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ABSTRACT
Motivated by the Dikin walk, we develop aspects of the interior-

point theory for sampling in high dimension. Specifically, we intro-

duce the notions of strong self-concordance and symmetry for a

barrier. These properties imply that the Dikin walk defined using a

strongly self-concordant barrier with symmetry parameter ā mixes

in �̃� (𝑛ā) steps from a warm start for a convex body in R𝑛 . For
many natural barriers, ā is roughly bounded by a , the standard

self-concordance parameter. We also show that these properties

hold for the Lee-Sidford barrier. As a consequence, we obtain the

first walk that mixes in �̃� (𝑛2) steps for an arbitrary polytope in

R𝑛 . Strong self-concordance for other barriers leads to an interest-

ing (and unexpected) connection — for the universal and entropic

barriers, it is implied by the KLS conjecture.

CCS CONCEPTS
• Theory of computation→Randomwalks andMarkov cha-
ins; • Mathematics of computing→ Markov-chain Monte Carlo
convergence measures.
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1 INTRODUCTION
The interior-point method is one of the major successes of op-

timization, in theory and practice [10, 29, 33]. It has led to the

currently asymptotically fastest algorithms for solving linear and

semidefinite programs and is a popular method for the accurate

solution of medium to large-sized instances. The results of Nes-

terov and Nemirovski [27] demonstrate that a = 𝑂 (𝑛) is possible
for any convex set using their universal barrier, where a is the

self-concordance parameter of the barrier. For linear programming

with feasible region {𝑥 : 𝐴𝑥 ≥ 𝑏}, the simple logarithmic barrier
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𝑔(𝑥) = −∑
𝑖 ln((𝐴𝑥 − 𝑏)𝑖 ) has a = 𝑂 (𝑚) for an𝑚 × 𝑛 constraint

matrix𝐴, and is efficiently computable (the universal barrier is poly-

time to estimate, but requires the computation of volume of a convex

body). Over the past decade, Lee and Sidford [12–14] introduced a

barrier for linear programming that achieves a = 𝑂 (𝑛 log
𝑂 (1) (𝑚))

while being efficiently computable. The interior-point method has

also directly influenced the design of combinatorial algorithms, lead-

ing to faster methods for maxflow/mincut and other optimization

problems [4, 11, 24, 25, 28, 31, 32].

Sampling convex bodies is a fundamental problem that has close

connections to convex optimization. Indeed, convex optimization

can be reduced to sampling [1]. The most general methods that

lead to polynomial-time sampling algorithms are the ball walk and

hit-and-run, both requiring only membership oracle access to the

convex set being sampled. These methods are not affine-invariant,

i.e., their complexity depends on the affine position of the convex

set. A tight bound on their complexity is 𝑂∗
(
𝑛2𝑅2/𝑟2

)
where the

convex body contains a ball of radius 𝑟 and is mostly contained

in a ball of radius 𝑅 [8, 20, 21, 23]. The ratio 𝑅/𝑟 can be made

𝑂 (
√
𝑛) for any convex body by a suitable affine transformation. This

effectively makes the complexity 𝑂∗ (𝑛3). However, the rounding
(e.g., by near-isotropic transformation) is an expensive step, and its

current best complexity is𝑂∗ (𝑛4) [22]. Even for polytopes, this the

rounding/isotropic step takes 𝑂 (𝑚𝑛4.5) total time for a polytope

with𝑚 inequalities using an improved amortized analysis of the

per-step complexity [26].

Interior-point theory offers an alternative sampling method with

no need for rounding. A convex barrier function, via its Hessian,

naturally defines an ellipsoid centered at each interior point of a

convex body, the Dikin ellipsoid, which is always contained in the

body. The Dikin walk, at each step, picks a uniformly random point

in the Dikin ellipsoid around the current point. To ensure a uniform

stationary density, the new point is accepted with a probability that

depends on the ratio of the volumes of the Dikin ellipsoids at the two

points, see Algorithm 1 below. Kannan and Narayanan [9] showed

that the mixing rate of this walk with the standard logarithmic

barrier is 𝑂 (𝑚𝑛) for a polytope in R𝑛 defined using𝑚 inequalities.

Each step of the walk involves computing the determinant and can

be done in time 𝑂 (𝑚𝑛𝜔−1), leading to an overall arithmetic com-

plexity of 𝑂 (𝑚2𝑛𝜔 ) (see also [30] for a shorter proof of a Gaussian

variant). Using a different more continuous approach, where each

step is the solution of an ODE (rather than a straight-line step), Lee

and Vempala [17] showed that the Riemannian Hamiltonian Monte

Carlo improves the mixing rate for polytopes to 𝑂 (𝑚𝑛2/3) while
keeping the same per-step complexity. This leads to the following

basic questions:

• What is the fastest possible mixing rate of a Dikin walk?
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• Is a mixing rate of 𝑂 (𝑛) possible while keeping each step

efficient (say matrix multiplication time or less)?

These are the natural analogies to the progress in optimization,

where for the first, Nesterov and Nemirovski show a convergence

rate to the optimum of 𝑂 (
√
𝑛), and for the second, Lee and Sidford

show �̃� (
√
𝑛) for linear programming while maintaining efficiency.

These questions, in the context of sampling, lead to new chal-

lenges. Whereas for optimization, one step can be viewed as moving

to the optimum of the objective in the current Dikin ellipsoid (a

Newton step), for sampling, the next step is a random point in the

Dikin ellipsoid; and since these ellipsoids have widely varying vol-

umes, maintaining the correct stationary distribution takes some

work.

To address these challenges, we use the symmetric self-concorda-

nce parameter ā . It is the smallest number such that for any point

𝑥 in a convex body 𝐾 , with unit Dikin ellipsoid 𝐸𝑥 , we have 𝐸𝑥 ⊆
𝐾 ∩ (2𝑥 − 𝐾) ⊆

√
ā𝐸𝑥 . In general ā can be as high as a2

but for

some important barriers, it is bounded as 𝑂 (a). This includes the
logarithmic barrier, and, as we show, the Lee-Sidford(LS) barrier.

This definition and parameter allows us to show that the isoperi-

metric (Cheeger) constant for the Dikin distance is asymptotically

at least 1/
√
ā .

We need a further, important refinement. The notion of self-

concordance itself bounds the rate of change of the Hessian of the

barrier (i.e., the Dikin matrix) with respect to the local metric in the

spectral norm, i.e., the maximum change in any direction. We define

strong self-concordance as the requirement that this derivative is

bounded in Frobenius norm. Again, the logarithmic barrier satisfies

this property, and we show that the Lee-Sidford barrier does as

well.

Our main general result then is that the Dikin walk defined

using any symmetric, strongly self-concordant barrier with convex

Hessian mixes in𝑂 (𝑛ā) steps. We prove that the LS barrier satisfies

all these conditions with ā = �̃� (𝑛) and so has a mixing rate of

�̃� (𝑛2) for polytopes, completely answering the second question,

and improving on several existing bounds in [3, 6]. We also show

that the Dikin walk with the standard logarithmic barrier can be

implemented in time 𝑂 (𝑛𝑛𝑧 (𝐴) + 𝑛2) where 𝑛𝑛𝑧 (𝐴) is the number

of nonzero entries in the constraint matrix 𝐴. This answers the

open question posed in [9, 13]. These results along with earlier

work on sampling polytopes are collected in Table 1. We note that

while for the Dikin walk with a logarithmic barrier, there are simple

examples showing that the mixing rate of 𝑂 (𝑚𝑛) is tight (take a
hypercube and duplicate one of its facets𝑚−𝑛 times), for the Dikin

walk with the LS barrier, we are not aware of a tight example or

one with mixing rate greater than �̃� (𝑛). There is the tantalizing
possibility that it mixes in nearly linear time. Thus, the overall

arithmetic complexity for sampling a polytope is reduced to𝑚 ·
min

{
nnz(𝐴) · 𝑛 + 𝑛3, 𝑛𝜔+1

}
which improves the state of the art for

all ranges of𝑚.

