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ABSTRACT: Efforts to compile life cycle inventory (LCI) data at
more geographically refined scales or resolutions are growing. However,
it remains poorly understood as to how the choice of spatial scale may
affect LCI results. Here, we examine this question using U.S. corn as a
case study. We compile corn production data at two spatial scales, state
and county, and compare how their LCI results may differ for state and
national level analyses. For greenhouse gas (GHG) emissions, estimates
at the two scales are similar (<20% of difference) for most state-level
analyses and are basically the same (<5%) for national level analysis.
For blue water consumption, estimates at the two scales differ more.
Our results suggest that state-level analyses may be an adequate spatial
scale for national level GHG analysis and for most state-level GHG analyses of U.S. corn, but may fall short for water consumption,
because of its large spatial variability. On the other hand, although county-based LCIs may be considered more accurate, they require
substantially more effort to compile. Overall, our study suggests that the goal of a study, data requirements, and spatial variability are
important factors to consider when deciding the appropriate spatial scale or pursuing more refined scales.

1. INTRODUCTION

With the world economic system so heavily integrated, most
products produced today are a result of complex linkages in
and between subnational and international supply chains, with
few products, if any, that are completely locally made.
Suppliers, producers, distributors, retailers, and consumers
from around the world are becoming part of this increasingly
interwoven web of global supply chains.1 This is obvious for
complicated products such as personal electronics,2 but also
true for seemingly simple and local products such as fresh
produce.3 In other words, the goods and services we consume
have global environmental implications.
Life cycle assessment (LCA) is an approach of growing

influence for evaluating such global impacts.4 At the core of
LCA is the quantification of inputs (e.g., energy and materials)
and outputs (e.g., waste and emissions) at each stage of a
product’s life cycle from resource extraction to disposal.5 This
is known as life cycle inventory (LCI) analysis. Ideally, an LCI
should be based on primary data collected directly from
processes or facilities. Consider a cotton T-shirt. We need, first,
to know where it was knitted and finished, what inputs were
used, and what pollutants were released. The same goes for
dying, weaving, yarning, and cotton production. Collecting
data for all these processes would entail a large effort and is
complicated by data gaps. The global garment industry has
grown so complex6 that it is difficult to trace back to the farms
where cotton was grown.7 However, life cycle thinking
encourages accounting for not only processes directly
associated with the T-shirt, but also their upstream suppliers
(e.g., electricity generation and dye production) and so on and

so forth. As the supply chain web expands, the challenges to
collect information at the facility level multiply.
In practice, therefore, LCA practitioners work mainly with

secondary data that are typically averages representative of
certain spatial scales. The term “spatial scale” can mean
different things to different people.8,9 Here, we define it in the
same way Montello defines analysis of scale in geography, i.e.,
“the size of the units in which phenomena are measured and
the size of the units into which measurement are aggregated for
data analysis and mapping.”9 Thus, scale in our study is
synonymous with resolution, and the two terms may be used
interchangeably throughout the text. For example, if an LCA
study for a given country has a single average life cycle
inventory for the entire country, its spatial scale or resolution is
country-scale, and if it has state-specific life cycle inventories,
its spatial resolution is state-scale. An increase in resolution
means that the spatial scale becomes smaller, for example, from
a low-resolution country scale to a higher-resolution state scale.
Perhaps the most common spatial scale used in LCA is
country-scale, as partly reflected in the country-specific data
sets compiled in process LCA databases frequently used in
LCA studies10−13 and partly reflected in the large number of
national input−output LCA models developed world-
wide.14−18 Average country-level data, however, may poorly
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reflect regional or local situations, especially for countries with
high spatial variability in geographic factors, such as climate
and soil, and/or in energy and economic structures. For
example, marginal SO2 emission intensity of electricity
generation in the United States ranges from 0.2−3.3 kg per
MWh across regions,19 with a mean of 1.3 kg per MWh, which,
if used, would significantly mispresent both low- and high-
intensity regions.
Recognizing the limitations of national average data to

address regional questions, there have been growing efforts to
compile LCIs at more geographically refined scales, such as
state, county, and city. This is also driven by environmental
policies, strategies, and legislations being increasingly imple-
mented at the regional level, such as the state-level renewable
electricity policies in the United States and worldwide regional
and city-level climate action commitments.20−22 Notably, a
growing number of subnational input−output LCA models
have been built, for example, in Australia,23 China,24 Japan,25

