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ABSTRACT

Motivated by the Dikin walk, we develop aspects of the interior-
point theory for sampling in high dimension. Specifically, we intro-
duce the notions of strong self-concordance and symmetry for a
barrier. These properties imply that the Dikin walk defined using a
strongly self-concordant barrier with symmetry parameter 7 mixes
in O(nv) steps from a warm start for a convex body in R”. For
many natural barriers, 7 is roughly bounded by v, the standard
self-concordance parameter. We also show that these properties
hold for the Lee-Sidford barrier. As a consequence, we obtain the
first walk that mixes in O(n?) steps for an arbitrary polytope in
R™. Strong self-concordance for other barriers leads to an interest-
ing (and unexpected) connection — for the universal and entropic
barriers, it is implied by the KLS conjecture.
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1 INTRODUCTION

The interior-point method is one of the major successes of op-
timization, in theory and practice [10, 29, 33]. It has led to the
currently asymptotically fastest algorithms for solving linear and
semidefinite programs and is a popular method for the accurate
solution of medium to large-sized instances. The results of Nes-
terov and Nemirovski [27] demonstrate that v = O(n) is possible
for any convex set using their universal barrier, where v is the
self-concordance parameter of the barrier. For linear programming
with feasible region {x : Ax > b}, the simple logarithmic barrier

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC °20, June 22-26, 2020, Chicago, IL, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6979-4/20/06. .. $15.00
https://doi.org/10.1145/3357713.3384272

Yin Tat Lee
yintat@uw.edu
University of Washington and
Microsoft Research

USA

1212

Santosh Vempala
vempala@gatech.edu
Georgia Institute of Technology
Atlanta, Georgia, USA

g(x) = = 2;In((Ax — b);) has v = O(m) for an m X n constraint
matrix A, and is efficiently computable (the universal barrier is poly-
time to estimate, but requires the computation of volume of a convex
body). Over the past decade, Lee and Sidford [12-14] introduced a
barrier for linear programming that achieves v = O(nlog®") (m))
while being efficiently computable. The interior-point method has
also directly influenced the design of combinatorial algorithms, lead-
ing to faster methods for maxflow/mincut and other optimization
problems [4, 11, 24, 25, 28, 31, 32].

Sampling convex bodies is a fundamental problem that has close
connections to convex optimization. Indeed, convex optimization
can be reduced to sampling [1]. The most general methods that
lead to polynomial-time sampling algorithms are the ball walk and
hit-and-run, both requiring only membership oracle access to the
convex set being sampled. These methods are not affine-invariant,
i.e., their complexity depends on the affine position of the convex
set. A tight bound on their complexity is O* (n?R?/r?) where the
convex body contains a ball of radius r and is mostly contained
in a ball of radius R [8, 20, 21, 23]. The ratio R/r can be made
O(+/n) for any convex body by a suitable affine transformation. This
effectively makes the complexity O* (n®). However, the rounding
(e.g., by near-isotropic transformation) is an expensive step, and its
current best complexity is O (n*) [22]. Even for polytopes, this the
rounding/isotropic step takes O(mn?) total time for a polytope
with m inequalities using an improved amortized analysis of the
per-step complexity [26].

Interior-point theory offers an alternative sampling method with
no need for rounding. A convex barrier function, via its Hessian,
naturally defines an ellipsoid centered at each interior point of a
convex body, the Dikin ellipsoid, which is always contained in the
body. The Dikin walk, at each step, picks a uniformly random point
in the Dikin ellipsoid around the current point. To ensure a uniform
stationary density, the new point is accepted with a probability that
depends on the ratio of the volumes of the Dikin ellipsoids at the two
points, see Algorithm 1 below. Kannan and Narayanan [9] showed
that the mixing rate of this walk with the standard logarithmic
barrier is O(mn) for a polytope in R” defined using m inequalities.
Each step of the walk involves computing the determinant and can
be done in time O(mn®~1), leading to an overall arithmetic com-
plexity of O(m?n®) (see also [30] for a shorter proof of a Gaussian
variant). Using a different more continuous approach, where each
step is the solution of an ODE (rather than a straight-line step), Lee
and Vempala [17] showed that the Riemannian Hamiltonian Monte
Carlo improves the mixing rate for polytopes to O(mn?/?) while
keeping the same per-step complexity. This leads to the following
basic questions:

e What is the fastest possible mixing rate of a Dikin walk?
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e Is a mixing rate of O(n) possible while keeping each step
efficient (say matrix multiplication time or less)?

These are the natural analogies to the progress in optimization,
where for the first, Nesterov and Nemirovski show a convergence
rate to the optimum of O(+/n), and for the second, Lee and Sidford
show O(+/n) for linear programming while maintaining efficiency.

These questions, in the context of sampling, lead to new chal-
lenges. Whereas for optimization, one step can be viewed as moving
to the optimum of the objective in the current Dikin ellipsoid (a
Newton step), for sampling, the next step is a random point in the
Dikin ellipsoid; and since these ellipsoids have widely varying vol-
umes, maintaining the correct stationary distribution takes some
work.

To address these challenges, we use the symmetric self-concorda-
nce parameter 7. It is the smallest number such that for any point
x in a convex body K, with unit Dikin ellipsoid Ex, we have Ey C
K N (2x — K) C VPEx. In general 7 can be as high as v but for
some important barriers, it is bounded as O(v). This includes the
logarithmic barrier, and, as we show, the Lee-Sidford(LS) barrier.
This definition and parameter allows us to show that the isoperi-
metric (Cheeger) constant for the Dikin distance is asymptotically
at least 1/ V.

