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A Learning-to-Infer Method for Real-Time Power
Grid Multi-Line Outage Identification
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and H. Vincent Poor

Abstract—Identifying a potentially large number of
simultaneous line outages in power transmission networks
in real time is a computationally hard problem. This is because
the number of hypotheses grows exponentially with the network
size. A new “Learning-to-Infer” method is developed for efficient
inference of every line status in the network. Optimizing the line
outage detector is transformed to and solved as a discriminative
learning problem based on Monte Carlo samples generated with
power flow simulations. A major advantage of the developed
Learning-to-Infer method is that the labeled data used for
training can be generated in an arbitrarily large amount rapidly
and at very little cost. As a result, the power of offline training
is fully exploited to learn very complex classifiers for effective
real-time multi-line outage identification. The proposed methods
are evaluated in the IEEE 30, 118, and 300 bus systems.
Excellent performance in identifying multi-line outages in real
time is achieved with a reasonably small amount of data.

Index Terms—Line outage detection, power system monitoring,
machine learning, variational inference, Monte Carlo method.

I. INTRODUCTION

ACK of situational awareness in abnormal system
Lconditions is a major cause of blackouts in power
networks [3]. Network component failures such as transmis-
sion line outages, if not rapidly identified and contained, can
quickly escalate to cascading failures. In particular, when
line failures happen, the power network topology changes
instantly, newly stressed areas can unexpectedly emerge, and
subsequent failures may be triggered that lead to increasingly
complex network topology changes. While the power system
is usually protected against the so called “N — 1” failure sce-
narios (i.e., only one component fails), as failures accumulate,
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effective automatic protection is no longer guaranteed. Thus,
when cascading failures start developing, effective protective
actions/interventions critically depend on correct and timely
knowledge of the network status. Indeed, without accurate
knowledge of the line outages, protective control methods have
been observed to further aggravate the failure scenarios [4].
Thus, real-time line outage identification is essential to all
network control decisions for mitigating failures. In particu-
lar, since the first few line outages may have already escaped
the operators’ attention, the ability to identify in real time the
network topology with an arbitrary number of line outages
becomes critical to prevent system collapse.

Real-time line outage identification is however a very
challenging problem, especially when unknown line outages
in the network quickly accumulate as in scenarios that cause
large-scale blackouts [3]. The number of outage hypotheses
grows exponentially with the number of possible line outages,
making real-time multi-line outage identification fundamen-
tally hard. Other limitations in practice such as behaviors of
human operators under time pressure, missing and contradic-
tory information, and privacy concerns over data sharing can
make this problem even harder. Assuming a small number of
line failures, exhaustive search methods have been developed
in [5], [6], [7] and [8] based on hypothesis testing, and in [9]
based on logistic regression. To overcome the prohibitive com-
putational complexity of exhaustive search methods, [10] has
developed sparsity exploiting outage identification methods
with overcomplete observations to identify sparse multi-line
outages. Without assuming sparsity of line outages, a graphical
model based approach has been developed for identifying arbi-
trary multi-line outages [11]. Sequential line outage detection
has also been proposed [12].

On a related note, non-real-time power grid topology
identification has also been extensively studied: the underly-
ing topology stays the same, while many data are collected
over a relatively long period of time before the topology
can be identified [13], [14], [15]. A variety of types of
data have been exploited for addressing this problem, e.g.,
data on power injections [16], voltage correlation [17], and
energy prices [18]. For power distribution systems in par-
ticular, various graph learning approaches have also been
developed [19], [20].

In this paper, we focus on real-time identification of a
potentially large number of simultaneous line outages based
on a set of measurements collected at any one point of
time in the power system. We start with a probabilistic
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model of the variables in a power system (line statuses,
power injections, voltages, power flows, currents etc.) and
in its monitoring system (sensor measurements of physical
quantities). We then formulate the multi-line outage identifi-
cation problem in a Bayesian inference framework, where we
aim to compute the posterior probabilities of the post-outage
topologies given any measurements at any one point
of time.

To overcome the fundamental computational complexity
due to the exponentially large number of possible post-
outage topologies, we develop a learning based framework
inspired by (but different from) variational inference, in which
we aim to approximate the desired posterior probabilities
using models that allow computationally easy marginal infer-
ence of line statuses. Importantly, we develop “end-to-end”
predictor models for multi-line outage identification, and
allow arbitrary model structures and complexities. In order
to find effective end-to-end predictor models, we transform
optimizing a predictor model into a discriminative learning
problem leveraging a Monte Carlo approach: a) based on
Sfull-blown power flow equations, data samples of network
topology, network states, and sensor measurements in the
network can be efficiently generated according to a genera-
tive model of these quantities, and b) with these simulated
data, discriminative models are learned offline, which then
offer real-time prediction of the line outages based on newly
observed measurements from the real network. We thus term
the proposed method “Learning-to-Infer”. It is important to
note that this Learning-to-Infer method is not limited by
any potential lack of real-world data, as the offline train-
ing procedure can be conducted entirely based on simulated
data.

A major strength of the proposed Learning-to-Infer method
is that the labeled data set for training the predictor model can
be generated in an arbitrarily large amount, at very little cost.
As such, we can fully exploit the benefit of offline model train-
ing in order to get accurate online multi-line outage identifica-
tion performance. The proposed approach is also not restricted
to specific models and learning methods, but can exploit any
powerful models such as deep neural networks [21]. As a
result, predictor models of very high complexities can be
adopted, yet without worrying about overfitting since more
labeled training data can always be generated if overfitting is
observed.

