

which is independent of the index k since we have assumed that
all streams have the same change point prior distribution (cf.
Remark 4 in Section IV), and a parameter d as
logPr{t® >m+1
d = — lim g { = } ,

m—>00 m

d =0, “)

in which for prior distributions with exponential tails d > 0, and
for prior distributions with heavy tails d = 0.

Suppose that a statistician sequentially observes the K parallel
data streams and makes decision regarding whether changes
have occurred for these data streams, up to some deadline N. To
be concrete, the statistician keeps observing X!X! starting from
n = 1, sequentially, until at a certain time epoch 7}, declaring
that a change has occurred for a certain data stream indexed
by D;. Subsequently, the statistician keeps observing X KI\P1}
starting from n = T} + 1, with the D;-th data stream excluded
in the observation, until at a certain time epoch 75, declaring
that a change has occurred for a certain data stream indexed
by D;... Such a procedure is executed until either changes have
been declared for all the K data streams, or the time epoch » has
reached the deadline N and the statistician declares no change
for the remain data streams.

We can formalize the above decision procedure as follows.

Definition: A decision procedure is a multiple stopping rule
R consisting of a sequence of stopping times and decisions, as

R=(T,Dy, T, D, ..., Tx, Dx), (5)

where ] <T) <D <...<Tx <N, and {Dy, k € [K]} consti-
tute a permutation of [K]. Regarding the sto;[)gmg times and de-
cisions, {7} = ny, D; = d;} depends upon X | D ¢
and, in a recursive way, for general k € [K], {T,< =, Dy =
di} depends upon XK1 p=1,2, .. . T;XKNPO =1y +
L,..., ;... XKD DH,n:T,H+1,...,nk

We can also define the stopping time for every data stream.

Definition: For k € [K], denote by T® the stopping time for
the k-th data stream, so that T®) = T; for some [ € [K] such that
D, =k.

We then define the FDR and the FWER of a decision proce-
dure R as follows.

1825

Definition: Denote by R the number of change points de-
clared by R, i.e., the number of elements in {T® k € [K]}
satisfying T®) < N, and by V the number of falsely declared
change points, i.e., the number of elements in (T®, k e [K]}
satisfying T® < N and T® < t®, The FDR of R is

Vv

FDR = E, [_—} : (6)
RV 1

where a V b represents the maximum between a and b, and E;

represents the expectation with respect to {PX), k € [K]}. The

FWER of R is

FWER = Pr{V > 1}. @)

Besides the FDR and the FWER, we are also interested in
the ADD of a decision procedure. This is the average number
of additional samples before declaring a change point after
that change point, normalized by the number of data streams
with a finite change point. We denote by K., the number of
data streams without a finite change point, which is a binomial
random variable Bin(K, ), with probability mass function
P(Koo = koo) = Cromke (1 — 7150)K . Formally, we have the
following definition.

Definition: For a decision procedure, the ADD is defined as

K

ADD = Z P(Ks = koo)ADDy_, )
koo=0

where ADDy_ is the conditional ADD upon Ky, = ks, Which

can be written as

K—kso

Z E7T [T(k) _ t(k) t(k) < T(k) < ]V]

k=1

ADD; = "
- Roo

&)

III. DECISION PROCEDURES

For the k-th data stream, k € [K], we define a sequence of
statistics

G(k)

n+1277m1_[L(k) n= ,2,...,

m=1

where LY = (X)) /ho(x "), and {4, = Pr{t® > n 4 1}.
So G is the likelihood ratio between the hypotheses that the
change occurs at t*) < n and that the change occurs at t® > n.
Setting Gg‘) = 0, we have a recursive relationship for G® as

(10)

G¥ =1L, (G, + ) L, (11)

which can be applied for practical implementation.

First we describe a decision procedure called MD-FDR that
aims at controlling the FDR. Fix a parameter « € (0, 1), and set
an array of thresholds as

K
Qs:__ly

s

Ok <01 =---=<0. (12)

For convenience of description, we divide the operation of a
decision procedure into multiple stages. At the beginning, the
time epoch n = 1, the decision procedure starts with the first
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Fig. 1. Flowchart of the j-th stage of MD-FDR.

Algorithm 1: MD-FDR and MD-Hochberg.

For MD-FDR, set thresholds as (12); for MD-Hochberg,

set thresholds as (15).

1) Initially setg = 1,1, = [K],n =1, and ny = 0.

2) Sample the active data streams {X*'};c1, n=n,_,, and
update the statistics {G{"}xer, n=n,, using (11).

3) Sort the statistics in ascending order as {G{"1)},
where i(n, [) denotes the index of the /-th ordered
statistic at time epoch n.

4) Repeat 2)-3) with n increased by 1 each time, until n
equals

n, = N A min {n > ng-1 |G’(1i(m1))
> Qk-141, A € (1,11} .

a) Ifn, < N, stop the g-th stage and declare change
points at n, for the following data streams:

(13)

eri(nq,lq)) X(i(nz,,l,ﬂrl))

q ’ Ny LI

X(i(nq Mg)

L) qu E)
where

Iy =min {l € [[IN|G{"" = Og_1n}.  (14)

Update I, to exclude the indices of these declared
data streams. If [I,,| = O, then stop; otherwise,
set g = g + 1, and go to 2) to begin the next stage.
b) Otherwise, n, = N, declare that all the active data
streams in I, have no change points, and stop.

stage, and whenever at least a stopping time is reached and an
associated decision for a data stream is declared, the current
stage ends and a new stage begins from the next time epoch.

We use I, to denote the indices of active data streams (i.e.,
the data streams that have not been stopped) at the beginning of
the g-th stage, and use n, to denote the time epoch at the end of
the g-th stage. Initially we setI; = [K] and ny = 0. We describe
the decision procedure MD-FDR in Algorithm 1, which is also
illustrated in Fig. 1.