We need a further, important refinement. The notion of self-
concordance itself bounds the rate of change of the Hessian of the
barrier (i.e., the Dikin matrix) with respect to the local metric in the
spectral norm, i.e., the maximum change in any direction. We define
strong self-concordance as the requirement that this derivative is
bounded in Frobenius norm. Again, the logarithmic barrier satisfies
this property, and we show that the Lee-Sidford barrier does as
well.

Our main general result then is that the Dikin walk defined
using any symmetric, strongly self-concordant barrier with convex
Hessian mixes in O(nv) steps. We prove that the LS barrier satisfies
all these conditions with ¥ = O(n) and so has a mixing rate of
O(n?) for polytopes, completely answering the second question,
and improving on several existing bounds in [3, 6]. We also show
that the Dikin walk with the standard logarithmic barrier can be
implemented in time O(nnz(A) + n?) where nnz(A) is the number
of nonzero entries in the constraint matrix A. This answers the
open question posed in [9, 13]. These results along with earlier
work on sampling polytopes are collected in Table 1. We note that
while for the Dikin walk with a logarithmic barrier, there are simple
examples showing that the mixing rate of O(mn) is tight (take a
hypercube and duplicate one of its facets m — n times), for the Dikin
walk with the LS barrier, we are not aware of a tight example or
one with mixing rate greater than O(n). There is the tantalizing
possibility that it mixes in nearly linear time. Thus, the overall
arithmetic complexity for sampling a polytope is reduced to m -
min {nnz(A) “n+nd, nw“} which improves the state of the art for
all ranges of m.

We also study the notions of symmetry and strong self-concorda-
nce introduced in this paper for three well-studied barriers, namely,

These entries are for general convex bodies presented by oracles, with R/r measuring
the roundness of the input body; this can be made O(+/) with a rounding procedure
that takes n* steps (membership queries). After rounding, the amortized per-step
complexity of the ball walk in a polytope is O (rm).
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Table 1: The complexity of uniform polytope sampling from
a warm start.

Markov Chain Mixing Rate Per step cost
Ball Walk![8] n’R?/r? mn
Hit-and-Run![21] n’R%/r? mn
Dikin [9] mn mn®1
RHMC [17] mn’ mn®~1
Geodesic Walk[16] mni mn@~1
John’s Walk[6] n’ mn® + n®
Vaidya Walk([3] min3 mn®~1
Approximate John Walk[3] n?> mn®=1
Dikin (this paper) mn nnz(A) + n?
Weighted Dikin (this paper) n? mn®=T

the classical universal barrier [27], the entropic barrier [2] and the
canonical barrier [7]. While these barriers are not particularly effi-
cient to evaluate, they are interesting because all of them achieve
the best (or nearly best) possible self-concordance parameter val-
ues for arbitrary convex sets and convex cones (for the canonical
barrier), and have played an important role in shaping the theory of
interior-point methods for optimization. For the canonical barrier,
the work of Hildebrand already establishes the convexity of the
log determinant function (by definition of the barrier), and strong
self-concordance [7]. For the entropic and universal barriers, we
present an unexpected connection: the strong self-concordance
is implied by the KLS isoperimetry conjecture! This suggests the
possibility of more fruitful connections yet to be discovered using
the notion of strong self-concordance.

1.1 Dikin Walk

The general Dikin walk is defined as follows. For a convex set P
with a positive definite matrix H(u) for each point u € P, let

Ey(r) = {x : (x—u) TH(u)(x —u) < r2}.

Algorithm 1: DikinWalk
input :starting point x¢ in a polytope P = {x : Ax > b}
output:xr
Setr = slﬁ
fort — 1toT do
Xt < Xt-1
Pick y from Ey, (r)

vol(Ex, (1))
vol(Ey(r))

!

Xy < y with probability min {1,

end

1.2 Strong Self-Concordance

We define some properties for matrix functions. Usually but not
necessarily, these matrices come from the Hessian of some convex
function.
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Definition 1 (Self-concordance). For any convex set K C R", we
call a matrix function H : K — R™" self-concordant if for any
x € K, we have

d
—2[lll o H(x) < - H(x + th) < 2hllp ) H(x).

Definition 2 (7-Symmetry). For any convex set K C R", we call a
matrix function H : K — R™" {-symmetric if for any x € K, we
have

Ex(1) CK N (2x - K) C Ex(V9).

&

Figure 1: E, (1) C K N (2u — K) C E, (V7).

The following lemma shows that self-concordant matrix func-
tions also enjoy a similar regularity as the usual self-concordant
functions.

Lemma 1.1. Given any self-concordant matrix function H on K C
R", we define ||v]|2 = o H(x)v. Then, for any x,y € K with ||x —
Yllx < 1, we have

(1= llx - yllv)* H(x) < H(y) < (x).

————H
(1= lx = yllx)

Proof in A.1. Many natural barriers, including the logarithmic
barrier and the LS-barrier, satisfy a much stronger condition than
self-concordance, which we define here.