Spain,26 Canada,27 and the United States.28,29 Similarly, many
process-based regional inventories have been compiled, for
instance, for electricity generation,30−32 biofuels,33−36

foods,37−39 and textiles.40

As interest in regionalizing LCA at subnational levels
continues to expand, an important question that remains
poorly understood is the choice of spatial scale.29,41,42 A highly
refined small scale, as discussed above, is theoretically sound
but practically challenging, while a national scale is likely
unrepresentative at smaller scales. A proper spatial scale should
yield relatively accurate results by adequately capturing
regional heterogeneity and meanwhile balance high data
intensity.43 The question of spatial scale also depends on the
goal and geographic scope of a study. For example, estimating
the life cycle emissions of total food consumption by the entire
Chinese population may be satisfied by inventory data at a
relatively coarse spatial scale compared to estimating the
emissions for individual provinces or counties. Further, the
question of spatial scale depends on how geographically
variable the product system is in terms of its input
requirements and environmental outputs. If the variability is
small, all else being equal, results accuracy may increase only

marginally with further spatial differentiation (e.g., from state
to county).43 All things considered, there may not be “one
scale fits all”, and the question of a proper spatial scale needs to
be investigated on a case-by-case basis.
Previous studies have examined the question of spatial scale

in LCA in the context of impact assessment, such as that by
Mutel et al.,41 which used a case study of electricity generation.
Here, we study how the choice of spatial scale may affect life
cycle inventory (LCI) results, using corn production and
consumption in the United States as a case study. Corn is one
of the most widely grown crops in the United States, with a
total planted area of ∼36 million hectares and a total
production of 371 million metric tons in 2017.44 Historically,
livestock feed was the primary use of U.S. corn, but over the
past two decades corn used for ethanol has increased
substantially.45 The two sectors now consume ∼80% of total
corn production.38 Relying on intensive use of agrochemicals
and farm machinery, corn production causes various environ-
mental releases both directly (e.g., from fertilizer application
on site) and indirectly (e.g., from fertilizer production and
distribution). As a result, corn production contributes to a
wide range of environmental problems, including global
warming, nutrient pollution, smog formation, and ecological
toxicity.46 Given differences in soil, climate, and management
practices, the stress corn production puts on the environment
varies considerably across space.38 A better understanding of
the variability is important for determining the life cycle
impacts of corn-derived products, such as ethanol and meat,
and identifying improvement opportunities along their supply
chains.38

In our analysis, we ask how life cycle emissions per average
kg of corn consumed by ethanol plants and livestock farms in a
given state or across the entire country may differ based on
emission factors and interregional commodity flows estimated
at two different spatial scales, state and county. This question is
relevant to, for example, environmental policy makers of a
given state interested in whether corn ethanol consumed in the
state meets their renewable fuels standard. It is also relevant to
national food companies that purchase commodities from
farmers across the country and seek to “green” their supply

Figure 1. An illustration of life cycle modeling at the two different spatial scales (state (a) and county (b)), using Minnesota (dashed red line)
purchasing corn from neighboring states as an example (see text). In the state-based (county-based) model, emission factors for production are
estimated at the state (county) level and capture state-to-state (county-to-county) variation as indicated by the differences in color intensity, and
this requires interstate (intercounty) commodity flows to be estimated for quantifying the life cycle emissions of a product consumed in a given
region.
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chains by identifying and engaging with large impact
contributors (i.e., hotspots). In the following section, we
describe the methods used for estimating the life cycle
inventory of corn across the United States based on two
different spatial scales and for estimating interregional corn
flows. Our results focus on GHG emissions and consumptive
water per kg of corn produced and consumed due to data
availability and corporate interest in tracking and managing
these supply chain impacts.38 We close with a discussion of the
implications of the study.

2. METHODS AND DATA
Why does spatial scale matter? We explore this question with
first a conceptual example (Figure 1). Suppose we are
interested in the carbon footprint of corn consumed by
Minnesota ethanol facilities. To answer the question requires
estimating (1) where corn is sourced from (or interregional
corn flows), and (2) how it is produced and affects the
environment (or region-specific emission factors).47 A state-
based model (Figure 1a) would derive interstate corn flows
and state-specific emission factors reflecting state-average corn
practices and emissions. The problem with a model at this
scale is that it could mask potential heterogeneity at the
substate level: the corn supplied to Minnesota ethanol plants
may be produced in particular locations whose emission factors
may be substantially different from the state average. In this
case, improving the geographic resolution of the modelfor
example, to the county-scale with intercounty corn flows and
county-specific emission factors (Figure 1b)can improve the
accuracy of life cycle results, assuming that county average
production practices and flows are able to be adequately
captured. For clarity, a county is a political subdivision of a
state; for example, the state of Minnesota has 87 counties, as
shown in Figure 1. However, to what extent the accuracy can
be improved with increased resolution depends partly on the
supply chain connections between production and consump-
tion, and partly on the degree of variation in production
practices across states and counties.
Our analysis thus consists of three steps. First, we estimate

the cradle-to-farm gate GHG emissions and blue water
consumption of corn production at two scales, county and
state (section 2.1). We focus on blue, instead of green, water
consumption because blue water represents the portion of total
water consumption that is directly influenced by farm
management practices, while green water consumption occurs
as a result of natural precipitation, where such water loss would
largely occur regardless of the crop being grown. Although our
estimates are cradle-to-gate, including emissions and water
consumption embedded in inputs, only the process of corn
production is regionalized in our analysis. This is partly
because of the challenges in regionalizing all background
processes, which not only require additional spatial character-
ization of upstream inputs but also data on the interregional
flows of such inputs, thus significantly increasing data
requirements and modeling complexity.48 However, more
importantly, focusing on corn production may be sufficient to
capture the overall spatial variability of the corn life cycle (and
derived products).
Corn production is likely the most spatially variable process

and has also been shown to be the major contributor to corn
(or derived products) life cycle environmental impacts.35,38,49