We also study the notions of symmetry and strong self-concorda-

nce introduced in this paper for three well-studied barriers, namely,

1
These entries are for general convex bodies presented by oracles, with 𝑅/𝑟 measuring

the roundness of the input body; this can be made𝑂 (
√
𝑛) with a rounding procedure

that takes 𝑛4
steps (membership queries). After rounding, the amortized per-step

complexity of the ball walk in a polytope is �̃� (𝑚) .

Table 1: The complexity of uniformpolytope sampling from
a warm start.

Markov Chain Mixing Rate Per step cost

Ball Walk
1
[8] 𝑛2𝑅2/𝑟2 𝑚𝑛

Hit-and-Run
1
[21] 𝑛2𝑅2/𝑟2 𝑚𝑛

Dikin [9] 𝑚𝑛 𝑚𝑛𝜔−1

RHMC [17] 𝑚𝑛
2

3 𝑚𝑛𝜔−1

Geodesic Walk[16] 𝑚𝑛
3

4 𝑚𝑛𝜔−1

John’s Walk[6] 𝑛7 𝑚𝑛4 + 𝑛8

Vaidya Walk[3] 𝑚
1

2𝑛
3

2 𝑚𝑛𝜔−1

Approximate John Walk[3] 𝑛2.5 𝑚𝑛𝜔−1

Dikin (this paper) 𝑚𝑛 nnz(𝐴) + 𝑛2

Weighted Dikin (this paper) 𝑛2 𝑚𝑛𝜔−1

the classical universal barrier [27], the entropic barrier [2] and the

canonical barrier [7]. While these barriers are not particularly effi-

cient to evaluate, they are interesting because all of them achieve

the best (or nearly best) possible self-concordance parameter val-

ues for arbitrary convex sets and convex cones (for the canonical

barrier), and have played an important role in shaping the theory of

interior-point methods for optimization. For the canonical barrier,

the work of Hildebrand already establishes the convexity of the

log determinant function (by definition of the barrier), and strong

self-concordance [7]. For the entropic and universal barriers, we

present an unexpected connection: the strong self-concordance

is implied by the KLS isoperimetry conjecture! This suggests the

possibility of more fruitful connections yet to be discovered using

the notion of strong self-concordance.

1.1 Dikin Walk
The general Dikin walk is defined as follows. For a convex set 𝑃

with a positive definite matrix H(𝑢) for each point 𝑢 ∈ 𝑃 , let

𝐸𝑢 (𝑟 ) =
{
𝑥 : (𝑥 − 𝑢)⊤H(𝑢) (𝑥 − 𝑢) ≤ 𝑟2

}
.

Algorithm 1: DikinWalk
input : starting point 𝑥0 in a polytope 𝑃 = {𝑥 : A𝑥 ≥ 𝑏}
output :𝑥𝑇
Set 𝑟 = 1

512

for 𝑡 ← 1 to 𝑇 do
𝑥𝑡 ← 𝑥𝑡−1

Pick 𝑦 from 𝐸𝑥𝑡 (𝑟 )
𝑥𝑡 ← 𝑦 with probability min

{
1,

vol(𝐸𝑥𝑡 (𝑟 ))
vol(𝐸𝑦 (𝑟 ))

}
end

1.2 Strong Self-Concordance
We define some properties for matrix functions. Usually but not

necessarily, these matrices come from the Hessian of some convex

function.
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Definition 1 (Self-concordance). For any convex set 𝐾 ⊆ R𝑛 , we
call a matrix function H : 𝐾 → R𝑛×𝑛 self-concordant if for any

𝑥 ∈ 𝐾 , we have

−2∥ℎ∥H(𝑥)H(𝑥) ⪯
𝑑

𝑑𝑡
H(𝑥 + 𝑡ℎ) ⪯ 2∥ℎ∥H(𝑥)H(𝑥) .

Definition 2 (ā-Symmetry). For any convex set 𝐾 ⊆ R𝑛 , we call a
matrix function H : 𝐾 → R𝑛×𝑛 ā-symmetric if for any 𝑥 ∈ 𝐾 , we
have

𝐸𝑥 (1) ⊆ 𝐾 ∩ (2𝑥 − 𝐾) ⊆ 𝐸𝑥 (
√
ā) .

Figure 1: 𝐸𝑢 (1) ⊆ 𝐾 ∩ (2𝑢 − 𝐾) ⊆ 𝐸𝑢 (
√
ā) .

The following lemma shows that self-concordant matrix func-

tions also enjoy a similar regularity as the usual self-concordant

functions.

Lemma 1.1. Given any self-concordant matrix function H on 𝐾 ⊆
R𝑛 , we define ∥𝑣 ∥2𝑥 = 𝑣⊤H(𝑥)𝑣 . Then, for any 𝑥,𝑦 ∈ 𝐾 with ∥𝑥 −
𝑦∥𝑥 < 1, we have

(1 − ∥𝑥 − 𝑦∥𝑥 )2 H(𝑥) ⪯ H(𝑦) ⪯ 1

(1 − ∥𝑥 − 𝑦∥𝑥 )2
H(𝑥) .

Proof in A.1. Many natural barriers, including the logarithmic

barrier and the LS-barrier, satisfy a much stronger condition than

self-concordance, which we define here.

Definition 3 (Strong Self-Concordance). For any convex set 𝐾 ⊆
R𝑛 , we say a matrix function H : 𝐾 → R𝑛×𝑛 is strongly self-

concordant if for any 𝑥 ∈ 𝐾 , we haveH(𝑥)−1/2𝐷H(𝑥) [ℎ]H(𝑥)−1/2

𝐹
≤ 2 ∥ℎ∥𝑥

where 𝐷H(𝑥) [ℎ] is the directional derivative of H at 𝑥 in the direc-

tion ℎ.

Similar to Lemma 1.1, we have a global version of strong self-

concordance.

Figure 2: Strong self-concordance measures the rate of
change of Hessian of a barrier in the Frobenius norm

Lemma 1.2. Given any strongly self-concordant matrix function H
on 𝐾 ⊂ R𝑛 . For any 𝑥,𝑦 ∈ 𝐾 with ∥𝑥 − 𝑦∥𝑥 < 1, we have

∥H(𝑥)−
1

2 (H(𝑦) − H(𝑥))H(𝑥)−
1

2 ∥𝐹 ≤
∥𝑥 − 𝑦∥𝑥

(1 − ∥𝑥 − 𝑦∥𝑥 )2
.

Proof in A.2. We note that strong self-concordance is stronger

than self-concordance since the Frobenius norm is always larger or

equal to the spectral norm. As an example, we will verify that the

conditions hold for the standard log barrier (Lemma 4.1).

1.3 Results
Our first theorem is the following.

Theorem 1.3. The mixing rate of the Dikin walk for a ā-symmetric,
strongly self-concordant matrix function with convex log determinant
is 𝑂 (𝑛ā).

This implies faster mixing and sampling for polytopes using the

LS barrier (see Sec. 3.1 for the definition).

Theorem 1.4. The mixing rate of the Dikin walk based on the LS ma-
trix for any polytope inR𝑛 is �̃� (𝑛2) and each step can be implemented
in �̃� (𝑚𝑛𝜔−1)2 arithmetic operations.

On a related note, we show that each step of the standard Dikin

walk is fast, and does not need matrix multiplication.

Theorem 1.5. The Dikin walk with the logarithmic barrier for a
polytope {A𝑥 ≥ 𝑏} can be implemented in time 𝑂 (nnz(A) + 𝑛2) per
step while maintaining the mixing rate of 𝑂 (𝑚𝑛). See 4.

The next lemma results from studying strong self-concordance

for classical barriers. The KLS constant below is conjectured to be

𝑂 (1) and known to be 𝑂 (𝑛
1

4 ) [15].
Lemma 1.6. Let 𝜓𝑛 be the KLS constant of isotropic logconcave
densities in R𝑛 , namely, for any isotropic logconcave density 𝑝 and
any set 𝑆 ⊂ R𝑛 , we have∫

𝜕𝑆

𝑝 (𝑥)𝑑𝑥 ≥ 1

𝜓𝑛
min

{∫
𝑆

𝑝 (𝑥)𝑑𝑥,
∫
R𝑛\𝑆

𝑝 (𝑥)𝑑𝑥
}
.