The developed Learning-to-Infer method is evaluated
on the IEEE 30, 118, and 300 bus systems [22] for
identifying an arbitrary number of line outages. It is
demonstrated that, even with relatively simple predic-
tor models and a reasonably small amount of data, the
performance is surprisingly good for this very challenging
task.

The remainder of the paper is organized as follows.
Section II introduces the system model, and formulates real-
time multi-line outage identification as a Bayesian inference
problem. Section III develops the Learning-to-Infer method.
Section IV discusses the architectures of neural networks
employed in this study. Section V presents the results from
our numerical experiments. Section VI concludes the paper.
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II. PROBLEM FORMULATION
A. Power Flow Models

We consider a power system with N buses, and its baseline
topology (i.e., the network topology when there is no line
outage) with L lines. We denote the incidence matrix of the
baseline topology by M € {—1, 0, 1}V*F [23]. We use a binary
variable s; to denote the status of a line [, with s; = 1 for
a connected line /, and O otherwise. The actual topology of
the network can then be represented by s = [s1,...,s.].
Generalizing this notation with a bit of abuse, we also employ
smn € {1, 0} to denote whether two buses m and n are con-
nected by a line or not. (For simplicity, we consider any
two buses can be connected by at most one line.) Given a
network topology s, the system’s bus admittance matrix ¥ can
be determined accordingly with the physical parameters of
the system [24]: Y = Simn(Gun +jBmn), where Gy, and By,
denote conductance and susceptance, respectively. Note that,
when two buses m and n are not connected, Y, = sy = 0.

We denote the real and reactive power injections at all the
buses by P,Q € R", and the voltage magnitudes and phase
angles by V,0 € RY. Given the bus admittance matrix Y,
the nodal power injections and the nodal voltages satisfy the
following AC power flow equations [24]: Vm =1,..., N,

N

Py =Vy Z ViuSmn(Gmn €08 (O — 0p) + By sin(6y, — 0,,)),
n=1
N

Qm = Vm Z Vnsmn(Gmn Sin(em - n) - an COS(@m - 9,1)),
n=1

(1)

where a subscript m denotes the m™ component of a vector. In
particular, given the network topology s and a set of controlled
input values {P, @, V"}, (where Q™ and V" consist of some
subsets of @ and V, respectively,) the remaining values of
{Q,V,0} can be determined by solving (1). Typically, apart
from a slack bus, most buses are “PQ buses” at which the
real and reactive power injections are controlled inputs, and
the remaining buses are “PV buses” at which the real power
injection and voltage magnitude are controlled inputs [24]. We
refer the readers to [24] for further details of solving AC power
flow equations.

A useful approximation of the AC power flow model is
the DC power flow model: under a topology s, the nodal
real power injections and voltage phase angles approximately
satisfy the following equation [24]:

P =MSTM"0, )

where S = diag(sy,...,sp), ' = diag(xil,..., x—lL), and x;
is the reactance of line /. We note that, in the DC power
flow model, reactive power is not considered, and all voltage
magnitudes are approximated by a constant.

B. Observation Models

To monitor the power system, we consider real-time mea-
surements taken by sensors measuring nodal voltage magni-
tudes and phase angles, current magnitudes and phase angles
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on lines, real and reactive power flows on lines, nodal real
and reactive power injections, etc. In general, the observation
model can be written as the following:

y =h(s,P,Q", V") +v,

where a) y € RK collects all the noisy measure-
ments, b) h(s,P,Q", V") = [, P,Q" V"), ...,
hg (s, P, Q™, V”’)]T denotes the noiseless values of the
measured quantities, and the forms of {h(-)} depend on the
specific locations and types of the sensors, and c) v is a
vector of measurement noises.

Remark 1: A noiseless measurement function
hi(s, P, Q", V™) can be an implicit function without a
closed form expression. For example, given s, P, Qi” and
V" while the nodal voltage magnitude and phase angle at
a particular PQ bus can be solved from (1), such a solution
can only be obtained using numerical methods, and a closed
form expression is not available. For a discussion of the
existence and uniqueness of the solution to the power flow
equations (1), we refer the reader to [25].

The observation models can be significantly simplified
under the approximate DC power flow model (2). For exam-
ple, measurements of € provided by phasor measurement
units (PMUs) located at a subset of the buses M can be
modeled as

3)

4)

where 0 5 is formed by entries of # from buses in M. From
the DC power flow model (2), we have

y=0r+v,

0 = (MsTM")"P, (5)

where (-)* denotes the pseudoinverse.! We note that, while
the noiseless voltage phase angle measurements admit a closed
form (5) and are linear in the power injections P, they are not
linear in the line statuses s (= diag(9)).

C. Multi-Line Outage Identification as Bayesian Inference

We are interested in identifying the post-outage network
topology s in real time based on instant measurements y
collected in the power system. We formulate this multi-line
outage identification problem as a Bayesian inference problem.
First, we model s, P, 0™, V" and y with a joint probability
distribution,

p(s’ P, Qm7 Vm,y)
= p(s, P, Qin7 Vin) ,p(y|s’ P, Qin7 Vin). (6)

It is important to note that, given s, P, Qi”, and V™" the noise-
less measurements h (see (3)) can be exactly computed by
solving the AC power flow equations (1). Adding noises to k
then leads to p(y|s, P, Q™, V™).