For comparison, we also consider two decision procedures
that control the FWER. Fix « € (0, 1). The decision procedure
based on Bonferroni’s procedure, denoted as MD-Bonferroni,
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has a single threshold Q = K/«o — 1, and is described in Algo-
rithm 2. The decision procedure based on Hochberg’s proce-
dure [29], denoted as MD-Hochberg, is similar with MD-FDR,
but has a different array of thresholds as

K—s+1
o

Qs: -1,

Ok < Qg1 =---=<0. (15)

The detailed description of MD-Hochberg is in Algorithm 1.

Algorithm 2: MD-Bonferroni.
1) [Initially setg = 1,1, = [K],n =1, and ny = 0.
2) Sample the active data streams {X*'};c1, n=n,_,, and
update the statistics {G{"}er, u=n,_, using (11).
3) Repeat 2) with n increased by 1 each time, until
equals

ng=N Amin{n>n, |GP > 0,3k e],}.

(16)

a) Ifn, < N, stop the g-th stage and declare change
points at n, for data streams that satisfy (16).
Update I, to exclude the indices of these
declared data streams. If [I,4;| = O, then
stop; otherwise, set ¢ = g + 1, and go to 2) to
begin the next stage.

b) Otherwise, n, = N, declare that all the active
data streams in I, have no change points,
and stop.

IV. ANALYSIS OF DECISION PROCEDURES

In this section, we analyze the statistical properties of the pro-
posed decision procedure MD-FDR. On one hand, we show that
MD-FDR controls the FDR. On the other hand, we compare the
ADDs achieved by MD-FDR and by FWER-oriented decision
procedures.

A. False Discovery Rate

The following result, Theorem 1, states that the proposed
decision procedure MD-FDR controls FDR under our problem
formulation.

Theorem 1: Suppose that 0 < I < oo, and 7 < co. For any
given0 < « < 1, the decision procedure MD-FDR in Section 111
satisfies

N Ki+ (I +d)"" (KlogK — Kloga) + o(K)
N ’

FDR <

(17)
where o(K)/K — 0 as K — oo. Hence if N as a function of K

scales to satisfy (K log K)/]V — 0 as K — oo, we have

FDR < « + o(1), (18)

where o(1) — 0 as K — oo.

Proof: We prove Theorem 1 in two parts. In the first part,
we consider a decision procedure similar to MD-FDR but with-
out the deadline N, for which we prove that such a decision
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procedure controls the FDR at the level «. In the second part,
we impose the deadline N and estimate the extra cost upon the
FDR.

Part 1:

As we remove the deadline N in MD-FDR (i.e., setting N =
00), we adjust the definition of the FDR as

1%
FDRy = E, | — |,
RV 1

where R is the number of change points declared, i.e., the number
of elements of [K] such that T® < oo, and V is the number of
falsely declared change points, i.e. the number of elements of
[K] such that T® < &),

Let K; be the number of data streams satisfying t*) < oo. For
k € [K] and s € [K] define events

19)

Wiy = {GP > 0, 3n < 1P} (20)
For these events, we have
Pr (W) =P (GP =0, 3n<tW)<—. (@D

In order to prove (21), consider for each data stream, say,
the kth one, a stopping time with respect to the observations

k k k k
X0 X xE

1> as follows:

T(k)zmin{nz 1‘0}1") zA}, A>0. (22)
The following result is standard and can be found in several
references, e.g., [28, Sec. 4].
Lemma 2: Forany A > 0, P,(T® <t®) < 1/(A +1).
Hence, by setting A = Q, = K/(sa) — 1 when defining 7%,

we have
Py (Wey) = Py (T® <1®) < Qs1+ o= % (23)
thus proving (21).
Forue{0,...,K }andv e {l,..., K — u}, define
Q,={wC{l,....K —u}:|ol =v}
Vi, = {v data streams with indices in w stopped early,
i.e., T < t(k), k € w;
and u data streams correctly stopped}
Veu= UV

we2,

Note that the sets {V.
We claim that

Pr (Wi NV2) 2 1k € 0lPr (V).

.} in the union V,, , are mutually disjoint.

(24)

The following proof of (24) is modified from an argument in [24].
If k ¢ w, this inequality obviously holds. If k € w, what we need
to show is that V;",, € Wj ,.4,. For any outcome in V", the k-th

v,u’

data stream is stopped early, at some stage g. By (14) in the
decision procedure MD-FDR, k = i(n,, ) for some [ > /,, so

(i(ng.1q))
Gy = Go,""" = Ok (25)
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Since K — [, + 1 is the number of stopped data streams until
stage ¢, this value is no greater than the total number of stopped

data streams in V", v + u. Hence

Gy = Ok-i,41 = Quius (26)
by noting that the thresholds {Q,} are decreasing with s. This
thus shows that V", € W, for any k € w.

With (24) established, we now follow the argument of [30],

with a few modifications suitable for our problem formulation:

K—u

K—u
) AUTIIINS 35 SURUNILES

k=1 k=1 weQ,

K—
Z > 1k € w}Pr (V)

k=1 we,

27)

v

(28)

K—

Z Z {k € )P (V)

€Q, k=1

=Y lolPc(Ve) = vP(Vou).  (29)

weR,

Here, (27) is because that the sets {V,”} in the union V, , are
mutually disjoint, (28) is due to (24), and (29) is due to the
definition of €2,.

