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Abstract— This paper investigates phasor measurement unit
(PMU) placement for informative state estimation in smart
grid by incorporating various constraints for observability.
Observability constitutes an important property for PMU
placement to characterize the depth of the buses’ reach-
ability by the placed PMUs, but addressing it solely by
binary linear programming as in many works still does not
guarantee a good estimate for the grid state. Some existing
works have considered optimization of some estimation indices by
ignoring the observability requirements for computational ease
and thus potentially lead to trivial results such as acceptance
of the estimate for an unobserved state component as its
unconditional mean. In this work, the PMU placement opti-
mization problem is considered by minimizing the mean squared
error or maximizing the mutual information between the mea-
surement output and grid state subject to observability con-
straints, which incorporate operating conditions such as presence
of zero injection buses, contingency of measurement loss, and
limitation of communication channels per PMU. The proposed
design is thus free from the fundamental shortcomings in the
existing PMU placement designs. The problems are posed as large
scale binary nonlinear optimization problems involving thousands
of binary variables, for which this paper develops efficient
algorithms for computational solutions. Their performance is
analyzed in detail through numerical examples on large scale
IEEE power networks. The solution method is also shown to be
extendable to AC power flow models, which are formulated by
nonlinear equations.

Index Terms— Phasor measurement unit (PMU), smart grid,
state estimation, state observability, binary nonlinear optimiza-
tion, exactly penalized method.
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I. INTRODUCTION

A. Motivation and Literature Survey

APHASOR measurement unit (PMU) is an advanced dig-
ital meter, which is used in smart power grids for real-

time monitoring of grid operations [1]. By installing it at a
bus, a state-of-the-art PMU can measure not only the phasor
of the bus voltage but also the current phasors of incident
power branches with high accuracy [2]. These measurements
are used by modern energy management systems (EMSs) for
critical applications such as optimal power flow, contingency
analysis, and cyber security, etc. [3]–[5].

There is a considerable amount of literature on PMU place-
ment optimization. From the information-theoretic perspective,
complete observability constitutes an important characteristic
as it means that no bus is left unobserved by the placed
PMUs [6]. Under complete observability and its general-
izations, PMU placement design was addressed by binary
linear programming (BLP) in [6]–[9]. An exhaustive binary
search was proposed in [10] under the complete observability
condition and additional operating conditions such as single
branch outage and the presence of zero injection buses (ZIBs).
A binary particle swarm optimization algorithm was proposed
in [11] to maintain the complete observability conditions under
the contingencies of PMU loss or branch outage. Binary
quadratic programming and BLP were respectively used in
[12] and [13] to study the impact of ZIBs and power flow
measurements (PFMs) to the complete observability.

PMU placement to optimize the so called gain matrix
in the maximum likelihood estimate of the grid state [14]
subject to a fixed allowable number of PMUs was considered
in [15], which formulated it as an optimization problem
of a convex objective function subject to a simple linear
constraint on binary variables. A convex relaxation with the
binary constraint {0, 1} for binary variables relaxed to the
box constraint [0, 1], which is used in [15], not only fails to
provide even a locally optimal solution in general but also is
not scalable in the grid dimension as it involves an additional
large-size semi-definite matrix variable. Furthermore, PMU
placement to maximize the mutual information (MI) between
the measurement output and grid state was solved very effi-
ciently in [16] using a very low computational complexity
greedy algorithm for submodular function optimization [17].
Neither of the computational methods used in [15] and [16] is
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not capable of treating observability constraints. It was argued
in [16] that its proposed mutual information criterion includes
complete observability, which is an incorrect assertion simply
because as shown later in the paper, the latter differentiates
the state estimate from its unconditional mean, which is the
trivial estimate, while the former does not.

B. Research Gap and Contribution

Apparently, observability alone does not necessarily lead to
an acceptable state estimate or an informative PMU configu-
ration. In fact, PMU configurations that use the same number
of PMUs to make the grid completely observable can result in
quite different state estimation accuracies [18]. On the other
hand, ignoring the state observability requirements in PMU
placement optimization as in [15] and [16] can potentially
force one to accept the estimate for an unobserved state com-
ponent as its unconditional mean, which is its trivial estimate.
Certainly, the quality of state estimation is very critical for
securing system operations and reducing outages [19].

Another challenge in PMU placement optimization is to
integrate the impacts of ZIBs and PFMs to deduce the required
number of placed PMUs [13], which not only helps to save
cost but more importantly, to improve the smart grid cyber-
security. Note that cyber-security requirements are the sec-
ond most significant factor affecting PMU acquisition and
installation costs [20, page iii]. Placing more PMUs makes
the power system more open and thus more vulnerable to
cyber/terrorist attacks with unpredictable consequences [3],
[21], [22]. Furthermore, contingencies such as PMU outage
may lead to unobservability and thus should be treated under
PMU placement optimization.

Against the above background, the present paper aims to lay
down the design foundation for PMU placement to optimize
information-theoretic indices subject to various observability
constraints. One should distinguish PMU placement from
sensor selection for spectrum sensing (see e.g. [23], [24])
or for Kalman filtering in sensor networks (see e.g. [25]
and [26]). The latter aims to select sensors from the placed
ones and as such it is implemented online, while the former
is implemented off-line to provide the optimal conditions for
the latter online state estimation. As such PMU placement
design is based on off-line optimization, which is still very
computationally challenging. Exhaustive search is intractable
due to massive numbers of binary decision variables involved.
The paper’s contributions are three-fold:

• To provide analytical models for observability-constraint
aware (OCA) PMU placement optimization, which aims
to minimize the MSE or maximize the MI between
the measurement output and grid state in replying var-
ious observability constraints, which incorporate oper-
ating conditions such as presence of ZIBs and PFMs,
contingency of single PMU outage and limitations of
PMU communication channels.

• These models are large scale binary nonlinear optimiza-
tion problems with no known solutions, for which a novel
and scalable solver is developed. The solver relies on
the development of a new class of exactly penalized
optimization for binary optimization and new function

approximations for scalable computation. The provided
comprehensive simulation results show that the solver
works well even for large-scale networks.

• Quick solvers of global optimization are proposed to
address the PMU placement optimization without observ-
ability constraints, which provides baselines for perfor-
mance by OCA PMU placement optimization. These
solvers outperform all the existing solvers, especially for
large-scale networks. Their application to sensor selection
is also immediate thanks to the extremely low computa-
tional complexity.

C. Organization and Notation

The rest of the paper is structured as follows. Section II
is devoted to the development of analytical models for OCA
PMU placement optimization, which also particularly shows
the importance of imposing state observability constraints
in state estimation. Discussion of their extensions to AC
power flows is also provided. Section III develops a scalable
solver for computation. Section IV presents a tailored path-
following discrete optimization solver for state estimation
without observability constraint. Simulations are provided in
Section V, which demonstrates the efficiency of our algo-
rithms. Section VI concludes the paper. The fundamental
inequalities used in Section III are given in the appendix.

