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Abstract—Mobile edge computing (MEC) has been envisioned as a
promising technology for enhancing the computational capacities of mobile
devices, by enabling computational task offloading. In this article, we em-
ploy massive multiple-input multiple-output methods to facilitate offloading
in MEC. Our objective is to minimize the maximum delay for offloading and
computing among the users, which requires a joint allocation of wireless
and computational resources. Both perfect and imperfect channel state
information (CSI) are considered. Under perfect CSI, we derive a semi-
closed-form solution for the formulated problem. Under imperfect CSI,
since the formulated problem is non-convex, we transform it into a convex
one using a successive convex approximation technique and propose an
iterative algorithm to solve it. Presented numerical results show the benefits
of having a large number of antennas at the base station, and the necessity
of performing joint radio and computational resource allocation.

Index Terms—Massive multiple-input multiple-output (MIMO), mobile
edge computing (MEC), delay minimization, joint resource allocation.

I. INTRODUCTION

Mobile edge computing (MEC) has been recognized as a promising
technology for 5G and future wireless communication networks, e.g.,
fiber-wireless networks [1], [2], internet-of-things networks [3], [4] and
unmanned aerial vehicle aided communications [5]. MEC enhances the
computation capacities and prolongs the lifespan of mobile devices, by
enabling computational task offloading [6], [7]. In MEC systems, the
energy consumption of the mobile devices and the overall delay for
offloading and computing are deemed as two critical system metrics.
Generally, these two metrics are in opposition to one another. In order
to strike a balance between them, a joint allocation of radio and
computational resources is often required.

Resource allocation in MEC is often a non-trivial problem, since two
different resources, i.e., wireless and computational resources, need
to be handled together. For the sake of tractability, most works on
MEC focus on the simple scenario when each of the offloading users
and the base station (BS) is equipped with a single antenna [8]–[12].
This, however, fails to exploit the advantages brought by multiple-input
multiple-output (MIMO) technology in terms of offloading efficiency.
To address this, a few works have considered MEC under the more
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practical scenario when the BS is equipped with multiple antennas [13],
[14]. Specifically, the authors in [13] consider a single-cell MIMO
system with perfect and imperfect channel state information (CSI), re-
spectively, and the formulated weighted energy minimization problem
is addressed using alternating optimization and difference of convex
functions (DC) programming. The authors in [14] study a multi-cell
MIMO system with a common edge server, and the formulated energy
minimization problem is handled via a successive convex approxima-
tion technique.

Recently, research on massive MIMO enabled MEC has attracted
significant attention [15]–[19]. By employing massive MIMO, more
users can offload simultaneously [17]. Moreover, the offloading delay
and energy consumption are reduced due to the increased spectral and
energy efficiencies [18], [19]. More specifically, the authors in [16]
consider a cell-free multi-cell massive MIMO system, and the impact
of computation probability on the total energy consumption is analyzed
using stochastic geometry and queuing theory. The authors in [17]
apply millimeter wave and massive MIMO to standard wireless local
area networks with MEC. A novel medium access control protocol is
proposed by exploiting the unique characteristics of millimeter wave
and massive MIMO systems. The authors in [18] study the delay
minimization problem for a single cell massive MIMO enabled MEC
network. Two heuristic algorithms are proposed to obtain suboptimal
solutions. In addition, the authors in [19] consider the energy minimiza-
tion problem for a massive MIMO enabled heterogeneous network with
MEC. A low-complexity algorithm based on alternating optimization
is proposed to jointly optimize the wireless and computing resources.