Second, we estimate the mobility of corn within the United
States based on demand in the receiving regions and the total

impedance or difficulty of transporting commodities between
regions (section 2.2). Finally, we calculate the cradle-to-gate
GHG emissions and water consumption per average kg of corn
consumed by ethanol plants and cattle, hog, and poultry farms
at the state and the national level (see Figure S1 in Supporting
Information 1 (SI-1) for the differences between production
versus consumption-based impact characterization at county,
state, and national scales of analysis). In other words, our final
results reflect cumulative cradle-to-gate GHG emissions and
water consumption embedded in an average unit of corn at the
point of consumption by ethanol plants and livestock farms in
a particular state and in the country as a whole.
We further compare the state-based results against the

county-based results. If the former agrees well with the latter,
this could mean that corn GHG emissions and water
consumption in the counties that actually supply corn to a
particular sector do not differ much from the state averages.
This could also mean that they do differ; e.g., some counties
have much higher emission rates and some lower, but the
weighted average, with weights being the amounts of corn
supplied, is close to the state average. In either case, state could
be a sufficient spatial scale. However, if state-based results do
not agree with county-based results, this suggests it may be
necessary to compile county-level life cycle inventories. Final
results and all estimates of cradle-to-gate GHG and water
consumption estimates and interregional corn flows can be
found in the SI-2.

2.1. GHG Emissions and Water Consumption at State
and County Scales. The primary goal of this part of the
study is to investigate how characterizing LCIs at two different
spatial scales affects emission results, so our intent is to
maintain methodological consistency between state and county
characterizations. Emission factors for county corn production
are based on a streamlined spatial life cycle assessment
provided by Pelton,49 whereas this study provides estimates at
the state-scale, following the county-scale estimation proce-
dures as closely as possible when appropriate. The streamlined
assessment focuses on key inputs and outputs of corn
production that have both a high degree of spatial variation
across corn producing regions and a significant contribution to
total corn life cycle emissions relative to other inputs/outputs.
Nitrogen (N) fertilization contributes over 50% of total corn
impacts, on average, due to the embedded emissions of
fertilizer production and the on-field nitrous oxide (N2O)
emissions from nitrogen application.50 The embedded
emissions from N fertilizer and associated N2O emissions are
also highly variable across the production landscape due to
differences in the type of fertilizers applied, the quantity of N
fertilizer applied, and the biogeochemical characteristics of the
land affecting direct and indirect emissions of N2O.
In addition to the spatial variability of N fertilizer related

emissions, emissions associated with irrigation are also highly
variable across production locations. Although irrigation’s
average contribution is small, accounting for ∼5% of corn life
cycle emissions,50 there is substantial variation in (1) the
locations and methods in which irrigation is applied and (2)
the corresponding fuel mixes used to power the irrigation
systems. These spatial differences in N fertilization and
irrigation practices and emissions are captured in the
streamlined spatial LCA and combined with national average
emissions associated with the other inputs to corn production,
such as other fertilizers (e.g., potassium, phosphate, lime, etc.),
fuel use, and pesticides (approximately 450 kg CO2e/acre).

50
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While potassium, phosphate, and pesticides together contrib-
ute less than 5% of average total cradle-to-farm gate emissions,
lime application and fuels used in machinery make up about
40% of total emissions.
Lime application rates are expected to be variable across

production regions, but regionalizing these inputs is limited by
data availability. We expect fuel use from farm machinery to
have minimal variation as most farms are conventionally tilled
and require similar planting and harvesting practices. As such,
with the exception of lime inputs, focusing on the nitrogen
fertilizer, N2O emissions, and irrigation captures the majority
of spatial variation. The average emissions estimates per acre
representing embedded impacts from these other inputs to
production are then combined with state- and county-specific
yields (bushels/acre) to estimate emissions per bushel of
harvested corn, providing an additional small degree of spatial
differentiation (see Table S5 in SI-1 for details). Harvested
bushel estimates are based on the 2007 and 2012 average corn
production, which helps smooth out the variation from year to
year, and is based on the most recently available census
estimates compiled only every five years. The data used for the
assessments include a combination of census and survey
compiled by the U.S. Department of Agriculture (USDA),
among several other data sources described herein and in detail
in Pelton.49