Remark 2 (Generative Model): (6) represents a generative
model [26] with which a) the topology and the controlled
inputs of power injections and voltage magnitudes are gen-
erated according to a prior distribution p(s, P, Qi”, Vi), and

TFor a connected network, the solution of 6 given P is made unique by
setting the phase angle at a reference bus to be zero.

b) all the quantities & measured in the system can then be
computed by solving the power flow equations (1), based on
which the actual noisy measurements y follow the conditional
probability distribution p(y|s, P, @™, V"). We note that, as in
many Bayesian inference problems, an accurate prior distri-
bution p(s, P, Q™, V") may be difficult to obtain in practice.
Nonetheless, a sharp concentration of the posterior distribu-
tion on the true post-outage network topology allows effective
inference of multi-line outages even in the absence of accurate
knowledge of the prior.

Our objective is to infer the topology of the power grid s
given the observed measurements y. Thus, under a Bayesian
inference framework, we are interested in computing the
posterior conditional probabilities: Vs,

‘/‘p(s’ P, Qin, Vi")p(y|s, P, Qin’ Vin)deQindvin
pO) '

pGsly) =
7

Given the observations y, a maximum a-posteriori prob-
ability (MAP) detector would pick argmaxgp(sly) as the
topology/multi-line outage identification decision, which mini-
mizes the identification error probability [27]. However, as the
number of hypotheses of s grows exponentially with the num-
ber of unknown line statuses, performing such a hypothesis
testing based on an exhaustive search becomes computation-
ally intractable. In general, as there are up to 2% possibilities
for s, computing, or even listing the probabilities p(sly), Vs
has an exponential complexity.

Posterior Marginal Probabilites: As an initial step towards
addressing the fundamental challenge of computational com-
plexity, instead of computing p(s|y), we focus on computing
the posterior marginal conditional probabilities p(sily),! =
1,...,L. We note that the posterior marginals are charac-
terized by just L numbers, P(s; = 1ly),/ = 1,...,L, as
opposed to 2F — 1 numbers required for characterizing p(sly).
Accordingly, the hypothesis testing problem on s is decoupled
into L separate binary hypothesis testing problems: for each
line /, the MAP detector identifies argmax c(o 1y P(s1ly, P). As
a result, instead of minimizing the identification error proba-
bility of the vector s, the binary MAP detectors minimize the
identification error probability of each line status s;.

Although listing the posterior marginals p(s;|y) is tractable,
computing them, however, still remains intractable. In partic-
ular, even with p(sly) given, summing out all si, k # [, to
obtain p(s;ly) still requires exponential computational com-
plexity [28]. As a result, even a binary MAP decision about s;
cannot be made in a computationally tractable way. This chal-
lenge will be addressed by a novel method we will develop in
the next section.

ITII. A LEARNING-TO-INFER METHOD
A. A Variational Inference-Inspired Framework

In this section, we develop a variational inference-inspired
method for approximate inference of the posterior marginal
conditional probabilities p(s;|y), !l = 1, ..., L. The general idea
is to find a conditional distribution g(s|y) that

a) approximates the original p(s|y) very closely, and
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b) offers fast and accurate multi-line outage identification
results based on easily computable g(s;]y), VI.
In particular, we consider that g(s|y) is modeled by some para-
metric form (e.g., a neural network), and is hence chosen from
some family of parametrized conditional probability distribu-
tions {gg(sly)}, where B is a vector of model parameters. It
is worth noting that g(sly) is a function of both s and y, and
the parameters B associate both s and y with the probability
value gg(s|y), for all possible s and y.
To achieve the two goals above, we aim to choose a family
of probability distributions {gg(s|y)} to satisfy the following:
 The parametric form of {gg(s|y)} has sufficient expressive
power to represent very complicated functions, so that our
approximation to the true p(s;|y) can be made sufficiently
precise.
o It is easy to compute the marginal gg(s;ly), so that we
can use it to infer s; with low computational complexity
in real time based on the observed y.
From a family of parametrized distributions {gg(sly)}, we
would like to choose a gg(sly) that approximates p(sl|y)
as closely as possible. For this, we employ the Kullback-
Leibler (KL) divergence as a metric of closeness between two
probability distributions,

p(sly)
qp(sly)’

D(pligg) £ p(sly) log (®)
N

Note that, for any particular realization of observations y, a
KL divergence D(pllgg) can be computed. Thus, D(pligg)
can be viewed as a function of y. Since we would like
the parametrized conditional gg(sly) to closely approximate
p(sly) for all y, we would like to minimize the expected KL
divergence as follows:

mﬂin Ey[D(pligp)]

p(sly)
qp(sly)

< min > p») Y pisly) log
y N

p(sly)
qg(sly)

< min Zp(s,y)log
B sy

& m;lx Esy[log g (sly)]. 9

where the expectation is taken with respect to the true

distribution p(s, y).