Notation. The notation used in this paper is standard.
Particularly, A � 0 (A � 0, resp.) for a Hermitian symmetric
matrix A means that it is positive definite (semi-definite, resp.).
Trace(·) and | · | are the trace and determinant, respectively.
1N is an N -dimensional vector of ones. IN is the identity
matrix of size N . The cardinality of a set C is denoted by
|C|. E(·) denotes expectation, so the mean ū of a random
vector (RV) u is ū = E(u). For two random vectors u and
v, their cross-covariance matrix Ruv is E((u − ū)(v − v̄)T ).
Accordingly, the autocovarianceRu of u is E((u−ū)(u−ū)T ).
u ∼ N (ū,Ru) means u is a Gaussian random vector with
mean ū and autocovariance Ru. The entropy of u is H(u) =
1
2 log2 |Ru| = 1

2 ln 2 ln |Ru|. Finally, denote by u|v a RV u
conditioned on the RV v. Lastly, R

N
+ := {(x1, . . . , xN )T :

xk ≥ 0, k = 1, . . . , N} so int(RN ) = {(x1, . . . , xN )T :
xk > 0, k = 1, . . . , N}.

II. ANALYTICAL MODELS FOR OCA PMU PLACEMENT

A. Explicit Formulas for MSE and MI in PMU Placement

Consider a power grid with a set of buses indexed by N :=
{1, 2, . . . , N}, where the buses are connected through a set
of transmission lines L ⊆ N × N , i.e. bus k is connected
to bus m if and only if (k, m) ∈ L. Accordingly, N (k) is
the set of other buses connected to bus k. For illustrative
purposes only, Fig.1 depicts such a power grid with 30 buses,
41 transmission lines, 6 generators and 10 PMUs.

In a DC power model, the power injection at bus k is
approximated by

Pk = Bkkθk +
∑

m∈N (k)

Bkmθm, (1)

where Pk is the power injection at bus k and θm is the
voltage phasor angle at bus m, while Bkm is the imaginary
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Fig. 1. IEEE 30-bus power network with PMUs.

part of the (k, m)-entry of the grid’s admittance matrix Y . Let
P := (P1, . . . , PN )T ∈ R

N be the power injection vector
and θ := (θ1, . . . , θN)T ∈ R

N be the voltage phasor vector.
Then the equation (1) can be re-written as P = Bθ, where
B ∈ R

N×N is the so called susceptance matrix with the
entries B(k, k) = Bkk and B(k, m) = Bkm, if m ∈ N (k),
while B(k, m) = 0, otherwise. The susceptance matrix
B is invertible under the assumption that the grid is
fully connected [27]. Since P can be assumed to be
N (up, ΣP ) [28], it is obvious that

θ ∼ N (B−1up, B
−1Σp(B−1)T ). (2)

On the other hand, the measurement equation of a PMU
installed at bus k in the linear DC power flow model is [29]

ζk = θk + ϑk, k ∈ N ,
ζkm = θk − θm + ϑkm, k ∈ N , m ∈ N (k), (3)

with noises ϑk ∼ N (0, rk) and ϑkm ∼ N (0, ρk). The number
of incident lines of bus k is the cardinality |N (k)|. Accord-
ingly, the measurement vector zk := (ζk, ζk1, . . . , ζk|N (k)|)T

is of dimension Mk = |N (k)| + 1. For simplicity, the
equation (3) is rewritten in regression form as:

zk = Hkθ + wk, (4)

where Hk ∈ R
Mk×N is the associated regression matrix,

wk := (ϑk, ϑk1, . . . , ϑk|N (k)|)T ∼ N (0, Rwk
) with diagonal

covariance Rwk
.

To describe the presence or absence of PMU at bus k,
we introduce a selection vector xxx = (x1, · · · , xN )T ∈
{0, 1}N , where xk = 1 if a PMU is installed at bus k, and
xk = 0 otherwise. Let us assume that we have S PMUs in
total for installation, so

∑N
k=1 xk = S. Define

DS := {xxx ∈ {0, 1}N :
N∑

k=1

xk = S}, (5)

and X = diag[xkIk]k=1,...,N , Rw = diag[Rwk
]k=1,...,N ,

where Ik is the identity matrix of size Mk × Mk.

For every xxx ∈ DS , let kj ∈ N , j = 1, . . . , S for which
xkj = 1. Define accordingly,

z(xxx) =

⎡
⎣zk1

· · ·
zkS

⎤
⎦ , w(xxx) =

⎡
⎣wk1

· · ·
wkS

⎤
⎦ , H̄(xxx) =

⎡
⎣Hk1

· · ·
HkS

⎤
⎦ . (6)

The multi-input-multi-output PMU measurement equation is

z(xxx) = H̄(xxx)θ + w(xxx).

It is obvious that Rz(xxx)θ = H̄(xxx)Rθ while Rz(xxx) =
H̄(xxx)RθH̄(xxx)T + Rw(xxx). Let θ|z(xxx) be the RV θ conditioned
on the RV z(xxx). By [30, Th. 12.1]

θ|z(xxx) ∼ N (θ̂,Re(xxx)), (7)

where

θ̂ = θ̄ + RT
z(xxx)θR−1

z(xxx)(z(xxx) − z(xxx))
= θ̄ + RθH̄(xxx)T (H̄(xxx)RθH̄(xxx)T

+Rw(xxx))−1(z(xxx) − H̄(xxx)θ̄), (8)

which is the minimum mean squared error (MMSE) estimate
of θ based on PMU output z(xxx), and

Re(xxx) = Rθ −RT
z(xxx)θR−1

z(xxx)Rz(xxx)θ. (9)

The expression (9) only includes those xkj = 1 so it is not an
explicit function of xxx, which means that it cannot be used for
systematic computation. Fortunately, its analytical form can be
derived as follows:

Re(xxx) = Rθ −RT
z(xxx)θR−1

z(xxx)Rz(xxx)θ

= Rθ −RθH̄(xxx)T (H̄(xxx)RθH̄(xxx)T

+Rw(xxx))−1H̄(xxx)Rθ

=
(
R−1

θ + H̄(xxx)TR−1
w(xxx)H̄(xxx)T

)−1

=

⎛
⎝R−1

θ +
S∑

j=1

HT
kj
R−1

wkj
Hkj

⎞
⎠

−1

=

(
BT Σ−1

P B +
N∑

k=1

xkHT
k R−1

wk
Hk

)−1

. (10)

Therefore, the mean squared error (MSE) E(||θ − θ̂||2) =
Trace(Re(xxx)) is

fe(xxx) = Trace

⎛
⎝
(

BT Σ−1
P B +

N∑
k=1

xkHT
k R−1

wk
Hk

)−1
⎞
⎠ ,

(11)

which is an analytical function of the PMU selection vector xxx.
This function is not only continuous but convex.

