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Learning Nonnegative Factors From Tensor Data:
Probabilistic Modeling and Inference Algorithm
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Abstract—Tensor canonical polyadic decomposition (CPD) with
nonnegative factor matrices, which extracts useful latent informa-
tion from multidimensional data, has found wide-spread applica-
tions in various big data analytic tasks. Currently, the implementa-
tion of most existing algorithms needs the knowledge of tensor rank.
However, this information is practically unknown and difficult to
acquire. To address this issue, a probabilistic approach is taken in
this paper. Different from previous works, this paper firstly intro-
duces a sparsity-promoting nonnegative Gaussian-gamma prior,
based on which a novel probabilistic model for the CPD problem
with nonnegative and continuous factors is established. This proba-
bilistic model further enables the derivation of an efficient inference
algorithm that accurately learns the nonnegative factors from the
tensor data, along with an integrated feature of automatic rank de-
termination. Numerical results using synthetic data and real-world
applications are presented to show the remarkable performance of
the proposed algorithm.

Index Terms—Tensor decomposition, nonnegative factors,
variational inference, automatic rank determination.

I. INTRODUCTION

ODERN society generates large amounts of data, much
M of which has multiple attributes, and tensors provide a
natural representation for such data. Because these data often
consist of latent components, tensor canonical polyadic decom-
position (CPD) [1], which is defined as a linear combination of
rank-1 tensors, has been very popular and successful in achieving
state-of-the-art performance for various big data mining tasks
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including social group clustering [2]-[4], text mining [5], [6],
drug discovery [7], environmental and biomedical analysis [8],
[9], and channel estimation in the next generation communica-
tions [10], [11]. Compared to the standard matrix decomposition
which provides a “flat-world view,” tensor CPD retains the infor-
mation along all the data dimensions by virtue of its multi-linear
structure, and is capable of producing unique and physically
meaningful latent components both theoretically [1], [12] and
empirically [2]-[11]. That is why tensor CPD has witnessed
increasing popularity and adoption in applications mentioned
above and beyond.

Despite the inherent uniqueness of the basic CPD, incorporat-
ing side information into the CPD model could further improve
its identifiability and interpretability [13]. This has triggered a
number of recent studies on developing constrained tensor CPD
algorithms for various applications [14], [15], [24], wherein ten-
sor CPD with nonnegative factors plays an important role [16],
[17]. Due to the nonnegative constraint imposed on each element
of the factor matrices, the combination of latent rank-1 compo-
nents only allows addition but not subtraction. This leads to a
parts-based representation of the data, in the sense that each ex-
tracted latent component is a part of the data, thus further enhanc-
ing the interpretability of various data analytic results [13]-[17].

However, imposing nonnegative constraints on the CPD
model is not easy, since it further complicates the originally
non-convex CPD problem [1]. To tackle this, the most popular
solution is the nonnegative alternating least-squares (NALS)
method [16]. The NALS algorithm iteratively optimizes one
factor matrix at a time while holding other factor matrices fixed,
and in each iteration, the optimization with respect to a single
factor matrix is a nonnegative least-squares problem [16], for
which recent parallel algorithms [18], [19] have been proposed.
In addition to the NALS framework, recent derivative-based
approaches [20], [21], which update all the nonnegative factor
matrices in each iteration via first-order optimization methods,
were also developed to achieve scalability.

While deriving tensor CPD algorithms with nonnegative
factors is possible from a nonlinear programming perspective,
their implementations require the knowledge of tensor rank.
The tensor rank is defined as the smallest number of rank-one
tensors that could be linearly combined to generate the original
tensor [1]. Its physical meaning is the number of latent
components inside the data. For example, in social group
analysis [2], the tensor rank corresponds to the number of
clusters of people, or in biomedical data analysis [9], the tensor
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rank represents how many different types of chemical species
are in the given sample. This knowledge might be obtained
from problem-specific domain information in some cases, but
most of the time it is unknown and has to be estimated.

Unfortunately, determining the tensor rank is known to be
non-deterministic polynomial-time hard (NP-hard) [1]. A com-
mon approach is to run multiple algorithms assuming different
tensor ranks, and choose the best one in data interpretation.
Although this manual tuning procedure is widely adopted in
tensor data mining research, heavy computational burden is
inevitable. To learn the tensor rank automatically, recent ad-
vances in probabilistic inference [5], [6], [22]-[26], [31] inte-
grate the tensor rank learning into its hyper-parameter inference
steps, and the Bayesian theory provides a natural recipe for
automatic rank determination. However, existing probabilistic
CPD models [23]-[26], [31] only considered factor matrices
with no constraints or with orthogonal constraints. Although
recent works [5], [6], [22] have considered the tensor CPD with
nonnegative constraints, their algorithms are tailored to handle
count-valued data and factor matrices, which frequently occurs
in text mining and link prediction. However, continuous data
and factor matrices are prevalent in many applications such as
biomedical data analysis [8], [9] and Gaussian noise corrupted
image/video/speech processing [23], [24], [36]. Even though
some datasets are originally count-valued, any pre-processing
procedure such as normalization and centralization would de-
stroy the discrete nature [2]-[4]. Therefore, it is essential to
design a probabilistic tensor CPD model that is tailored to
continuous data and incorporating nonnegative constraints on
its continuous factor matrices.

Designing a probabilistic model is an art. It needs to trade
off the expressive power of the model and the tractability of the
inference algorithm. A good model should be flexible enough to
incorporate information of the problem while simple enough to
enable an efficient inference algorithm, and this forms the core of
modern research of probabilistic inference [22]-[33], [38]-[40],
[49]-[51]. In previous probabilistic CPD models [23]-[26],
the Gaussian-gamma prior distribution is used as the primary
building block due to its appealing sparsity-promoting and expo-
nentially conjugacy property, which has enabled automatic rele-
vance determination in relevance vector machine [27], [28] and
low-rank matrix decomposition [29], [30]. However, it is with
an unbounded support and thus cannot model non-negativeness.
In this paper, we inspect its nonnegative variant, i.e., the non-
negative Gaussian-gamma prior distribution, and show that it
inherits all the desired properties of the Gaussian-gamma prior
distribution. Using the nonnegative Gaussian-gamma prior, a
novel probabilistic CPD model with explicit nonnegative con-
straints on its continuous factor matrices is proposed. Then,
under the framework of variational inference [32], [33], an
efficient inference algorithm with no high-dimensional multi-
ple integration is developed. The resulting algorithm, which
includes the NALS algorithm as a special case, is guaranteed
to converge and is very flexible in incorporating the most recent
advances in optimization [18], [41] for scalability improvement.

The remainder of this paper is organized as follows. Sec-
tion II presents the formulation for the CPD problem with
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nonnegative factors and the challenges ahead. In Section III, a
probabilistic CPD model with nonnegative factors is established,
based on which an efficient inference algorithm is derived in
Section IV. Numerical results with synthetic data and real-world
data are reported in Section V. Finally, conclusions are drawn in
Section VI.

Notation: Boldface lowercase and uppercase letters will be
used for vectors and matrices, respectively. Tensors are written as
calligraphic letters. E[-] denotes the expectation of its argument.
Superscript T denotes transpose, and the operator Tr(A) denotes
the trace of a matrix A. || - || represents the Frobenius norm
of the argument. N'(xz|u, R) stands for the probability density
function of a Gaussian vector & with mean u and covariance ma-
trix R. The N x N diagonal matrix with diagonal components
ay through a y isrepresented as diag{ay, as, ..., ax }, while I 5,
represents the M x M identity matrix. The (7, 7)*" element, the
ith row, and the jth column of a matrix A are represented by
A;j, A;.and A, ;, respectively.