Definition 3 (Strong Self-Concordance). For any convex set K C
R", we say a matrix function H : K — R™"

concordant if for any x € K, we have

is strongly self-

e~ 2DHE) hIHG ™2 < 2118l

where DH(x)[h] is the directional derivative of H at x in the direc-
tion h.

Similar to Lemma 1.1, we have a global version of strong self-
concordance.
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Figure 2: Strong self-concordance measures the rate of
change of Hessian of a barrier in the Frobenius norm

Lemma 1.2. Given any strongly self-concordant matrix function H
on K ¢ R™. Foranyx,y € K with ||x — y||x < 1, we have

1)~ (H(y) - B H() < — Y
(1= 1lx = yll)

Proof in A.2. We note that strong self-concordance is stronger
than self-concordance since the Frobenius norm is always larger or
equal to the spectral norm. As an example, we will verify that the
conditions hold for the standard log barrier (Lemma 4.1).

1.3 Results

Our first theorem is the following.

Theorem 1.3. The mixing rate of the Dikin walk for a v-symmetric,
strongly self-concordant matrix function with convex log determinant
is O(nv).

This implies faster mixing and sampling for polytopes using the
LS barrier (see Sec. 3.1 for the definition).

Theorem 1.4. The mixing rate of the Dikin walk based on the LS ma-
trix for any polytope in R™ is O(n?) and each step can be implemented
in O(mn®~1)? arithmetic operations.

On a related note, we show that each step of the standard Dikin
walk is fast, and does not need matrix multiplication.

Theorem 1.5. The Dikin walk with the logarithmic barrier for a
polytope {Ax > b} can be implemented in time O(nnz(A) + n?) per
step while maintaining the mixing rate of O(mn). See 4.

The next lemma results from studying strong self-concordance
for classical barriers. The KLS constant below is conjectured to be

0O(1) and known to be O(n%) [15].

Lemma 1.6. Let i, be the KLS constant of isotropic logconcave
densities in R", namely, for any isotropic logconcave density p and
any set S C R", we have

/asp(x)dx > #min {Lp(x)dx, '/Rn\sp(x)dx}.

2We use O to hide factors polylogarithmic in n, m.
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Let H(x) be the Hessian of the universal or entropic barriers. Then,
we have

G 2R hIE 2| = 0w Il

In short, the universal and entropic barriers in R" are strongly
self-concordant up to a scaling factor depending on .

In fact, our proof{( see Section 5) shows that up to a logarithmic
factor the strong self-concordance of these barriers is equivalent to
the KLS conjecture.

2 MIXING WITH STRONG
SELF-CONCORDANCE

To prove fast mixing, we will show that with a large probability,
the Dikin ellipsoids at the current point and proposed next point
have volumes within a constant factor; this would imply that a
standard Metropolis filter succeeds with large probability and there
is no “local” conductance bottleneck. For global convergence, the
two important ingredients are showing that one-step distributions
from nearby points have a large overlap and a suitable isoperimetric
inequality. Both parts depart significantly from the Euclidean set-up
as the notion of distance is defined by local Dikin ellipsoids. A key
ingredient of the proof of Theorem 1.3 is the following lemma.

Lemma 2.1. For two points x,y € P, with ||x — y|lx <

1
< sy we
have dry (P, Py) < %.

Proor. Let E(x, A) denote the uniform distribution over an el-
lipsoid centered at x with covariance matrix A and radius r = =

ﬂ .
Then,

drv (P Py) < 51, + Sxej, + dry(E(x HG) 8@ HE) (1)

where rej,. and rej, are the rejection probabilities at x and y. We
break the proof into 2 parts. First we bound the rejection probability
at x. Consider the algorithm picks a point z from Ex(r). Let f(z) =
Indet H(z). The acceptance probability of the sample z is

’det(H(z))
m{l } 111{1, m} (2)

By our assumption f is a convex function, and hence

det(H(2))
" det(H(x))

vol(Ex(r))
" vol(E;(r))

=f(2) - f(x) 2 (Vf(x),z - x). ®)

(Vf(x), 2= x) = (H(x) TV (x), H(x) " (z = x)) 4

where 2’ = H(x)_% z is sampled from a ball of radius r centered at
x' = H(x)féx, and hence we know that

2
Pr(v" (z/ —x') = —er|lo]lz) = 1—e ™€ 2,

In particular, with probability at least 0.99 in z, we have

(Vf(x),z-x) 2 —%IIH(x)’%Vf(x)Ilz- ®)
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1
To compute ||[H(x) 2 Vf(x) ||§, itis easier to compute the directional
derivative of Vf. Note that

IV (o)l = max (HE 295 () 0

o]l2=1
= max Tr(H(x)"'DH(x)[H(x) "% 0])
[ 2:1
1 1
= max Tr (H(x)_iDH(x)[u]H(x)_E)
[lullx=1
< max VAIH() ™ DHG) [wlHG) ™ e
ul[x=1
< max 2vVn|lullx < 2vn (6)
ul[x=1
where the first inequality follows from |, 4| < vy XL, A2

and the second inequality follows from the definition of strong
self-concordance.

Combining (2), (3), (5) and (6), we see that with probability at
least 0.99 in z, the acceptance probability of the sample z is

{ vol(Ex (r))
ini{l, ———=—=

" vol(E(r))
where we used that r = ﬁ Hence, the rejection probability rej,.
(and similarly rejy) satisfies

} > e > 0.9922 )

rej, < 0.0039 and rej, < 0.0039.