To estimate embedded fertilizer emissions, this study
diverges slightly from the methods used for county-level
estimation in order to take advantage of the existing USDA
state-level survey data providing N application rates by crop.
The survey data represent the best methodologically consistent
data set available, to our knowledge, that matches the scale of
inquiry and would be the primary data set of choice to develop
a state-scale LCI for fertilizer inputs. This data set can be used
to understand differences in N application rates across
surveyed corn producing states and does not exist in a publicly
available format at the county-level, thus requiring the full
estimation conducted in Pelton. For those states with no
primary survey data available, fertilizer application rates are
estimated in accordance with the method provided in Pelton,
which maintains the methodological consistency for estimating
data gaps to better compare results across the two geographical
scales of assessment (county versus state). Specifically,
fertilizer application rates are estimated using state-level total
annual synthetic N fertilizer quantities applied across all types
of agricultural crops,51 and subtracting the amount of fertilizer
expected for wheat, cotton, and soybean production, which
take into account the relative differences in application rates
between the most commonly produced crops in the United
States, accounting for 75% of total agricultural crop
production. The remaining quantity of N is then multiplied
by the proportion of corn acres to all other crop acres (less the
acres from soybean, wheat, and cotton). The resulting total
estimated quantity of N applied to state corn acres is then
divided by the state total harvested corn acres to determine an
estimated application rate. Whether from the USDA or
estimated, state N fertilizer application rates are combined
with the distribution of N fertilizer types used across each state
(e.g., urea, ammonium nitrate, etc.) and their respective
embedded manufacturing emissions, which range from 1.6 to
16 kg CO2e/kg N applied.13,49,52

State N2O emission rates are derived using USDA data
providing corn N2O emission rates by soil type (fine, medium,
coarse) and land resource region, which are based on outputs

from two biogeochemical models (Daycent and DNDC) to
capture the interactions of temperature, precipitation, and soil
type, among others that affect N2O emission rates. We
estimate a state-level N2O emission factor, capturing emissions
from both background processes and N application, using
geographic information systems (GIS) to first characterize the
portion of corn grown on each soil class in each LRR for a
weighted average emission rate per LRR, and then estimate the
portion of each LRR growing corn in each state for a state
weighted average. This method aligns with the weighted
average at the county level presented in Pelton.49

For irrigation, state-level metrics on the type of application
method (gravity or sprinkler), the source of water (ground-
water or surface water) and the energy source for sprinkler
powered systems are used and combined with average state-
level irrigation rates (L/acre) to estimate the total energy used
for pumping irrigation water to corn acres.49,53,54 The ANL
water model provides blue water consumption for irrigated
corn production at the county scale, which we average for a
state-scale estimate.53 We then combine these with state-scale
estimates of the consumption to withdrawal ratios to calculate
the total irrigation water withdrawn, which is used for
estimating greenhouse gas emissions from powered irrigation
systems. For sprinkler systems powered by electricity, state-
level electricity emission factors are estimated based on the
weighted average portion of irrigated corn acres in each eGRID
subregion (22 regions) intersecting each state and the
corresponding energy mixes,13,55 allowing for a full accounting
of life cycle energy emissions (including material extraction,
combustion, and transmission/distribution losses across fossil
and renewable energy generation portfolios). This method
aligns with the county-scale assessment where counties are also
partitioned to eGRID subregions. Similarly, for other fuel
powered systems (e.g., diesel, natural gas, propane, etc.), both
upstream production and combustion related emissions are
included.13 All emission factors are available in the SI (Tables
S1−S5 in SI-1 and also SI-2). For water consumption, we
combine the respective county and state average irrigation
water consumption with the embedded water consumption
associated with all other inputs to corn production, including
embedded water associated with nitrogen fertilizers.13,50

While most U.S. corn consumption is domestically produced
(>99%), a portion of U.S. consumed corn comes from foreign
imports. USDA feed yearbooks indicate almost 40% of U.S.
corn imports come from Canada. As such, we apply an average
corn production emission factor for Canadian corn,56 and a
global average emission factor for all other imports.57 For
water consumption, on the other hand, we apply the average
U.S. water consumption intensity due to data limitations for
characterizing global average and Canadian water consumption
(Table S6 in SI-1).

2.2. Interregional Corn Flows. We estimate how corn
moves between counties within the United States using the
FoodS3 model developed by Smith et al.38 and intermodal
county-to-county impedance factors provided by the Center
for Transportation Analysis (CTA) at the Oak Ridge National
Laboratory.58 The impedance factors are based on consid-
eration of costs of transporting commodities between
countiesin the form of total distance, speed limits, traffic
congestion, tolls, and other impedancesof multiple modes
including truck, rail, and barge and are estimated by
multiplying the modal distance from county to county and
adjustment factors for different modes.58
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The mobility modeling is formulated as a linear program-
ming problem, where the total system impedance of moving
corn supplies to the destination locations of consumption is
minimized, subject to several constraints, as described below:

IC FC

FC D r R j n

FC S i n

FCr i j r R i n j
n
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×

= = =

≤ =

≥ = =
=

= = =

=
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where ICi,j is the intermodal impedance from the origin county
i to the destination county j. FCr,i,j is the quantity of corn
transported from the origin county i to the destination county j
in sector r. Dr,j is the quantity of corn demanded by sector r at
the destination county j, and Si is the quantity of corn supply at
the origin county i. There are 11 sectors in the model including
animal feeds (broiler, hog, pullet, turkey, dairy cattle, layer,
beef cattle), wet-mill, ethanol, export, and all other use. For our

results, we consider only domestic corn consumption by major
sectors, which account for ∼80% of domestic corn production,
including demand from ethanol producers, cattle (sum of meat
cows and dairy cows), hogs, and poultry (sum of broilers,
pullets, layers, and turkeys).
The mobility model yields intercounty corn flows for