Further, the mutual information (MI) I(θ; z(xxx)) between
RVs θ and z(xxx) is [31, formula (6)]

I(θ; z(xxx)) = H(θ) −H(θ|z(xxx))

=
1

2 ln 2
(ln |Rθ| − ln |Re(xxx)|)

=
1

2 ln 2
ln |Rθ| +

1
2 ln 2

ln
∣∣BT Σ−1

P B+

+
N∑

k=1

xkHT
k R−1

wk
Hk

∣∣∣∣∣ . (12)
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Maximizing the MI I(θ; z(xxx)) is thus equivalent to maximiz-
ing fMI(xxx) for

fMI(xxx) : = − ln |Re(xxx)|

= ln |BT Σ−1
P B +

N∑
k=1

xkHT
k R−1

wk
Hk|, (13)

which is not only continuous but concave.
To the authors’ best knowledge, the explicit expressions (11)

and (12) for the MSE and MI in PMU placement optimization
are new. Incidentally, the right hand side of (10) was regarded
in [14] as the gain matrix in the maximum likelihood estimate.
Furthermore, [16] used the implicit expression (7) and (9) for
the MI. It follows from the explicit expression (10) that

Re(xxx) � Re(x̃xx) whenever x̃xx − xxx ∈ R
N
+ , (14)

leading to

Trace(Re(xxx)) ≥ Trace(Re(x̃xx)) & ln |Re(xxx)| ≥ ln |Re(x̃xx)|
(15)

which means that increasing the number S of PMUs improves
both MMSE index E(||θ − θ̂||2) and MI index I(θ; z(xxx)).

B. Observability Constraints on PMU Placement

This subsection provides a machinery to maintain the infor-
mation quality of MSE and MI.

1) Complete Observability (CO): To assure the complete
observability of system state θ, one needs the following
constraint [1], [32], [33]:

Axxx ≥ 1N , (16)

where A is the bus-to-bus incidence matrix defined by
Akm = 1 if k = m or bus k is adjacent to bus m, and
Akm = 0 otherwise.

Let us analyse the constraint (16) from the information-
theoretic view point. The constraint (16) guarantees that all
state components θm are observable, i.e. each θm appears at
least once in the measurement equations (3), which implies
θm|z(xxx) �= θm, making the measurement equations (3) mean-
ingful for estimating θm. When some θm is not observable, i.e.
it does not appear in the measurement equations (3), it follows
that θm|z(xxx) = θm, so the measurement equations in (3) are
useless for estimating θm. In this case, the estimate for θm is
its unconditional mean θ̄m with E((θm − θ̄m)2) = Rθ(m, m)
and I(θm; z(xxx)) = H(θ) − H(θ|z(xxx)) = 0. In other words,
the optimization problem for maximizing I(θ; z(xxx)) does not
reveal a nontrivial estimate for θm that is a contradiction to
[16, statement 1), page 448, 2nd column] which states that the
mutual information metric includes the complete observability
condition (16) as a special case.

2) Zero Injection Buses (ZIBs): It is also known [7]–[9] that
ZIBs, which are neither loads nor generators are helpful for
improving observability. Let Z be the set of ZIBs and ςZ(.)
be its indicator function, i.e. ςZ(m) = 1 for m ∈ Z and
ςZ(m) = 0 otherwise. For yyy := [yk,m](k,m)∈N×Z , where

ykm ∈ {0, 1}, (k, m) ∈ N ×Z (17)

are the auxiliary binary variables to incorporate the impact
of ZIBs, the observability constraints incorporating the impact
of ZIBs are [8]∑
k∈N

Akmykm = ςZ(m), m ∈ N , (18a)

Fk(xxx,yyy) : =
∑

m∈N
Akmxm

+
∑

m∈N
AkmςZ(m)ykm≥1, k ∈ N . (18b)

For m ∈ Z , the constraints (18) mean that all its incident
buses are observable except one, which is then observable
by applying the Kirchhoff’s current law (KCL) at m. For
m /∈ Z , the constraints (18) mean that all its incident buses
are observable so m is observable by applying KCL at m.

3) Power Flow Measurements (PFMs): Next, the pre-
installed conventional PFMs can improve measurement redun-
dancy, which is advantageous not only for observability but
also for bad data detection [34]. All buses in a branch with a
power measurement are made observable once any of them
is observable. Suppose that B is the set of branches with
power flow measurements, and T is the set of buses that are
the terminal points of the branch in B. For Fk(xxx,yyy) defined
from (18b), the constraint (18b) can be replaced by [34]

Fk(xxx,yyy) + Fm(xxx,yyy) ≥ 1, (k, m) ∈ B, (19a)

Fk(xxx,yyy) ≥ 1, k ∈ N \ T , (19b)

where k ∈ N \ T is the bus which is not in bus set T .
4) Contingency of Single PMU Outage: As an electrical

device, a PMU may be inactive in some real case. In order to
guarantee that all buses are still observable when a single PMU
is lost, the following contingency-aware constraint should be
imposed [8]:∑

m∈N
Akmxm +

∑
m∈N

Akmykm ≥ 2, k ∈ N . (20)

5) Limitation of PMU Channels: In many scenarios, a PMU
may not measure all phasors of incident buses due to the lim-
itation of its communication channels. A binary variable ckm

is then introduced to indicate that ckm = 1 whenever bus k
is measured by a PMU installed at bus m, and ckm = 0 oth-
erwise. Following [35, (25)-(28)], the following observability
constraint is needed instead of (18b)∑

m∈N
Akmckm +

∑
m∈N

AkmςZ(m)ykm ≥ 1, k ∈ N , (21a)

xm ≤
∑
k∈N

Akmckm ≤ Cm, m ∈ N , (21b)

Akmckm ≤ xm, k, m ∈ N , (21c)

ckm ∈ {0, 1}, (k, m) ∈ N ×N , (21d)

where Cm is the maximum number of PMU channel at bus m.

C. Analytical PMU Placement Optimization and
Computational Challenges

For xxx, yyy and ccc := [ck,m](k,m)∈N×N as the binary optimiza-
tion variables, we are now in position to state the problem
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of PMU placement optimization to minimize the MSE or to
maximize the MI between the measurement output and phasor
state subject to a fixed number of PMUs and observability
constraints as the following binary nonlinear optimization
problems

min
xxx,yyy,ccc

f(xxx) s.t. xxx ∈ DS , (17), (18a), (18b)/(19)/(20)/(21),

(22)

where f(xxx) ∈ {fe(xxx),−fMI(xxx)}, which is a convex function,
and DS is defined from (5). In what follows, we call (22)
OCA PMU placement optimization.