®)
To bound the second term, note that dty follows the triangle
inequality. So, we can bound the second term in (1) as
dy (E(x, H(x)), E(y, H(y))) < drv(E(x, H(x)),E(y, H(x))) (9)
+drv(E(y, H(x)), E(y, H(y)))

By definition of dtv,

1 vol(Ex\Ey)

drv(&(x, (H(x)). 8 H(y) = 5 — 7

1 vol(Ey\Ex)

2 vol(Ey)
(10)

The first term is a ratio of volumes and hence is invariant under

the transformation z — H(x)l/ 22, after which it becomes the total

variation distance between 2 balls of radius r whose centers are at

a distance at most ~=. To bound this, we use lemma 3.2 from [8],

Vi

dry (E(x H(x), 8. H(x)) < —— (11)

Now, we bound drv(E(y, H(x)), E(y, H(y))). Let Yy = {z : (z —
YTHE(z-y) < rPland Yy = {z: (2= y) THY)(z - y) < 7).
Then,

1 vol(Yx\Yy)

1(Yy\ Yy
drv(E(y, (H(x)), E(y, H(y))) = - 1 vol(Yy\Yy)

2 vol(y) 2 vol(Yy)
(12)
B 1vol(Yy NYy) 1vol(YyNYy)
T2 vol(Yy) 2 vol(Yy)
(13)

We bound the total variation distance by bounding the fraction of
volume in the intersection of the ellipsoids having the same center.
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Again, we can assume that H(y) = I and that y = 0. Then, strong
self-concordance and Lemma 1.2 show that

1
I-H(x) Y < 2llx —ylly < ) 14
l ()7 lF < 2llx - yllx 2563 (14)
In particular, we have that
255 1 257,
—I=< < — 15
CI<Hx™T < 2L (15)

We partition the inverse eigenvalues, {A;};c[n] of H(x) into
those with values at least 1 and the rest. Then consider the ellipsoid
T whose inverse eigenvalues are min {1, A;} along the eigenvectors
of H(x). This is contained in both Yy and Yy,. We will see that vol(1')
is a constant fraction of the volume of both Yy and Yy,. First, we
compare 7 and Y.

1/2
vol(Yyx NYy) S vol(I) _ 1—[ A
vol(Yy) vol(Yy) A<t
1/2
=[] a-a-w) (16)
iAi<1
> exp| - (1 -A)
1/1 <1
where we used that 1 — x > exp(—2x) for 0 < x < % and A; > 5

(15). From the inequality (14), it follows that

1
Ai-1)?% < .
/2]1 < e
Therefore, 3.7, <1 14 — 1] < ﬁ. Putting it into (16), we have
N
vol(Yx N'Yy) _ vol(T) —— a”)
vol(Yy) vol(Yy)
Similarly, we have
Vﬂnﬂ%M%HMMMY“ ( 1 )W
vol(Yy) = i, A i1 Ai
( x) I—[m, i l_[l./1,>1 i (18)
( 1 )1/2 L
> > e 512,
exp(Xip,>1(4i = 1))
Putting (17) and (18) into (13), we have
_L _
e 256 e 512
drv(E(y, H(x)), &(y, H(y)) < 1- - (19)
Putting (8), (11) and (19) into (1), we have
1 1
0.0039  0.0039 e 256 e 512 e 3
dry(Pyx, Py) < - - < -
(P Py) < = 2 2 2 e+l 4
O

The next lemma establishes isoperimetry and only needs the
symmetric containment assumption. This isoperimetry is for the
cross-ratio distance. For a convex body K, and any two points
x,y € K, suppose that p, q are the endpoints of the chord through
x,y in K, so that these points occur in the order p, x, y, . Then, the
cross-ratio distance between x and y is defined as

llx - yllzllp - gll2
dx(x,y) = ————————
Rl e T
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This distance enjoys the following isoperimetric inequality.

Theorem 2.2 ([18]). For any convex body K, and disjoint subsets
S1,S2 of it, and S3 = K \ S1 \ Sz, we have
vol(S1)vol(S2)

vol(K)

We now relate the cross-ratio distance to the ellipsoidal norm.

vol(S3) = dk(S1,52)

Lemma 2.3. Foranyx,y € K, dg(x,y) > %

Proor. Consider the Dikin ellipsoid at x. For the chord [p, q]
induced by x, y with these points in the order p, x, y, g, suppose that
[lp = xl|l2 < lly — qll2- Then by Lemma 1.3, p € KN (2x — K). And
hence ||p — x|lx < V7. Therefore,

lx - yllzllp — glls _ Ilx - yllz
di (x,y) = >
Y= =xlzly—gqllz = Tip -l
-yl | lx-ylle
lp-xl = %

We can now prove the main conductance bound.

Theorem 1.3. The mixing rate of the Dikin walk for a v-symmetric,
strongly self-concordant matrix function with convex log determinant
is O(nv).

Proor. We follow the standard high-level outline [35]. Consider
any measurable subset S; C K and let Sp = K\ S be its complement.
Define the points with low escape probability for these subsets as

1
SZ{Z {xES,- : Px(K\Si) < g}
and S; = K\ S; \ S;. Then, for any u € S, v € S/, we have
dTV(Pu,Pv) >1- l . Hence, by Lemma 2.1, we have ||u — o||;, >

512{ Therefore, by Lemma 2.3,

1
dx (u,0) > ———.
51240 - V7
We can now bound the conductance of S;. We may assume that
vol(S]) = vol(S;)/2; otherwise, it immediately follows that the
conductance of Sq is Q(1). Assuming this, we have

1 1
/Px(Sz) dx 2/ —dx > =vol(S3)
S, s, 8 8

vol(S])vol(S3)
vol(P)

min {vol(S1), vol(Sz)} .