Using (29), we have that conditioned upon K, the correspond-
ing (conditional) FDR, is

K,-FDR,, = XI:Z

v,u)
u=0 v=1
K —u —u
< P (W, nv,
uX{;v_ V+M< Xzz ( k,v+u vu))

—u K—u

K
—ZZ ZP (ka-‘rumv\/u)

u=0 v=1

v+u (30)

Define U, , ; to be the event that, conditioned upon the kth
data stream being stopped early, some other v — 1 data streams
are stopped early and some u data streams correctly stopped.
So Wk,v+u N Vv,u = Wk,eru N Uv,u,k- Define Us,k = Uv-Hl:s Uv,u,k-
For any k, Uy g, . .., Uk partition the sample space. Then start-
ing from (30), we have

K]Ku

K\-FDRy, < > >

u=0 v=1
K—
k=1,u

Since the data streams are mutually independent, the event of
the kth data stream being stopped early and the event of U; ; are

v+u ZP (ka-‘rumUvuk)

A |
2 WU, GD

0 s=v+u=1
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independent, and we have

K—u K 1
K-FDR,, < D P )P Ui
k=1,u>0 s=v+u= 1
K—u K 1 /sa
= Y Y- (%)Prww (32)
k=1,u>0 s=1
o K K
< }ZZPH(Uv,k)
k=1 s=I
o K

».
Il

where (32) is due to (23). Because the bound (33) holds for any
K, we have FDR, < «.

Part 2:

Now we turn to the decision procedure MD-FDR with a
finite N and analyze the relationship between FDR,, in (19)
and FDR in (6). With N imposed, the number of change points
declared, R, is clearly no greater than R. Denote R = R+ A,
where A is the size of {T®|N < T® < oo}, which can be
further divided into two parts. The first part has a size of
A= |TPIN < T® < +®Y), which is the reduction of the
number of false alarm events, and the second part has a size
of Ay = [{TP|t® < T® < 0o, T® > N}|. We have

FDR = E, [_L:|
R

v
—E, [ ‘AZ_O}P(Az_O)

RV
[—(Az > 1]P (Ay = 1)

£ |: V+A
"LTR+A) V1

IA

)Az - O}PAAQ =0) + Pr(Ay=1)
1%
—E, [—\Az - 0} Pr(Ay = 0)+ Pr(Ar = 1)
RV 1

<E ||+ PAr = 1)
_nva T 2 =

=FDRo + P (A2 2 1) S o + Prjoo(A2 = 1), (34)
where Py /.(-) means that this is the conditional probability
P, (-]t < 00), and the last inequality is due to that A, satisfies
t® <T® < oo

Then we choose N to control P, Joo(Ay > 1). Let us write

Prr/oo(AZ >1)=1 _Prr/oo(AZ =0)

=1 —[l = Prjo 0% = N|T® > 10"
(35)
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Following the argument in [28, Thm. 4], when 0 < [ < ocoholds,
for every k € [K], we have

Erjoo [T® — (®|T® > 1] <

K
10g; [1+o(D)],

(36)
where o(1) — 0as K — oo. Applying Markov’s inequality, we
have

+d

Ere /oo [T®]T® > (®]
N

_ T+ +d) " og X[1 + o(1)]
< i .
Back to (35) and (34), we have

(37)

- K
P+ +d) " log £11 + o(l)])
N

FDR§a+1—<1—

N Ki+I+d)™! (KlogK — Kloga +0(K))

<« —
N

(38)

This completes the proof of Theorem 1. |

In our problem formulation, we explicitly incorporate the
deadline N and establish the FDR control with the regularity
conditions on the prior distribution of change point and the
KL divergence between the pre and post change distributions.
If we remove the deadline, the FDR is controlled without re-
quiring such conditions, as already proved in the first part of
Theorem 1. Also we consider the simple case where all the
parallel data streams are mutually independent. Following the
approach in [30], it is possible to provide some degree of FDR
control even when the data streams are correlated, e.g., satisfying
the so-called positive regression dependence on a subset. A
systematic investigation along that direction is an interesting
topic for future research.

B. Average Decision Delay

For the three decision procedures considered in Section III,
we have the following result about the asymptotic behaviors of
their ADDs.

Theorem 3: For the three decision procedures such that the
FDR (for MD-FDR) and the FWER (for MD-Bonferroni and
MD-Hochberg) are controlled by « > 0, if 7o, > 0 holds, as K
grows without bound, and N grows with K, we have:

MD-FDR: ADD = O(1); (39)
log K

MD-Bonferroni: ADD ~ o8 ; (40)
I+d
logK

MD-Hochberg: ADD ~ % . 41)
I+d

Proof: First, consider MD-FDR which controls the FDR.
According to [28, Thm. 4], if the kth data stream is stopped
by threshold Q; = K/(sa) — 1, we have

K
E. [T® —t®|1® > P] = log —[1+o(1)], (42)
s

+d
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where o(1) — 0 as K — 00. To have the FDR controlled by «,

as in the proof of Theorem 1, we make N as a function of K scale — L lo g Iﬁ _ Z P(Ks = ko)
to satisfy (K log K)/N — 0 as K — oo and thus (37) goes to I'+d P
0. Then, we have
B oK ket |
E.[T® —t®|® <7® < N] K — ko

=E, [T® —t®|T® = 1t®] (1 + o(1)), as K — oc. 1
T = ’ = —(|loga(l — +1)(1+0(1)), 45
“3) 7 g (loga(l—mo)l + 1) (1 +o(1)),  (45)
) N o where the inequality in the second line is due to (42) and that
According to the definition of the ADD, we can derive its lower  the worst case of the thresholds occurs when the thresholds are
bound as follows: ascending and different, and the equality in the last line is due
to Stirling’s approximation. Combining the lower and the upper