II. CPD WITH NONNEGATIVE FACTORS AND CHALLENGES IN
RANK ESTIMATION

Tensor CPD with nonnegative factors has found applications
in many different fields [13]—[17]. For illustration, fluorescence
data analysis [34], [35] and e-mail data mining applications [2]-
[4] are presented in Appendix A. The general problem, which
decomposes a N dimensional tensor )) € R/1*/2x*J~ into a
set of nonnegative factor matrices {E(”) MV, is formulated as:

R
17y =W oo o= |3
r=1

min
(=M,
LM =) =2(00]
st. 2" >0, g, n=12,..,N, (1)

where symbol o denotes vector outer product.

In problem (1), there are two significant challenges. Firstly,
nonnegative factor matrices {Z™ }N_, are complicatedly cou-
pled, resulting in a difficult non-convex optimization problem.
To tackle this challenge, alternating optimization is one of the
most commonly used techniques. In each iteration, after fixing
all but one factor matrices, problem (1) will become a standard
nonlinear least-square (LS) subproblem, for which there are
various off-the-shelf algorithms for solving it [42], including
interior point methods and augmented Lagrangian methods. To
scale the solution of each subproblem to handle big tensor data,
first-order methods, such as Nesterov-type projected gradient
descent [44, page 81 and 90], has been proposed to replace the
interior point methods in [18], [19].

Although pioneering works [18], [19] allow the learning
of nonnegative factors from big multidimensional data, they
still face the second critical challenge of problem (1): how to
automatically learn the tensor rank R from the data? With the
physical meaning of tensor rank being the number of compo-
nents/groups inside the data (see Appendix A), this value is
usually unknown in practice and its estimation has been shown
to be NP-hard [1]. For tensor CPD with no constraints on at least
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one factor matrix [23]-[26], this problem has been well solved
via a probabilistic inference approach by the employment of the
Gaussian-gamma prior distribution. In particular, without loss
of generality, consider a machine learning model with param-
eter w € RM*1 The model parameter w consists of S non-
overlapped blocks, each of which is denoted as w, € RMs*1,
The Gaussian-gamma prior can be expressed as [27]-[30]:

S S
p(wl{aS}le) = Hp(ws‘as) = H N(ws|01\45><1a a§11M5)7
s=1 s=1
(2)
S
p({aS};g:l) = H gamma(as‘as; bs)7 (3)
s=1

where «; is the precision parameter (i.e., the inverse of vari-
ance, also called weight decay rate) that controls the relevance
of model block w, in data interpretation, and {a,bs}3 ;
are pre-determined hyper-parameters. There are two important
properties of Gaussian-gamma prior that leads to its success
and prevalence in a variety of applications [23]-[30], [49]-[51].
Firstly, after integrating the gamma hyper-prior, the marginal
distribution of model parameter p(w) is a student’s t distribution,
which is strongly peaked at zero and with heavy tails, thus
promoting sparsity. Secondly, the gamma hyper-prior (3) is
conjugate' to the Gaussian prior (2). This conjugacy permits
the closed-form solution of the variational inference [32], [33],
which has recently come up as a major tool in inferring compli-
cated probabilistic models with inexpensive computations.

However, the Gaussian-gamma prior in (2) and (3) cannot be
used in the CPD problem with nonnegative factors, since the
support of Gaussian probability density function (pdf) in (2) is
not restricted to the nonnegative region. This calls for a different
prior distribution modeling. An immediate idea might be to
replace the Gaussian distribution in Gaussian-gamma prior by
the truncated Gaussian distribution with a nonnegative support.
However, a closer inspection is needed since there is no existing
work discussing whether a gamma distribution is conjugate to a
truncated Gaussian distribution with a nonnegative support (see
Appendix B for related discussions).

III. PROBABILISTIC MODELING FOR CPD WITH
NONNEGATIVE FACTORS

A. Properties of Nonnegative Gaussian-Gamma Prior

The support of the Gaussian pdf in (2) is unbounded, and thus
cannot model non-negativeness. On the other hand, the truncated
Gaussian prior with a nonnegative support for each model block
w, can be written as:

S

ptwl{ayly) =[] p" (wila)

s=1

!In Bayesian theory, a probability density function (pdf) p(x) is said to be
conjugate to a conditional pdf p(y|z) if the resulting posterior pdf p(z|y) is in
the same distribution family as p(z).
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s
_ H N(w|0nr, 1,05 Thy,)

U(ws > 0pr,x1)
s=1 foo;sxl N(wS‘OMsX]Ja;lIMs) ° . 7

“4)

where the function U(wg > 03, «1) is a unit-step function with
value one when w, > 0y, <1, and with value zero otherwise.
Together with the gamma distributions (3) for modeling the pre-
cision parameters {c, }5_,, we have the nonnegative Gaussian-
gamma prior. Even though it is clear that nonnegative Gaussian-
gamma prior can model the non-negativeness of model param-
eters due to the unit-step function U(w, > 0y, «1), whether
it enjoys the advantages of the vanilla Gaussian-gamma prior
needs further inspection. In the following, two properties of the
nonnegative Gaussian-gamma prior are presented.

Property 1: The gamma distribution in (3) is conjugate to the
nonnegative Gaussian distribution in (4).

Proof: See Appendix B. |

Property 2: After integrating out the precision parameters
{as}5_,, the marginal pdf of model parameter w is

Pt (w) = / P (wl{a S (oo d{an )5y

s Mo
1\ 2 T(as+M/2) o
— 2Ms _ s s 2bs T < as—M/2

g (w) @by) T (ay) e T )

x U(ws > O0pr,x1) - (5)

It is a product of multivariate truncated student’s t distributions,
each of which is with a nonnegative support.

Proof: See Appendix B. |

The shape of the marginal distribution p™ (w) is determined
by the hyper-parameters {as, bs }5_,. Usually, their values are
chosen to be a very small value (e.g., e = 107%), sinceasa, — 0
and b — 0, a Jeffrey’s non-informative prior p(cs) o< a; ! [37]
can be obtained. After letting the hyper-parameters {as, bs}fz1
in (5) go to zero, it is easy to obtain the following property.

Property 3: If a; — 0 and by — 0, the marginal pdf of the
model parameter w becomes

s
pT(w) o H oM (1

M,
T ||2) U(ws > O0p.x1), (6)

which is highly peaked at zeros.

As an illustration for Property 2 and 3, univariate marginal
pdfs with different hyper-parameters {as, b }5_; are plotted in
Fig. 1, from which it is clear that the nonnegative Gaussian-
gamma prior is sparsity-promoting. Further with the conjugacy
property revealed in Property 1, the nonnegative Gaussian-
gamma prior is a good candidate for probabilistic modeling with
nonnegative model parameters.