Most existing works used binary linear programming in
handling some but not all constraints in (22) without optimiz-
ing f . For instance, the following binary linear problem of
minimizing the number of PMUs for the system observability

min
xxx

N∑
k=1

xk : xxx ∈ {0, 1}N , (16) (23)

was considered in [7], [11], [13], which can not guarantee
informative PMU configuration. Particular cases of the fol-
lowing binary linear problems

min
xxx,yyy,ccc

N∑
k=1

xk

s.t. xxx ∈ {0, 1}N , (17), (18a), (18b)/(19)/(20)/(21), (24)

were considered in [7], [11], [13]. For instance, the constraints
(20) and (21) of the contingency of PMU outage and limitation
of PMU communication channels were not present in [7],
the constraints (19) and (21) of the PFMs and limitation of
PMU communication channels were absent in [11], while
the constraint (21) of the limitation of PMU communication
channels were not considered in [13].

In optimizing the so called gain matrix [14], the work [15]
considered the simple binary convex problem

min
xxx

f(xxx) s.t. xxx ∈ DS , (25)

by solving its convex relaxation problem, which is

min
xxx∈R

N
+ ,T∈RN×N

Trace(T) s.t. xxx ∈ Poly(DS), (26a)

[
BT Σ−1

P B +
∑N

k=1 xkHT
k R−1

wk
Hk IN

IN T

]
� 0, (26b)

when f = fe, or

max
xxx∈R

N
+

ln |BT Σ−1
P B +

N∑
k=1

xkHT
k R−1

wk
Hk|

s.t. xxx ∈ Poly(DS), (27)

when f = fMI , for

Poly(DS) = {xxx ∈ [0, 1]N :
N∑

k=1

xk = S}, (28)

and rounding the S largest entries of their optimal solution to
one and the remaining N − S entries to zero. Note that there
is no guarantee that the solution of (26) or (27) is sparse to

make such rounding efficient. Moreover, the size of the semi-
definite optimization problem (26) is not scalable in N as it
invokes the additional slack symmetric matrix variable T of
size N × N that involves N(N + 1)/2 additional decision
variables. For a moderate number N such as N = 118,
the value of N(N + 1)/2 is 7021, which is already a huge
number. There is no solver of polynomial complexity for
solving (27). The reader is referred to [36] for capacity of
SDR to address discrete optimization problems such as (25).
Furthermore, by showing that the MI is a submodular function,
the work [16] has shown that the PMU placement to maximize
the MI can be very efficiently solved by the very low computa-
tional complexity greedy algorithm [17] for submodular func-
tion optimization with a really sound analytical foundation.
However, both convex relaxation-based algorithm and greedy
algorithm cannot be used for addressing the problem (22).

It is obvious that the problem (22) is much more com-
putationally challenging than either the problem (23) or the
problem (24). While the latter is a binary linear problem,
which can be solved by very powerful binary solvers such
as CPLEX [37], the former is a large scale binary nonlinear
problem, which is among the most computationally difficult
optimization problems with no known solution method. The
next section is devoted to its computational solution.

D. Discussion on Extension to AC Power Flow Models

The optimization formulation (22) for f(xxx) = fe(xxx) can
be extended to the case of AC power flows models [38],
under which the equation (1) is nonlinear. Like [25] and [26]
for nonlinear sensor networks, one can use the unscented
transformation and MMSE result of [39] to approximate the
RV θ by a Gaussian RV as in (2) or by Gaussian mixture
RV and then the conditional RV θ|z(xxx) in (7) for deriving the
MMSE estimator θ̂ in (8) so the resultant MMSE is still an
analytical function in xxx as that defined by (9).

III. SCALABLE PENALTY ALGORITHMS

FOR OPTIMAL PMU PLACEMENT

To address the OCA PMU placement optimization (22) we
need to handle its discrete constraint xxx ∈ DS . An important
observation is that xL < x whenever 0 < x < 1 and L > 1,
and xL = x whenever x = 0 or x = 1. Therefore, the
binary constraint x ∈ {0, 1} is expressed by two continuous
constraints x ∈ [0, 1] and xL = x. This helps to express
the discrete constraint xxx ∈ DS by continuous constraints as
follows.

Lemma 1: For the polytope Poly(DS) defined from (28),
the discrete constraint xxx ∈ DS is equivalent to the continuous
constraints

xxx ∈ Poly(DS), (29a)

g1(xxx) ≥ S, (29b)

for g1(xxx) :=
∑N

k=1 xL
k with L > 1.

Proof. Note that xL
k ≤ xk ∀ xk ∈ [0, 1], so g1(xxx) ≤∑N

k=1 xk = S ∀xxx ∈ Poly(DS). Therefore constraint (29)
forces g(xxx) = S, which is possible if and only if xL

k = xk,
k = 1, . . . , N , i.e. xk ∈ {0, 1}, k = 1, . . . , N , implying
xxx ∈ DS . �
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Since the function g1(xxx) is convex, the constraint g1(xxx) ≥ S
in (29) is a reverse convex constraint [40]. As such DS =
Poly(DS) \ {xxx : g1(xxx) < S}, i.e. DS is the difference
of two convex sets Poly(DS) and {xxx : g1(xxx) < S}. Also
as L decreases, g1(xxx) tends to approach the linear function∑N

k=1 xk and thus, the constraint g1(xxx) ≥ S approaches the
linear constraint

∑N
k=1 xk ≥ S. However, it does not mean

that choosing L closer to 1 is effective because the function
g1(xxx) − S also approaches to zero very quickly, making
the constraint g1(xxx) ≥ S highly artificial. In our previous
works [41], [42], L = 2 was chosen. However, as we will
see shortly, L = 1.5 is a much better choice, accelerating
the convergence of the iterative computational processes. The
following result is a direct consequence of Lemma 1.

Proposition 1: The function

g̃1(xxx) = 1/g1(xxx) − 1/S

can be used to measure the degree of satisfaction of
the discrete constraint xxx ∈ DS in the sense that
g̃1(xxx) ≥ 0 ∀ xxx ∈ Poly(DS) and g̃1(xxx) = 0 if and only
if xxx ∈ DS . �

Similarly, over the box domain

ykm ∈ [0, 1], (k, m) ∈ N ×Z, (30)

and

ckm ∈ [0, 1], (k, m) ∈ N ×N , (31)

the following functions can be used to measure the satisfaction
of the discrete constraint (17) and (21d),

g̃2(yyy) = 1/g2(yyy) − 1/|Z|, (32)

and

g̃3(ccc) = 1/g3(ccc) − 1/(N − |Z|), (33)

with

g2(yyy) :=
N∑

k=1

∑
m∈Z

yL
km,

and

g3(ccc) :=
N∑

k=1

N∑
m=1

cL
km.

Since each ZIB can exactly make one bus observable, we need
at least |N |−|Z| PMU channels for the complete observability.