B. From Generative Model to Discriminative Learning

Evaluating [, [ log gg(s|y)] is, however, very difficult, pri-
marily because it again requires the summation of an expo-
nentially large number of terms. To address this, the key
step forward is that we can approximate the expectation by
the empirical mean of loggg(sly) over a large number of
Monte Carlo samples, generated according to (ideally) the
true joint probability p(s, P, O™, V" y) (see (6)). We denote
the relevant Monte Carlo samples by {si,yi;i =1,...,1I}L
Accordingly, (9) is approximated by the following:

I
1 o
InélX 7 Z log gp(s'ly’)-

i=1

(10)

IEEE TRANSACTIONS ON SMART GRID, VOL. 11, NO. 1, JANUARY 2020

TABLE I
THE LEARNING-TO-INFER METHOD

Offline computation:
1. Generate a labeled data set {s’, y'} using Monte Carlo
simulations with the complete power flow and
sensor models.
2. Select a parametrized predictor model {gg(s|y)}.
3. Train the model parameters 3 using the generated data
set.
Online inference (in real time):
1. Collect instant measurements y from the system.
2. Compute the approximate posterior marginals
qp~(sily),l =1,..., L, and infer the line statues {s;}.

With a data set {s’, y'} generated using Monte Carlo simula-
tions, (10) can then be solved as a deterministic optimization
problem. The optimal solution of the model parameters B*
approaches that for the original problem (9) as I — oo.

In fact, the problem (10) can be viewed as an empir-
ical risk minimization problem in machine learning [29],
as it trains a discriminative model qg(s|y) with a datz_l set
{s',¥'} generated from a generative model p(s, P, Q"*, V", y)
(see Remark 2). As a result of this offline learning/training
process (10), an approximate posterior function gg=(sly) is
obtained. Furthermore, it can be shown that (10) is equiva-
lent to finding the maximum likelihood estimate of 8 on the
data set {s*, y'}.

C. Offline Learning for Online Inference

It is important to note that,
a) the training process to obtain the function gg=(sly) is
conducted completely offfine;
b) the use of the trained function gg«(sly) is, however, in
real time, i.e., online.
In particular, in real time, given newly observed measurements
y of the system, based on gg=(s|y), the L approximate posterior
marginals qg=(sily),l = 1,..., L, will be computed. Based
on such quickly computed gg=(si|y), a detection decision of
whether line [ (=1, ..., L) is connected or not in the current
topology will be made. For example, a MAP detector would
make the following decision:

0, if gg=(si =0ly) > 0.5,
1, otherwise.

vi=1,...,L, §1={ (11)

Accordingly, we name our proposed methodology Learning-
to-Infer: To perform real time inference of multi-line outages,
we exploit offline learning to train a detector based on labeled
data simulated from the complete physical model of the power
system. The methodology is summarized in Table I. A system
diagram is plotted in Figure 1.

Remark 3 (Training Binary Classifiers): Any detector that
identifies the status of a line / (e.g., a binary MAP detector)
can also be viewed as a binary classifier $;(y) € {0, 1}: For
each possible realization of y, this classifier outputs an inferred
status of line /. From this perspective, solving (10) is exactly
a supervised learning process based on a labeled data set,
{s’, yi }, where {s'} are the output labels that correspond to the
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Overall architecture of the Learning-to-Infer method.

<

Fig. 1.

input data {y’}. As a result, the rich literature on supervised
learning for training binary classifiers directly applies to our
problem under this Learning-to-Infer framework.

Remark 4 (Difference From Variational Inference): It is
worth noting the fundamental difference between the proposed
Learning-to-Infer method and variational inference methods.
Importantly, for every new inference instance given a new
observation y, variational inference methods need to call an
optimization procedure to solve for a new variational model.
In contrast, Learning-to-Infer only trains the predictor gg(sy)
once in an offline fashion, and simply calls the trained gg(s|y)
for any new inference instance given a new observation y.
As such, the online computation time needed by Learning-to-
Infer is very little (e.g., performing a forward pass in a neural
network), whereas that needed by variational inference meth-
ods is much more significant. In essence, Learning-to-Infer
exploits the underlying lower dimensional structure of p(s|y)
to achieve generalizability of the trained predictor gg(sly) to
all possible new observations y.

D. Advantages of the Proposed Method

One significant advantage of this Learning-to-Infer method
is that we can generate labeled data very efficiently.
Specifically, we can efficiently sample from the generative
model of p(s, P, 0™, V" y) (see (6)) as long as we have
some prior p(s, P, Qi", V") that is easy to sample from. While
historical data and expert knowledge would surely help in
forming such priors, using simple uninformative priors can
already suffice as will be shown later in the numerical exam-
ples. As a result, we can obtain an arbitrarily large set of
data at very little cost to train the discriminative model. This
is quite different from the typical situations encountered in
machine learning problems, where obtaining a large amount
of labeled data is usually expensive as it requires extensive
human annotation effort.

Furthermore, once the approximate posterior distribution
qg(sly) is learned, it can be deployed to infer the multi-line
outages in real-time as the computation complexity of gg(s;|y)
is very low by design. This is especially important in moni-
toring large-scale power grids in real time, because, although
training gg(s|y) could take a reasonably long time, the infer-
ence speed is very fast. Therefore, the learned predictor g can
be used in real time with low-cost hardware.