B. Probabilistic Modeling of CPD With Nonnegative Factors

In the CPD problem with nonnegative factors in (1), the /th

column group {5(7) N_,, which consists of the [th column of all

the factor matrices, can be treated as a model block, since their
outer product contributes a rank-1 tensor. Therefore, with the

principle of nonnegative Gaussian-gamma prior in the previous

N

subsection, the /th column group {E;(7)}n:1 can be modeled
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Fig. 1. Univariate marginal probability density functions in (5) with different
parameters.

using (4), but with w, replaced by {5(7) MN_ | and oy replaced
by ;. Considering the independence among different column
groups in {2}, we have

p({E(n)};V:ﬂ{’Yl}lL:ﬂ
N (5(7) [0, x1, VflIJn)

N (E:(;L)lan,x1,’7f11Jn) ="

B

xU (85 2 0s,), )
L

p{mdizAy) = [] gammayle, dp), ®)
=1

where the precision 7y; is modeled as a gamma distribution. From
discussions below Property 2, ¢ and dY can be chosen to be a
very small value (e.g., ¢ = 10~%) to approach a non-informative
prior of precision parameter ;.

On the other hand, the least-square objective function in the
nonnegative tensor CPD problem (1) motivates the use of a
Gaussian likelihood [27]-[30]:

p (y | 5(1)35(2)’ . '7E(N)7ﬂ

N—

8 =0 =2 =
o exp <§ |y -[=0,8%, g™ E), O

in which the parameter [ represents the inverse of noise power.
Since there is no information about it, a gamma distribution
p(Blag) = gamma(Se, €) with very small e is employed, mak-
ing p(B|ez) approache Jeffreys non-informative prior.

The Gaussian likelihood function in (9) is with an unbounded
support over the real space, and thus it is suitable for applications
such as fluorescence data analysis [34], [35] and blind speech
separation [36], in which the observed data ) could be both
positive and negative [34]-[36]. On the other hand, if the data )
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Fig. 2.

Probabilistic model for tensor CPD with nonnegative factors.

are all nonnegative and continuous (e.g., the email dataset [2]-
[4] after pre-processing), a truncated Gaussian likelihood can be
used to model the data:

p(y|E(1)’E(2)7"'7E(N)7/8>

153 —_(1) — _
cop (2 1y 20205 ) U =0
(10)

Finally, the complete probabilistic model is a three-layer Bayes
network and is illustrated in Fig. 2.

Remark 1: For applications in Appendix A (i.e., fluorescence
spectroscopy and social group clustering), the desired factor
matrices are with continuous and nonnegative elements, and
thus the prior distribution should have a nonnegative support.
On other other hand, in order to automatically identify the
inherent component/cluster number, the prior distribution needs
to enjoy the sparsity promoting property. Therefore, the choice
of nonnegative Gaussian pdf together with a gamma hyper-prior
suits these applications.

IV. INFERENCE ALGORITHM FOR TENSOR CPD WITH
NONNEGATIVE FACTORS

The unknown parameter set ® includes the factor matrices
{E(”)}ﬁ’:l, the noise power 37! and the precision parameter
{71}£_,. The aim of Bayesian inference is to infer the posterior
distribution p(®[Y) = p(©,Y)/ [ p(®,))d®. However, the
proposed probabilistic model is too complicated to enable an
analytical solution since multiple integrations are involved. To

tackle this, variational inference [32], [33] has recently been
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widely used for inferring parameters of a complicated proba-
bilistic model. The key idea is to approximate the true poste-
rior distribution by a variational pdf Q(®) that minimizes the
Kullback-Leibler (KL) divergence KL(Q(®) || p(© | V)) £
~-Eqe) {ln p@ D})} thus recasting the probabilistic inference
problem into a functlonal optimization problem. To facilitate
the optimization, the variational pdf Q (@) is usually restricted
to the mean-field family Q(®) = H,ﬁil Q(Oy), where © is
partitioned into mutually disjoint non-empty subsets @ (i.e.,
Oy isapartof ® withUE_ ©; = @and NE_ O, = ©). Under
the mean-field assumption, each optimal variational pdf Q* (©},)
that minimizes the KL divergence is obtained by solving the
following problem with other {Q(©;)} ;. fixed [32]:

ain [Q(O)CEn, o, I1p(©, 1) +1Q(O1))de;.
(an

For this convex problem, the Karush-Kuhn-Tucker (KKT) con-
dition gives the optimal solution as [32, page 132]:

oxp (Enj#k Q(®;) [hlp (9’ y)])
feXp (Enj#k Q(®;) np (O, y”) d®y

Nevertheless, even under the mean-field family assumption,
the unknown parameter = =(*) is still difficult to be inferred since
its moments cannot be easily computed. In particular, in the
proposed probabilistic model, if no functional assumption is
made for variational pdf Q(—'(k ), after using (12), a multivariate
truncated Gaussian distribution would be obtained, of which
the moments are known to be very difficult to be computed
due to the multiple mtegrations involved [46]. In this case, the
variational pdf Q("‘(k ) could be further restricted to be a Dirac

~ (K - (k
delta function Q(E®)) = §(=*) — & )), where % is the
point estimate of the parameter =*) . After substituting this
functional form into problem (11), the optimal point estimate

é(k)* is obtained by [32, page 164]:

(k)

Q" (Of) =

12)

[

= argmax Ery_ = Q@ o np(©,)].  (13)
This is indeed the framework of variational expectation max-
imization (EM), in which the factor matrices {2} | are
treated as global parameters and other variables are treated as
latent variables.

In (12) and (13), the log of the joint pdf Inp(®, Y) needs to
be evaluated. If the Gaussian likelihood function (9) is adopted,

it is expressed as

Inp

N HN p
lnp!(©,Y) = > In (U(E(") > OJnxL)) S
n=1

B =01) =2 =(
| Y-[EV,EP,. 2

m|F+Z Zlnw

1)lny, — 10~ 'yl]

N 1 L
—Y (E(”)I‘E(”)T) +3 (10 ~
n=1

=1
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Fig. 3. Illustration of a univariate Gaussian probability density function with
its mean much larger than the variance.

+(10°¢ = 1)In 3 — 1058 + const, (14)

where the term T' = diag{~1, 72, ...,7}. On the other hand,
if the truncated Gaussian likelihood (10) is used, the log of the
joint pdf In p*(®, ))) takes the following form

Inp? (©,Y)=Inp' (0,Y) —Ind ({_.(" 1,5) + const.

5)

where

o/ 3 [y 5
® (="00) = [ (52)
<o (19 - [E0.20,. 2 ) v, a6

In (15), the term In ®({E™}N_, 3), which arises from the
truncated Gaussian likelihood in (10), is very difficult to eval-
vate and differentiate, due to the multiple integrations in-
volved. Fortunately, for most applications in Bayesian non-
negative matrix/tensor decomposition [38]-[40], the confidence
of the low-rank matrix/tensor model is relatively high, in
the sense that the noise power 1/ B is small compared to
average element in signal tensor [= L =@ ’"(N)]] Un-
der this assumption, it is easy to see ln @({”(’L)}n, 1,8~

In1 = 0, since Gaussian pdf p(}) = (%)% exp(—f8 || Y —
[EW 2@ . 2M™]2)dY decays very rapidly and thus
most densities are over the region ) > 0. As an illustration,
a univariate Gaussian pdf with its mean much larger than the
variance is plotted in Fig. 3, in which the probability density in
the negative region is negligible. This suggests that the the log
of the joint pdf In p#(@®, )) in (15) can be well approximated by
Inp(©, ) in (14), and therefore algorithm derivations are uni-
fied for the two likelihoods. This also explains why the previous
Bayesian nonnegative matrix/tensor decompositions [38]—[40]
all employ the Gaussian likelihood function.

Authorized licensed use limited to: Princeton University. Downloaded on September 27,2020 at 00:06:32 UTC from IEEE Xplore. Restrictions apply.