different sectors in 2012 (see SI-2). The intercounty flows
are coupled with county-based GHG and water consumption
intensities to calculate the cradle-to-gate GHG emissions and
water consumption per average kg of corn consumed by a
particular sector in a given state or in the country (hence,
county-based results). We perform a similar analysis for the
state-scale, where state-based corn flows are coupled with state-
based GHG emission and water intensities, yielding state-based
results. Instead of using state-based impedance factors,
however, which would require additional estimation and
would introduce additional sources of uncertainty, we instead
estimate state-level corn flows by summing the intercounty
flows, which maintains consistency in the interregional corn
flows across the county and state levels, and facilitates better
comparison of county versus state-based impact results,
allowing us to better examine the issue of spatial scale in
LCI analysis. Code for the transport model, together with a
simple fictitious example for illustration, can be found in the
SI-1.

2.3. Sensitivity Analysis. In our analysis, county- and
state-based estimates of GHG emissions and water con-

Figure 2. Comparison between state-based and county-based results for greenhouse gas (GHG) emissions and water consumption (a, b) and in
terms of absolute percentage difference (c, d). *(a, b) Circles indicate the cradle-to-gate GHG emissions and water consumption per average kg of
corn consumed in different states (see the SI-2 excel file, tab Results-State); circle size indicates the total amount of corn consumed in each state; the
1:1 line indicates equivalence between state-based results (y-axis) and county-based results (x-axis). (c, d) The absolute percentage difference of
state-based results from county-based results.
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sumption associated with corn production have a similar level
of uncertainty given the methodological consistency main-
tained between the two (section 2.1). The most uncertain
component of the results is likely interregional corn flows.
Compared with international imports and exports, commod-
ities travel freely within a country,29 making it difficult to keep
track of their movement. In the United States, the best data
source of this sort is the Commodity Flow Survey (CFS),
compiled by the Bureau of Transportation Statistics, which
includes data on shipments between states and city clusters for
certain business establishments.59 However, commodities
covered in CFS are differentiated into ∼30 broad categories,

a level of aggregation that is of little use for LCA studies of
individual commodities (e.g., corn, soybean, nitrogen fertil-
izer). That is to say, interregional commodity flows in LCA
have to rely on modeling and are likely highly uncertain.25,38

Interregional corn flows can also affect the question of
spatial scale. For example, if corn consumed by a sector is
purchased mainly from top-producing counties, then life cycle
inventories compiled at the state scale, which to a large extent
reflect the impacts of top-producing counties, may be
sufficient. However, if the corn is purchased from small
counties with quite different impacts from the average, a state
scale may not capture the substate variability and thus falls

Table 1. Detailed Comparison between the State- and County-Based Production Inventories for State-Level Consumption
Estimates, Using Corn Consumed by Arizona Cattle Farms As an Example (Figure 3a)a

state-based county-based

supplying states ratio (%) production consumption production consumption

GHG emissions (kg CO2e/kg corn) Arizona 8 0.50 0.38 0.42 0.33
Colorado 38 0.30 0.30
New Mexico 4 0.71 0.82
Texas 51 0.40 0.31

water consumption (L/kg corn) Arizona 8 560 158 476 298
Colorado 38 86 136
New Mexico 4 694 720
Texas 51 108 359

aCorn is estimated to come from Colorado (38%), New Mexico (4%), Texas (51%), and in state (8%). For comparison, county-based production
estimates are aggregated to the state level based on the counties within a state that are estimated to supply corn to Arizona cattle farms, as opposed
to state-based production estimates reflecting state averages (see text).

Figure 3. Two contrasting cases of corn sourcing at state and county scales. (a) Arizona cattle farms, which are estimated to source corn from a
small number of counties in neighboring states and also from counties in state. (b) California cattle farms, which are estimated to source corn from
a large number of counties in the Midwest over long distances and also from counties in state. Supply counties or states are color coded, with colors
indicating life-cycle GHG emissions per kg of corn produced.

Environmental Science & Technology pubs.acs.org/est Policy Analysis

https://dx.doi.org/10.1021/acs.est.9b03441
Environ. Sci. Technol. 2020, 54, 1293−1303

1298

https://pubs.acs.org/doi/10.1021/acs.est.9b03441?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b03441?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b03441?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b03441?fig=fig3&ref=pdf
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.9b03441?ref=pdf


short. To test to what extent our comparative results are
affected by the modeling of corn mobility, we apply another set
of intercounty corn flows estimated based on cost
minimization38 as opposed to our minimization of impedance
(see SI-3).