2
We use �̃� to hide factors polylogarithmic in 𝑛,𝑚.
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Let H(𝑥) be the Hessian of the universal or entropic barriers. Then,
we have H(𝑥)−1/2𝐷H(𝑥) [ℎ]H(𝑥)−1/2


𝐹
= 𝑂 (𝜓𝑛) ∥ℎ∥𝑥 .

In short, the universal and entropic barriers in R𝑛 are strongly
self-concordant up to a scaling factor depending on𝜓𝑛 .

In fact, our proof( see Section 5) shows that up to a logarithmic

factor the strong self-concordance of these barriers is equivalent to
the KLS conjecture.

2 MIXINGWITH STRONG
SELF-CONCORDANCE

To prove fast mixing, we will show that with a large probability,

the Dikin ellipsoids at the current point and proposed next point

have volumes within a constant factor; this would imply that a

standard Metropolis filter succeeds with large probability and there

is no “local” conductance bottleneck. For global convergence, the

two important ingredients are showing that one-step distributions

from nearby points have a large overlap and a suitable isoperimetric

inequality. Both parts depart significantly from the Euclidean set-up

as the notion of distance is defined by local Dikin ellipsoids. A key

ingredient of the proof of Theorem 1.3 is the following lemma.

Lemma 2.1. For two points 𝑥,𝑦 ∈ 𝑃 , with ∥𝑥 − 𝑦∥𝑥 ≤ 1

512

√
𝑛
, we

have 𝑑𝑇𝑉 (𝑃𝑥 , 𝑃𝑦) ≤ 3

4
.

Proof. Let E(𝑥,A) denote the uniform distribution over an el-

lipsoid centered at 𝑥 with covariance matrix A and radius 𝑟 = 1

512
.

Then,

𝑑TV (𝑃𝑥 , 𝑃𝑦) ≤
1

2

rej𝑥 +
1

2

rej𝑦 + 𝑑TV (E(𝑥,H(𝑥)), E(𝑦,H(𝑦)) (1)

where rej𝑥 and rej𝑦 are the rejection probabilities at 𝑥 and 𝑦. We

break the proof into 2 parts. First we bound the rejection probability

at 𝑥 . Consider the algorithm picks a point 𝑧 from 𝐸𝑥 (𝑟 ). Let 𝑓 (𝑧) =
ln det H(𝑧). The acceptance probability of the sample 𝑧 is

min

{
1,

vol(𝐸𝑥 (𝑟 ))
vol(𝐸𝑧 (𝑟 ))

}
= min

{
1,

√
det(H(𝑧))
det(H(𝑥))

}
. (2)

By our assumption 𝑓 is a convex function, and hence

ln

det(H(𝑧))
det(H(𝑥)) = 𝑓 (𝑧) − 𝑓 (𝑥) ≥ ⟨∇𝑓 (𝑥), 𝑧 − 𝑥⟩. (3)

⟨∇𝑓 (𝑥), 𝑧 − 𝑥⟩ = ⟨H(𝑥)−
1

2∇𝑓 (𝑥),H(𝑥)−
1

2 (𝑧 − 𝑥)⟩ (4)

where 𝑧′ = H(𝑥)−
1

2 𝑧 is sampled from a ball of radius 𝑟 centered at

𝑥 ′ = H(𝑥)−
1

2 𝑥 , and hence we know that

Pr(𝑣⊤ (𝑧′ − 𝑥 ′) ≥ −𝜖𝑟 ∥𝑣 ∥2) ≥ 1 − 𝑒−𝑛𝜖
2/2 .

In particular, with probability at least 0.99 in 𝑧, we have

⟨∇𝑓 (𝑥), 𝑧 − 𝑥⟩ ≥ − 4𝑟
√
𝑛
∥H(𝑥)−

1

2∇𝑓 (𝑥)∥2 . (5)

To compute ∥H(𝑥)−
1

2∇𝑓 (𝑥)∥2
2
, it is easier to compute the directional

derivative of ∇𝑓 . Note that

∥H(𝑥)−
1

2∇𝑓 (𝑥)∥2 = max

∥𝑣 ∥2=1

(
H(𝑥)−

1

2∇𝑓 (𝑥)
)⊤
𝑣

= max

∥𝑣 ∥2=1

Tr(H(𝑥)−1𝐷H(𝑥) [H(𝑥)−
1

2 𝑣])

= max

∥𝑢 ∥𝑥=1

Tr

(
H(𝑥)−

1

2𝐷H(𝑥) [𝑢]H(𝑥)−
1

2

)
≤ max

∥𝑢 ∥𝑥=1

√
𝑛∥H(𝑥)−

1

2𝐷H(𝑥) [𝑢]H(𝑥)−
1

2 ∥𝐹

≤ max

∥𝑢 ∥𝑥=1

2

√
𝑛∥𝑢∥𝑥 ≤ 2

√
𝑛 (6)

where the first inequality follows from

��∑𝑛
𝑖=1

_𝑖
�� ≤ √𝑛√∑𝑛

𝑖=1
_2

𝑖

and the second inequality follows from the definition of strong

self-concordance.

Combining (2), (3), (5) and (6), we see that with probability at

least 0.99 in 𝑧, the acceptance probability of the sample 𝑧 is

min

{
1,

vol(𝐸𝑥 (𝑟 ))
vol(𝐸𝑧 (𝑟 ))

}
≥ 𝑒−4𝑟 ≥ 0.9922 (7)

where we used that 𝑟 = 1

512
. Hence, the rejection probability rej𝑥

(and similarly rej𝑦 ) satisfies

rej𝑥 ≤ 0.0039 and rej𝑦 ≤ 0.0039. (8)

To bound the second term, note that 𝑑TV follows the triangle

inequality. So, we can bound the second term in (1) as

𝑑TV (E(𝑥,H(𝑥)), E(𝑦,H(𝑦))) ≤ 𝑑TV (E(𝑥,H(𝑥)), E(𝑦,H(𝑥))) (9)

+ 𝑑TV (E(𝑦,H(𝑥)), E(𝑦,H(𝑦)))

By definition of 𝑑TV,

𝑑TV (E(𝑥, (H(𝑥)), E(𝑦,H(𝑦))) =
1

2

vol(𝐸𝑥\𝐸𝑦)
vol(𝐸𝑥 )

+ 1

2

vol(𝐸𝑦\𝐸𝑥 )
vol(𝐸𝑦)

(10)

The first term is a ratio of volumes and hence is invariant under

the transformation 𝑧 → H(𝑥)1/2𝑧, after which it becomes the total

variation distance between 2 balls of radius 𝑟 whose centers are at

a distance at most
𝑟√
𝑛
. To bound this, we use lemma 3.2 from [8],

𝑑TV (E(𝑥,H(𝑥)), E(𝑦,H(𝑥)) ≤
𝑒

𝑒 + 1

(11)

Now, we bound 𝑑TV (E(𝑦,H(𝑥)), E(𝑦,H(𝑦))). Let 𝑌𝑥 = {𝑧 : (𝑧 −
𝑦)⊤H(𝑥) (𝑧 − 𝑦) ≤ 𝑟2} and 𝑌𝑦 = {𝑧 : (𝑧 − 𝑦)⊤H(𝑦) (𝑧 − 𝑦) ≤ 𝑟2}.
Then,

𝑑TV (E(𝑦, (H(𝑥)), E(𝑦,H(𝑦))) =
1

2

vol(𝑌𝑥\𝑌𝑦)
vol(𝑥 )

+ 1

2

vol(𝑌𝑦\𝑌𝑥 )
vol(𝑌𝑦)

(12)

= 1 − 1

2

vol(𝑌𝑥 ∩ 𝑌𝑦)
vol(𝑌𝑥 )

− 1

2

vol(𝑌𝑥 ∩ 𝑌𝑦)
vol(𝑌𝑦)

(13)

We bound the total variation distance by bounding the fraction of

volume in the intersection of the ellipsoids having the same center.
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Again, we can assume that H(𝑦) = I and that 𝑦 = 0. Then, strong

self-concordance and Lemma 1.2 show that

∥I − H(𝑥)−1∥𝐹 ≤ 2∥𝑥 − 𝑦∥𝑥 ≤
1

256

√
𝑛
. (14)