CHENG et al.: LEARNING NONNEGATIVE FACTORS FROM TENSOR DATA: PROBABILISTIC MODELING AND INFERENCE ALGORITHM

A. Derivation for Variational Pdfs

As discussed in the first paragraph of this section, the mean-
field approximation is employed to enable closed-form expres-
sion for each variational pdf. For the precision parameter v,
by substituting (14) into (12) and only taking the terms rele-
vant to ~y;, the variational pdf Q(~;) can be found to take the
same functional form as that of the gamma distribution, i.e.,

Q(v) = gamma(y|c;, d;) with

Jn
a=) T te (17)
n=1
N
! .
di=Y sEqzen [EWVTED ] +e ay)
n=1

Since the variational pdf Q(7;) is determined by parameters ¢;
and d;, its update is equivalent to the update of the two parameters
in (17) and (18).

Similarly, using (12) and (14), the variational pdf Q(5) can
be found to be a gamma distribution Q(3) = gamma(fle, f),
where

[Tnesn

e ===l 4 o

> 19)

=MV + e
(20)
On the other hand, by substituting (14) into (13), the point
estimate of é(k)
problem:

1

fZEEH@J#ﬁQ(G) |:Hy7|1|_4 E ,...,

can be obtained via solving the following

maXEHej#s(m Q@;) | In (U(E(k) > OJkXL))

) | Y-
1)

After distributing the expectations, expanding the Frobenius
norm, and utilizing the fact that In(0) = —oo, problem (21) can
be equivalently shown to be:

min f(E")
st. 20 > 07,.x1, (22)
where

f(ED)

L = 7 —

=(k k k)T
“2BEWEL . e, [B0] 9% ) 23)
In (23), the term B*) = (027:1’”# =N)T | with the multlple
Khatri-Rao products o), ., A = AN 6 AN-D o
AFFD o AB=D oo AW Ttis easy to see that problem (22)

[ED 2, g™ Ly (Ew)FE(k)T)]
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is a quadratic programming (QP) problem with nonnegative
constraints. Since each diagonal element ~; in the diagonal
matrix I' is larger than zero, the Hessian matrix of the function
f (E(k)), with the expression being
HY =Ep, 0@, [fBOBO741] @8

is positive definite. This implies that problem (22) is a convex
problem, and its solutions have been investigated for decades
[42, Chapter 2 and 4]. In particular, first-order methods have
recently received much attention due to their scalability in big
data applications. Within the class of first-order methods, a
simple gradient projection method is introduced as follows.

In each iteration of the gradient projection method, the update
equation is of the form [42, page 224]:

=(kt+1) _ m=(kit) a Vf(E (k, t))}+7 (25)
where the gradient v f (E(*!)) is computed as
vf(EED) = = t)]EH@ 0 Q®)) {5% Ty I‘}
~VER, . ee) [5’3(’“”} . @0

In (26), the symbol [-] ;. denotes projecting each element of =k
to [0,00) (i.e., [x]+ = 2 if # > 0 and [z]; = 0 otherwise) and
a¢ > 01is the step size. During the inference, due to the sparsity-
promoting property of the nonnegative Gaussian-gamma prior,
some of the precision parameters will go to very large numbers
while some of them will tend to be zero. This will result in a very
large condition number of the Hessian matrix H (%) Tn this case,
applying the diminishing rule? to the step size a; still enjoys a
good convergence performance [42, page 228] and thus is set as
the default step-size rule in the proposed algorithm.

B. Summary of the Inference Algorithm

From equations (17)—(26), it can be seen that we need to
compute various expectations. In particular, for expectations
Eqem)E =), Eqy)[vi] and Egg)[3], their computations

are very straightforward, ie., E (_m))[”( )] (n),

EqQ(y) ] = & and Eq(s)[B8] = . However, when updating

é(n) using (22) and (23), there is one complicated expectation

EH@ L= QO [‘B(k)% 7. Fortunately, it can be shown that
= (n)T = (n)

EH@ = Q® [‘B(k BET) = oN_, ngek 2 B, where

the multiple Hadamard products ®n:1,n “k AM = AN o
AN Do oA o AFD 6. o AD . Since the
computation of one variational pdf needs the statistics of other
variational pdfs, alternating update is needed, resulting in the
iterative algorithm summarized in Algorithm 1.

’In the diminishing rule [42, page 227], the step size a; needs to satisfy
o ﬁOandZ:ioat =00
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Algorithm 1: Probabilistic Tensor CPD With Nonnegative
Factors.

Initializations: Choose L > R and initial values

2,(1n,0) 1
{=' }nzl > €.

Iterations: For the sth iteration (s > 0),

Update the parameter of Q(Z*))(s+1)
(k0) — gk

Set initial value E
Iterations: For the tth iteration (¢ > 0), compute

=(kt41) _ {E(k,t) _ atvf(a(k:,t))}

+
where
e’ N 2 (n,s)T ~(n,s)

fs n=1,n#k
S S
RRYIC)

. C c3 N ~ (n,s)
d e VA ) o =
+ diag { di s ; déL }:| f's <n=1,n;ék )

and «; is chosen by the diminishing rule [42, page 227].
Until Convergence
set 25T — gkt

v FER0) = 5 [

Update the parameter of Q(y;)*+!

2
s+1 __ In
G —Z 5 te
n=1
T 12 (mes )T 2 (ns+D)
n=1
Update the parameter of Q(3)+!
N
€S+1 = € _|_ M
2
s 1 2~ (1,s+1) = (2,5+1) (N,s+1)
f+1:e+§||y_[[: B B 12

Until Convergence

C. Discussions and Insights

To gain further insight from the proposed inference algorithm,
discussions of its convergence property, automatic rank deter-
mination, relationship to the NALS algorithm, computational
complexity, and scalability improvement are presented in the
following.

1) Convergence Property: The proposed algorithm is de-
rived under the framework of mean-field variational inference,
where a variational pdf Q(®) = [, Q(®y,) is sought that mini-
mizes the KL divergence KL(Q(®)||p(®|))). Even though this
problem is known to be non-convex due to the non-convexity
of the mean-field family set, it is convex with respect to a
single variational pdf Q(®y,) after fixing other variational pdfs
{Q(©;),j # k} [32, page 138]. Therefore, the iterative algo-
rithm, in which a single variational pdf is optimized in each
iteration with other variational pdfs fixed, is essentially a coor-
dinate descent algorithm in the functional space of variational
pdfs. Since the subproblem in each iteration is not only convex
but also has a unique solution, the limit point generated by the
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coordinate descent steps over the functional space of variational
pdfs is guaranteed to be at least a stationary point of the KL
divergence [32, page 163].

2) Automatic Rank Determination: During the inference, the
expectations of some precision parameters {7, }, i.e., {2—%} will
go to a very large value. It indicates that the corresponding
columns in the factor matrices are close to zero vectors, thus
playing no role in data interpretation. As a result, after con-
vergence, those columns can be pruned out and the number of
remaining columns in each factor matrix gives the estimate of
tensor rank.

In practice, to reduce the computational complexity, the prun-
ing would be executed during the iteration. In particular, in each
iteration, after the precision estimates {2—2} exceed a certain
threshold (e.g., 109), the associated columns are safely pruned
out. After every pruning, it is equivalent to starting minimization
of the KL divergence of a new (but smaller) probabilistic model,
with the current variational distributions acting as the initializa-
tion of the new minimization. Therefore, the pruning steps will
not affect the convergence, and are widely used in recent related
works [23]-[30], [49]-[51].