Following the developments in [41]–[45], instead of han-
dling the nonconvex constraints (29b) and g2(yyy) ≥ |Z| and
g3(ccc) ≥ N−|Z| we incorporate the degree of their satisfaction
into the objective in (22), leading to the following penalized
optimization problem:

min
xxx,yyy,ccc

Fμ(xxx,yyy,ccc) := f(xxx) + μ (g̃1(xxx) + g̃2(yyy) + g̃3(ccc)) (34a)

s.t. (29a), (18a), (18b)/(19)/(20)/(21), (30), (31), (34b)

where μ > 0 is a penalty parameter. This penalized optimiza-
tion problem is exact with sufficiently large μ in the sense
that its optimal solution is also optimal for (22). Note that the

problem (34) is a minimization of a nonconvex function over
a convex set. We now develop a path-following computational
procedure for its solution. For this purpose, we firstly develop
an upper bounding approximation for (34), at some its feasible
point (xxx(κ), yyy(κ), ccc(κ)) (at κ-th iteration). As the function g1(xxx)
is convex, it is true that [40],

g1(xxx) ≥ g
(κ)
1 (xxx)

:= g1(xxx(κ)) + �∇g1(xxx(κ)),xxx − xxx(κ)


= −(L − 1)
N∑

k=1

(x(κ)
k )L + L

N∑
k=1

(x(κ)
k )L−1xk.

Therefore, an upper bounding approximation at xxx(κ) for
1/g1(xxx) can be easily obtained as 1/g1(xxx) ≤ 1/g

(κ)
1 (xxx) over

the trust region

g
(κ)
1 (xxx) > 0. (35)

Analogously, 1/g2(yyy) ≤ 1/g
(κ)
2 (yyy) and 1/g3(ccc) ≤ 1/g

(κ)
3 (ccc)

over the trust region

g
(κ)
2 (yyy) > 0, (36)

and

g
(κ)
2 (ccc) > 0, (37)

for

g
(κ)
2 (yyy) : = −(L − 1)

N∑
k=1

∑
m∈Z

(y(κ)
km)L

+ L
N∑

k=1

∑
m∈Z

(y(κ)
km)L−1ykm,

and

g
(κ)
3 (ccc) : = −(L − 1)

N∑
k=1

N∑
m=1

(c(κ)
km)L

+ L
N∑

k=1

N∑
m=1

(c(κ)
km)L−1ckm.

At the κ-th iteration we solve the following convex
optimization problem to generate the next iterative point
(xxx(κ+1), yyy(κ+1), ccc(κ+1)) :

min
xxx,yyy,ccc

f(xxx) + μP (κ)(xxx,yyy,ccc), s.t. (34b), (35), (36), (37), (38)

with

P (κ)(xxx,yyy,ccc) :=

(
1

g
(κ)
1 (xxx)

− 1
S

)
+

(
1

g
(κ)
2 (yyy)

− 1
|Z|

)

+

(
1

g
(κ)
3 (ccc)

− 1
N − |Z|

)
.

Although the function f(xxx) is already convex, it is not easy to
optimize it. For instance, when f = fe, usually fe is expressed
by Trace(T), where T is a slack symmetric matrix variable
of size N × N satisfying the semi-definite constraint (26b),
which is not scalable to xxx. Worse, for f = −fMI , which
is ln |BT Σ−1

P B +
∑N

k=1 xkHT
k R−1

wk
Hk|, there is no known

convex solver of polynomial complexity.
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In the following, we propose a different approach to provide
scalable iterations for (38). Obviously, there is � > 0 such that

Aε := BT Σ−1
P B − �

N∑
k=1

HT
k R−1

wk
Hk � 0.

For f = fe, applying the inequality (53) in the Appendix for

A0 → Aε, xk → xk + �, x̄k → x
(κ)
k + �, (39)

yields fe(xxx) ≤ f
(κ)
e (xxx) := a

(κ)
0 +

∑N
k=1

a
(κ)
k

xk+ε for

0 < a
(κ)
0 := Trace((Re(xxx(κ)))2Aε), (40a)

0 < a
(κ)
k := (x(κ)

k + �)2Trace((Re(xxx(κ)))2

×HT
k R−1

wk
Hk), k = 1, . . . , N. (40b)

Accordingly, initialized by a feasible point (xxx(0), yyy(0), ccc(0))
for (34), at the κ-th iteration for κ = 0, 1, . . . , we solve the
following convex optimization problem to generate the next
iterative point (xxx(κ+1), yyy(κ), ccc(κ)), instead of (38):

min
xxx,yyy,ccc

F (κ)
μ (xxx,yyy,ccc) := f (κ)

e (xxx) + μP (κ)(xxx,yyy,ccc)

s.t. (34b), (35), (36), (37). (41)

Note that Fμ(xxx,yyy,ccc) ≤ F
(κ)
μ (xxx,yyy,ccc), ∀ (xxx,yyy,ccc), and Fμ(xxx(κ),

yyy(κ), ccc(κ)) = F
(κ)
μ (xxx(κ), yyy(κ), ccc(κ)), and F

(κ)
μ (xxx(κ+1), yyy(κ+1),

ccc(κ+1)) < F
(κ)
μ (xxx(κ), yyy(κ), ccc(κ)), since (xxx(κ+1), yyy(κ+1),

ccc(κ+1)) and (xxx(κ), yyy(κ), ccc(κ)) are the optimal solution and a
feasible point for (41). Therefore,

Fμ(xxx(κ+1), yyy(κ+1), ccc(κ+1)) ≤ F (κ)
μ (xxx(κ+1), yyy(κ+1), ccc(κ+1))

< F (κ)
μ (xxx(κ), yyy(κ), ccc(κ))

= Fμ(xxx(κ), yyy(κ), ccc(κ),

i.e. (xxx(κ+1), yyy(κ+1), ccc(κ+1)) is a better feasible point than
(xxx(κ), yyy(κ), ccc(κ)) for (34). For a sufficient large μ > 0,
g̃1(xxx(κ))+g̃2(yyy(κ))+g̃3(ccc(κ)) → 0 as well, yielding an optimal
solution of the binary nonlinear optimization problem (22) for
the case f = fe. Algorithm 1 provides a pseudo-code for the
proposed computational procedure.

Algorithm 1 Scalable Penalized MSE Algorithm
1: Initialization. Set κ = 0. Take any feasible point

(xxx(0), yyy(0), ccc(0)) for (34). Choose μ > 0 such that
fe(xxx(0)) and μ(g̃1(xxx(0)) + g̃2(yyy(0)) + g̃3(ccc(0))) have a
similar magnitude.

2: Repeat until the convergence of the objective in (22):
Solve the convex optimization problem (41) to gen-
erate the next feasible point (xxx(κ+1), yyy(κ+1), ccc(κ+1));
Set κ := κ + 1.