Limitations of Historical Data and Power of Simulated
Data: In overcoming the computational complexity challenges

of real-time multi-line outage identification, it is particularly
worth noting the fundamental limitation of using real historical
data. Even with the explosion of data available from perva-
sive sensors in power systems, the data are often collected
under a very limited set of system scenarios. For example,
most historical data are collected under normal system topolo-
gies. Even with data collected under slowly updated systems
or faulty systems, the underlying topologies in these real world
cases only represent an extremely small fraction of the entire,
exponentially large set of all topologies. Consequently, histor-
ical data are fundamentally insufficient for real-time multi-line
outage identification especially under rare failure events.

Simulated data, as evidenced in the proposed Learning-
to-Infer framework, offer significant potential beyond what
historical data can offer. An orders of magnitude richer set
of scenarios can be generated, and a learning procedure based
on these simulated data can provide very powerful classifiers
for identifying arbitrary multi-line outages that may appear in
the future, but have not appeared in the past including the sim-
ulated scenarios. Last but not least, it is important to note that
the simulated scenarios needed for the proposed Learning-to-
Infer method would still be a very small fraction of the entire,
exponentially large model space, as will be demonstrated later
in the numerical experiments. As such, it is the good general-
izability of the classifiers trained using the simulated data that
enables effective outage inference under new failure events.

Remark 5 (Learning from the Physical Model): In the
proposed Learning-to-Infer method, the training process is
at heart learning from the underlying power system physical
model. Instead of manually deriving outage detection rules
from analyzing the physical model, the proposed method uses
a training procedure to learn such rules from massive data
generated according to the physical model. As such, the rich
information embedded in the physical model is carried by
the data simulated with it, and then learned by the predictor
from training with these simulated data. The Learning-to-Infer
method is thus a systematic “indirect” way of learning and
using the information from the physical model.

Remark 6 (Side Information and Change of Settings):
An interesting question on generalizing the Learning-to-
Infer method is how additional information (other than the
observed y) may be incorporated. For example, the system
operator may receive the side information that certain lines are
active for sure. Furthermore, there can also be more systematic
changes on what information is collected, notably, change of
the measurement set y due to installation of additional sen-
sors. For incorporating additional information, one way is to
introduce additional inputs to the predictor during the offline
training process. For example, we can let each line have a
“prior” (even though in reality it can come from a posterior
knowledge source) which is fed into the predictor. The data
set generation and training would then need to include vary-
ing priors of these. Furthermore, a systematic way of dealing
with slowly updating priors as well as changes in the mea-
surement sets is to employ “Transfer Learning”. Specifically,
the changes in the measurement sets tend not to be so dra-
matic over a short period of time. Thus, the previously trained
neural network can serve as a good initial point when we tune
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Fig. 2. A single jointly trained neural network (which could have multiple
hidden layers) whose features are shared for inferring all L line statuses.

the neural network for an updated measurement set. The addi-
tional training time needed would be much shorter than if we
train from scratch. These extensions are however beyond the
scope of this paper, and are left for future investigations.

IV. NEURAL NETWORK ARCHITECTURES FOR
LEARNING CLASSIFIERS

To perform binary MAP inference of each line status, the
decision boundary of the MAP detector is highly nonlinear
(see Remark 3). We investigate classifiers based on neural
networks to capture such complex nonlinear decision bound-
aries. In other words, we employ neural networks as the
parametric models gg(s|y): given the input data y, the out-
put layer of the neural network will produce the probabilities
qg(sily), I =1, ..., L, (based on which identification decisions
are then made).

In particular, we employ a neural network architecture
that allows classifiers for different lines to share features.
Specifically, instead of training L separate neural networks
each with one node in its output layer, we train one neu-
ral network whose output layer consists of L nodes each
predicting a different line’s status. An illustration of this archi-
tecture is depicted in Figure 2: a) the input layer of the neural
network consists of y, b) the hidden layers of neurons compute
a number of nonlinear features of the input y, and c) the out-
put layer applies binary classifiers to these features to predict
s; € {0,1},1 = 1,..., L. Specifically, logistic functions are
employed in the output layer whose outputs correspond to
qg(si=1ly),l=1,..., L. As a result, the features computed
by the hidden layers can all be used in classifying any line’s
status. The intuition of using shared features is that certain
common features may provide good predictive power in infer-
ring many different lines’ statuses in a power network. For
training and testing, we generate labeled data {s’, y’} randomly
that satisfy the power flow equations and the observation mod-
els. Bach s’ = [s', ..., 5717 then consists of L labels used by
the L output classifiers respectively.

With the proposed Learning-to-Infer method, since labeled
data can be generated in an arbitrarily large amount using
Monte Carlo simulations, whenever overfitting is observed,
it can in principle always be overcome by generating more
labeled data for training. Thus, as long as the computa-
tion time allows, we can use neural network models of very
high complexity for approximating the binary MAP detectors,
without worrying about overfitting.
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V. NUMERICAL EXPERIMENTS

We evaluate the proposed Learning-to-Infer method for
multi-line outage identification with three benchmark systems
of increasing sizes, the IEEE 30, 118, and 300 bus systems,
as the baseline topologies. As opposed to considering only
a small number of simultaneous line outages as in existing
works, we allow any number of line outages, and investigate
whether the learned discriminative classifiers can successfully
recover the post-outage topologies in real time.