3. RESULTS AND DISCUSSION
3.1. Differences at the State Level. Overall, we find that

for state-level GHG analysis (i.e., cradle-to-gate GHG
emissions per average unit of corn consumed in a given
state), state-based inventories of corn production give roughly
similar results as the county-based analysis (Figure 2a,c). In
2012, livestock farms operated in 48 states, while ethanol
plants operated in 26 states. The state- and county-based GHG
results are within 10% of difference for 37−42% of states
across the four sectors, within 20% of difference for 71−79% of
states, and within 40% of difference for >90% of states (Figure
2c). In other words, for the majority of states (71−79%), using
state-based life cycle inventories of corn production would give
similar results (within 20% of difference) as using detailed
county-based corn life cycle inventories.
By contrast, for state-level water consumption analysis (i.e.,

cradle-to-gate water consumption per average unit of corn
consumed in a given state), results at the two scales differ more
substantially (Figure 2b,d). The state- and county-based water
results are within 10% of difference for 15−25% of states,
within 20% of difference for 23−40% of states, within 40% of
difference for 50−65% of states, and within 60% of difference
for 65−83% of states. In other words, for 17−35% of states,
using state-based life cycle inventories of corn production
would give quite different results (by >60%) than using
detailed county-based corn life cycle inventories. A con-
cordance correlation analysis,60 which quantifies agreement
between two variables, shows that the correlation coefficient is
0.90 (0.87−0.92; confidence interval at 95%) for GHG
emissions and 0.83 (0.78−0.87) for water consumption. This
confirms that estimates given by the two scales agree more on
GHG emissions than on water consumption.
To further illustrate the differences, consider a couple of

examples. The cradle-to-gate GHG emissions and water
consumption per average kg of corn consumed by cattle
farms in Maine are estimated at 0.33 kg CO2e and 1.9 L using
county-based inventories, compared with 0.22 kg CO2e and
1.1 L using state-based inventories. In Nebraska, the cradle-to-
gate GHG emissions and water consumption per average kg of
corn consumed by poultry farms are estimated at 0.54 kg CO2e
and 76 L using county-based inventories, compared with 0.76
kg CO2e and 147 L and using state-based inventories.
To explain the differences between the two scales, let us take

a detailed look at Arizona cattle farms, which are estimated to
purchase corn from Colorado (8%), New Mexico (38%),
Texas (51%), and in state (8%) (Table 1; Figure 3a). The
cradle-to-gate GHG emissions and water consumption per kg
of corn consumed by Arizona cattle farms are estimated at 0.38
kg CO2e and 158 L using state-based inventories. These
inventories reflect average GHG emissions and water
consumption of corn production in Colorado (0.30 kg
CO2e/kg and 86 L/kg), New Mexico (0.71 kg CO2e/kg and
694 L/kg), Texas (0.40 kg CO2e/kg and 108 L/kg), and
Arizona (0.50 kg CO2e/kg and 560 L/kg). However, on the
basis of county-level inventories and counties (22 of them)
estimated to have supplied corn to Arizona cattle farms, the
aggregated state-level GHG emissions and water consumption

of corn production associated with Arizona cattle farms are
estimated at 0.30 kg CO2e/kg and 136 L/kg in Colorado, 0.82
kg CO2e/kg and 720 L/kg in New Mexico, 0.31 kg CO2e/kg
and 359 L/kg in Texas, and 0.42 kg CO2e/kg and 476 L/kg in
Arizona (see Table S5 in SI). These, coupled with each state’s
supplying ratio, give the cradle-to-gate GHG emissions and
water consumption per kg of corn consumed by Arizona cattle
farms at 0.33 kg CO2e/kg and 298 L, as opposed to 0.38 kg
CO2e and 158 L using state-based inventories. Figure 3b shows
a more complicated case, California cattle farms, which are
estimated to source corn from dozens of counties in the
Midwest over long distances.

3.2. Differences at the National Level. For national level
GHG analysis (i.e., cradle-to-gate GHG emissions per average
kg of corn consumed by a given sector in the United States),
the results of which are relevant for industry associations,
national level policy making, and connecting U.S. exports and
impacts to global supply chains, we find that state-based
inventories of corn production give very similar estimates to
county-based inventories, with differences smaller than 5%
across all sectors (Figure 4a). For national-level water
consumption analysis, however, results at the two scales differ
from 5% to 34% (Figure 4b). The largest discrepancy appears
for cattle (34%), where the county-based estimate is 127 L per
kg of corn consumed, and the state-based estimate is 84 L per

Figure 4. Cradle-to-gate GHG emissions (a) and water consumption
(b) per average kg of corn consumed by cattle, ethanol plants, hogs,
and poultry in the United States using state-based inventories and
county-based inventories. The number above each bar indicates the
percentage difference of the state-based estimate from the county-
based estimates. Red dashed lines indicate estimates for an average kg
of corn produced in the United States (weighted average of county-
based results, weights being production shares), reflecting the impact
of producing a kg of “generic” corn at the national level without
considering its destination and user.
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kg. The second largest discrepancy appears for poultry (29%),
where the county-based estimate is 46 L per kg, and the state-
based estimate is 33 L per kg. We also calculate GHG
emissions and water consumption for a kg of “generic” corn in
the United States (red dashed lines in Figure 4) based on
production data. Such estimates are commonly provided in
LCA databases, but if they are applied without considering the
downstream sector, it could be problematic. As Figure 4b
demonstrates, corn supplied to different sectors can have
substantially different embedded water consumption, because
of the large spatial variation in water consumption and where
each sector sources corn from.
3.3. Results of Sensitivity Analysis. Replacing our