Usually, the hyper-parameters {c),d)} of the prior gamma
distribution gammal(~y;|c), d?) are set to be a very small number
€ = 1079 to approach a non-informative prior. Otherwise, their
values might affect the behavior of tensor rank estimate. For
example, if we prefer a high value of the tensor rank, the initial
value df can be set to be very large while the initial value ¢} can
be set to be small, so that the update of % can be steered towards
a small value in order to promote a high tensor rank. However,
how to set the hyper-parameters to accurately control the degree
of low-rank is challenging, and deserves future investigation.

3) Relationship to NALS Algorithm: The mean-field varia-
tional inference for tensor CPD problem could be interpreted as
alternating optimizations over the Riemannian space (in which
the Euclidean space is a special case). This insight has been
revealed in previous works [25], [45], and can also be found
in the proposed algorithm above. For example, for the preci-
sion parameters and the noise power parameter, the variational
pdfs are with no constraint on the functional form, and thus
the corresponding alternating optimization is over the Rieman-
nian space due to the exponentially conjugacy property of the
proposed probabilistic model [25], [45]. On the other hand,
for unknown factor matrices, since the variational pdfs to be
optimized are with a delta functional form, the corresponding
alternating optimization is over the Euclidean space, thus is
similar the conventional NALS step. However, there is a signif-
icant difference. In the proposed algorithm, there is a shrinkage
term I' appeared in the Hessian matrix in (24), and I" will be
updated together with other parameters in the algorithm. This
intricate interaction is due to the employed Bayesian framework,
and cannot be revealed by NALS framework. Consequently, the
proposed algorithm is a generalization of the NALS algorithm,
with the additional novel feature in automatic rank determination
achieved via optimization in Riemannian space.

4) Computational Complexity: For each iteration, the com-
putational complexity is dominated by computing the gradient
of each factor matrix in (25), costing O(J]>_, J,L). From

n=1
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this expression, it is clear that the computational complexity
in each iteration is linear with respect to the tensor dimension
product Hfj:l Jn,. Consequently, the complexity of the algo-
rithm is O(q(]_[nj\;1 JnL)) where ¢ is the iteration number at
convergence.

5) Speeding up the Algorithm via Acceleration Schemes and
Parallel Computations: From the proposed inference algorithm,
it is clear that the bottleneck of the algorithm efficiency is the
update of factor matrices {E(") N_, via solving problem (22).
Fortunately, if the problem is well conditioned, in the sense
that the condition number of the Hessian matrix H*) in (24)
is smaller than a threshold (e.g., 100), acceleration schemes,
including variants of the Nesterov scheme [44, page 81 and page
90], [18], can be utilized to significantly reduce the required
number of iteration for solving problem (22), thus speeding up
the proposed algorithm. Besides reducing the iteration num-
ber for convergence, ideas of leveraging parallel computing
architecture like message passing interface (MPI) in [18], [19]
and super-computer in [43] deserve future investigation. For
instance, it is easy to see that the non-negatively constrained
quadratic problem (22) is separable across the rows of the factor
matrix E(, making it possible to optimize multiple rows of
the factor matrices in parallel. More sophisticated schemes on
parallel computations could be found in [18], [19], [43].

V. NUMERICAL RESULTS

In this section, numerical results using synthetic data are
firstly presented to assess the performance of the proposed
algorithm in terms of convergence property, factor matrix re-
covery, tensor rank estimation and running time. Next, the
proposed algorithm is utilized to analyze two real-world data
sets (the amino acids fluorescence data and the ENRON email
corpus), for demonstration on blind source separation and so-

cial group clustering. For all the simulated algorithms, the

.. . = (k0) . .
initial factor matrix .:.( ) is set as the singular value de-

composition (SVD) approximation U 1.1,(S1.1 1. L)é where
[U,8,V]=SVD[Y®)] and L = min{Jy,Js,...,Jn}. The
parameter ¢ is set to be 1076, The algorithms are deemed
to be converged when || [[é'.(l’sH) AR &(N’SH)]] -
II;&(LS) ;(275) ;&(

1) , = ,...,._.
277,88 )] %< 107%. All experiments were
conducted in Matlab R2015b with an Intel Core 17 CPU at
2.2 GHz.

A. Validation on Synthetic Data

A three dimensional tensor X = [M®, M® MO e
R 100%100x100 with rank R = 10 is considered as the noise-free
data tensor. Each element in factor matrix M ™ is indepen-
dently drawn from a uniform distribution over [0,1] and thus
is nonnegative. On the other hand, two observation data ten-
sors are considered: 1). the data X" is corrupted by a noise
tensor W € R100x100x100 j o ") — X 4+ )V, with each ele-
ment of noise tensor ¥V being independently drawn from a
zero-mean Gaussian distribution with variance afu, and this
corresponds to the Gaussian likelihood model (9); 2). the
data Y1 is obtained by setting the negative elements of ) to
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Fig. 4. Convergence of the proposed algorithm for different test data.
i + —). .. S
zero,ie, ViU i o = Viy g is U(Viy insis = 0), and the truncated

Gaussian likelihood model (10) is employed to fit these data.
The SNR is defined as 101log(|| X |3 /E,om [ W II7]) =
101logyo (|| X ||% /(100%02)). For the proposed algorithm, the
step size sequence is chosen as oy = 1073 /(¢ + 1) [42], and
the gradient projection update is terminated when || f (%)) —
F(EFD)||p < 1073, Each result in this subsection is ob-
tained by averaging 100 Monte-Carlo runs.

Fig. 4 presents the convergence performances of the proposed
algorithm under different SNRs and different test data, where the
mean-square-error (MSE) || ﬂé(l’s),é(zs),é(g’s)}] — X% is
chosen as the assessment criterion. From Fig. 4(a), it can be seen
that for test data ), the MSEs of the proposed algorithm, which
assumes no knowledge of tensor rank, decrease significantly in
the first few iterations and converge to the MSE of the NALS
algorithm [16] (with exact tensor rank) under SNR = 10 dB
and SNR = 20 dB. Similar convergence performances can be
observed for the test data ). This is of no surprise because
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Fig.5. Bestcongruence ratios of the proposed algorithm for different test data.

approximating (15) by (14) dose not make any changes on
the algorithm framework of variational inference, and thus the
excellent convergence performance of the proposed algorithm
is expected (as discussed in Section I'V-C).

The MSE measures the performance of low-rank tensor recov-
ery. However, due to the uniqueness property of tensor CPD [1],
each factor matrix can be recovered up to an unknown permu-
tation and scaling ambiguity. To directly assess the accuracies
of factor matrices recovery, the best congruence ratio (BCR),
which involves computing the MSE between the true factor

. . . oa(k
matrix M*) and the estimated factor matrix .:.( )
used as the assessment criterion. It is defined as

, 1s widely

3 k)

>

k=1

M@ — & ph AW
IM®||

)

AR pk)

where the diagonal matrix A®) and the permutation matrix
P are found via the greedy least-squares column matching
algorithm [48]. From Fig. 5, it is seen that both the proposed
algorithm (labeled as PNCPD) and the NALS algorithm (with
exact tensor rank) achieve much better factor matrix recovery
than the ALS algorithm (with exact tensor rank) [1]. This shows
the importance of incorporating the nonnegative constraint into
the algorithm design. Furthermore, the factor matrix recovery
performances of the proposed algorithm under test data ) and
Y+ are indistinguishable under SNR = 20 dB. This shows that
when SNR is high, equation (14) gives a quite good approxima-
tion to equation (15), thus leading to remarkably accurate factor
matrices recovery. Although the BCR of the proposed algorithm
is higher for the data ) than that for the data ), it is with nearly
the same performance as that of the NALS algorithm (with exact
tensor rank).