I\

1
gdK(S{, Sé) (from Thm 2.2)

\%

1
32768Vnv

[m]

It is well-known that the inverse squared conductance of a
Markov Chain is a bound on its mixing rate, e.g., in the follow-
ing form.

Theorem 2.4. [19] Let Q; be the distribution of the current point
after t steps of a Markov chain with stationary distribution Q and
conductance at least ¢, starting from initial distribution Q. Then,

with M = sup 4 %)((A))
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.

drv (01, Q) < VM ( )

where d1v (Qy, Q) is the total variation distance between Q; and Q.

3 FAST POLYTOPE SAMPLING WITH THE LS
BARRIER

3.1 LS Barrier

In this section, we assume the convex set is a polytope P = {x €
R"|Ax > b}. For any x € intP, let Sx = Diag(Ax — b) and Ay =
S:1A. We state the definition of the Lee-Sidford barrier [14], hence-
forth referred to as the LS barrier.

Definition 4 (LS Barrier). The LS barrier is defined as

Y = W)

max
weR™:w>0

Where
]_72 ) 1 1 .
f(xa W) hl det (1 ‘x W lkx 2 ; - wi

and W = Diag(w), and ¢ = 2(1 + Inm).
We follow the notation in [14]:

Definition 5. For any x € P, we define wy = arg max,,>o f(x, w),

Wy = Diag(wx) sx = Ax — b, Sy = Diag(sx) Ay = S;A,
1_1 1-2 -1 1_1

Py = wj qA ( * Wy qAx) (W2 "Ax) = diag(Py),

%y = Diag(ox),P\? = PyoPy, Ay = 2 PP A, = z;”zsz;l/z,

and Ny = 2A,(I- (1 - %)[\x)_l-

3.2 Properties of LS Barrier
Lemma 3.1 ([14]). The function y(x) has the following properties:

(1) (Lemma 23) y/(x) is convex.
(2) (Lemma 47.2)

P <3, (20)

(3) (Lemma 31)
0<0x;=wyi <1 (21)
ATW A, < V3(x) < (1+q)AT WA, (22)

(4) (Lemma 33) For any x; = x + th and sy = Ax; — b, we have

4 d
IIStIEStIIW, < [lhllvzy (x,) (23)

(5) (Lemma 34) For any x; = x + th and w; = wx,, we have

1 d
||thawt||w, < qllhllvzy (x,) (24)

3.3 Mixing Rate
Definition 6. The LS matrix for a point x € P is defined as

H(x) = (1+¢®)(1+¢q)-ATS] w qs p.

We establish the strong self-concordance of LS Matrix in the
next lemma.
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Lemma 3.2 (Strong Self Concordance). The LS matrix is strongly
self-concordant, i.e., for any x; € P given by x; = x + th and H; =
H(x;), we have

- d -
112 HOH, 2 < 2l

Proor. We redefine
ﬁt = ATVtA

with V; = S;1W) /9871, P, = VW;A(ATV;A)1ATVV;. Note
that V; is a diagonal matrix and that H; and H; are just off by a
scaling factor. Hence, we have

~1/22

2 2
A e e B AT AT

_ 1 d—
=TI'Ht (EHt)H[ (EHt)

d 2
=Tr (ATVtA)_lAT(EVt)A

dln Vt dln V[
=TrP;———P
ar Tt adr
B dlno; T P(z) dlno;
Coodt ot dr
Note that sz) < %4, by (20). Therefore,
-1/2 -1/2,2 dll’lUtT dlnut
Iy 2 < T O
1-2/q

(dlns_2 Li
—Zo'tl

)

m dlns; 2 dInwg; 2
[ ()

m 2
B 1 dst; 1 dwy;
_420 ((s” dt) +(w_“ dt ))

<41+ )l )

where we used o; = w; (21) in the second last equation and equa-
tions (23) and (24) for the last inequality.

Finally, (22) shows that V2i/(x;) < (1+ q)A] W A;. Since 0 <
w; = 0y < 1 by the property of leverage score, we have

V2Y(x) < (1+Q)ATWiA; < (1+ AT W, 79A, = (1+g)H,.
2
Thus, ”h”VZx//(x ) < <(1 +q)||h|| . Hence, we have
1. d _
I, (S HOH, 22 < 41+ g2 (1+ @IIRIZ < 4llAlG
dt H, t
where we used that H; = (1+¢%)(1+ ¢)H;.

[m]

Lemma 3.3. The LS-ellipsoid matrix has the following properties:

(1) IndetH(x) is convex.
(2) H is 7-symmetric matrix function with 7 = O(nlog> m).
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Proor. For any x € intP, (21) shows that
1_1 1-2 -1 1_1
wa,i = Zax,l- =TrW. 9A, (AXWX qAx) (W2 7A0)T
i i

= Trlan =n.