In particular, we have that

255

256

I ⪯ H(𝑥)−1 ⪯ 257

256

I. (15)

We partition the inverse eigenvalues, {_𝑖 }𝑖∈[𝑛] of H(𝑥) into
those with values at least 1 and the rest. Then consider the ellipsoid

I whose inverse eigenvalues are min {1, _𝑖 } along the eigenvectors
ofH(𝑥). This is contained in both𝑌𝑥 and𝑌𝑦 . Wewill see that vol(I)
is a constant fraction of the volume of both 𝑌𝑥 and 𝑌𝑦 . First, we

compare I and 𝑌𝑦 .

vol(𝑌𝑥 ∩ 𝑌𝑦)
vol(𝑌𝑦)

≥ vol(I)
vol(𝑌𝑦)

=
©«

∏
𝑖:_𝑖<1

_𝑖
ª®¬

1/2

=
©«

∏
𝑖:_𝑖<1

(1 − (1 − _𝑖 ))
ª®¬

1/2

≥ exp

©«−
∑
𝑖:_𝑖<1

(1 − _𝑖 )
ª®¬

(16)

where we used that 1 − 𝑥 ≥ exp(−2𝑥) for 0 ≤ 𝑥 ≤ 1

2
and _𝑖 ≥ 1

2

(15). From the inequality (14), it follows that√∑
𝑖

(_𝑖 − 1)2 ≤ 1

256

√
𝑛
.

Therefore,

∑
𝑖:_𝑖<1

|_𝑖 − 1| ≤ 1

256
. Putting it into (16), we have

vol(𝑌𝑥 ∩ 𝑌𝑦)
vol(𝑌𝑦)

=
vol(I)
vol(𝑌𝑦)

≥ 𝑒−
1

256 . (17)

Similarly, we have

vol(𝑌𝑥 ∩ 𝑌𝑦)
vol(𝑌𝑥 )

≥
(∏

𝑖:_𝑖<1
_𝑖∏

𝑖:_𝑖 _𝑖

)
1/2

=

(
1∏

𝑖:_𝑖>1
_𝑖

)
1/2

≥
(

1

exp(∑𝑖:_𝑖>1
(_𝑖 − 1))

)
1/2
≥ 𝑒−

1

512 .

(18)

Putting (17) and (18) into (13), we have

𝑑TV (E(𝑦,H(𝑥)), E(𝑦,H(𝑦)) ≤ 1 − 𝑒
− 1

256

2

− 𝑒
− 1

512

2

(19)

Putting (8), (11) and (19) into (1), we have

𝑑TV (𝑃𝑥 , 𝑃𝑦) ≤
0.0039

2

+ 0.0039

2

+ 1 − 𝑒
− 1

256

2

− 𝑒
− 1

512

2

+ 𝑒

𝑒 + 1

≤ 3

4

□

The next lemma establishes isoperimetry and only needs the

symmetric containment assumption. This isoperimetry is for the

cross-ratio distance. For a convex body 𝐾 , and any two points

𝑥,𝑦 ∈ 𝐾 , suppose that 𝑝, 𝑞 are the endpoints of the chord through

𝑥,𝑦 in 𝐾 , so that these points occur in the order 𝑝, 𝑥,𝑦, 𝑞. Then, the

cross-ratio distance between 𝑥 and 𝑦 is defined as

𝑑𝐾 (𝑥,𝑦) =
∥𝑥 − 𝑦∥2∥𝑝 − 𝑞∥2
∥𝑝 − 𝑥 ∥2∥𝑦 − 𝑞∥2

.

This distance enjoys the following isoperimetric inequality.

Theorem 2.2 ([18]). For any convex body 𝐾 , and disjoint subsets
𝑆1, 𝑆2 of it, and 𝑆3 = 𝐾 \ 𝑆1 \ 𝑆2,we have

vol(𝑆3) ≥ 𝑑𝐾 (𝑆1, 𝑆2)
vol(𝑆1)vol(𝑆2)

vol(𝐾) .

We now relate the cross-ratio distance to the ellipsoidal norm.

Lemma 2.3. For any 𝑥,𝑦 ∈ 𝐾 , 𝑑𝐾 (𝑥,𝑦) ≥
∥𝑥−𝑦 ∥𝑥√

ā
.

Proof. Consider the Dikin ellipsoid at 𝑥 . For the chord [𝑝, 𝑞]
induced by 𝑥,𝑦 with these points in the order 𝑝, 𝑥,𝑦, 𝑞, suppose that

∥𝑝 − 𝑥 ∥2 ≤ ∥𝑦 − 𝑞∥2. Then by Lemma 1.3, 𝑝 ∈ 𝐾 ∩ (2𝑥 − 𝐾). And
hence ∥𝑝 − 𝑥 ∥𝑥 ≤

√
ā . Therefore,

𝑑𝐾 (𝑥,𝑦) =
∥𝑥 − 𝑦∥2∥𝑝 − 𝑞∥2
∥𝑝 − 𝑥 ∥2∥𝑦 − 𝑞∥2

≥ ∥𝑥 − 𝑦∥2∥𝑝 − 𝑥 ∥2

=
∥𝑥 − 𝑦∥𝑥
∥𝑝 − 𝑥 ∥𝑥

≥ ∥𝑥 − 𝑦∥𝑥√
ā

.

□

We can now prove the main conductance bound.

Theorem 1.3. The mixing rate of the Dikin walk for a ā-symmetric,
strongly self-concordant matrix function with convex log determinant
is 𝑂 (𝑛ā).

Proof. We follow the standard high-level outline [35]. Consider

any measurable subset 𝑆1 ⊆ 𝐾 and let 𝑆2 = 𝐾 \𝑆1 be its complement.

Define the points with low escape probability for these subsets as

𝑆 ′𝑖 =
{
𝑥 ∈ 𝑆𝑖 : 𝑃𝑥 (𝐾 \ 𝑆𝑖 ) <

1

8

}
and 𝑆 ′

3
= 𝐾 \ 𝑆 ′

1
\ 𝑆 ′

2
. Then, for any 𝑢 ∈ 𝑆 ′

1
, 𝑣 ∈ 𝑆 ′

2
, we have

𝑑𝑇𝑉 (𝑃𝑢 , 𝑃𝑣) > 1 − 1

4
. Hence, by Lemma 2.1, we have ∥𝑢 − 𝑣 ∥𝑢 ≥

1

512

√
𝑛
. Therefore, by Lemma 2.3,

𝑑𝐾 (𝑢, 𝑣) ≥
1

512

√
𝑛 ·
√
ā
.

We can now bound the conductance of 𝑆1. We may assume that

vol(𝑆 ′
𝑖
) ≥ vol(𝑆𝑖 )/2; otherwise, it immediately follows that the

conductance of 𝑆1 is Ω(1). Assuming this, we have∫
𝑆1

𝑃𝑥 (𝑆2) 𝑑𝑥 ≥
∫
𝑆′

3

1

8

𝑑𝑥 ≥ 1

8

vol(𝑆 ′
3
)

≥ 1

8

𝑑𝐾 (𝑆 ′1, 𝑆
′
2
)

vol(𝑆 ′
1
)vol(𝑆 ′

2
)

vol(𝑃) (from Thm 2.2)

≥ 1

32768

√
𝑛ā

min {vol(𝑆1), vol(𝑆2)} .

□

It is well-known that the inverse squared conductance of a

Markov Chain is a bound on its mixing rate, e.g., in the follow-

ing form.

Theorem 2.4. [19] Let 𝑄𝑡 be the distribution of the current point
after 𝑡 steps of a Markov chain with stationary distribution 𝑄 and
conductance at least 𝜙 , starting from initial distribution 𝑄0. Then,
with𝑀 = sup𝐴

𝑄0 (𝐴)
𝑄 (𝐴) ,
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𝑑𝑇𝑉 (𝑄𝑡 , 𝑄) ≤
√
𝑀

(
1 − 𝜙

2

2

)𝑡
where 𝑑𝑇𝑉 (𝑄𝑡 , 𝑄) is the total variation distance between 𝑄𝑡 and 𝑄 .

3 FAST POLYTOPE SAMPLINGWITH THE LS
BARRIER

3.1 LS Barrier
In this section, we assume the convex set is a polytope 𝑃 = {𝑥 ∈
R𝑛 |A𝑥 > 𝑏}. For any 𝑥 ∈ int𝑃 , let S𝑥 = Diag(A𝑥 − 𝑏) and A𝑥 =

S−1

𝑥 A. We state the definition of the Lee-Sidford barrier [14], hence-

forth referred to as the LS barrier.