On the other hand, the tensor rank estimates of the proposed
algorithm under different SNRs are presented in Fig. 6, with each
vertical bar showing the mean and the error bars showing the
standard derivation of tensor rank estimates. The blue horizontal
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20

Tensor rank estimates of the proposed algorithm for different test data.

PERFORMANCE OF TENSOR RANK ESTIMATION VERSUS DIFFERENT TRUE
TENSOR RANKS FOR TENSOR DATA ) WHEN SNR = 20 dB

True tensor rank

Mean of tensor
rank estimates

Standard derivation
of tensor rank estimates

Percentage of correct
tensor rank estimates

10

10

0

100%

30

29.6

1.27

90%

50

28.15

18.29

25%

dashed line indicates the true tensor rank. From Fig. 6, it is seen
that the proposed algorithm recovers the true tensor rank with
100% accuracy for a wide range of SNRs, in particular when
SNR is larger than 10 dB. Even though the performance is not
100% accurate when SNR is 0 dB and 5 dB, the estimated tensor
rank is still close to the true tensor rank with a high probability
for test data ). However, under these two low SNRs, the rank
estimation performances of the proposed algorithm for the data
Y+ degrade significantly. This is because equation (15) cannot
be well approximated by equation (14) under very low SNRs.
Furthermore, the proposed algorithm fails to give correct rank
estimates when SNR is lower than —5 dB for both two test data
sets, since the noise with very large power masks the low-rank
structure of the data.

To assess the tensor rank estimation accuracy when the tensor
is with a larger true rank, we apply the the proposed algorithm
to the tensor data ) with the true rank R = {10, 30,50} and
SNR = 20 dB. The rank estimation performance is presented
in Table I. From Table I, it can be seen that the proposed
algorithm recovers the rank accurately when the true rank is 10
and 30. However, when R = 50, the proposed algorithm fails
to accurately recover the tensor rank. This could be explained
by the fact that the Gaussian-gamma prior would lead to the
sparsest estimation result [52], and thus fail to work well when
the true rank is high. This has also been observed in a recent
matrix decomposition work [53], in which a Gaussian-Wishart
prior has been employed to tackle the high-rank estimation
challenge. However, employing the Gaussian-Wishart prior for
tensor decompositions is challenging as Wishart distribution is
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TABLE II
PERFORMANCE OF TENSOR RANK ESTIMATION WHEN THE COLUMNS IN ONE
FACTOR MATRIX ARE CORRELATED AND SNR = 20 dB

s 0 1 3 5 100
Percentage of
correct tensor
rank estimates

100% | 100% | 100% | 25% | 5%

TABLE III
PERFORMANCE OF TENSOR RANK ESTIMATION WHEN THE COLUMNS IN ALL
FACTOR MATRICES ARE CORRELATED AND SNR = 20 dB

s 0 1 3 5 100
Percentage of
correct tensor
rank estimates

100% | 40% | 0% | 0% | 0%

inherently defined for a matrix [53]. Thus, high rank tensor
decomposition, which is both important and interesting, would
be left as future work.

The simulation results presented so far are for well-
conditioned tensors, i.e., the columns in each of the fac-
tor matrices are independently generated. In order to fully
assess the rank learning ability of the proposed algorithm,
we consider another noise-free three dimensional tensor X' =
(MY M@ M) € R100x100x100 with rank R = 10. The
factor matrix is setas M ") = 0.11100x10 + 275 MW and each
element in factor matrices { M (n) }3 _, is independently drawn
from a uniform distribution over [0,1]. According to the defini-
tion of the tensor condition number [54], [55], when s increases,
the correlation among the columns in the factor matrix M )
increases, and the tensor condition number becomes larger. In
particular, when s goes to infinity, the condition number of the
tensor goes to infinity too. We apply the proposed algorithm to X
corrupted with noise: Y = X + W, where each element of noise
tensor W is independently drawn from a zero-mean Gaussian
distribution with variance 2 . Table Il shows the rank estimation
accuracy of the proposed algorithm when SNR = 20 dB. It can
be seen that the proposed algorithm can correctly estimate the
tensor rank when s < 5. But as the tensor conditional number
increases (i.e., the columns are more correlated in the factor
matrix M (1)), the tensor rank estimation performance decreases
significantly.

Next, we consider an extreme case in which the
columns in all factor matrices are highly correlated: X =
HM(I),M(Q),M@)]] € R100x100x100  with rank R = 10,
where each factor matrix M ™ = 0.11100.10 + 2-* M ™, and
each element in factor matrices {M ™ }3_, is independently
drawn from a uniform distribution over [0,1]. With the same
observation data model as ) as before and when SNR = 20 dB,
the percentages of correct tensor rank estimate are shown in
Table III. It can be seen that it is difficult for the proposed
algorithm to accurately estimate the tensor rank even when
s=1.

Finally, as discussed in the Section IV-C, acceleration
schemes could be incorporated to speed up the proposed algo-
rithm. As discussed in Section IV-A, in the first few iterations,
since some precision parameters are learnt to be very large
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Fig.7. Theaverage condition number of the Hessian matrix (24) and the tensor
rank estimate versus number of iterations for test data )) when SNR = 20 dB.

TABLE IV
AVERAGE RUNNING TIME IN SECONDS OF THE PROPOSED ALGORITHM FOR
DIFFERENT TEST DATA. THE ACCELERATED ALGORITHM IS LABELED AS

PNCPD-A
Data SNR = 10 dB SNR = 20 dB
PNCPD | PNCPD-A | PNCPD | PNCPD-A
Yy 113.61 63.66 62.52 52.08
vt 99.48 58.02 59.61 49.86

while some of them are with very small values, the average
condition number of the Hessian matrix of problem (22), i.e.,
z >3, condition_number(H®), is very large. After several
iterations, the proposed algorithm has gradually recovered the
tensor rank, and then the remaining precision parameters are
with comparable values, leading to a well-conditioned Hession
matrix H® of problem (22). These results can be observed
in Fig. 7. Inspired by the pioneering work [18], the Nesterov
scheme [44, page 90] is utilized for the problem (22) when the
condition number of the Hessian matrix is smaller than 100.
Consequently, even with the same MSE and BCR performances,
the accelerated algorithm is much faster than the default version
of the proposed algorithm® as presented in Table IV. Besides
the Nesterov scheme, other advances in first-order optimizations
could be incorporated to further improve the scalability of the
algorithm. However, this is not the main focus of this paper,
and thus in the following, we only examine the performances
of the default version of the proposed algorithm for real-world
applications.