Hence, the LS barrier can be restated as

(%) = ~ Indet(ATW2/9A,) (1 3) n
2 2 q
1 1 1 1
et — 1 H-(E-1
2 g (2 q)”

where wy is the maximizer of f(x, w). Since /(x) is convex, so is
Indet H(x).
Next, we prove that # = O(nlog? m). For any x € P and any

y € Ex(), (- 0T AWy Ay =) < b
Ax (y - )12

(e Ax(AWE29A )12 A WA )12y - x))

and hence

= max
ie[m]
1
S —
(1+q2)(1+q) iel
O-

1-2/q =
w ./q
X,1

max ¢; TAr (AW 294,07 1A e;

Ox,i
<

max 1

i€[m]

max
ie[m] Wx,i
since wy; < 1.S0,Ex € PN (2x — P) for all x € P.

For any y € PN (2x — P), we have ||S;1A(x —1)|lo < 1. Hence,

(x -y TH)(x - y)
(1+¢®)(1+9)

— 1-2 —
=(x—- y)TATSXIWx /qSXlA(x -7
O 1-2/
— q
- waz

1-2/q

m
(STTAG-y)? < Y wi
i=1

1 )I—Z/q ( m 2/q
)1—(2/{) Z q/Z)
1
i=1
1-2/q
Wx,i) m?9 < n'=2/9m?/9 < en.

O

Lemmas 3.2 and 3.3 imply that mixing time of Dikin walk with
LS matrix is O(n?) from a warm start. Implementing each step of
this walk involves the following tasks:

(1) Compute H(x)~!/20 for some vector v

(2) Compute the ratio det(H(y) " H(x)) for points x, y.
Given wy, wy, computing H(x), its inverse and its determinant can
all be done in time O (mn®~1). wy can be updated in O(mn®~!) per
step as shown in [14, Theorem 46]. Using this, each step of Dikin
walk with LS Matrix can be implemented in time O(mn®~1) This
means that the total time to sample a polytope from a warm start
is O(mn®*1) as claimed in Theorem 1.4.

4 FAST IMPLEMENTATION OF DIKIN WALK

Lemma 4.1 (Strong Self-Concordance). The matrix functionH(x) =
ATS;2A which is the Hessian of the log barrier function ¢(x) =
- X7, log (Ajx — b;), is strongly self-concordant.
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PRrOOF. Letx; = x+th for some fixed vector h. Let S; = Diag(Ax;
—-b), Ar = S;'A P, = AATA)TIA], o = diag(Py), By
Diag(o;), and P§2) = P; o P;. By [14, Lemma 47.2], sz) <X =L
We are now ready to prove strong self-concordance.

||H‘”2< Ht)H_”ZIIF

1 1 dln 3;2 dln st_2
= TrH ( Ht)H ( Ht) = TI'Pt dt PtT
dlnst (2) dlnst dlnst
Tt = Z

%

45,7 ( (a7 h)* = 4hTATS;2AR = 4RI, -

—

[m]

The function log det ATS;?A is called the volumetric barrier and
is known to be convex.

Lemma 4.2 ([34, Lemma 3]).
function in x.

f(x) = logdet ATS A is a convex

The main result of this section is to give a faster implementa-
tion of log barrier based Dikin Walk by noting that we can avoid
computing H(x) explicitly or its inverse or determinant for the
Dikin walk with log barrier. This resolves an open problem posed

n [9, 13].

The main challenge is to avoid computing the determinant of
H(x). Instead, an unbiased estimator of the ratio of two such deter-
minants suffices. We reduce this, first to estimating a log-det, and
then to an inverse maintenance problem in the next two lemmas.

To calculate rejection probability for the Dikin Walk, we calcu-

gZ:gg; We first find an unbiased

estimator, Y of the term log det H(x) — log det H(y) which can be
calculated in O (nnz(A) + nz) time using lemma 4.4. We then find
an unbiased estimator, X of the determinant of H(x) using lemma
4.3 which describes an algorithm to find an unbiased estimator of a
value r given access to an unbiased estimator of logr.

late an unbiased estimator of

Lemma 4.3 (Determinant). Given a random variable Y withE(Y) =
log r, the random variable X defined as

i
1
X=e- Y; with probability —
e Dl]wz proallye.i!

with Y; being i.i.d. copies of Y hasE(X) =r.

Proor. We know that

; 1
Using X = e - H;‘=1 Y; with probability — where Y; are ii.d.
e-il
random variables with E(Y;) = log r. Then,
_SED gt _
E[X] = Z T =€ =

i=0
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Lemma 4.4 (Log Determinant). Define H(t) = ATA + t(ATWA —
ATA) = AT(I+t(W —1))A. Letv ~ N(0,I) and t be uniform in
[0,1] and

Y =0 H(t) AT (H - )Av + log det ATA.
Then, E(Y) = logdet AT WA.
Proor. We have
log det(H(1)) — log det(AT A)

141
:/ ogdetH(t)dt
0 dt

/1 Tr(H(t)™!
0

/lTr(H(t)_lAT(H— DAT)dt
0

dH(t)
dt

)dt

1
=Eypn(0) [UT/O Tr(H(t) AT (H-1)A)dt - o]

1
/0 Eyon(on [0 H(®) AT (H - ) Av]dt
]

Note that given H(t) ™!, we can estimate the last expression as
the sum of B, (g 1) [oTH(t)"'AT (H - I)Ao]. Maintaining H(t) !
reduces to the inverse maintainence problem for H. It is shown
in [13] that a matrix inverse can be maintained efficiently in the
following sense. Suppose we have a sequence of matrices of the
form ATD® A where each D¥) is a slowly-changing diagonal
matrix. Then for each matrix in the sequence, its inverse times any
given vector v can be computed in time o (nnz(A) + nz) . We use
W = SX_ZS§, to calculate as unbiased estimate of log detH(x) —
log det H(y).