Kk bounds we have ADD = O(1) which does not grow with K.
ADD = Z P(Koo = koo) Then, consider MD-Bonferroni and MD-Hochberg which
koo=0 < k=1 control the FWER. We have for MD-Bonferroni,
x B [T® — 10|76 > ¢®)] K | Kok
ADD = P(Kyx = koo)
(I +d)! k;o — koo kXI:
= Z P(Koo = koo)
Py’ (K — ko) x Ex [T® —®|1® > (®]
K—ks K (I+d)_l
= PKy =ky)— 2
X Z logm—ko(l) ka::o (Koo OO)(K_koo)
K—k
S
1 K
=— | log — X log — + o(1)
I+d o8 o ; «
K =71d (log K + [logal) (1 +o(1)), (46)
— P(Ky = ko) log(K — k, + o(1
kX::O (Koo o) 10g( ) ) where the equality in the second line is due to that
~ MD-Bonferroni uses a single threshold Q = K/«; and for
1 . K loe(K(1 MD-Hochberg,
_I—i—_d[OgE_ 0g(K(1 — 7)) i
- ADD = Z P(Koo = ko) —
— | +0(1) koo=0 k=1
T (I = 7o)
x Eq [T — (®O|T® > 0]
1 =
= 1 1— 1 1)), 44
I+d|0g01( Too)| (14 0(1)) (44) (I+d)—1
SIS K=t
where the inequality in the second line is due to (42) and that koo=0 =
for a fixed koo, Ok ., is the smallest threshold. K—keo
On the other hand, we can derive its upper bound as follows: X Z 10g + o(1)
K K_koo
ADD = Z P(Koo = ko) 3
= koo o = kZOP(KOO = koo) logless + 1) — log o | + o(1)
x Ey [T® — (®|7® > 0] N
g - 1 1-—
= —|log(Kmso +1) — —loga | + o(1
(I+d)! 1+d[ el ) 2K7e s ] M
< Z P(Kx —koo)(K ™
=0 ~ = 1 [log(Kmo + 1) +[logal] (L +o(1)),  (47)
K—kee
x Z log - + o(1) where the inequality in the second line is similar to that in (44)
and due to the thresholds in MD-Hochberg. |
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From Theorem 3, we see that the ADD of MD-FDR does
not increase with the number of data streams, and thus in this
sense MD-FDR is a scalable decision procedure suitable for
large scale problems. In contrast, the ADDs of MD-Bonferroni
and MD-Hochberg scale at a logarithmic speed with the number
of data streams. Such a discrepancy is due to that for procedures
controlling the FDR, we allow a more relaxed decision criterion
compared with procedures controlling the FWER.

Remark 4: Our assumption that all the data streams have
the same prior distribution of their change points is mainly for
convenience of analysis, but it can be relaxed. When different
data streams have their own prior distributions, i.e. 7,, = 7.,
our results about FDR control and ADD asymptotic behavior can
also be established, following the proofs of Theorems 1 and 3,
and the general conclusion in Theorem 3 that under FDR control
the ADD does not grow without bound with K still holds true.
Similarly, the assumption that all the data streams have the same
pre/post-change distributions can be relaxed as well.

V. EXTENSION TO DETECTION AND ISOLATION PROBLEMS

In this section, we generalize the problem formulation of
change detection to change detection and isolation for parallel
data streams. The change detection and isolation problem is
about situations where after the change point, there are multiple
distinct post-change hypotheses, only one of which is true,
and the goal is to detect the change as soon as possible and
identify the correct post-change distribution after the change
occurs, subject to certain constraints on the false alarms and
the false isolations. It is of importance for many applications,
including fault diagnosis in dynamical systems and industrial
processes, environment surveillance and monitoring, and target
identification in radar and sonar signal processing; see, e.g., [7].

A. Model and Problem Formulation

Considera family (P}, k € [K1, j € [J]} of probability mea-
sures on (€2, 7) that describes both the prior distribution of
t® and the distribution of {X*), k € [K],n = 1,2, ...}. Under

Pfrk;, X(k) X(k) ...,Xt((f))_l are i.i.d. with a (pre-change) dis-
tribution hg, and Xz((f)), Xz((f,) Lps - are ii.d. with another (post-

change) distribution /;w, j* € [J] and further independent of
X, ) Xz(k), .. Xt((],f)) |- For simplicity, we write P(k; for P;k)m
We also impose a prior probability distribution p(j) on the
change type j, and that ho and h; are probability densities with
respect to some measure P on (Q, F).

Now the decision maker needs to decide, for each data stream,
both its change point and its change type (i.e., the post-change
distribution). So we extend the definition of a decision procedure
in Section II as follows.

Definition: A decision procedure for detection and isolation
is a multiple stopping rule R consisting of a sequence of stopping
times and decisions, as

Rz(T11D19‘7117129D2a~727--'sTKaDKyjK)v (48)

where {7}, k € [K]} and {Dy, k € [K]} are the same as those in
(5) for a decision procedure for the basic problem formulation,
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and J; denotes the decided change type for the Dy-th data stream,
k € [K].

We also define the stopping time and the decided change type
for every data stream.

Definition: For k € [k], denote by T® the stopping time for
the k-th data stream, the same as that in Section II, and by J®
the decided change type for the k-th data stream.

We then extend the definition of the FDR to incorporate the
effect of deciding change types incorrectly.

Definition: Denote by R is the number of change points
declared by R, i.e., the number of elements in {T®, k € [K]}
satisfying T®) < N, and by V the number of falsely declared
change points or falsely classified change types, i.e., the number
of elements in {T®, k e [K]} satisfying {T® <t® TH® <
NYUJ(t® < T® < N,J® = j®) The FDR of R is

i
Rv1]’

where E. , represents the expectation with respect to
PY p(j). k € [K], j € 1}

FDR = E, , [ (49)