Analogously, considering f = −fMI , based on the inequal-
ity (55) in the Appendix, for A0, xk, and x̄k defined from (39),
at the κ-th iteration we solve the following convex optimiza-
tion problem to generate the next iterative point xxx(κ+1) and
yyy(κ+1), instead of (38):

max
xxx,yyy,ccc

[
f

(κ)
MI(xxx) − μP (κ)(xxx,yyy,ccc)

]
s.t. (34b), (35), (36), (37), (42)

for

f
(κ)
MI(xxx) := a

(κ)
0 −

N∑
k=1

a
(κ)
k

xk + �
(43)

and

a
(κ)
0 := − ln |Re(xxx(κ))| + Trace(Re(xxx(κ))

× (
N∑

k=1

(� + x
(κ)
k )HT

k R−1
wk

Hk)), (44a)

a
(κ)
k := (x(κ)

k + �)2Trace(Re(xxx(κ))
×HT

k R−1
wk

Hk), k = 1, . . . , N. (44b)

We thus adjust Algorithm 1 by solving the convex optimiza-
tion problem (42) at the κth iteration instead of (41) for
computational solution of the binary nonlinear optimization
problem (22) for the case f = −fMI .

The computational complexity of (41)/(42) is

O(α2β2.5 + β3.5), (45)

where

α = N +
∑
k∈Z

∑
m∈N

Akm +
∑
k∈N

∑
m∈N

Akm,

which is the number of decision variables, and

β = 4 + 4N + |ccc|,

which is the number of constraints under the scenario with (18)
for ZIBs and (21) for the PMU channels’ limitation.

IV. TAILORED PATH-FOLLOWING DISCRETE

OPTIMIZATION ALGORITHMS

In this section, we address the problem (25), which provides
a lower bound for the optimal value of (22), i.e. it provides
a lower bound for MSE and an upper bound for MI in OCA
PMU placement optimization.

For any K ⊂ N we define xxxK = (x1, . . . , xN )T such that
xk = 1 for k ∈ K and xk = 0 otherwise. Accordingly,

Re(xxxK) =

(
BT Σ−1

P B +
∑
k∈K

HT
k R−1

wk
Hk

)−1

.

Thanks to the explicit expression (10), the greedy algo-
rithm [17] for computing (25) is simply excused as to initialize
from the set K of the selected PMUs as an empty set and
process the following recursions for κ = 1, . . . , S:

kκ = arg min
k∈N\K

Trace
(
(R−1

e (xxxK) + HT
k R−1

wk
Hk)−1

)
/arg max

k∈N\K

∣∣R−1
e (xxxK) + HT

k R−1
wk

Hk

∣∣ (46)

and

K → K ∪ kκ. (47)

Although such greedy algorithm is of heuristic type, the
following result shows that its analytical foundation is sound
thanks to the inequalities in (15).
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Theorem 1: For γopt and γgr as the global optimal value
of the problem (25) and that found by the greedy algorithm,
the following approximation ratio is achieved

γgr

γopt
≥ 1 − 1

e
. (48)

Proof. It follows from (14) that for ∀B ⊂ A ⊂ N ,

Re(xxxA) � Re(xxxB) & R−1
e (xxxA) � R−1

e (xxxB). (49)

Applying the inequality (57) in the Appendix for X =
R−1

e (xxxA), Y = R−1
e (xxxB) and A = HT

k R−1
wk

Hk, k ∈ N \ A
yields

fe(xxxA) − fe(xxxA∪{k}) = Trace(Re(xxxA)) − Trace((R−1
e (xxxA)

+ HT
k R−1

wk
Hk)−1)

≤ Trace(Re(xxxB)) − Trace((R−1
e (xxxB)

+ HT
k R−1

wk
Hk)−1)

= fe(xxxB) − fe(xxxB∪{k}). (50)

Furthermore, by (14),

fMI(xxxA∪{k}) − fMI(xxxA)

= ln
∣∣∣I + R−1/2

wk
HkRe(xxxA)HT

k R−1/2
wk

∣∣∣
≤ ln

∣∣∣I + R−1/2
wk

HkRe(xxxB)HT
k R−1/2

wk

∣∣∣
= fMI(xxxB∪{k}) − fMI(xxxB). (51)

The inequalities (50) and (51) show that the function fe is
supermodular and the function fMI is submodular, under
which the ratio (48) is valid [17]. �

Note that the above result for f = −fMI has been shown
in [16, Th. 3] by using the chain rule of MI. We have showed
here that it can be proved directly based on the analytical form
of the function fMI . Moreover, the above result for f = fe is
quite new.

We now also develop a simple but very efficient path-
following discrete optimization algorithm that explores a sim-
ple structure of the discrete constraint xxx ∈ DS to yield
the global optimal solution of (25). The following result is
important for our development.

Lemma 2: The set DS defined from (5) is the set of vertices
of the set Poly(DS) defined from (28).

Proof. For xxx ∈ DS define J(xxx) = {k1 < k2 < .... <
kS |xkj = 1, j = 1, 2, . . . , S}. Suppose x̄xx ∈ DS . It suffices
to show that if x̄xx = μa + (1 − μ)b for a,b ∈ Poly(DS)
and 0 < μ < 1 then a = b = x̄xx. Indeed, for i ∈ J(x̄xx) we
have x̄i = 1 = μai + (1 − μ)bi and since ai ∈ [0, 1] and
bi ∈ [0, 1] it follows that ai = bi = 1. For i /∈ J(x̄xx) we
have x̄i = 0 = μai + (1 − μ)bi and since ai ∈ [0, 1], and
bi ∈ [0, 1] it follows that ai = bi = 0. Hence a = b = x̄xx as
asserted. �

Recall that point xxx is a vertex neighbouring the vertex x̄xx if
and only if there exists a pair (i, j) such that xi = 0 �= x̄i = 1
and xj = 1 �= x̄j = 0 and x� = x̄� whenever � �= i and
� �= j, i.e. x̄xx and xxx are exactly different in two entries and
there are S(N − S) neighbouring vertices for each vertex x̄xx.
Then x̄xx ∈ DS is a minimizer of f over Poly(DS) if and only
if f(x̄xx) ≤ f(v) for every v ∈ DS neighbouring x̄xx. We thus

propose Algorithm 2 for solving (25), which looks like the
Dantzig simplex method for linear programming.1

Algorithm 2 Path-Following Discrete Optimization Algorithm

Initialization. Start from a xxx(0) ∈ DS . Set κ = 0.
κ-th iteration. If there is a x̄xx ∈ DS neighbouring xxx(κ)

such that f(x̄xx) < f(xxx(κ)) then reset κ + 1 → κ and
x̄xx → xxx(κ). Otherwise, if f(xxx) ≥ f(xxx(κ)) for all xxx ∈ DS

neighbouring xxx(κ) then stop: xxx(κ) is the global optimal
solution of (25).

Based on this powerful algorithm, we propose
Algorithm 3 for solution of the following problem of
choosing the minimum number of PMUs to satisfy given
tolerance of MSE or MI:

min
xxx

∑
k∈N

xk : xxx ∈ {0, 1}N , f(xxx) ≤ �. (52)

Algorithm 3 Iterative Procedure
Initialization. Start from 1 < S0 < N and use Algorithm 2

to find the optimal solution xxx(0) of (25) for S = S0.
Until f(xxx(κ)) ≤ � but f(xxx(κ−1)) > �: Reset S → S − 1 if

f(xxxopt) < � and S → S+1 if f(xxxopt) > �; Set κ := κ+1.