B. Fluorescence Data Analysis

In this subsection, the proposed algorithm is utilized to an-
alyze the amino acids fluorescence data* [44]. This data set
consists of five laboratory-made samples. Each sample contains
different amounts of tyrosine, tryptophan and phenylalanine

3The presented time for the accelerated scheme includes the time for com-
puting the condition numbers.
“http://www.models.life.ku.dk
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TABLE V
SOCIAL GROUPS WITH PEOPLE IN TOP 10 SCORES IN EACH GROUP FOR THE ENRON E-MAIL DATA USING THE PROPOSED ALGORITHMS

Legal

Government Affair Executive

“Tana Jones (tana.jones) Employee Financial Trading Group ENA Legal’,
*Sara Shackleton (sara.shackleton) Employee ENA Legal’,

*Mark Taylor (mark.taylor) Manager Financial Trading Group ENA Legal’,
X ie Panus (stephanie.panus) Senior Legal Specialist ENA Legal’,
"Marie Heard (marie.heard) Senior Legal Specialist ENA Legal’,

"Mark Haedicke (mark.haedicke) Managing Director ENA Legal’,

"Susan Bailey (susan.bailey) Legal Assistant ENA Legal’,

“Louise Kitchen (louise.kitchen) President Enron Online’,

*Kay Mann (kay.mann) Lawyer’,

'Debra Perlingiere (debra.perlingiere) Legal Specialist ENA Legal’

*Jeff Dasovich (jeff.dasovich) Employee Government Relationship Executive’,
*James Steffes (james.steffes) VP Government Affairs’,

’Steven Kean (steven.kean) VP Chief of Staff”,

"Richard Shapiro (richard.shapiro) VP Regulatory Affairs’,

"David Delainey (david.delainey) CEO ENA and Enron Energy Services’,

“Richard Sanders (richard.sanders) VP Enron Wholesale Services’,

’Shelley Corman (shelley.corman) VP Regulatory Affairs’,

"Margaret Carson (margaret.carson) Employee Corporate and Environmental Policy’,
"Mark Haedicke (mark.haedicke) Managing Director ENA Legal’,

’Vince Kaminski (vince.kaminski) Manager Risk Management Head”

Trading / Top Executive

Pipeline

“Michael Grigsby (mike.grigsby) Director West Desk Gas Trading
*Kevin Presto (m..presto) VP East Power Trading’,

"Mike McConnell (mike.mcconnell) Executive VP Global Markets’,
*John Arnold (john.arnold) VP Financial Enron Online’,

"Louise Kitchen (louise.kitchen) President Enron Online’,

*David Delainey (david.delainey) CEO ENA and Enron Energy Services’,
*John Lavorato (john.lavorato) CEO Enron America’,

*Sally Beck (sally.beck) COO °,

*Joannie Williamson (joannie.williamson) Executive Assistant °,

’Liz Taylor (liz.taylor) Executive Assistant to Greg Whalley "

"Michelle Lokay (michelle.lokay) Admin. Asst. Transwestern Pipeline Company (ETS)’,
Kimberly Watson (kimberly.watson) Employee Transwestern Pipeline Company (ETS)’,
*Lynn Blair (lynn.blair) Employee Northern Natural Gas Pipeline (ETS)’,

*Shelley Corman (shelley.corman) VP Regulatory Affairs’,

"Drew Fossum (drew.fossum) VP Trans
*Lindy Donoho (lindy.donoho) Employ
"Kevin Hyatt (kevin.hyatt) Director Asset Development TW Pipeline Business (ETS)’,
"Darrell Schoolcraft (darrell.schoolcraft) Employee Gas Control (ETS)’,

"Rod Hayslett (rod.hayslett) VP Also CFO and Treasurer’,

“Susan Scott (susan.scott) Employee Transwestern Pipeline Company (ETS)’

m Pipeline Company (ETS)’,
tern Pipeline Company (ETS)’,

dissolved in phosphate buffered water. The samples were mea-
sured by fluorescence and were corrupted by Gaussian noise
with power 0.1, resulting in SNR = 0.16 dB. The fluorescence
excitation-emission measured (EEM) data collected is with size
5 x 201 x 61, and should be representable with a CPD model
with rank 3, since there are three different types of amino
acid and each individual amino acid gives a rank-one CPD
component.

The proposed PNCPD algorithm was run to decompose the
EEM tensor data with initial rank L = 5. For the proposed algo-
rithm, the step size sequence is chosen as a; = 1072 /(t + 1)
[42], and the gradient projection update is terminated when
the gradient norm is smaller than 1073, At convergence, the
proposed algorithm identified the correct tensor rank® R = 3.
Furthermore, the emission spectra and the excited spectra of
three amino acids, which are obtained from the decomposed
factor matrices [44], are shown in Fig. 8, with the clean data
spectra® serving as the benchmark. From Fig. 8, it can be seen
that the recovered spectra from the proposed algorithm are very
close to the clean data spectra, with the MSE of the emission
spectra estimation equals 1.51 x 10~% per wavelength and the
MSE of the excitation spectra estimation equals 1.08 x 10~% per
wavelength.

C. ENRON E-mail Data Mining

In this subsection, the ENRON Email corpus,’ [3] was ana-
lyzed. This data set is with size 184 x 184 x 44, and contains
e-mail communication records between 184 people within 44
months, in which each entry denotes the number of e-mail
exchanged between two particular people within a particular
month. Before fitting the data to the proposed algorithms, the
same pre-processing as in [2], [3] is applied to the non-zero data
to compress the dynamic range. Then, the proposed algorithm
is utilized to fit the data into the proposed nonnegative CPD

Notice that even if the initial tensor rank L is set as 20, which is much larger
than the true tensor rank 3, the proposed algorithm can still recover the true
tensor rank. This shows that the proposed method is not sensitive to the initial
tensor rank value.

OThe clean data spectra is obtained by decomposing the clean data [44] using
the NALS algorithm with correct tensor rank R = 3.

"The original source of the data is from [3] and we greatly appreciate Prof.
Vagelis Papalexakis for sharing the data with us.

0.25 T T T
clean data spectra

~— PNPCD

emission wave length (nm)

(a)
0.3 T T T T T T
—— clean data spectra
— PNPCD

10 20 30 40 50 60
excitation wavelength (nm)
(b)

Fig. 8. The estimates of (a) emission spectra and (b) excitation spectra using
the proposed algorithms, with the clean data spectra serving as the benchmark.

model, with the initial rank set as L = 44, the step size sequence
being oy = 1/(t 4 1) [42], and the gradient projection update
terminated when the gradient norm is smaller than 1073, As
introduced in the Appendix A, the estimated tensor rank has the
physical meaning of the number of underlying social groups,
and each element in the first factor matrix can be interpreted as
the score that a particular person belongs to a particular email
sending group.

During the inference, the tensor rank estimate gradually re-
duces to the value 4, indicating that there are four underlying
social groups. This is consistent with the results from [2], [3],
which are obtained via trail-and-error experiments. After sorting
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Fig.9. Temporal cluster profiles (from the third factor matrix) for the ENRON

e-mail dataset.

the scores of each column in the first factor matrix, the people
with top 10 scores in each social group is shown in Table II.
From the information of each person presented in Table II,
the clustering results can be clearly interpreted. For instance,
the people in the first group are either in legal department or
lawyers, thus being clustered together. The clustering results
of the proposed algorithms are also consistent with the results
from [2], [3], which are obtained via nonlinear programming
methods assuming the knowledge of tensor rank. Finally, in-
teresting patterns can be observed from the temporal cluster
profiles, which are obtained from the third factor matrix [2], [3],
as illustrated in Fig. 9. It is clear that when the company has
important events, such as the change of CEO, crisis breaks and
bankruptcy, distinct peaks appear. Notice that in this example, all
the data entries are nonnegative and the proposed algorithm still
works well. This indicates that the tensor CPD with nonnegative
factors is a model that matches this social clustering task.