Considering user fairness, we aim to minimize the maximum delay
for offloading and computing among the users under maximum transmit
power and energy consumption constraints. Moreover, both perfect and
imperfect CSI cases are considered. We derive a semi-closed-form
solution for perfect CSI. However, the formulated problem is non-
convex under the imperfect CSI case, and thus, is difficult to solve
directly. By using the successive convex approximation technique, we
transform the original problem into a convex one and further propose an
iterative algorithm to solve it. Simulation results show the superiority
of the proposed joint radio and computational resource allocation
schemes over the baselines when computational resource allocation is
fixed.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a MEC system, where a BS equipped with a massive
antenna array supports multiple single antenna users for computation
offloading. Denote the set of users by K = {1, . . . ,K}, and antennas
by M = {1, . . . ,M}. Each user k ∈ K generates computationally
intensive tasks, characterized by two parameters: the size of the input
data, Lk, and the number of CPU cycles required for processing, Wk.
There exist two subsequent phases: offloading and computing. For the
offloading phase, the users send their input data to the BS via the
wireless channels. Upon receiving the data, the BS needs to allocate
its computing power to the tasks and perform the computing for the
users.

1) Communication Model: Two scenarios are considered: 1) per-
fect CSI at the BS, and 2) imperfect CSI at the BS. For both scenarios,
it is assumed that the zero-forcing technique is adopted at the BS to
suppress the inter-user interference.
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For the perfect CSI case, the zero-forcing detection matrix is given
byV = HH(HHH)−1, whereH ∈ CM×K denotes the overall channel
matrix. On this basis, we can obtain the normalized effective channel
gain for userk ashk = |V(k)Hk |2

σ2 |V(k)|2 , whereV(k) is thek-th row ofV,Hk

is the k-th column of H, and σ2 denotes the noise power. Accordingly,
the achievable offloading data rate at user k is given by

Rk = log2 (1 + Pkhk) , (1)

where Pk is the corresponding transmit power, satisfying Pk ≤ Pmax
k ,

with Pmax
k being the maximum transmit power.

For the imperfect CSI case, we consider the practical scenario
when CSI is obtained through uplink training. For simplicity, we
assume that each user transmits at maximum power for training [20].
Denote the large-scale fading coefficient by βk, which is known at
the BS. Then, the mean-square of the channel estimate is given by

γk =
τpβ

2
k
Pmax
k

/σ2

1+τpβkP
max
k

/σ2 , ∀k ∈ K, where τp ≥ K is the length of the pilot

sequences. As a result, the achievable offloading data rate at user k can
be approximated by [20]

Rk = log2

(
1 +

Pkhk

1 +
∑K

i=1 Pih
′
i

)
, (2)

where Pk is the corresponding transmit power, while hk and h
′
i de-

note the normalized effective channel gains, satisfying hk = (M −
K)γk/σ

2 and h
′
i = (βi − γi)/σ

2.
Accordingly, the transmission time for user k can be expressed as

Tk =
Lk

Rk

. (3)

2) Computing Model: Let us denote the computational capacity
of the MEC server by F , which is shared among all users. The
computing resource allocated to user k is denoted by fk, satisfying∑K

i=1 fk = F . Then, the computation time of user k’s task is given by

Qk =
Wk

fk
. (4)

Accordingly, the overall delay for offloading and computing at user
k is Tk +Qk.

B. Problem Formulation

Considering user fairness, we aim to minimize the maximum overall
delay for offloading and computing among the users under maximum
transmit power and energy consumption constraints. This requires a
joint allocation of users‘ transmit power and the MEC server’s com-
puting resource. The considered delay minimization problem can be
formulated as follows:

P1 : min
Pk,fk

max
∀k∈K

Tk +Qk (5a)

s.t.
K∑

k=1

fk = F, (5b)

Pk ≤ Pmax
k , ∀k ∈ K (5c)

PkTk ≤ Emax
k , ∀k ∈ K (5d)

where Emax
k denotes the maximum energy constraint for user k. (5b)

is the computing resource constraint. (5c) denotes the maximum power
constraint, while (5d) represents the maximum energy constraint. Note
that the time and energy consumption for channel estimation are ne-
glected, since both are fixed, and do not affect the way of solving the
problem.