V. SIMULATION RESULTS

In the simulation, the real power injections P are normally
distributed and independent across different buses [28]. Sim-
ilarly to the simulation setup in [16], the mean vector of real
power injection up = (up(1), . . . , up(N))T is obtained by
properly scaling the power profiles in [47], while the diagonal
entries of power injection covariance matrix are assumed to
be 10% of the mean values, i.e. ΣP is a diagonal matrix
with diagonal entries ΣP (k, k) = 0.1 up(k). The deviation of
measurement noise for bus voltage and current branch are set
as rk = 0.01 and ρk = 0.02, respectively. All algorithms are
solved by Matlab on a Core i7-7600 processor. Sedumi [48]
interfaced by CVX is used to solve the convex optimization
problems (41) and (42). The commonly used benchmark power
networks IEEE 30-bus, IEEE 39-bus, IEEE 57-bus, IEEE
118-bus, IEEE 300-bus, European 1354-bus and Polish
2383-bus with their structure and susceptance matrix obtained
from Matpower [47] are tested. The unit of MSE is dB while
that of MI is bit.

The following scenarios are considered for simulations:
• S-1 is with the complete observability constraint

(CO) (16);
• S-2 is with the constraint (18) of ZIB’s presence, which

helps to reduce the number of placed PMUs for system
observability;

1Dantzig simplex method is one of the 20th century’s top ten algorithms [46]
although its polynomial complexity cannot be proved (in contrast to the
polynomial complexity of the interior points methods for linear programming).
Conceptually, it is very simple: starting from any vertex of a simplex it moves
to a better neighbouring vertex until there is no better neighbouring vertex
found.
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TABLE I

THE MINIMUM NUMBER OF PLACED PMUS
UNDER DIFFERENT SCENARIOS

TABLE II

MSE (IN DB) AND MI (IN BITS) UNDER THE NUMBER S OF PMUS

• S-3 is with the both constraints (18a) and (19) of ZIB’s
presence and PFMs, which help to reduce the number of
PMUs for system observability.

A. MSE and MI Performance

Table I provides some basic parameters for the networks
and also the minimum of PMUs needed to guarantee dif-
ferent observability constraints in (22), which is obtained
by using CPLEX solver [37] for solving the binary linear
problem (23) or (24). In Table I, the first two columns provide
the network name and its total number of branches (|L|) and
total number of ZIBs (|Z|). The last three columns show
the minimum number of PMUs obtained by solving (23)
under S-1, and solving (24) under S-2 and S-3. It can be
seen that, the required number of PMUs to make the sys-
tem observable decreases significantly by integrating ZIBs
and PFMs.

In Table II, the second column, the third column, and
the fourth column provide the trio of the number of placed
PMUs (S), which is the same as it is in Table I, MSE and
MI that are found by Algorithm 1 under S-1, S-2, and S-3,
respectively. ZIBs and PFMs in S-3 thus help in reducing the
number of placed PMUs while maintaining a good MSE/MI.

In Table III, the second column and the third column
of provide a similar trio that are found by Algorithm 1
for solving (22) under S-1, and S-2, respectively plus the
additional contingency-constraint (20). We need to use more
placed PMUs to compensate the contingency-constraint (20)
and as a result they also help to improve the MSE/MI.

Fig. 2 shows the required number of placed PMUs to satisfy
both (18a) to exploit ZIBs and (21) to limit the number of
communication channels per PMU. Table IV provides the cor-
responding MSE. It should be mentioned that if the maximum
number of channels per PMU is 1 then the required number
of PMUs is |N | − |Z|. By allowing only one communication

TABLE III

MSE (IN DB) AND MI (IN BITS) WITH THE ADDITIONAL
CONTINGENCY-CONSTRAINT (20)

Fig. 2. The required number of placed PMUs with different limitation values
of communication channels per PMU.

TABLE IV

THE REQUIRED NUMBER OF PLACED PMUS/MSE (IN DB) UNDER

DIFFERENT NUMBERS OF CHANNELS PER PMU

channel per PMU, the required number of placed PMUs is
almost the same as the number of buses. By allowing two
communication channels per PMU, this number is almost
reduced to half. Allowing the number of communication
channels per PMU more than three seems to be not so efficient
as it does not help to reduce the number of placed PMUs while
resulting in worse MSEs.

Fig.3 depicts the achieved MSE by using different algo-
rithms under different scenarios versus the number of placed
PMUs. The curve “S-1 Alg. 1” and “S-2 Alg. 1” are the
theoretical MSE by solving problem (41) for scenarios S-1
and S-2, respectively. The MSE of “S-2 Alg. 1” is better
than that of “S-1 Alg. 1” thanks to the impact of ZIBs. The
curve “Monte-Carlo” is MSE obtained through Monte-Carlo
simulation of scenario S-1. The curve “S-1 CPLEX” is MSE
obtained by solving the feasibility problem of (23) by CPLEX.
MSE obtained by the former is much better than that obtained
by the latter. The MSE in the curve “S-1 CPLEX” is not
monotonous, because its MSE is not optimal. The curve “LB
by Alg. 2” provides a lower bound for the MSE in OCA
PMU placement problem (22) by solving problem (25) by
Algorithm 2. Similarly, the curves in Fig. 4 plot the MI, where
the curve “UB by Alg. 2” provides an upper bound for the MI
in OCA PMU placement problem (22) by solving problem (25)
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Fig. 3. MSE by different methods.

Fig. 4. MI by different methods.

Fig. 5. MSE value of problem (25) computed by different algorithms.

by Algorithm 2. The capability and efficiency of Algorithm 1
and Algorithm 2 to obtain informative PMU placements are
quite clear.

Fig. 5 and Fig. 6 provide the values of MSE and MI found
by Algorithm 2, the greedy algorithm by solving (46) and
convex relaxation used in [15]. Algorithm 2 and the greedy
algorithm clearly outperform the convex relaxation method
and the performance gaps becomes wider with the increase
of network size. Observe that Algorithm 2 and the greedy
algorithm perform similarly. The former provides the global
optimal value for (25) while the latter guarantees a suboptimal
value at least with the ratio 1 − 1/e according to Theorem 1.
It is reasonable to expect that locating the global optimal value
costs by the former more time due to the confirmation of its
global optimality than that for locating a suboptimal value by
the latter.

Given different tolerances �, the required minimum number
of PMUs can be obtained by Algorithm 3. For the case of
f = fe, the results are presented in Fig.7.

B. Computation Experience

The numerical details of Algorithm 1 for scenario S-1 and
S-2 are summarized in Table V with the numerical value of μ

Fig. 6. MI value of problem (25) computed by different algorithms.