Definition 4 (LS Barrier). The LS barrier is defined as

𝜓 (𝑥) = max

𝑤∈R𝑚 :𝑤≥0

1

2

𝑓 (𝑥,𝑤)

where

𝑓 (𝑥,𝑤) = ln det

(
A𝑥W1− 2

𝑞 A𝑥
)
−

(
1

2

− 1

𝑞

) 𝑚∑
𝑖=1

𝑤𝑖

and W = Diag(𝑤), and 𝑞 = 2(1 + ln𝑚).

We follow the notation in [14]:

Definition 5. For any 𝑥 ∈ 𝑃 , we define𝑤𝑥 = arg max𝑤≥0 𝑓 (𝑥,𝑤),
W𝑥 = Diag(𝑤𝑥 ), 𝑠𝑥 = A𝑥 − 𝑏, S𝑥 = Diag(𝑠𝑥 ), A𝑥 = S−1

𝑥 A,

P𝑥 = W
1

2
− 1

𝑞

𝑥 A𝑥

(
A𝑥W

1− 2

𝑞

𝑥 A𝑥

)−1

(W
1

2
− 1

𝑞

𝑥 A𝑥 )⊤, 𝜎𝑥 = diag(P𝑥 ),

Σ𝑥 = Diag(𝜎𝑥 ), P(2)𝑥 = P𝑥◦P𝑥 ,Λ𝑥 = Σ𝑥−P(2)𝑥 , Λ̄𝑥 = Σ−1/2
𝑥 Λ𝑥Σ−1/2

𝑥 ,

and N𝑥 = 2Λ̄𝑥 (I − (1 − 2

𝑞 )Λ̄𝑥 )
−1
.

3.2 Properties of LS Barrier
Lemma 3.1 ([14]). The function𝜓 (𝑥) has the following properties:

(1) (Lemma 23)𝜓 (𝑥) is convex.
(2) (Lemma 47.2)

P(2)𝑥 ⪯ Σ𝑥 (20)

(3) (Lemma 31)
0 ≤ 𝜎𝑥,𝑖 = 𝑤𝑥,𝑖 ≤ 1 (21)

A⊤𝑥 W𝑥A𝑥 ⪯ ∇2𝜓 (𝑥) ⪯ (1 + 𝑞)A⊤𝑥 W𝑥A𝑥 (22)

(4) (Lemma 33) For any 𝑥𝑡 = 𝑥 + 𝑡ℎ and 𝑠𝑡 = A𝑥𝑡 − 𝑏, we have

∥S−1

𝑡

𝑑

𝑑𝑡
𝑠𝑡 ∥W𝑡

≤ ∥ℎ∥∇2𝜓 (𝑥𝑡 ) (23)

(5) (Lemma 34) For any 𝑥𝑡 = 𝑥 + 𝑡ℎ and𝑤𝑡 = 𝑤𝑥𝑡 , we have

∥W−1

𝑡

𝑑

𝑑𝑡
𝑤𝑡 ∥W𝑡

≤ 𝑞∥ℎ∥∇2𝜓 (𝑥𝑡 ) (24)

3.3 Mixing Rate
Definition 6. The LS matrix for a point 𝑥 ∈ 𝑃 is defined as

H(𝑥) = (1 + 𝑞2) (1 + 𝑞) · A⊤S−1

𝑥 W
1− 2

𝑞

𝑥 S−1

𝑥 A.

We establish the strong self-concordance of LS Matrix in the

next lemma.

Lemma 3.2 (Strong Self Concordance). The LS matrix is strongly
self-concordant, i.e., for any 𝑥𝑡 ∈ 𝑃 given by 𝑥𝑡 = 𝑥 + 𝑡ℎ and H𝑡 =
H(𝑥𝑡 ), we have

∥H−1/2
𝑡 ( 𝑑

𝑑𝑡
H𝑡 )H−1/2

𝑡 ∥𝐹 ≤ 2∥ℎ∥H𝑡
.

Proof. We redefine

H𝑡 = A⊤V𝑡A

with V𝑡 = S−1

𝑡 W1−2/𝑞
𝑡 S−1

𝑡 , P𝑡 =
√

V𝑡A(A⊤V𝑡A)−1A⊤
√

V𝑡 . Note
that V𝑡 is a diagonal matrix and that H𝑡 and H𝑡 are just off by a

scaling factor. Hence, we have

∥H−1/2
𝑡 ( 𝑑

𝑑𝑡
H𝑡 )H−1/2

𝑡 ∥2𝐹 = ∥H−1/2
𝑡 ( 𝑑

𝑑𝑡
H𝑡 )H

−1/2
𝑡 ∥2𝐹

= TrH
−1

𝑡 (
𝑑

𝑑𝑡
H𝑡 )H

−1

𝑡 (
𝑑

𝑑𝑡
H𝑡 )

= Tr

(
(A⊤V𝑡A)−1A⊤ ( 𝑑

𝑑𝑡
V𝑡 )A

)
2

= TrP𝑡
𝑑 ln V𝑡
𝑑𝑡

P𝑡
𝑑 ln V𝑡
𝑑𝑡

=
𝑑 ln 𝑣𝑡

𝑑𝑡

⊤
P(2)𝑡

𝑑 ln 𝑣𝑡

𝑑𝑡
.

Note that P(2)𝑡 ⪯ Σ𝑡 , by (20). Therefore,

∥H−1/2
𝑡 ( 𝑑

𝑑𝑡
H𝑡 )H−1/2

𝑡 ∥2𝐹 ≤
𝑑 ln 𝑣𝑡

𝑑𝑡

⊤
Σ𝑡
𝑑 ln 𝑣𝑡

𝑑𝑡

=

𝑚∑
𝑖=1

𝜎𝑡,𝑖
©«
𝑑 ln 𝑠−2

𝑡,𝑖
𝑤

1−2/𝑞
𝑡,𝑖

𝑑𝑡

ª®¬
2

≤ 4

𝑚∑
𝑖=1

𝜎𝑡,𝑖

((
𝑑 ln 𝑠𝑡,𝑖

𝑑𝑡

)
2

+
(
𝑑 ln𝑤𝑡,𝑖

𝑑𝑡

)
2

)
= 4

𝑚∑
𝑖=1

𝜎𝑡,𝑖

((
1

𝑠𝑡,𝑖

𝑑𝑠𝑡,𝑖

𝑑𝑡

)
2

+
(

1

𝑤𝑡,𝑖

𝑑𝑤𝑡,𝑖

𝑑𝑡

)
2

)
≤ 4(1 + 𝑞2)∥ℎ∥2∇2𝜓 (𝑥𝑡 )

where we used 𝜎𝑡 = 𝑤𝑡 (21) in the second last equation and equa-

tions (23) and (24) for the last inequality.

Finally, (22) shows that ∇2𝜓 (𝑥𝑡 ) ≼ (1 + 𝑞)A⊤𝑡 W𝑡A𝑡 . Since 0 ≤
𝑤𝑡 = 𝜎𝑡 ≤ 1 by the property of leverage score, we have

∇2𝜓 (𝑥) ⪯ (1 + 𝑞)A⊤𝑡 W𝑡A𝑡 ⪯ (1 + 𝑞)A⊤𝑡 W1−2/𝑞
𝑡 A𝑡 = (1 + 𝑞)H𝑡 .

Thus, ∥ℎ∥2∇2𝜓 (𝑥𝑡 )
≤ (1 + 𝑞)∥ℎ∥2

H𝑡

. Hence, we have

∥H−1/2
𝑡 ( 𝑑

𝑑𝑡
H𝑡 )H−1/2

𝑡 ∥2𝐹 ≤ 4(1 + 𝑞2) (1 + 𝑞)∥ℎ∥2
H𝑡

≤ 4∥ℎ∥2H𝑡

where we used that H𝑡 = (1 + 𝑞2) (1 + 𝑞)H𝑡 . □

Lemma 3.3. The LS-ellipsoid matrix has the following properties:

(1) ln det H(𝑥) is convex.
(2) H is ā-symmetric matrix function with ā = 𝑂 (𝑛 log

3𝑚).
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Proof. For any 𝑥 ∈ int𝑃 , (21) shows that∑
𝑖

𝑤𝑥,𝑖 =
∑
𝑖

𝜎𝑥,𝑖 = TrW
1

2
− 1

𝑞

𝑥 A𝑥

(
A𝑥W

1− 2

𝑞

𝑥 A𝑥

)−1

(W
1

2
− 1

𝑞

𝑥 A𝑥 )⊤

= TrI𝑛×𝑛 = 𝑛.