default intercounty corn flows based on minimization of total
impedance (section 2.2) with those based on minimization of
total cost38 does not change the main findings for either the
state-level or national-level analysis (see Figures S4 and S5 in
SI-1). Using cost minimized corn flows, state- and county-
based inventories of corn production also yield similar results
for state-level GHG emissions and even greater differences in
the results for state-level water consumption compared to use
of the impedance model (Figure S4 in SI-1). For example,
state-based and county-based GHG results are within 20% of
the difference for 65−73% of states and within 40% of the
difference for >90% of states. And state- and county-based
water consumption results are within 40% of the difference for
38−54% of states and >60% of the difference for 38−46% of
states. For national level GHG analysis, state- and county-
based results are also within 5% of the difference, and for
national-level water consumption analysis, the two differ by 4−
34% (Figure S5 in SI-1). While our interregional corn flows are
undoubtedly uncertain, and data to empirically validate the
model are limited, the outputs of the impedance minimization
model are similar to the outputs of the cost-minimization
model (see Figure S9 in SI-1 and also SI-2 for distance
comparison). This similarity provides at least some level of
model validation, because the cost-minimization model has
been shown to agree with broad level commodity flows
provided in the Freight Analysis Framework which use
Commodity Flow Survey data, as is indicated in Smith et al.38

4. DISCUSSION AND IMPLICATIONS
In this study, we explore how inventories of corn production
compiled at the county- and state-scale affect estimates of
cradle-to-gate GHG emissions and blue water consumption by
major sectors of corn demand in the United States. In national-
level sectoral analysis (e.g., emissions per average kg of corn
consumed by hog farms in the country), estimates at the state
and county scales are close to each other across all sectors
(<5% of difference) for GHG emissions, but can differ by up to
30% for water consumption. In state-level analysis (e.g., per
average kg of corn consumed by ethanol plants in Ohio),
estimates at the two scales are roughly similar for the majority
of states for GHG emissions (e.g., ≤ 20% of difference for 71−
79% of states and ≤40% of difference for >90% of states), but
have greater differences for water consumption (e.g., ≤ 40% of
difference for 50−65% of states and >60% of difference for
15−35% of states). These results suggest that state-based corn
production inventories may suffice for broad national-level
analysis as well as many state-level analyses of corn GHG
emissions. Such state-scale LCIs, however, may fall short for
corn production related to blue water consumption, and a
substate spatial scale, like county, may be needed.

The discrepancy between GHG emissions and water
consumption as revealed by the two models is due in part to
the fact that water consumption from corn production is much
more spatially variable than GHG emissions. Using county-
based inventory results, the coefficient of variation is 78% for
GHG emissions and >370% for water consumption. This large
difference in variability is caused by the fact that there is a
relatively common set of inputs required for corn production
that contribute more consistently toward GHG emissions
compared to the highly variable use of irrigation water, given
that green water (i.e., precipitation) often can satisfy water
requirements, supplanting localized needs for blue water
irrigation. Another factor that contributes to the discrepancy
is the variability in interregional links. The county-based model
intuitively has more nodes (counties) and links (trade
connections) than the state-based model (see SI-2). However,
for each individual node, it has an average of just 2−3 outside
county suppliers, as compared to 10−12 different state
suppliers for each node (state) in the state-based model.
This means that, because of the number of counties in each
state, the number of connections going to each state will be
amplified with the county-to-county characterization. The
variation between county-level consumption-based LCI results
will thus be higher than the variation between state-level
consumption-based LCI results, because the greater number of
state connections can average out the variation between the
high- and low-impact supply regions, whereas the county level,
with only 2−3 counties suppling the demand, is more
influenced by the high- or low-impact supply regions.
Our results also indicate that even if it is the same product

(e.g., corn), life cycle emissions can vary depending on the
sector that uses it (e.g., ethanol plants or cattle ranches).
Fundamentally, this is because such a product has a high
system variability across regions, and different sectors may
purchase it from different regions depending on their locations,
logistical cost, and supply chain management. In life cycle
modeling, it is common to rely on LCA databases, especially
for modeling background processes. However, most of these
databases provide only generic, or country-level, inventory data
without regional differentiation at subnational levels, let alone
interregional commodity flows. Our results provide a cau-
tionary note on extracting LCA databases for products or
processes that are likely to be highly spatially variable.
While a county scale can increase accuracy, there is a trade-

off in the costs of producing these increasingly spatially refined
LCI estimates. We examine such costs in terms of the volume
of input data and computational time and efforts required to
produce county versus state scale LCIs. On the basis of the
perceived cost of gathering data sets, building models for
estimation, and computation time, we estimate that the state-
scale LCI is ∼90% less costly to develop than the county-scale
LCI (see SI-2 excel file tab DataCost for details). As such, LCI
development costs must be balanced against any expected
gains in accuracy that may result by increasing spatial
resolution, where for example, due to the similarity in corn
production GHG emissions between the two scales, it may not
be worth the added costs of LCI development to increase
spatial resolution to the county scale.
The recent broad efforts to capture state-level LCIs and