A. Data Set Generation

In our experiments, the data sets are primarily generated
with the DC power flow model (2). Here, our focus is to
examine whether the proposed Learning-to-Infer method can
effectively overcome the fundamental challenge of exponential
computational complexity due to the potentially large number
of simultaneous line outages. For this, the DC power flow
model offers sufficient modeling details. We will then at the
end of the section run experiments with data sets generated
with the AC power flow model (1), and verify that the lessons
learned from the DC power flow experiments continue to hold.

With the DC power model, the set of controlled inputs
{P,Q™, V") reduce to {P}, and the generative model (6)
reduces to p(s,P,y) = p(s, P)p(y|s, P). To generate a data
set {si,Pi,yi,i = 1,...,I}, we assume the prior distribu-
tion p(s, P) factors as p(s)p(P). As such, we generate the
post-outage network topologies s and the power injections P
independently:

o We generate the line statuses {s;} using independent and

identically distributed (IID) Bernoulli random variables,
so that the average numbers of line outages are 7.8, 13.4
and 11.6 for the IEEE 30, 118 and 300 bus systems,
respectively. These numbers of simultaneous line outages
are significantly higher than those typically assumed in
sparse line outage studies. We do not consider discon-
nected networks in this study, and exclude the line status
samples if they lead to disconnected networks. As such,
considering that some lines must always be connected to
ensure network connectivity, after some network reduc-
tion, the equivalent networks for the IEEE 30, 118, and
300 bus systems have 38,170, and 322 lines that can
possibly be in outage, respectively.

« We would like our predictor to be able to identify multi-
line outages for arbitrary values of power injections as
opposed to fixed ones. Accordingly, we generate P using
the following procedure: For each data sample, we first
generate bus voltage phase angles 6 as IID uniformly dis-
tributed random variables in [0, 0.27], and then compute
P according to (2) under the baseline topologies. We note
that, the spread of the phase angles in the generated data
sets can cover nearly all possible power injection cases
in real power transmission networks.

With each pair of generated s’ and P, we consider two types
of measurements that constitute y: nodal voltage phase angle
measurements and nodal power injection measurements. For
these, a) we generate IID Gaussian voltage phase angle mea-
surement noises with a standard deviation of 0.01 degree, the
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TABLE 11
DATA SET SIZE VS. THE ENTIRE SEARCH SPACE

The (reduced) IEEE 30 bus system with 38 lines
Number of all posm.ble 938 _ 9 75 5 1011
post-outage topologies
Number of topologies with
8 line outages
The generated data set

(%) = 4.89 x 107
3 x 10°

The (reduced) IEEE 118 bus system with 170 lines
Number of all posm.ble 9170 _ 1. 50 x 1051
post-outage topologies
Number of topologies with
13 disconnected lines
The generated data set

(') =9.94 x 108
8 x 10°

The (reduced) IEEE 300 bus system with 322 lines
Number of all posm.ble 9322 _ g 54 109
post-outage topologies
Number of topologies with
12 disconnected lines
The generated data set

(*7) = 2.11 x 10?!
2.2 x 10°

state-of-the-art PMU accuracy [30], and b) we assume power
injections are measured accurately. In the following experi-
ments, we consider that measurements of voltage phase angles
and power injections are collected at all the buses. The effect
of number and locations of sensors will be discussed later in
this section.

In this study, we generate 300K, 800K, and 2.2M data
samples for the IEEE 30, 118, and 300 bus systems, respec-
tively. These 300K /800K /2.2M data are further divided into
200K /600K /1.8M, 50K/100K /200K, and 50K/100K /200K
samples for training, validation, and testing, respectively. We
note that over 99% of the generated 300K 30-bus multi-line
outages are distinct from each other, so are those of the gen-
erated 800K 118-bus multi-line outages and those of the 2.2M
300-bus multi-line outages. As a result, these generated data
sets can very well evaluate the generalizability of the trained
classifiers, as (almost) all data samples in the test set have
post-outage topologies unseen in the training set.

Furthermore, we would like to compare the size of the
generated data set to the total number of possible outage
hypotheses, as highlighted in Table II. Clearly, a) it is compu-
tationally prohibitive to perform line outage inference based
on exhaustive search, and b) the generated 300K, 800K and
2.2M data sets are only a tiny fraction of the entire space
of all multi-line outages. Yet, we will show that the classifiers
trained with the generated data sets exhibit excellent inference
performance and generalizability.

B. Neural Network Structure and Training

We employ three-layer (i.e., one hidden layer) fully con-
nected neural networks with the feature sharing architecture
(see Figure 2). Rectified Linear Units (ReLUs) are employed
as the activation functions in the hidden layer. In training
the classifiers, we use stochastic gradient descent (SGD) with
momentum update and Nesterov’s acceleration [31]. While this

optimization algorithm works sufficiently well for our exper-
iments, we note that other algorithms may further accelerate
the training procedure [32].

C. Evaluation Results

1) Performance of the Learning-to-Infer Method: We
employ 300, 1000 and 3000 neurons in the hidden layer for
the IEEE 30, 118 and 300 bus systems, respectively. For all
the three systems, we plot in Figure 3(a) the achieved training
and validation losses for every epoch, and in Figure 3(b) the
achieved testing accuracies for every epoch. It is clear that
the training and validation losses stay very close to each other
for all the three systems, and thus no overfitting is observed.
Moreover, very high testing accuracies, 0.989, 0.990 and 0.997
are achieved for the IEEE 30, 118 and 300 bus systems,
respectively.