III. JOINT RESOURCE ALLOCATION FOR THE

PERFECT CSI CASE

To handle the min-max operation in P1, we introduce an auxiliary
variable t, and reformulate P1 as

P2 : min
Pk,fk,t

t (6a)

s.t.
K∑

k=1

fk = F, (6b)

Pk ≤ Pmax
k , ∀k ∈ K (6c)

PkLk

log2 (1 + Pkhk)
≤ Emax

k , ∀k ∈ K (6d)

Lk

log2 (1 + Pkhk)
+

Wk

fk
≤ t, ∀k ∈ K (6e)

Next, we re-write (6d) as PkLk −Emax
k log2(1 + Pkhk) ≤ 0. On

this basis, it is clear that P2 is a convex optimization problem, and thus,
the optimal solution can be obtained using standard convex optimization
techniques, e.g., interior-point method [21].

However, our interest is to find an analytical solution for further
insight. According to (6e), t decreases with Pk. Therefore, to minimize
t, a larger value of Pk is preferred. Pk is constrained by (6c) and
(6d). Let us first look at (6d), and it can be verified that PkLk

log2(1+Pkhk)

grows with Pk. Therefore, maximum Pk is obtained when equality
is achieved at (6d), i.e., PkLk = Emax

k log2(1 + Pkhk). After some
algebraic manipulations, the root is given by

P̂k = −
W

(
− Lk ln 2

Emax
k

hk
2
− Lk

Emax
k

hk

)
Emax

k

Lk ln 2
− 1

hk

, (7)

where W (x) denotes the Lambert-W function, which is the inverse
function of f(z) = z exp(z) = x, i.e., z = W (x). Note that W (x) is
a built-in function in most well-known mathematical software, e.g.,
Matlab. Combining (6c) and (6d), we can obtain the optimal Pk as
P �
k = min(P̂k, P

max
k ).

Now let us consider the allocation of fk, and we have the following
theorem:

Theorem 1: The maximum overall delay is minimized when the
allocation of fk satisfies t = Lk

log2(1+P�
k
hk)

+ Wk
fk

, ∀k ∈ K, i.e., the

overall delay for each user is the same.
Proof: The proof can be constructed using contradiction. Denote

the optimal maximum overall delay by t. Assume that there exists at
least one user whose overall delay is less than t. Then, we can easily
shift the computing resource from such a user to all other users whose
overall delay equal to t, such that t decreases. This contradicts our
original assumption that t is optimal. Therefore, no user can achieve
a lower overall delay than others. That is, all users achieve the same
overall delay. This completes the proof. �

Based on Theorem 1, we have

fk =
Wk

t− Lk

log2(1+P�
k
hk)

, ∀k ∈ K (8)

It can be seen that fk, ∀k ∈ K decreases when t increases. Mean-
while,

∑
k∈K fk = F needs to hold. As a result, t can be obtained
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Algorithm 1: Bisection Method for Computing Resource
Allocation.

1: Initialization: tlow ← max( Lk
log2(1+P�

k
hk)

);

tup ← max( Lk
log2(1+P�

k
hk)

+ KWk
F

); ε← 10−6

2: while tup − tlow > ε

3: tmid ← tlow+tup
2 ;

4: fk ← Wk

tmid−
Lk

log2(1+P�
k

hk)

, ∀k ∈ K;

5: if
∑

k∈K fk < F
6: tup ← tmid;
7: else
8: tlow ← tmid;
9: end;

10: end;

using the bisection method.1 For initialization, the lower and up-
per bound of t are given by tlow = max( Lk

log2(1+P�
k
hk)

) and tup =

max( Lk
log2(1+P�

k
hk)

+ KWk
F

), respectively. The specific procedure is

given in Algorithm 1. Once t is obtained, we can attain fk directly
from (8).

Complexity analysis: The proposed solution consists of two steps:
1) calculating P �

k based on the Lambert-W function; and 2) calculating
fk using Algorithm 1. The Lambert-W function is often solved via
the Newton’s method, and has a quadratic convergence rate. Denote
the iterations for obtaining P �

k by I1, which is often a small number.
Then, the complexity of step 1) is O(KI1). The bisection method has a
linear convergence rate, and the number of iterations for obtaining t is
log2(

tup−tlow
ε

). We need to calculate fk for all users in Algorithm 1, and
thus, the complexity for step 2) is O(K log2(

tup−tlow
ε

)). As a result,
the overall complexity isO(K(I1 + log2(

tup−tlow
ε

))), which is a linear
function of the number of users K.