B. Decision Procedure

For single-stream Bayesian change detection and isolation
problems, thus far there has not been an optimal Bayesian
solution satisfying the constraints on false alarm and false iso-
lation probabilities for general prior distributions of the change
point, except an asymptotically optimal Bayesian solution for
the geometric prior in [31]. Most non-Bayesian solutions are
proposed to satisfy constraints on average run length type of
false alarm criteria, which are not suitable in the FDR-control
problem formulation with multiple data streams; see, e.g. [32]-
[34]. To construct a decision procedure controlling the FDR, we
consider a non-Bayesian approach in [35], which aims at having
a control of the weighted sum of false alarm and false isolation
probabilities, and possesses asymptotic optimality with some
conditions. For each data stream k € [K], we define a sequence
of statistics according to [35, Thm. 6],

n
S(k) = max max z® j, 0
n—maflfnil: $ (] )

sS=

I<j<J

n +
— max max 7o ,0 , 50
<lsgslqg¢j n—my <l<n £— s (8 )) } (50)
in which m,, is a window size we choose and
2.0y = log (; (X)) /ho (X)) .
Let
I 1 hj(x)
e = og hj(x)P(dx).
hg(x)
In the sequel, we assume that
I"=min  min [, >0. (5D

1<j=<J 0=g=J.g#j
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Furthermore, we assume that the distribution of the change point

satisfies
ad o
o (om) =o e ).
0g<; 71,) 0 ogK
as K — oo.

In the following, we fix a parameter o € (0, 1). According
to [35], we choose m,, to satisfy

(52)

lim infma/ ‘log%‘ > 1/ min min

I,
1<j=J 0=g=J.g#j '*

o
logm, = o (‘log ED as K — oo. (53)
We set an array of threshold values
Ok <Qk-1=<...<01, (54)
according to
20 — Dymy + 27 mye™ @ = %a, (55)

which means that for threshold value Q;, the weighted sum of
the false alarm and false isolation probabilities does not exceed
<o as shown in (59).

We present the decision procedure, called MDI-FDR, in
Algorithm 3.

For the stopping times {T®)}, k € [K], obtained from
MDI-FDR, we have

J 00

33 s P (0 < TO < 00,70 2 j)

j0=110=1

o0
+ 3 P (T% <1®) < (%) a, Vs € [K], (56)

=1

where the subscript %) in P,w ; and P, indicates that they are
probability measures under a given change point ¢,

To see that the thresholds {Q,} satisfy (56), note that according
to [35, Thm. 7], we have

2Jmy
sup P (1 < T® < 1+ my) < =0 (57)
=1 eQr
sup B j (V <T® < r+my, J® #* j(k))
I<t<r
2(J — Dmy,
< ( m, ’ (58)
0

where (T'™,J®) is obtained by the decision procedure
MDI-FDR. Then we have

J 00
30 p( P ;% < TH < 00, 7% 3£ j©)

=110 =1

00
+ Z ﬂt(k)R(k)(T(k) < t(k))

=1
o0
<2(J - l)mae_Q‘ + 2Jmye” % !1 + m;l Ztﬂf}
=1

< 20U = Dmy + 2] mge™ 2, (59)
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Algorithm 3: MDI-FDR.

1) Initially setg = 1,1, = [K],n =1, and ny = 0.

2) Sample the active data streams {X,fk)}kelq.,,mwI , and
update the statistics {S,(lk)}kelq,,,mq_] using (50).

3) Sort the statistics in ascending order as {SU},
where i(n, [) denotes the index of the [-th ordered
statistic at time epoch n.

4) Repeat 2)-3) with n increased by 1 each time, until
equals

ng =N Amin {n > n,_;|SID
> Q141,31 € [|I,]1}.

a) Ifn, < N, stop the g-th stage and declare change
points at n, for the following data streams:

(60)

X(i(nq ) X(i(nt, Ay +1)

Ny s Ay LI

X(i(m,,IL, D)

) nq )
where
I, = min |l € [[L1|SY"D > Og_y1i}. (61

Meanwhile, declare change types as

hAG 0)} . (62)
s=l

for these declared data streams above. Update
I,41 to exclude the indices of these declared

max

1<j<J | ng—my<l=n,

J® = arg max {

data streams. If |I,4| = O, then stop; otherwise,
set ¢ = g + 1, and go to 2) to begin the
next stage.

b) Otherwise, n, = N, declare that all the active
data streams in I, have no change
points, and stop.

where the first inequality follows from an argument similar to
the proof of [35, Thm. 7], and the second inequality is from (52)
and (53).

The following result provides a bound on the FDR of
MDI-FDR.

Theorem 5: For a given 0 < o < 1, the decision procedure
MDI-FDR satisfies
K7 + (KlogK — K loga) /I* + o(K)

N

where o(K)/K — 0 as K — oo. Hence if we scale N with K
such that (KlogK)/IV — 0 as K — oo, we have

FDR < o +

. (63)

FDR < o + o(1), (64)

in which o(1) — 0 as K — oo.

Proof: The proof is similar to that of Theorem 1, and thus
we only indicate the difference between the proofs. Instead of
(20), we define W; g as

Wiy = {S® > 05, 3n <t®,or J® £ j® In >t} (65)

So according to (56), we have P; ,(W; ) < sa/K, where the
subscript p represents the prior distribution of the change type.
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We can then follow the proof of FDR, in Theorem 1. Upon
imposing N, we utilize the following result about the expected
delay in detection and isolation problems:

Lemma 6: [35, Thm. 7] If (T®, J®)) satisfies (56), then for
every 1 < j </,

o0
Z JT,(wE,(k),J- [T(k) —® |T(k) > t(k)]
=1

~( +o(1))|1oga|/

min

1,  asa— 0.
§=J.8#]

(66)

Hence, we have for every k € [K],

Er[,p [T(k)

1
=r log —(1 +o(1)),

— @ |7® > ®)]

PG T ; [T® = 18|70 > (0]

”M8

(67)

where o(1) — 0 as K — oo in our situation. The expectation
E,w ; is taken with respect to P« ;. Then we use (67) to replace
(36) in the proof of Theorem 1, and the remaining part readily
follows. |

We also study the ADD performance of MDI-FDR, which is
defined in the same way as that in Section II. Applying (67), we
have the following result regarding the ADD.