Hence, the LS barrier can be restated as

𝜓 (𝑥) = 1

2

ln det(A⊤𝑥 W1−2/𝑞
𝑥 A𝑥 ) −

(
1

2

− 1

𝑞

)
𝑛

=
1

2

ln det

1

(1 + 𝑞2) (1 + 𝑞)
H(𝑥) −

(
1

2

− 1

𝑞

)
𝑛

where𝑤𝑥 is the maximizer of 𝑓 (𝑥,𝑤). Since𝜓 (𝑥) is convex, so is

ln det H(𝑥).
Next, we prove that ā = 𝑂 (𝑛 log

3𝑚). For any 𝑥 ∈ 𝑃 and any

𝑦 ∈ 𝐸𝑥 (1), (𝑦 − 𝑥)⊤A𝑥W1−2/𝑞
𝑥 A𝑥 (𝑦 − 𝑥) ≤ 1

(1+𝑞2) (1+𝑞) and hence

∥A𝑥 (𝑦 − 𝑥)∥2∞

= max

𝑖∈[𝑚]

(
𝑒⊤𝑖 A𝑥 (A𝑥W1−2/𝑞

𝑥 A𝑥 )−1/2 (A𝑥W1−2/𝑞
𝑥 A𝑥 )1/2 (𝑦 − 𝑥)

)
2

≤ 1

(1 + 𝑞2) (1 + 𝑞)
max

𝑖∈[𝑚]
𝑒⊤𝑖 A𝑥 (A𝑥W1−2/𝑞

𝑥 A𝑥 )−1A𝑥𝑒𝑖

≤ max

𝑖∈[𝑚]

𝜎𝑥,𝑖

𝑤
1−2/𝑞
𝑥,𝑖

≤ max

𝑖∈[𝑚]

𝜎𝑥,𝑖

𝑤𝑥,𝑖
= 1

since𝑤𝑥,𝑖 ≤ 1. So, 𝐸𝑥 ⊆ 𝑃 ∩ (2𝑥 − 𝑃) for all 𝑥 ∈ 𝑃 .
For any 𝑦 ∈ 𝑃 ∩ (2𝑥 − 𝑃), we have ∥S−1

𝑥 A(𝑥 − 𝑦)∥∞ ≤ 1. Hence,

(𝑥 − 𝑦)𝑇H(𝑥) (𝑥 − 𝑦)
(1 + 𝑞2) (1 + 𝑞)

= (𝑥 − 𝑦)𝑇A⊤S−1

𝑥 W1−2/𝑞
𝑥 S−1

𝑥 A(𝑥 − 𝑦)

=

𝑚∑
𝑖=1

𝑤
1−2/𝑞
𝑥,𝑖

(S−1

𝑥 A(𝑥 − 𝑦))2𝑖 ≤
𝑚∑
𝑖=1

𝑤
1−2/𝑞
𝑥,𝑖

≤
(
𝑚∑
𝑖=1

(
𝑤

1−2/𝑞
𝑥,𝑖

) 1

1−(2/𝑞)

)
1−2/𝑞 (

𝑚∑
𝑖=1

1
𝑞/2

)
2/𝑞

≤
(
𝑚∑
𝑖=1

𝑤𝑥,𝑖

)
1−2/𝑞

𝑚2/𝑞 ≤ 𝑛1−2/𝑞𝑚2/𝑞 ≤ 𝑒𝑛.

□

Lemmas 3.2 and 3.3 imply that mixing time of Dikin walk with

LS matrix is �̃� (𝑛2) from a warm start. Implementing each step of

this walk involves the following tasks:

(1) Compute H(𝑥)−1/2𝑣 for some vector 𝑣

(2) Compute the ratio det(H(𝑦)−1H(𝑥)) for points 𝑥,𝑦.
Given𝑤𝑥 ,𝑤𝑦 , computing H(𝑥), its inverse and its determinant can

all be done in time �̃�
(
𝑚𝑛𝜔−1

)
.𝑤𝑥 can be updated in �̃� (𝑚𝑛𝜔−1) per

step as shown in [14, Theorem 46]. Using this, each step of Dikin

walk with LS Matrix can be implemented in time 𝑂 (𝑚𝑛𝜔−1) This
means that the total time to sample a polytope from a warm start

is �̃� (𝑚𝑛𝜔+1) as claimed in Theorem 1.4.

4 FAST IMPLEMENTATION OF DIKIN WALK
Lemma4.1 (Strong Self-Concordance). Thematrix functionH(𝑥) =
A⊤S−2

𝑥 A which is the Hessian of the log barrier function 𝜙 (𝑥) =

−∑𝑚
𝑖=1

log (𝐴𝑖𝑥 − 𝑏𝑖 ), is strongly self-concordant.

Proof. Let𝑥𝑡 = 𝑥+𝑡ℎ for some fixed vectorℎ. Let S𝑡 = Diag(A𝑥𝑡
− 𝑏), A𝑡 = S−1

𝑡 A, P𝑡 = A𝑡 (A⊤𝑡 A𝑡 )−1A⊤𝑡 , 𝜎𝑡 = diag(P𝑡 ), Σ𝑡 =

Diag(𝜎𝑡 ), and P(2)𝑡 = P𝑡 ◦ P𝑡 . By [14, Lemma 47.2], P(2)𝑡 ≼ Σ𝑡 ⪯ I.
We are now ready to prove strong self-concordance.

∥H−1/2
𝑡 ( 𝑑

𝑑𝑡
H𝑡 )H−1/2

𝑡 ∥2𝐹

= TrH−1

𝑡 (
𝑑

𝑑𝑡
H𝑡 )H−1

𝑡 (
𝑑

𝑑𝑡
H𝑡 ) = TrP𝑡

𝑑 ln 𝑠−2

𝑡

𝑑𝑡
P𝑡
𝑑 ln 𝑠−2

𝑡

𝑑𝑡

=
𝑑 ln 𝑠−2

𝑡

𝑑𝑡

⊤
P(2)𝑡

𝑑 ln 𝑠−2

𝑡

𝑑𝑡
≤

𝑚∑
𝑖=1

(
𝑑 ln 𝑠−2

𝑡

𝑑𝑡

)
2

=

𝑚∑
𝑖=1

4𝑠−2

𝑡,𝑖

(
𝑎⊤𝑖 ℎ

)
2

= 4ℎ⊤A⊤S−2

𝑡 Aℎ = 4 ∥ℎ∥2H𝑡
.

□

The function log det A⊤S−2

𝑥 A is called the volumetric barrier and

is known to be convex.

Lemma 4.2 ([34, Lemma 3]). 𝑓 (𝑥) = log det A⊤S−2

𝑥 A is a convex
function in 𝑥 .

The main result of this section is to give a faster implementa-

tion of log barrier based Dikin Walk by noting that we can avoid

computing H(𝑥) explicitly or its inverse or determinant for the

Dikin walk with log barrier. This resolves an open problem posed

in [9, 13].

The main challenge is to avoid computing the determinant of

H(𝑥). Instead, an unbiased estimator of the ratio of two such deter-

minants suffices. We reduce this, first to estimating a log-det, and

then to an inverse maintenance problem in the next two lemmas.

To calculate rejection probability for the Dikin Walk, we calcu-

late an unbiased estimator of
det H(𝑥)
det H(𝑦) . We first find an unbiased

estimator, 𝑌 of the term log det H(𝑥) − log det H(𝑦) which can be

calculated in 𝑂
(
nnz(A) + 𝑛2

)
time using lemma 4.4. We then find

an unbiased estimator, 𝑋 of the determinant of H(𝑥) using lemma

4.3 which describes an algorithm to find an unbiased estimator of a

value 𝑟 given access to an unbiased estimator of log 𝑟 .