Lemma 4.5 ([13, Theorem 13]). Suppose that a sequence of matrices
ATD(k)Afor the inverse maintenance problem satisfies the

3|

Then there is an algorithm that with high probability maintains an
O (nnz(A) + nz)—time linear system solver for r rounds in total time
O (r(nnz(A) + n® + n®))

2
di(k+1) _ di(k)

G T —oq).
a®

(k+1) _

(k) \ 2
We note that the condition };; (ldT)dl) = O(1) is satisfied
( )2
i

)2
O(Z (
i
=0 (||x(k+1) - x() ||)Zc(k)) .

Putting these together we have the following unbiased estimator

for \/detH(x)/det H(y):

since
d,‘(k+1) _ di(k)
(k)
di

(s ) 2 = (5]) 2

3|

k)\—
(52
si(k+1) 3

2
S0 )

e
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Compute X = £ - ;:1 Y; with probability ﬁ where each Y;
is an ii.d. sample generated as follows: '
(1) Picko ~ N(0,I) and ¢ uniformly in [0, 1].
(2) Set W = 8,78,
(3) Compute Y = o H(t)"'AT(H(1) — I)Av where H(t) =
AT (I+t(W —1))A using efficient inverse maintenance.

We need one more trick. In the algorithm, at each step we need

p(y=x)
P p(x—y)
inside the min, this might make the overall probability incorrect

due to the min function not being smooth. So instead we propose a
smoother filter. This might have other applications.

to compute min { 1 } While we can approximate the ratio

Lemma 4.6 (Smooth Metropolis filter). Let the probability of se-
lecting the state y from the state x of an ergodic Markov chain
be p(x — y). Then accepting the step x — y with probability
ply — x)
ply—x) +plx = y)

gives the uniform stationary distribution.

Proor. Let p(x — y) be the probability of taking a step from x
to y. Then, p satisfies detailed balance.

_ Py —x)
ply—>x)+px —y)
_ px=yply = x)
ply—x)+px —y)
. px > y)
ply—>x)+px —y)

px -y =plx—y

=p(y — x)
=p(y — x)

So, p(x — y) = p(y — x) for all x and y. Hence the stationary
distribution of this Markov Chain is uniform. O

[det(H
jz:gﬂz; . Note that the rejection

ply—x)
p(y—x) PG>y

(y—=x)1p(x—>y)  1,2>x
PLymxtp =y 14565y

As Dikin barrier is strongly self-concordant (Lemma 4.1)

p(y—x) _

For the Dikin walk, e=nin

probability function is increasing in
p(y—x)

px—=y)’
and by (7), we get that with probability at least 0.99, for y randomly

%’;g;; > 0.9922 from equation (7). Hence, the
probability of not rejecting at each step at least 0.498 with large

probability.

drawn from E,.,

Proor oF THEOREM 1.5. Implementing Dikin walk requires mai-
ntaining matrices H; = ATS;ZA corresponding to point x;. 4.5
shows that this can be done in O (n® + r(nnz(A) + nz)) time where
r is the number of steps in the chain. Additionally, each step requires
calculating the rejection probability which is a smooth function in

det(H;)

det(Hy1)
tized time using lemmas 4.3 and 4.4.

and hence can be calculated in O (nnz(A) + n®) amor-

[m]

5 STRONG SELF-CONCORDANCE OF OTHER
BARRIERS

Here we analyze the strong self-concordance of the universal and
entropic barriers.
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ProOF OoF LEMMA 1.6. The entropic barrier is the dual of

f(0) = log(/ exp(6 T x)dx).
xeK
Its first three derivatives are the moments [2]:
./xEK xThy exp(67x)dx

/xEK exp(0Tx)dx
= EXNPGXThl.

Df(0)[m] =

where py is the corresponding exponential distribution with sup-
port K.

/xeK xThixThy exp(67 x)dx

fxeK exp(0Tx)dx
xTh;exp(67x)dx

D*f(0)[h1, ha] =

2
Hi=1 xeK
2
(/xEK exp(@Tx)dx)
= Ex~py h;—xx—rhl - h;—y,uThl
=Exwpy(x — 1) "hy - (x — 1) Thy

Next, we note that
/xeK xexp(07x)dx
fxEK xx " hexp(6Tx)dx
- ijK exp(0Tx)dx
fxeK xexp(07 x)dx fxeK xThexp(67Tx)dx
./xEK exp(0Tx)dx . /xeK exp(0Tx)dx
= EprexxTh —uuTh