VI. CONCLUSION

In this paper, probabilistic tensor CPD with nonnegative
factors has been investigated under unknown tensor rank. In
particular, the nonnegative Gaussian-gamma prior, which was
shown to have both sparsity-promoting and exponential con-
jugacy properties, was introduced as the building block of the
proposed probabilistic model. Then, an efficient inference algo-
rithm was derived with an integrated feature of automatic rank
determination. Extensive numerical results using both synthetic
data and real-world data were presented to show the remarkable
performance of the proposed algorithm.

APPENDIX
A. Motivation Examples

In this appendix, two motivating examples for probabilistic
tensor CPD with nonnegative factors are presented.

1) Motivating Example 1 (Fluorescence Spectroscopy): Fluo-
rescence spectroscopy is a fast, simple and inexpensive method
to determine the concentration of any solubilized sample based
on its fluorescent properties, and is widely used in chemical,
pharmaceutical and biomedical fields [34], [35]. In fluorescence
spectroscopy, an excitation beam with a certain wavelength \;
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passes through a solution in a cuvette. The excited chemical
species in the sample will change their electronic states and
then emit a beam of light, of which its spectrum is measured
at the detector. Mathematically, let the concentration of the rth
specie in the sample be ¢,., and the excitation value at wavelength
A; be a,.(\;). Then, the noise-free measured spectrum intensity
at the wavelength \; is a,(\;)br()\j)c,, where b,.();) is the
emission value of the rth species at the wavelength ;. If there
are IR different species in the sample, the noise-free fluorescence
excitation-emission measured (EEM) data at )\; is

R
pi,j = Zar()\i)br()\j)cr‘ (27)
r=1
Assume the excitation beam contains / wavelengths, and the
noise-free EEM data is collected at J different wavelengths, an
I x J data matrix is obtained as
R
P = ZA%T oB. ¢,

r=1

(28)

where symbol o denotes vector outer product, A. . € RIxL s
a vector with the ith element being a,()\;) and B., € R/*!
is a vector with the jth element being b, (\;). Assume K > 1
samples with the same chemical species but with different con-
centration of each specie are measured. Let the concentration
of the rth specie in the kth sample be ¢y, ,-, then after stacking
the noise-free EEM data for each sample along a third dimen-
sion, a three dimensional (3D) tensor data P € R7*7*K can be
obtained as

R
,P:ZAZ,T‘OBZ,TOCZ,Té [[A7B7C]]> (29)
r=1

where C. ;. € R&>*1 is a vector with the kth element being Chr
matrices A € RI*E B € R7* and C € RE*E are matrices
with their rth columns being A. ., B. , and C. ,, respectively.
Itis easy to see that the noise-free data model in (29) yields ex-
actly the tensor CPD model [1], and that is why CPD algorithms
work very well for EEM data analysis [9]. More specifically, ac-
counting for the possible Gaussian noise, the EEM data analysis
aims to solve the following problem:
. 2
min || P~ [4,B,C] |

2

s.t. A Z OIXRaB 2 OJXva Z OKXRa (30)

where the nonnegative constraints are enforced due to the phys-
ical nature of elements in matrices A, B and C' as introduced
above.

2) Motivating Example 2 (Social Group Clustering): Social
group clustering could be benefited by tensor data analysis,
by which multiple views of social network are provided [2]—
[4]. For example, consider a 3D email data set ) € R/*/*K
with each element )(i, j, k) denoting the number of emails
sent from person 7 to person j at the kth day. Each frontal
slice YV(:,:, k) represents the connection intensity among dif-
ferent pair of peoples in the kth day, while each slice Y(:, 7, :)
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shows the temporal evolution of the number of received mails
for the person j from each of the other person in the data
set. Consequently, decomposing the tensor ) into latent CPD
factors {A € RI*E B € R7*E C € RE*F} reveals different
clustering groups from different views (i.e., different tensor
dimensions). In particular, using the unfolding property of tensor
CPD [1], we have

Yy = (CoB)AT, (31)

V3 = (BoA)CT, (32)

where V(¥ is a matrix obtained by unfolding the tensor ) along
its kth dimension [1], and symbol ¢ denotes the Khatri-Rao
product (i.e., column-wise Kronecker product). From (31), each
column vector Y(M(:,7) € R7X*1 can be written as Y1) (:
1) = Zle(C o B). A, -, which is a linear combination of
column vectors in matrix (C o B) € R7E*E with coefficients
{A;,} I |, and it represents the email sending pattern of person
1. Thus, each column vector in matrix C' ¢ B can be interpreted
as one of the R underlying email sending patterns, and A; ,.
is the linear combining coefficient to generate the person i’s
email pattern. Similarly, from (32), each column in B ¢ A can
be interpreted as a temporal pattern and C', - is the coefficient of
the rth temporal pattern for generating the kth day’s pattern. Ob-
viously, in contrast to the matrix-based model such as k-means
or Gaussian mixture model, the tensor CPD model succeeds in
mining clustering structures in multidimensional data. To find
the latent factor matrices from the social network data )/, the
following problem is usually solved:

min_ | ¥ —[A,B,C] |%

A,B.C

st. A>0rxr, B >0;xr,C > 0gxr, (33)

where the nonnegative constraints are added to allow only ad-
ditions among the R latent rank-1 components. This leads to
a parts-based representation of the data, in the sense that each
rank-1 component is a part of the data, thus further enhancing
the model interpretability.

B. Properties on Nonnegative Gaussian-Gamma Prior

Firstly, it is shown that generally a gamma distribution is not
conjugate to a truncated Gaussian distribution. Without loss of
generality, consider a truncated Gaussian-gamma distribution
pair with the following form:

Hp w,|ay)p

N (wslp, 05 Tar,)

p(w {O‘s o=1) {as}s—l)

=1l = U (w,,w5)
2 T Nwalin, @z o)
bgs as—1
X Ta )ozss exp(—bsay), (34)

where the truncated Gaussian pdf is with support [w,, wWs];
parameter ptg, osIp, are the mean vector and the precision
matrix of the un-rectified Gaussian pdf. In order to compute

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

the the posterior pdf p(a|w), we only keep the terms relevant
to as and then the following expression is obtained:

exp (_as (M + b)) aa

[ Nl ar)

s—14+3

plas|w) (35)

Obviously, expression (35) does not take the same functional
form as that of the gamma distribution, and thus violates the
definition of the conjugacy.

But fortunately, when pt, = Oy, <1, ws = Opy, 1 and Wy =
oo, it is easy to show that fg; . N(ws|0ns,x1, 05 ) =
2%5 due to the symmetric property of the Gaussian pdf. Conse-
quently, under this specific setting, equation (35) becomes

_ 2
p(as|w) X exp (as <M + b>) ag‘571+%7
(36)

which takes exactly the same functional form as that of the
gamma distribution. As a result, Property 1 is proved, and this
important finding motivates the use of the nonnegative Gaussian-
gamma prior in the probabilistic modeling. Furthermore, under
this parameter setting, the marginal distribution for parameter
w can be computed as follows:

/Hp wlag)p({as}so)d{as}

S
= H oMs //\/'(wsms, a; Iy ) gammal(oas, by )da

s=1

x U(ws > 0p7,%1)- 37

1IM )gamma(as|as, bs)
“Me/2 o q37],

Further using the fact [ N (w;|p,,

dos = (3)7 = —(l;z(,a)t]:{ﬂ_(/z)) (2bs + wlw,)™®

Property 2 can be proved.
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