IV. JOINT RESOURCE ALLOCATION FOR THE

IMPERFECT CSI CASE

Likewise, we introduce an auxiliary variable t to handle the min-max
operation in P1, and reformulate P1 as

P3 : min
Pk,fk,t

t (9a)

s.t.
K∑

k=1

fk = F, (9b)

Pk ≤ Pmax
k , ∀k ∈ K (9c)

PkLk

log2

(
1 + Pkhk

1+
∑K

i=1
Pih

′
i

) ≤ Emax
k , ∀k ∈ K (9d)

Lk

log2

(
1 + Pkhk

1+
∑K

i=1
Pih

′
i

) +
Wk

fk
≤ t, ∀k ∈ K (9e)

Problem P3 is non-convex due to the non-convex constraints (9d)
and (9e). Nonetheless, we still have the following theorem:

1t can also be obtained by finding the root of
∑K

k=1
Wk

t− Lk
log2(1+P�

k
hk)

− F =

0 using the Newton’s method.

Theorem 2: The overall delay for each user under the optimal
solution is the same, i.e., t = Lk

log2(1+
Pkhk

1+
∑K

i=1
Pih

′
i

)
+ Wk

fk
, ∀k ∈ K.

Proof: The proof follows the same structure as Theorem 1, and is
omitted. �

Although Theorem 2 provides a condition that the optimal solution
needs to satisfy, it is still not enough to solve (9). To address this, we
next transform the non-convex constraints (9d) and (9e) into convex
ones by advanced convex approximation techniques.

Specifically, we first introduce an auxiliary variable wk, satisfying

wk ≤ Pkhk

1 +
∑K

i=1 Pih
′
i

, ∀k ∈ K. (10)

On this basis, (9d) and (9e) can be re-expressed as

PkLk

log2 (1 + wk)
≤ Emax

k ⇐⇒ PkLk ≤ log2 (1 + wk)E
max
k ,

∀k ∈ K (11a)

Lk

log2 (1 + wk)
+

Wk

fk
≤ t, ∀k ∈ K. (11b)

It can be easily verified that both (11a) and (11b) are convex.
To handle (10), we introduce another auxiliary variable y as follows

wky ≤ Pkhk, ∀k ∈ K, (12)

where

y ≥ 1 +
K∑

k=1

Pkh
′
i. (13)

The upper bound of wky is given by [22]

y[n]

2w[n]
k

w2
k +

w
[n]
k

2y[n]
y2 ≥ wky, (14)

where y[n] and w
[n]
k denote the values of y and wk at the n-th iteration,

respectively. Then, (12) can be reformulated as the following convex
constraint

y[n]

2w[n]
k

w2
k +

w
[n]
k

2y[n]
y2 ≤ Pkhk. (15)

Now we can reformulate P3 as

P4 : min t s.t. (9b), (9c), (11a), (11b), (13),(15). (16)

It is clear that P4 is a convex optimization problem, and can be
solved by standard convex optimization technique, e.g., interior-point
method [21]. Note that the only approximation procedure adopted in
transforming P3 to P4 is (15). Because of (15), we need to iteratively
solve P4 to obtain the solution of P3. Specifically, starting from an
initial feasible solution, we update y[n] and w

[n]
k iteratively by solving

P4 using the obtained results from the previous iteration. The above
procedure is carried out until convergence.

Convergence proof: At each iteration, we solve the convex op-
timization problem P4. The obtained optimal solution will yield a
decrease or at least equal value of t. Since the objective function clearly
has a lower bound, e.g., t = 0, convergence is guaranteed.

Complexity analysis: The proposed solution requires to solve P4
iteratively. The computational complexity of solving P4 is O([3K +
2]3.5) [23], where 3K + 2 denotes the number of variables. Accord-
ingly, the overall computational complexity of the proposed solution
is O(I2[3K + 2]3.5), where I2 denotes the number of iterations for
convergence.
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Fig. 1. Delay as a function of (a) antenna number, (b) maximum transmit power, and (c) maximum energy consumption.