Dulh]l =D

=Eypo(y =) (y =) "h.
So, we have
D?f(6)[h1, hz, hs]
=Ex~po (~Ey~py (y = ) (y = 1) Th3) Thy - (x — i) The
+Byp(x =) Thy - (=E(y — ) (y — ) "h3) Thy
+Bxpg(x =) Thy - (x —p) Thy - (x — ) Ths
=Ex~po(x =) Th1 - (x = ) Thy - (x — ) "hs.
By [27, (2.15)], we have that
D%f*(xg)[h1, h2] = h] V2£(0) ' hy
and
D f*(xg) [hy, ha, h3]
= =D’ f(O)[V*£(0) " h1, V2£(0) " ha, V2 £(6) " h3]
where xg = Vf(6). Hence, we have
V£ (xg) 2D £* (xg) [H] V2 F* (xp) 2
= B pg VA (0) 2 (x — ) (x — 1) TV2F(6) 2
=) TVEF(O) 'R
=-EB, 5 xx" -x"Vf(0)"th

x~po
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where x ~ pg and py is the distribution given by sz(Q)_% (x — p).
Note that pg is isotropic and [5, Fact 6.1] shows that

IIIJTIZ;):(I ”EXN[,BXXT(XTU)HF =0(Yn). (25)

Hence, we have that
72 ()2 D £ o) IV £ () |

= 0n) [ V2" (o) ™3 = O Il

This proves the lemma for the entropic barrier (recall that the
entropic barrier is f* instead of f).

For the universal barrier, first we recall that the polar of a con-
vex set K is K°(x) = {z 2T (y-x) <1 Vye K} and the barrier
function is

®(x) =logvol(K°(x)).
Its derivatives have the following identities [27, Page 52]. Here the
random point y is drawn uniformly from the polar K°(x).

V20 (x) =(n+2)(n+ 1)Eyy " — (n+1)’EyEy",
DV20(x)[h] =— (n+1)(n+2)(n+3)Eyy' (y' h)
+(n+1)2%(n+2)Eyy" -By'h
+2(n+1)%(n+2)By(y"h) - By "
—2(n+1)°By-By" -EBy'h
Let p = By, we can re-write the derivatives as follows:
V20(x) =(n+2)(n+ DE(y — ) (y— )" + (n+ Dpp”
DV*®(x)[h] =~ (n+ DE(y - p(y - p) (y—p)Th
—2(n+2)(n+ DEY - my—p puh
+Eu(y—p) " (y - Th+E(y - pu (y-pTh)
—2(n+)pu" " h

Without loss of generality, we assume V2®(x) = I. Then, we have
(n+2)(n+ DE@y-p)(y-p ' <I
For the first term, (25) shows that
In +1)(n+2) (n + DE — 1)y — 1) (y = 1 hlle = ().
The Frobenius norm of the next three terms are bounded by
2" H|(n+2)(n+ DE@ -y - w ||y < 2Vl < 2
and so is the last term:

2 ||(n + l)ny”F \yTh| <2

and (n+Dup" <L

[m]

To conclude this section, we remark that the universal and en-
tropic barriers do not satisfy our symmetry condition. Consider
a rotational cone C = {x )W xi2 < xf,O <x1 < 1} and any
point x = (x1,0,...,0). Then symmetric body around x, namely
K = CnN (x —C) has the property that (a) the John ellipsoid satisfies
E c K c +/nC (as it does for any symmetric convex body) and
(b) the inertial ellipsoid has a sandwiching ratio of n, proving that
7 > n = Q(v?). For the entropic barrier, we have a similar result be-
cause multiplying the indicator function of this symmetric convex
body with an exponential function of the form =" still has the
same property for the inertial ellipsoid. This example highlights
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the advantages of barriers with John-like ellipsoids (log barrier, LS
barrier) vs Inertia-like ellipsoids (universal, entropic).

A PROOFS

A.1 Proof of Lemma 1.1
ProOF. Let h =y —x, x; = x + thand ¢(t) = hH(x;)h. Then,

, d
|9 (0] = |nT — H(xe)h| < 2]1RI3, = 26 ().
Hence, we have % gsl(t) < 1. Therefore, \/ﬁ > ‘/‘lﬁ —t and,
o) < — 2O (26)

(1-t4/6(0))2

Now we fix any v and define /(t) = o H(x;)v. Then,

0" S B0 = 29(OY(1).

[/ (1) =

2
< 2[[hllx, Ilolly,

Using (26) at the end, we have

d 24/¢(0)
Elnw(t)‘ < TR

1-14/¢(0))

Integrating both sides from 0 to 1,

(48)) b 2yg(0)
’nlﬁ(O) S/o (1 - t/p(0)) ot (1—1/¢(0))

The result follows from this with (1) = o TH(y)o, /(0) = 0T H(x)o,
and ¢(0) = [Ix - ylI3. o

A.2 Proof of Lemma 1.2

ProoF. Let x; = (1 — t)x + ty. Then, we have

IIH(x) ™2 (H(y) — H(x))H(x) "2 |5

1 _1d _1
= [ G0 GG et
0 t
We note that H is self-concordant. Hence, Lemma 1.1 shows that
_1d _1
IH(x)"2 EH(Xt)H(X) 2|2

= TrH(x)™! (%H(xt)) H(x)™" (%H(m)

1 (4 _1(d )
<—TrH —H H —H
G e e (G
4 2
S At
4
llxc = xe 1|2

T (= lx = xello)®
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where we used the strong self-concordance in the second in-
equality and Lemma 1.1 again for the last inequality. Hence,
2|lx — xzlx

1 1 1
I (H(y) — Hee)HG)  lr < /0 :

1= lx = xellx)?

=/1 2tx — ylle
0 (=t —yllo)?
-yl
(== ylo?
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