Theorem 7: For the decision procedure MDI-FDR control-
ling the FDR by «, as K grows without bound, we have:

ADD < 11 (loga(l — )| + 1) (1+0(1)).  (68)

The proof is similar to that of Theorem 3 and is thus omitted
here.

We can see that the statistics in MDI-FDR do not exploit
the knowledge of the distribution of change types. So we also
propose a heuristic statistic with a Bayesian flavor as:

S\ = e Gﬁlk)(j’a?)) ’ 69)
(maxlsgs 162 GP (g, 0) v 1)
where Gflk)( J, 0) is a statistic similar to (10) as:
GRG0 =1 (G2, G, O +7,) LG, 00, (70)
where Qi = Prt® > n 41} and L¥,0) =

hj(X,fk))/ho(Xn(k)), 1<j<J. We use the thresholds {Q,}
in (12). This thus leads to a heuristic decision procedure called
MDI-Heuristic in Algorithm 4. Unfortunately we have not
established FDR control for MDI-Heuristic, but our numerical
experiments in Section VI-B suggest that this heuristic decision
procedure performs well. A more thorough theoretic analysis
of MDI-Heuristic is left for future research.
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Algorithm 4: MDI-Heuristic.

1) Initially setg = 1,1, = [K],n =1, and ny = 0.

2) Sample the active data streams {er“}kelq,nmqq , and
update the statistics {S,gk)}kelq,m,,q_] using (69).

3) Sort the statistics in ascending order as {SU"!)},
where i(n, ) denotes the index of the /-th ordered
statistic at time epoch n.

4) Repeat 2)-3) with n increased by 1 each time, until n
equals

ng = N A min {n > ng_ ‘S(‘(” 2

> QOg—i41,3l € [|Iq|]}~

a) Ifn, < N, stop the g-th stage and declare
change points at n, for the following
data streams:

(71)

i(ng, 1, i(ng,lg+1 I
ny;(n, q))’ny;(nq g+ ))’ - Xn(;(n., Mg I))

where
Iy =min {l € [[I|SY" > Qk_111}. (72

Meanwhile, declare change types as

G®(j,0)
(maxlsgsf,gaej G (g, 0) v 1)

jk)
JW =arg lrillazcj
(73)
for these declared data streams above. Update
I;+1 to exclude the indices of these declared data

streams. If |I,4 1| = O, then stop; otherwise
set g = g + 1, and go to 2) to begin the
next stage.

b) Otherwise, n, = N, declare that all the active
data streams in I, have no change points,
and stop.

Finally, we also consider decision procedures that control
the FWER, which is defined as Pr{V > 1}. Here we provide
a decision procedure based on Bonferroni’s procedure, denoted
as MDI-Bonferroni, as described in Algorithm 5.

VI. SIMULATION RESULTS

In this section, we present the numerical results of Monte
Carlo simulations designed to compare the proposed decision
procedures controlling the FDR and the FWER. In order to make
a fair comparison, we set the upper bounds of the FDR and the
FWER the same, as & = 0.1. The deadline N is 2000.

A. Multiple Change Detection

Regarding the prior probability distribution of change points,
we set the probability of that there is no finite change point
as o, = 0.2, and set the distribution of finite change points as
a (conditional) geometric distribution with parameter p = 0.1.
Table II displays the estimated FDR/FWER for K i.i.d. data
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TABLE II
ERROR PERFORMANCE FOR CHANGE DETECTION WITH LI.D.
GAUSSIAN DATA STREAMS

K Procedure Estimated FDR/FWER
MD-FDR 0.0261
10 MD-Bonferroni 0.0153
MD-Hochberg 0.0275
MD-FDR 0.0230
100 MD-Bonferroni 0.0129
MD-Hochberg 0.0211
MD-FDR 0.0225
200 MD-Bonferroni 0.0135
MD-Hochberg 0.0238
MD-FDR 0.0221
500 MD-Bonferroni 0.0127
MD-Hochberg 0.0238
MD-FDR 0.0222
1000  MD-Bonferroni 0.0116
MD-Hochberg 0.0220

Algorithm 5: MDI-Bonferroni.

1) Initially setg = 1,1, = [K],n =1, and nyp = 0.

2) Sample the active data streams {Xn(k) }kequ,pnq_l , and
update the statistics {S%}cer, u=n,, using (50).

3) Repeat 2) with n increased by 1 each time, until n
equals

ng=NAmin{n>n,|SP>0,3Fkel,}. (74
a) Ifn, < N, stop the g-th stage and declare

change points at n, for data streams that
satisfy (74). Meanwhile, declare change types as

J® = arg max
l=j=J

max
ng—mgy<l<n,

Y zZ9G.0F. a5
s=l

for these declared data streams above. Update
I;+1 to exclude the indices of these declared data

streams. If [T, 1| = 0, then stop; otherwise,
set g = g + 1, and go to 2) to begin the
next stage.

b) Otherwise, n, = N, declare that all the active
data streams in I, have no change points,
and stop.

streams, with pre/post-change probability distributions:

ho ~ N(O, 1) v.s. hy ~ N(1, 1). (76)

We see that all the decision procedures well satisfy the upper
bound «.

Fig. 2 compares the ADD performance of the decision proce-
dures. We see that the ADD is not visibly affected by the number
of data streams K for MD-FDR, but tends to grow logarith-
mically with K for MD-Bonferroni and MD-Hochberg. This
observation confirms the analytical result in Theorem 3, which
indicates that FDR control decision procedures tend to be more
scalable compared with FWER control decision procedures.

B. Multiple Change Detection and Isolation

We again consider the prior probability distribution of change
points as a mixture of a singleton at infinity with probability
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Fig. 2. ADD comparison of FDR control decision procedures and FWER
control decision procedures.