Fig. 7. Minimum number of placed PMUs required versus different values
of tolerance level ε for MSE by Algorithm 3.

TABLE V

NUMERICAL DETAILS OF ALGORITHM 1 UNDER SCENARIO S-1 AND S-2

in implementing Algorithm 1 given by the second and third
column. The number of actual decision binary variables yk,m

in (18) to express of the impact of ZIBs in S-2 is also provided
in the sixth column. Note that this number is much smaller
than N |Z| because if nodes k and m are not connected, then
there is no involvement of ykm as automatically it is zero.
The CPU time of Algorithm 1 increases moderately with the
increase of grid size, demonstrating its scalability. To speed
up its convergence, at each iteration we check the state of
variables xxx, yyy, and ccc to fix those, which attain binary values.

The computational complexity of Algorithm 1 is determined
by (45), which is the computational complexity of the convex
problem (41)/(42) solved at each iteration, and the number of
iterations for its convergence. Fig. 8 provides the number of
iterations that Algorithm 1 needs for computing (34) for IEEE
30-bus network, 39-bus network, 57-bus network and 118-bus
network under different scenarios.

Table VI provides the CPU for implementing
Algorithm 2, the greedy algorithm (46) and convex relaxation
using (26)-(27). The CPU time of convex relaxation for the
IEEE 300-bus is about five hours and seven hours and half
due to the involvement of additional 300 × 301/2 = 45.150
variables. It should be mentioned that, all the proposed
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Fig. 8. Average number of iterations that Algorithm 1 needs in
computing (34).

TABLE VI

COMPARISON OF CPU TIME BETWEEN ALGORITHM 2, THE GREEDY

ALGORITHM (GA) (46) AND CONVEX RELAXATION (CR) (26)–(27)

Fig. 9. Number of iterations required for the convergence of Algorithm 2.

algorithms experience difficulty for calculating matrix inverse
(for fe(xxx)) and determinant (for fMI(xxx)), especially in
large-scale networks.

For IEEE 57-bus network and IEEE 118-bus network, Fig.9
presents the number of iterations needed for the convergence
of Algorithm 2 for MSE and MI, respectively. The computa-
tional complexity of each iteration is O(S(N − S)).

VI. CONCLUSION

The paper has considered PMU placement optimization to
minimize the mean squared error or maximize the mutual
information between the measurement outputs and phasor
states under a fixed number of PMUs and different observ-
ability constraints to guarantee the estimation quality, which
is formulated as a large scale binary nonlinear optimization
problem. The paper has developed scalable algorithms for
their computation, which result at least in locally optimal
solutions. The paper has also developed extremely efficient
algorithms of very low computational complexity for cases of

absent observability. The viability of the developed algorithms
has been confirmed through comprehensive simulations with
benchmark grids.

APPENDIX: FUNDAMENTAL INEQUALITIES

For A0 � 0 and Ak � 0, k = 1, . . . , N let Τ(xxx) := (A0 +∑N
k=1

1
xk

Ak)−1, and Ψ(xxx) := (A0 +
∑N

k=1 xkAk)−1. The
first result is

Theorem 2: The following inequality holds true for all
xxx ∈ int(RN

+ ) and x̄xx ∈ int(RN
+ ):

Trace(Ψ(xxx))

≤ Trace
(
(Ψ(x̄xx))2A0

)
+

N∑
k=1

x̄2
k

xk
Trace

(
(Ψ(x̄xx))2Ak

)
. (53)

Proof. By [26, Th.1], the function ϕ(xxx) = Trace(Τ(xxx)) is
concave in the domain int(RN

+ ), so for all xxx ∈ int(RN
+ ) and

x̄xx ∈ int(RN
+ ) one has

ϕ(xxx) ≤ ϕ(x̄xx) + �∇ϕ(x̄xx),xxx − x̄xx


= Trace
(
Τ2(x̄xx)A0

)
+

N∑
k=1

xk

x̄2
k

Trace
(
Τ2(x̄xx)Ak

)
. (54)

Then the inequality (53) is obtained by replace xk → 1/xk

and x̄k → 1/x̄k, k = 1, . . . , N, in (54). �
The next result is
Theorem 3: The following inequality holds true for all

xxx ∈ int(RN
+ ) and x̄xx ∈ int(RN

+ ):

− ln |Ψ(xxx)| ≥ − ln |Ψ(x̄xx)|

+Trace

(
Ψ(x̄xx)(

N∑
k=1

x̄kAk)

)
−

N∑
k=1

x̄2
k

xk
Trace (Ψ(x̄xx)Ak) .

(55)

Proof. By [49, Th. 2], the function φ(xxx) = − ln |Τ(xxx)| is
convex in the domain int(RN

+ ), so for all xxx ∈ int(RN
+ ) and

x̄xx ∈ int(RN
+ ) one has

φ(xxx) ≥ φ(x̄xx) + �∇φ(x̄xx),xxx − x̄xx


= − ln |Τ(x̄xx)| + Trace

(
(Τ(x̄xx))−1(

N∑
k=1

1
x̄k

Ak)

)

−
N∑

k=1

xk

x̄2
k

Trace
(
(Τ(x̄xx))−1Ak

)
. (56)

Then the inequality (55) is obtained by replace xk → 1/xk

and x̄k → 1/x̄k, k = 1, . . . , N, in (56). �
The last result is
Theorem 4: The following inequality holds true for all

X � Y � 0 and A � 0

Trace(X−1) − Trace((X + A)−1)
≤ Trace(Y −1) − Trace((Y + A)−1). (57)

Proof. By the mean value theorem, there is ξ ∈ (0, 1) such
that for Z = ξX + (1 − ξ)Y � 0,(

Trace(X−1) − Trace((X + A)−1)
)

−
(
Trace(Y −1) − Trace((Y + A)−1)

)
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= Trace
((

(Z + A)−2 − Z−2
)
(X − Y )

)
= Trace(

(
(X − Y )1/2(Z + A)−1(X − Y )1/2

)2

−
(
(X − Y )1/2Z−1(X − Y )1/2

)2

)

= Trace(
(
(X − Y )1/2(Z + A)−1(X − Y )1/2

− (X − Y )1/2Z−1(X − Y )1/2
)

×
(
(X − Y )1/2(Z + A)−1(X − Y )1/2

+ (X − Y )1/2Z−1(X − Y )1/2
)
) ≤ 0,

because

(X−Y )1/2(Z+A)−1(X−Y )1/2−(X−Y )1/2Z−1(X−Y )1/2

= (X − Y )1/2[(Z + A)−1 − Z−1](X − Y )1/2 � 0,

due to (Z + A)−1 � Z−1, and

(X−Y )1/2(Z+A)−1(X−Y )1/2+(X−Y )1/2Z−1(X−Y )1/2

= (X − Y )1/2[(Z + A)−1 + Z−1](X − Y )1/2 � 0

due to (Z + A)−1 + Z−1 � 0. �
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