Lemma 4.3 (Determinant). Given a random variable𝑌 with E(𝑌 ) =
log 𝑟 , the random variable 𝑋 defined as

𝑋 = 𝑒 ·
𝑖∏
𝑗=1

𝑌𝑗 with probability
1

𝑒 · 𝑖!

with 𝑌𝑗 being i.i.d. copies of 𝑌 has E(𝑋 ) = 𝑟 .

Proof. We know that

𝑟 =

∞∑
𝑖=0

(log(𝑟 ))𝑖
𝑖!

.

Using 𝑋 = 𝑒 · ∏𝑖
𝑗=1

𝑌𝑗 with probability

1

𝑒 · 𝑖! where 𝑌𝑗 are i.i.d.

random variables with E(𝑌𝑗 ) = log 𝑟 . Then,

E[𝑋 ] =
∞∑
𝑖=0

E(𝑌 )𝑖
𝑖!

= 𝑒 log(𝑟 ) = 𝑟 .

□
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Lemma 4.4 (Log Determinant). Define H(𝑡) = A⊤A + 𝑡 (A⊤WA −
A⊤A) = A⊤ (I + 𝑡 (W − I))A. Let 𝑣 ∼ 𝑁 (0, 𝐼 ) and 𝑡 be uniform in
[0, 1] and

𝑌 = 𝑣⊤H(𝑡)−1A⊤ (H − 𝐼 )A𝑣 + log det A⊤A.

Then, E(𝑌 ) = log det A⊤WA.

Proof. We have

log det(H(1)) − log det(A⊤A)

=

∫
1

0

𝑑 log det H(𝑡)
𝑑𝑡

𝑑𝑡

=

∫
1

0

Tr(H(𝑡)−1
𝑑H(𝑡)
𝑑𝑡
)𝑑𝑡

=

∫
1

0

Tr(H(𝑡)−1A⊤ (H − I)A⊤)𝑑𝑡

= E𝑣∼𝑁 (0,𝐼 ) [𝑣⊤
∫

1

0

Tr(H(𝑡)−1A⊤ (H − I)A)𝑑𝑡 · 𝑣]

=

∫
1

0

E𝑣∼𝑁 (0,𝐼 ) [𝑣⊤H(𝑡)−1A𝑇 (H − I)A𝑣]𝑑𝑡

□

Note that given H(𝑡)−1
, we can estimate the last expression as

the sum of E𝑣∼𝑁 (0,𝐼 ) [𝑣⊤H(𝑡)−1A⊤ (H− I)A𝑣]. Maintaining H(𝑡)−1

reduces to the inverse maintainence problem for H. It is shown

in [13] that a matrix inverse can be maintained efficiently in the

following sense. Suppose we have a sequence of matrices of the

form A⊤D(𝑘)A where each D(𝑘) is a slowly-changing diagonal

matrix. Then for each matrix in the sequence, its inverse times any

given vector 𝑣 can be computed in time 𝑂
(
nnz(A) + 𝑛2

)
.We use

W = Sx
−2S2

y to calculate as unbiased estimate of log det H(𝑥) −
log det H(𝑦).

Lemma 4.5 ([13, Theorem 13]). Suppose that a sequence of matrices
A⊤D(𝑘)A for the inverse maintenance problem satisfies the∑

𝑖

(
𝑑
(𝑘+1)
𝑖

− 𝑑 (𝑘)
𝑖

𝑑
(𝑘)
𝑖

)2

= 𝑂 (1) .

Then there is an algorithm that with high probability maintains an
𝑂

(
nnz(A) + 𝑛2

)
-time linear system solver for 𝑟 rounds in total time

𝑂
(
𝑟 (nnz(A) + 𝑛2 + 𝑛𝜔 )

)
We note that the condition

∑
𝑖

(
𝑑
(𝑘+1)
𝑖

−𝑑 (𝑘 )
𝑖

𝑑
(𝑘 )
𝑖

)
2

= 𝑂 (1) is satisfied
since ∑

𝑖

(
𝑑
(𝑘+1)
𝑖

− 𝑑 (𝑘)
𝑖

𝑑
(𝑘)
𝑖

)2

=
∑
𝑖

(
(𝑠 (𝑘+1)
𝑖

)−2 − (𝑠 (𝑘)
𝑖
)−2

(𝑠 (𝑘)
𝑖
)−2

)2

= 𝑂
©«
∑
𝑖

(
𝑠
(𝑘+1)
𝑖

− 𝑠 (𝑘)
𝑖

𝑠
(𝑘)
𝑖

)2ª®¬
= 𝑂

(
∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥2

𝑥 (𝑘 )

)
.

Putting these together we have the following unbiased estimator

for

√
det H(𝑥)/det H(𝑦):

Compute 𝑋 = 𝑒
2
·∏𝑖

𝑗=1
𝑌𝑗 with probability

1

𝑒 · 𝑖! where each 𝑌𝑗
is an i.i.d. sample generated as follows:

(1) Pick 𝑣 ∼ 𝑁 (0, 𝐼 ) and 𝑡 uniformly in [0, 1] .
(2) Set W = Sx

−2S2
y .

(3) Compute 𝑌 = 𝑣⊤H(𝑡)−1A⊤ (H(1) − I)A𝑣 where H(𝑡) =

A⊤ (I + 𝑡 (W − I))A using efficient inverse maintenance.

We need one more trick. In the algorithm, at each step we need

to compute min

{
1,
𝑝 (𝑦→𝑥)
𝑝 (𝑥→𝑦)

}
. While we can approximate the ratio

inside the min, this might make the overall probability incorrect

due to the min function not being smooth. So instead we propose a

smoother filter. This might have other applications.

Lemma 4.6 (Smooth Metropolis filter). Let the probability of se-
lecting the state 𝑦 from the state 𝑥 of an ergodic Markov chain
be 𝑝 (𝑥 → 𝑦). Then accepting the step 𝑥 → 𝑦 with probability

𝑝 (𝑦 → 𝑥)
𝑝 (𝑦 → 𝑥) + 𝑝 (𝑥 → 𝑦) gives the uniform stationary distribution.

Proof. Let 𝑝 (𝑥 → 𝑦) be the probability of taking a step from 𝑥

to 𝑦. Then, 𝑝 satisfies detailed balance.

𝑝 (𝑥 → 𝑦) = 𝑝 (𝑥 → 𝑦) · 𝑝 (𝑦 → 𝑥)
𝑝 (𝑦 → 𝑥) + 𝑝 (𝑥 → 𝑦)

=
𝑝 (𝑥 → 𝑦)𝑝 (𝑦 → 𝑥)
𝑝 (𝑦 → 𝑥) + 𝑝 (𝑥 → 𝑦)

= 𝑝 (𝑦 → 𝑥) · 𝑝 (𝑥 → 𝑦)
𝑝 (𝑦 → 𝑥) + 𝑝 (𝑥 → 𝑦)

= 𝑝 (𝑦 → 𝑥)

So, 𝑝 (𝑥 → 𝑦) = 𝑝 (𝑦 → 𝑥) for all 𝑥 and 𝑦. Hence the stationary

distribution of this Markov Chain is uniform. □

For the Dikin walk,
𝑝 (𝑦→𝑥)
𝑝 (𝑥→𝑦) =

√
det(H𝑦 )
det(H𝑥 ) . Note that the rejection

probability function
𝑝 (𝑦→𝑥)

𝑝 (𝑦→𝑥)+𝑝 (𝑥→𝑦) =
𝑝 (𝑦→𝑥 )
𝑝 (𝑥→𝑦)

1+ 𝑝 (𝑦→𝑥 )
𝑝 (𝑥→𝑦)

is increasing in

𝑝 (𝑦→𝑥)
𝑝 (𝑥→𝑦) . As Dikin barrier is strongly self-concordant (Lemma 4.1)

and by (7), we get that with probability at least 0.99, for 𝑦 randomly

drawn from 𝐸𝑥 ,
vol(𝐸𝑥 (𝑟 ))
vol(𝐸𝑦 (𝑟 )) ≥ 0.9922 from equation (7). Hence, the

probability of not rejecting at each step at least 0.498 with large

probability.