TABLE III
PERFORMANCE FOR CHANGE DETECTION AND ISOLATION WITH LI.D.
GAUSSIAN DATA STREAMS UNDER CONFIGURATION P1

Pl
K Procedure Estimated FDR/FWER  ADD R
10 MDI-FDR 0.0143 3.49 9.13
MDI-Bonferroni 0.0154 3.98 9.02
100 MDI-FDR ' 0.0137 3.50 90.87
MDI-Bonferroni 0.0137 4.68 89.65
500 MDI-FDR . 0.0136 3.54 45553
MDI-Bonferroni 0.0151 529  449.50
1000 MDI-FDR _ 0.0138 354 912.00
MDI-Bonferroni 0.0146 5.53 900.05

T and a geometric distribution with parameter p = 0.05. We
further set the post-change type as a uniform distribution on
{1,...,J}, and consider K i.i.d. data streams with pre/post-
change probability distributions:

ho ~ N(0,1) vs. h;j~N(uj, 1), p(j) =1/J.
We run simulations for four configurations as follows:

Pl1:J=2,710 =0.1, [u1, u2] = [2, 6],

P2:J =210 =0.1, [y, 2] = [2, =2],

P3:J =270 =0.6,[11, n2] = [2, 6],

P4:J =310 =0.1, [y, 2, 3] = [2, 6, 4].

Tables III through VI display the results, wherein we include
R, the average number of change points declared.

Comparing Tables III and IV, we see that as the gap between
w1 and u, decreases, the FDR/FWER and the ADD increase,
reflecting that the task of isolation of post-change type becomes
challenging. Comparing Tables III and V, we see that a larger
probability of infinite change point considerably worsens the
FDR/FWER, whereas still controlled by the prescribed upper
bound. From Table VI, we see that an increase in the number of
post-change types decreases the FDR/FWER, but at the cost of
increasing the ADD. This is because in the decision procedure
the thresholds increase with J and the error probability is with
respect to the worst case. This suggests that when J is large, it
may be possible to set smaller thresholds to control the error
rates at a similar level but with reduced decision delays.
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TABLE IV
PERFORMANCE FOR CHANGE DETECTION AND ISOLATION WITH 1.I.D.
GAUSSIAN DATA STREAMS UNDER CONFIGURATION P2

P2
K Procedure Estimated FDR/FWER  ADD R
10 MDI-FDR . 0.0306 4.96 9.28
MDI-Bonferroni 0.0379 5.69 9.04
100 MDI-FDR . 0.0319 5.06 92.38
MDI-Bonferroni 0.0392 6.89 89.68
500 MDI-FDR . 0.0297 5.07 46291
MDI-Bonferroni 0.0343 7.77 449.52
1000 MDI-FDR . 0.0300 5.07  926.56
MDI-Bonferroni 0.0320 8.17 900.07
TABLE V

PERFORMANCE FOR CHANGE DETECTION AND ISOLATION WITH LLD.
GAUSSIAN DATA STREAMS UNDER CONFIGURATION P3

P3
K Procedure Estimated FDR/FWER ~ ADD R
10 MDI-FDR 0.0835 3.59 439
MDI-Bonferroni 0.0917 3.88 4.09
100 MDI-FDR 0.0790 380 43381
MDI-Bonferroni 0.0787 4.77 40.43
MDI-FDR 0.0788 379 21731
300 vipI-Bonferroni 0.0760 527 20027
1000 MDI-FDR 0.0790 380 435.56
MDI-Bonferroni 0.0800 5.54 401.40

TABLE VI

PERFORMANCE FOR CHANGE DETECTION AND ISOLATION WITH LLD.
GAUSSIAN DATA STREAMS UNDER CONFIGURATION P4

P4
K Procedure Estimated FDR/FWER  ADD R
10 MDI-FDR 0.0031 7.21 9.04
MDI-Bonferroni 0.0028 8.13 9.02
100 MDI-FDR _ 0.0028 7.31 90.44
MDI-Bonferroni 0.0035 9.70 90.20
500 MDI-FDR . 0.0029 7.32  451.75
MDI-Bonferroni 0.0025 10.97  450.52
1000 MDI-FDR . 0.0029 7.33 903.22
MDI-Bonferroni 0.0027 11.62  900.79

ADD

~——&— MDI-FDR
—— MDI-Bonferroni
1 1 1 1 1 1 1 1 1 1

0
0 100 200 300 400 500 600 700 800 900 1000 1100
Number of Data Streams

Fig. 3. ADD of MDI-FDR and MDI-Bonferroni under configuration P4.

In terms of the ADD, MDI-FDR outperforms
MDI-Bonferroni. The performance shown in Fig. 3 exhibits a
similar trend as that in Fig. 2: the ADD in MDI-FDR is not
visibly affected by K, but tends to grow logarithmically with K
in MDI-Bonferroni.
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TABLE VII
COMPARISON OF MDI-FDR AND MDI-Heuristic FOR CHANGE DETECTION AND
ISOLATION WITH L.I.D. GAUSSIAN DATA STREAMS

P4

K Procedure Estimated FDR ~ ADD
10 MDI-FDR 0.0236 5.97
MDI-Heuristic 0.0310 3.52

100 MDI-FD_R_ 0.0217 6.06
MDI-Heuristic 0.0265 3.61

500 MDI—FD'R . 0.0224 6.07
MDI-Heuristic 0.0266 3.60

1000 MDI-FD.R . 0.0220 6.07
MDI-Heuristic 0.0266 3.60

We also conduct simulations for the heuristic decision pro-
cedure MDI-Heuristic, and compare its performance with
MDI-FDR in Table VII. We see that both decision procedures
control the FDR at a similar level, and that MDI-Heuristic
achieves lower ADD compared with MDI-FDR, which is
consistent with our intuition that MDI-Heuristic makes better
use of the prior information.

VII. A CASE STUDY: MULTICHANNEL SPECTRUM SENSING IN
COGNITIVE RADIOS WITH KNOWN PARAMETERS

We conduct a case study in which we apply the proposed de-
cision procedures to the multichannel dynamic spectrum access
problem for cognitive radios.