The testing accuracies can be equivalently understood by
the average numbers of misidentified line statuses, plotted in
Figure 3(c). We observe that, at the beginning of the train-
ing procedures, the average numbers of misidentified line
statuses are 7.8, 13.4 and 11.6 for the IEEE 30, 118 and
300 bus systems, which are exactly the average numbers of
disconnected lines in the respective generated data sets (see
Section V-A). Indeed, this coincides with the result from a
naive identification decision rule of always claiming all the
lines as connected (i.e., a trivial majority guess). As the train-
ing procedures progress, the average numbers of misidentified
line statuses are drastically reduced to eventually 0.4, 1.7
and 1.0. In other words, for the IEEE 300 bus system for
example, facing on average 11.6 simultaneous line outages,
only 1 line status would be misidentified on average by the
learned classifier. We note that such a performance is achieved
with outage identification decisions made in real time, under
a millisecond. While the training process can potentially be
time consuming, it is however done completely offline.

It is worth noting that we have generated the training, valida-
tion and testing data sets with uniformly random voltage phase
angles, and hence considerably variable power injections. In
practice, there is often more informative prior knowledge about
the power injections based on historical data and load fore-
casts. With such information, the model can be trained with
much less variable samples of power injections, and the outage
identification performance can be further improved.

2) Model Size, Sample Complexity, and Scalability: In the
proposed Learning-to-Infer method, obtaining labeled data is
not an issue since data can be generated in an arbitrarily
large amount using Monte Carlo simulations. This leads to
two questions that are of particular interest: to learn a good
classifier, a) what size of a neural network is needed? and
b) how much data needs to be generated? To answer these
questions, we vary the sizes of the hidden layer of the neural
networks as well as the training data size, and evaluate the
learned classifiers for the three benchmark systems. We plot
the testing results for the IEEE 30, 118 and 300 bus systems in
Figure 4(a), 4(b) and 4(c), respectively. It is observed that the
best performance is achieved with 200K /600K /1.8M data and
with 300/1000/3000 neurons for the 30/118/300 bus systems,
respectively. Further increasing the data size or the neural
network size would see much diminished returns.
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Fig. 3. Progressions of a) training and validation losses, b) testing accuracies, and c) average numbers of misidentified line statuses in IEEE 30, 118 and
300 bus systems.

(a)

0.998

(b)

0.99 0.995
- | 2 oy
Soossl ge—— T I § oo 8 0.996
€ 0.985 g o — - % £
3 —O— 300 neurons 3 So0aal My e —
2 — + - 200 neurons g 0.985 < 0.994
< <
- 0.98 — % 100 neurons c —©— 1000 neurons s —©— 3000 neurons
S S 098 — -+ 600 neurons = 0.992 — - 2000 neurons
S 0.975 S —X%— 300 neurons 38
= £ 0975 = 0.99 —X— 1000 neurons
Z 5 s /
o) X —
g o097 —— % T (g7 2 0988 /
2 2 = — = X=—_ _ £
7 0965 B 0.965 = T 3 ooss [ f
o © x =

0.96 0.96 0.984

0 0.5 1 15 2 0 1 2 3 4 5 0 0.5 1 1.5 2
Training Data Size %x10° Training Data Size x10° Training Data Size %108

(©)

Fig. 4. Effect of model size and sample size, (a) IEEE 30 bus system, (b) IEEE 118 bus system, (c) IEEE 300 bus system.

B x108
1.8+ 300bus —>» gy
¢/'
1.6 7 4
¢,'
d

o 14 -
N e
g 12 pad
& .
o 1 R
=) i
£ o8l 118 bus Rd
s \ vl
= .

0.6 30 bus Pcs 1

041 x 7

R
o2t @7
’/
o . . . . . .
0 50 100 150 200 250 300
Network Size

Fig. 5. Scalability of the Learning-to-Infer method, from the IEEE 30 bus
system to the IEEE 300 bus system.

Based on all these experiments, we now examine the
scalability of the proposed Learning-to-Infer method as the
problem size increases. We observe that training data sizes
of 200K, 600K and 1.8M and neural network models of
sizes 300, 1000 and 3000 ensure very high and comparable
performance with no overfitting for the IEEE 30, 118 and 300
bus systems, respectively. When these data sizes are reduced
by a half, some levels of overfitting then appeared for these
models in all the three systems. We plot the training data
sizes compared to the problem sizes for the three systems
in Figure 5. We observe that the required training data size
increases approximately linearly with the problem size. This
linear scaling behavior implies that the proposed Learning-to-
Infer method can be effectively implemented for large-scale
systems with reasonable computation resources.

3) Effect of Number and Locations of Sensors: We now
discuss the effect of sensor placement in real-time multi-line
outage identification. It is clear that the performance of line

outage identification would closely depend on where and what
types of sensor measurements are collected. Given limited
sensing resources, optimizing the sensor placement is a hard
problem which many studies have addressed (see, e.g., [7]
among others). Here, we present the results from a case study
on the IEEE 30 bus system, for which voltage phase angles are
collected only at 19 buses (as opposed to all the buses as in the
previous experiments), as depicted in Figure 6. Interestingly,
the achieved average identification accuracy only drops to
0.978 (from 0.989 when all the buses are monitored). This
translates to on average only 0.83 misidentified line statuses
among a total of 38 lines. A more comprehensive study of
sensor placement for real-time multi-line outage identification
is left for future work.