V. NUMERICAL RESULTS

In this section, numerical results are presented to evaluate the
performance of the proposed schemes. The default simulation pa-
rameters are as follows: there are K = 8 users, which are uniformly
generated within a radius of 300 m. The pathloss model follows
30.6 + 36.7 log10(d), where d is the distance in m. Rayleigh fading
is used for small-scale fading. The bandwidth is B = 1 MHz, while
the noise power spectral density is N0 = −174 dBm/Hz. The antenna
number is M = 64, while the total CPU computing capacity at the
MEC server is F = 20 G cycles/s. The maximum transmit power is
Pmax
k = 0 dBm, while the maximum energy consumption isEmax

k = 2
mJ. The data length is Lk = 10 Mbits, whereas the computing need for
user k, k ∈ {1, . . . ,K} is Wk = k/2 + 1 G cycles.

For both perfect and imperfect CSI cases, we consider the corre-
sponding special case with equal computing resource allocation among
the users as the baseline scheme. The power allocation is then obtained
by using the proposed solutions with fk, ∀k ∈ K fixed to F/K.

Fig. 1(a)-(c) show how the maximum delay varies with the antenna
number, maximum transmit power and maximum energy consumption,
respectively. Here “Joint” denotes the proposed scheme, while “Fixed”
represents the baseline algorithm with equal computing resource among
the users. According to Fig. 1(a), the maximum delay declines with the
antenna number for all considered algorithms. The reasons are twofold:
1) users’ offloading data rates increase with the number of antennas
under both perfect and imperfect CSI, and thus, less time is needed
for offloading [20]; 2) a reduced offloading time further yields a lower
overall delay for both the proposed scheme and the baseline algorithm.
The benefit of having more antennas at the BS is fully illustrated from
Fig. 1(a). Meanwhile, the proposed scheme outperforms the baseline
algorithm under both perfect and imperfect CSI. This is because the pro-
posed scheme jointly optimizes the radio and computational resources,
while the baseline algorithm only optimizes the transmit power under
even computational resource allocation. The necessity of conducting
joint radio and computational resources allocation is verified here. In
particular, the proposed scheme under imperfect CSI can achieve lower
delay than the baseline algorithm under perfect CSI when M ≥ 128.
As can be seen from Fig. 1(b), the delay first decreases with the
maximum transmit power, and then remains fixed for all algorithms.
The initial decrease in delay is owing to the increased offloading rates
resulting from the increased transmit power. However, when Pmax

k

is large enough, the delay is constrained by the energy consumption
rather than Pmax

k . Further increase in Pmax
k brings no benefit, and thus,

the delay remains fixed. Meanwhile, perfect CSI achieves lower delay
than imperfect CSI for both schemes, because inter-user interference is
eliminated under perfect CSI. As for Fig. 1(c), a similar trend can be

observed for all algorithms as in Fig. 1(b), i.e., the delay first decreases
with the energy consumption, and then remains fixed. This is because
the delay is constrained by the maximum transmit power instead of the
maximum energy consumption when Emax

k is large enough.

VI. CONCLUSION

In this article, we have considered the overall delay minimization
among all users for a massive MIMO assisted MEC system under
maximum transmit power and energy consumption constraints. The
formulated problem requires a joint radio and computational resource
allocation. For the perfect CSI case, we have derived a semi-closed-
form solution, and further proposed an optimal and low-complexity
algorithm. For the imperfect CSI case, the formulated non-convex
problem has been handled by the successive convex approximation
technique. Simulation results show the obtained performance gain when
employing more antennas at the BS, especially under imperfect CSI.
Moreover, it is clear that the proposed joint resource allocation schemes
significantly outperform the baseline ones with fixed computing re-
source allocation. Finally, it can be seen that the maximum transmit
power and energy consumption constraints are coupled and both need
to be increased to fully lower the delay.
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