Cognitive radio has been a potential solution to the problem
of spectrum effectiveness in wireless communications [36][37].
The technology relies on detection of idle resources in the
licensed spectrums to the primary users and dynamic utilization
of these spectrum resources by the cognitive users. To make
this technology feasible, the cognitive users should vacate the
spectrum bands as soon as the primary users start to transmit
signals so as to avoid undesirable interference. A small detection
delay will maximally make use of vacant spectrum bands, and
also minimize interference to the primary network after it re-
sumes transmissions. Thus, the detection delay is a performance
metric in spectrum sensing as important as the false alarm rate,
especially in bursty applications. The resumption of the primary
transmission will resultin a change in the probability distribution
of the observed signal at the cognitive user. Therefore, sequential
change detection can be an appropriate method for spectrum
sensing in cognitive radios [38][39].

Now we consider a multichannel dynamic spectrum access
model for cognitive radios, as shown in Fig. 4, where each
channel corresponds to a data stream, and the beginning of
a primary user’s transmission corresponds to a change. For
simplicity, we only consider the single cognitive user mode
for each channel. There is a fusion center that can process the
information from all cognitive users without loss.

We assume there are K frequency channels allocated to K
primary users without dependence. We make each cognitive
user monitor the corresponding spectrum band and take signal
samples sequentially. Let XX denote the received signal at the
k-th cognitive user at time slot n. When the primary user is
not transmitting, X*) = W®, where W® is assumed to be
circularly symmetric complex Gaussian with mean zero and
variance o>. When the primary user is active and transmitting,
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Fusion Center

% Licensed channel PU: Primary User
—=————) Spectrum sensing CU: Cognitive User
Fig. 4. Illustration of a multichannel spectrum access network.

X8 = 7" 1 Wk where Z® is the faded received primary sig-
nal at the k-th cognitive user. We assume a time-invariant channel
gain h®) of the k-the frequency channel, and Z*) = p® sk
to be zero-mean circularly symmetric complex Gaussian with
variance P*). The primary user is initially inactive, and at an
unknown time slot ) it becomes active for the k-th spectrum
channel. Thus there is a change in the distribution of data samples
from CN(0, 62) to CN(0, 0> + P®) at the unknown time slot
t® for the k-th data stream. Here, the post-change distributions
are different for each data stream, which is reasonable because
the channel gains cannot be the same among all spectrum
channels. As for the distribution of change points, in wireless
communications, the arrival time of the primary user’s traffic
can be simply assumed to follow a geometric distribution with
parameter p. In practice, because the communication signal is
a complex number, we usually take the absolute square of the

. . . 2 . .
received signal, i.e., X,fk)| as the input of the corresponding

detection procedures. The change in the distribution of |X,fk) |2
should be from an exponential distribution Exp(c?) to another
one Exp(a? + P®),

Thus our proposed decision procedure MD-FDR can be suit-
able for this problem, even though the post-change distributions
are different for each data stream, which is mentioned before in
Section IV. It is natural to interpret the FDR as the severity of
the “wasted” spectrum (i.e., those unused channels mistakenly
detected as occupied by primary users), and the ADD as the
amount of mean interference duration induced by the cognitive
users. We can apply the decision procedure MD-FDR to this
multichannel dynamic spectrum sensing problem to detect the
retransmitting of primary users as quickly as possible to give
primary users more protection while controlling the waste of
spectrum resources.

We present simulation results in Fig. 5 to compare the perfor-
mance of the proposed decision procedures controlling the FDR
and the FWER with different numbers of spectrum channels. The
upper bounds of the FDR and the FWER are set to be the same, as
o =0.05,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, respectively. The
parameter of the prior distribution of change points is set as
p = 0.05. As for the variances of pre/post-change probability
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Fig.5. ADD versus FDR/FWER for different number of frequency channels.

distributions, we set 0> = 2 and P%® is drawn from [1,2] uni-
formly for different K. We can see that the ADD decreases with
the increase of FDR/FWER for all decision procedures, and the
FDR control decision procedures actually have a smaller mean
inference duration compared with the FWER control decision
procedures. The ADD of FWER control decision procedures has
a larger increase for large K compared with that of FDR control
decision procedures. This is due to the fact that, for large K the
FWER metric will lead to a more stringent constraint on the false
alarm rate and then make the ADD increase, which is consistent
with the results in Section IV-B and Section VI-A. The ADD
of MD-FDR varies only slightly with K because there are more
different post-change probability distributions with the increase
of K and the ADD is associated with different KL divergences.

Note that we only consider the simplest situation in which
the parameters of pre/post-change distributions are known. In
practice, because of the unknown primary signal statistics and
channel gains, it is difficult to make the parameters of the post-
change distributions precise. Thus, we may consider that P*)
belongs to a certain set of possible values, which is similar to
the model in Section V.

VIII. CONCLUSION

To cope with the emerging situation of analyzing large-
scale real-time streaming data, in this work, we have examined
the problem of sequentially detecting changes in parallel data
streams, and brought the error metric of FDR into the problem
formulation. Our proposed FDR-oriented decision procedure is
a sequential variant of the classical BH procedure, where the p-
value is replaced with a sequential detection statistic. Thanks to
the characteristics of FDR-oriented decision procedures, when it
comes to change detection problems, the average decision delay
is significantly reduced compared with conventional FWER-
oriented decision procedures. Our theoretical findings are also
corroborated by numerical experiments and case studies related
to cognitive radios.

Note that we have not established the optimality of our
proposed decision procedure for the problem of sequentially
detecting changes in multiple data streams. It appears to be
difficult to establish a lower bound for the ADD of any decision
rule in the class of rules with a given FDR upper bound. This is
an important yet unsolved issue for future research.
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