D. Experiments with the AC Power Flow Model

We close this section by verifying the performance of the
proposed Learning-to-Infer method with data generated from
the AC power flow model. Specifically, we consider the IEEE
118-bus system with 18 generators and 99 loads. Similar to
the earlier data set generation process with the DC power
flow model, we randomly generate 1M distinct connected post-
outage topologies with an average number of 16.2 line outages.
We then significantly and randomly vary the power generation
and loads in the system with standard deviations equal to 50%
of the means, and generate 1M distinct generation and load
profiles.

For each data point, which includes a post-outage topology
and a generation and load profile, we solve the AC power
flow equations (1). To have a consistent comparison with the
earlier experiments with the DC power flow model, we con-
tinue to rely on measurements of nodal voltage phase angles,
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Fig. 6. The IEEE 30 bus system, and a set of locations of PMUs.
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Fig. 7. Progressions of the training and testing accuracies, the IEEE 118-bus
system, with the AC power flow model employed.

real power generation, and real power loads to infer the multi-
line outages in real time. We will demonstrate that, with the
AC power flow model, very high performance similar to that
with the DC power flow model can be achieved. Undoubtedly,
other types of measurements (e.g., voltage magnitudes, reac-
tive power) may be used to further improve the performance,
which is left for future investigation.

The 1M data are divided into 800K, 100K, and 100K for
training, validation, and testing, respectively. Similarly to the
DC power flow experiments, we employ a three-layer fully
connected neural network with 1000 neurons in the hidden
layer for learning to infer multi-line outages. The same training
algorithm is applied. We plot the training and testing accura-
cies for every epoch in Figure 7. We observe that a 0.990
testing accuracy is achieved, (recall that the same accuracy,
0.990, is achieved in the earlier experiments on the 118-bus
system with the DC power flow model). This translates to on
average 1.74 mis-identified line statuses.

Furthermore, we looked into the types of mis-identification
errors, and observed that a) the rate of missed detection (i.e.,
missing a line outage when it actually occurred among other

simultaneous line outages) is 8.4%, and b) the rate of false
alarm (i.e., identifying a line as in outage when it is in fact
connected) is a much lower 0.24%. As a result, we observe
that nearly 80% of the on average 1.74 mis-identified line
statuses are from missing to detect 8.4% of the on average 16.2
simultaneous line outages, resulting in 1.36 (= 16.2 x 8.4%)
missed line outages.

E. On Computation Times for Data Generation and Training

As discussed above, a major advantage of the Learning-
to-Infer method is that offline computation is exploited for
achieving fast and accurate online inference. Specifically, the
offline computation consists of two components: a) data gen-
eration based on the physical model, and b) predictor training
based on the generated data. We discuss in the following
several aspects of the offline computation times for data
generation and predictor training.

The time consumed for generating the 1M data with the AC
power flow on the IEEE 118 bus system (see Section V-D) is a
little over an hour using MATPOWER [33]. The training time
with 2000 epochs on these data is a little over two hours. Both
are run on a laptop with an Intel Core i7 3.1-GHz CPU and
8 GB of RAM. Various approaches can be applied to reduce
both times. On the one hand, data generation can be trivially
parallelized and significantly accelerated as such. It is worth
re-emphasizing that data generation via simulations, while still
may take a non-trivial amount of time for large systems, is
regardless many orders of magnitude faster than collecting and
manually labeling historical data from real-world systems. On
the other hand, the experiments conducted in this section have
achieved very high identification accuracies around or above
99%. In practice, if the performance requirement is not as
high (e.g., 97%), then a significantly smaller amount of data
(see Figures 4(a) 4(b) and 4(c)) and fewer training epochs
(see Figure 3(b)) would be sufficient. The sizes of the neural
networks can also be reduced which will lead to faster training.
Leveraging the above approaches, much lower computation
times can be achieved for offline data generation and training.

VI. CONCLUSION

We have developed a new Learning-to-Infer method for
real-time multi-line outage identification in power grids. The
computational complexity due to the exponentially large num-
ber of outage hypotheses is overcome by efficient marginal
inference with optimized predictor models. Optimization of
the predictor model is transformed to and solved as a dis-
criminative learning problem, based on Monte Carlo samples
efficiently generated with full-blown power flow models. The
developed Learning-to-Infer method has the major advantages
that a) the training process takes place completely offline, and
b) labeled data sets can be generated in an arbitrarily large
amount fast and at very little cost. As a result, very complex
predictor models can be employed without concern for over-
fitting, as more labeled training data can always be generated
if overfitting is observed. With the classifiers learned offline,
their actual use is in real time, and outage identification deci-
sions are made in under a millisecond. We have evaluated the

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 26,2020 at 23:23:08 UTC from IEEE Xplore. Restrictions apply.



564

proposed method with the IEEE 30, 118 and 300 bus systems.
It has been demonstrated that arbitrary multi-line outages can
be identified in real time with excellent performance using
classifiers trained with a reasonably small amount of generated
data.
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