interstate commodity flows, such as those provided by surveys
or input−output models, may in some cases provide sufficient
levels of detail for estimating intermediate consumption-based
impacts across consuming sectors. However, such level of
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spatial resolution may fall short in other cases where there is
considerable system variability across space, as our results on
blue water consumption indicate. Overall, our study suggests
several aspects to consider, in addition to cost, for choosing a
proper spatial scale or deciding to improve existing spatial scale
for LCI analysis.
First, the choice of a proper spatial scale depends largely on

the scope of the assessment and the type of product under
study, as has also been noted by others.61,62 Broader scale
assessments (e.g., national and state level) may be sufficient for
informing national or state policy and industry association
decisions and for impact categories with low spatial variability,
as increased data granularity may result in small improvements
that may not justify the additional costs. Substate character-
izations, however, may be better suited for informing state or
local consumption-based policy-making and for impact
categories with high spatial variability. Where impact variability
is likely to be high, increasing the spatial resolution of LCI
assessments will be vital for informing company-level supply
chain assessments and targeting engagements. This is because
highly variable impacts are aggregated in unique ways based on
individual facility locations and demand, and can result in
substantially different impacts and hotspots across facilities and
companies.37 The relative uncertainties of characterizing
inventories at lower and higher spatial resolutions and
estimating commodity flows at different spatial scales, however,
must also be considered.
Furthermore, the question of whether a coarse scale (e.g.,

state in our case) is satisfactory or to pursue more spatially
refined scales depends on the application of LCA and the
question being studied. Consider the following example. A
state mandates that ethanol consumed in the state has 20%
lower life-cycle GHG emissions than gasoline. Suppose
gasoline emissions are 100 g CO2e MJ−1 with high certainty
(as most come from gasoline burning) and corn ethanol
emissions using state-based corn inventories are 50% lower or
50 g CO2e MJ−1. Also, suppose this GHG estimate for corn
ethanol is likely within 20% of error as compared with that
using county-based inventories. In this case, it is not worth
pursuing county-based inventories as that would not change
the result that corn ethanol meets the state mandate. However,
if the state-based corn ethanol had GHG emissions of 75 g
CO2e MJ−1, on the verge of the 20% threshold, it may justify
the additional effort to compile county-based inventories.
Overall, how we interpret LCA results and determine
acceptable levels of uncertainty depends largely on the purpose
of the study, such as to identify areas of improvements or to
promote ecofriendlier alternatives in comparative analyses. The
challenge is in establishing what the likely uncertainty bounds
are, a priori, for state versus county LCA results within a given
impact category to justify a higher resolution assessment. The
challenges presented by the cutoff rules for streamlining LCA
are similar in this regard. In streamlined LCA, inputs and
outputs may be excluded from the inventory if they make up
less than 5% of the mass, energy, or contribution to total
impacts, but such an examination also requires an a priori
assessment to achieve the intent of the streamlining efforts. If
future research can establish these a priori assumptions
defining the uncertainty bounds of broad versus fine scale
LCA results, policy makers could then use these to establish
thresholds of uncertainty to support particular policy decisions
and/or certifications.

In summary, the choice of a proper spatial scale thus may be,
at least initially, subjectively reached by an optimization of
these criteria. Future research may continue to examine these
linkages in other agricultural and nonagricultural products and
on other impacted categories not explored here, such as water
scarcity, eutrophication, and ecological toxicity, whose impact
characterization factors themselves have spatially explicit
implications to consider for future regionalization efforts.
These efforts will help provide additional clarity for
determining the criteria on which different spatial scales may
be appropriate for informing sourcing and supply chain
management decisions and, potentially, quantitatively examine
the optimization of such criteria.
A limitation of our analysis is the omission of land

management change and its effects on soil organic carbon
(SOC) in the long term.63−65 Our analysis spans a relatively
short time frame, is retrospective in nature, and reflects the
status quo of management practices, thus assuming no change
in SOC. SOC is a key component in the life cycle emissions of
crops and crop-derived products, and is also highly variable
across space.66 Future studies on spatial scale of crop systems
may incorporate long-term changes in land management and
SOC.63 Also, our cradle-to-gate inventories do not capture all
variability. Emissions from fuel and lime use are also likely to
vary, but due to data limitations, these are not spatially
differentiated. The purpose of our study, however, is not to
fully spatialize the emission estimates, but to compare how
spatializing the same, major, and likely most variable inputs
using different scales of analysis can lead to different results
and potentially different decisions. Further, our study only
qualitatively examines uncertainty, identifying (1) similar
uncertainty for the cradle-to-gate inventories of corn
production at the spatial scales due to methodological
consistencies and (2) that estimates of interregional corn
flows are likely the most uncertain component due to the
inherent modeling requirements. It has been pointed out,
however, that spatial differentiation could increase aggregate
uncertainty in LCI.67 Future studies incorporating full
uncertainty analysis should confirm whether this is the case
for deriving county-level life cycle inventories versus state-level
inventories and under what circumstances.
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