Proof of Theorem 1.5. Implementing Dikin walk requires mai-

ntaining matrices H𝑡 = A⊤S−2

𝑡 A corresponding to point 𝑥𝑡 . 4.5

shows that this can be done in𝑂
(
𝑛𝜔 + 𝑟 (𝑛𝑛𝑧 (A) + 𝑛2)

)
time where

𝑟 is the number of steps in the chain. Additionally, each step requires

calculating the rejection probability which is a smooth function in

det(H𝑡 )
det(H𝑡+1)

and hence can be calculated in 𝑂
(
𝑛𝑛𝑧 (A) + 𝑛2

)
amor-

tized time using lemmas 4.3 and 4.4. □

5 STRONG SELF-CONCORDANCE OF OTHER
BARRIERS

Here we analyze the strong self-concordance of the universal and

entropic barriers.
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Proof of Lemma 1.6. The entropic barrier is the dual of

𝑓 (\ ) = log(
∫
𝑥 ∈𝐾

exp(\⊤𝑥)𝑑𝑥) .

Its first three derivatives are the moments [2]:

𝐷𝑓 (\ ) [ℎ1] =
∫
𝑥 ∈𝐾 𝑥

⊤ℎ1 exp(\⊤𝑥)𝑑𝑥∫
𝑥 ∈𝐾 exp(\⊤𝑥)𝑑𝑥

= E𝑥∼𝑝\ 𝑥
⊤ℎ1 .

where 𝑝\ is the corresponding exponential distribution with sup-

port 𝐾 .

𝐷2 𝑓 (\ ) [ℎ1, ℎ2] =
∫
𝑥 ∈𝐾 𝑥

⊤ℎ1𝑥
⊤ℎ2 exp(\⊤𝑥)𝑑𝑥∫

𝑥 ∈𝐾 exp(\⊤𝑥)𝑑𝑥

−
∏

2

𝑖=1

∫
𝑥 ∈𝐾 𝑥

⊤ℎ𝑖 exp(\⊤𝑥)𝑑𝑥(∫
𝑥 ∈𝐾 exp(\⊤𝑥)𝑑𝑥

)
2

= E𝑥∼𝑝\ℎ
⊤
2
𝑥𝑥⊤ℎ1 − ℎ⊤2 ``

⊤ℎ1

= E𝑥∼𝑝\ (𝑥 − `)⊤ℎ1 · (𝑥 − `)⊤ℎ2

Next, we note that

𝐷` [ℎ] = 𝐷
∫
𝑥 ∈𝐾 𝑥 exp(\⊤𝑥)𝑑𝑥∫
𝑥 ∈𝐾 exp(\⊤𝑥)𝑑𝑥

[ℎ]

=

∫
𝑥 ∈𝐾 𝑥𝑥

⊤ℎ exp(\⊤𝑥)𝑑𝑥∫
𝑥 ∈𝐾 exp(\⊤𝑥)𝑑𝑥

−
∫
𝑥 ∈𝐾 𝑥 exp(\⊤𝑥)𝑑𝑥∫
𝑥 ∈𝐾 exp(\⊤𝑥)𝑑𝑥

·
∫
𝑥 ∈𝐾 𝑥

⊤ℎ exp(\⊤𝑥)𝑑𝑥∫
𝑥 ∈𝐾 exp(\⊤𝑥)𝑑𝑥

= E𝑥∼𝑝\ 𝑥𝑥
⊤ℎ − ``⊤ℎ

= E𝑦∼𝑝\ (𝑦 − `) (𝑦 − `)⊤ℎ.

So, we have

𝐷3 𝑓 (\ ) [ℎ1, ℎ2, ℎ3]
=E𝑥∼𝑝\ (−E𝑦∼𝑝\ (𝑦 − `) (𝑦 − `)⊤ℎ3)⊤ℎ1 · (𝑥 − `)⊤ℎ2

+ E𝑥∼𝑝\ (𝑥 − `)⊤ℎ1 · (−E(𝑦 − `) (𝑦 − `)⊤ℎ3)⊤ℎ2

+ E𝑥∼𝑝\ (𝑥 − `)⊤ℎ1 · (𝑥 − `)⊤ℎ2 · (𝑥 − `)⊤ℎ3

=E𝑥∼𝑝\ (𝑥 − `)⊤ℎ1 · (𝑥 − `)⊤ℎ2 · (𝑥 − `)⊤ℎ3 .

By [27, (2.15)], we have that

𝐷2 𝑓 ∗ (𝑥\ ) [ℎ1, ℎ2] = ℎ⊤1 ∇
2 𝑓 (\ )−1ℎ2

and

𝐷3 𝑓 ∗ (𝑥\ ) [ℎ1, ℎ2, ℎ3]
= −𝐷3 𝑓 (\ ) [∇2 𝑓 (\ )−1ℎ1,∇2 𝑓 (\ )−1ℎ2,∇2 𝑓 (\ )−1ℎ3]

where 𝑥\ = ∇𝑓 (\ ). Hence, we have

∇2 𝑓 ∗ (𝑥\ )−
1

2𝐷3 𝑓 ∗ (𝑥\ ) [ℎ]∇2 𝑓 ∗ (𝑥\ )−
1

2

= −E𝑥∼𝑝\∇2 𝑓 (\ )−
1

2 (𝑥 − `) (𝑥 − `)⊤∇2 𝑓 (\ )−
1

2

· (𝑥 − `)⊤∇2 𝑓 (\ )−1ℎ

= −E𝑥∼�̃�\ 𝑥𝑥
⊤ · 𝑥⊤∇2 𝑓 (\ )−

1

2ℎ

where 𝑥 ∼ 𝑝\ and 𝑝\ is the distribution given by ∇2 𝑓 (\ )−
1

2 (𝑥 − `).
Note that 𝑝\ is isotropic and [5, Fact 6.1] shows that

max

∥𝑣 ∥2=1

E𝑥∼�̃�\ 𝑥𝑥𝑇 (𝑥𝑇 𝑣)𝐹 = 𝑂 (𝜓𝑛). (25)

Hence, we have that∇2 𝑓 ∗ (𝑥\ )−
1

2𝐷3 𝑓 ∗ (𝑥\ ) [ℎ]∇2 𝑓 ∗ (𝑥\ )−
1

2


𝐹

= 𝑂 (𝜓𝑛)
∇2 𝑓 ∗ (𝑥\ )−

1

2ℎ


2

= 𝑂 (𝜓𝑛)∥ℎ∥𝑥\ .

This proves the lemma for the entropic barrier (recall that the

entropic barrier is 𝑓 ∗ instead of 𝑓 ).

For the universal barrier, first we recall that the polar of a con-

vex set 𝐾 is 𝐾◦ (𝑥) =
{
𝑧 : 𝑧⊤ (𝑦 − 𝑥) ≤ 1 ∀𝑦 ∈ 𝐾

}
and the barrier

function is

Φ(𝑥) = log vol(𝐾◦ (𝑥)) .
Its derivatives have the following identities [27, Page 52]. Here the

random point 𝑦 is drawn uniformly from the polar 𝐾◦ (𝑥).
∇2Φ(𝑥) =(𝑛 + 2) (𝑛 + 1)E𝑦𝑦⊤ − (𝑛 + 1)2E𝑦E𝑦⊤,

𝐷∇2Φ(𝑥) [ℎ] = − (𝑛 + 1) (𝑛 + 2) (𝑛 + 3)E𝑦𝑦⊤ (𝑦⊤ℎ)
+ (𝑛 + 1)2 (𝑛 + 2)E𝑦𝑦⊤ · E𝑦⊤ℎ
+ 2(𝑛 + 1)2 (𝑛 + 2)E𝑦 (𝑦⊤ℎ) · E𝑦⊤

− 2(𝑛 + 1)3E𝑦 · E𝑦⊤ · E𝑦⊤ℎ
Let ` = E𝑦, we can re-write the derivatives as follows:

∇2Φ(𝑥) =(𝑛 + 2) (𝑛 + 1)E(𝑦 − `) (𝑦 − `)⊤ + (𝑛 + 1)``⊤

𝐷∇2Φ(𝑥) [ℎ] = − Π3

𝑖=1
(𝑛 + 𝑖)E(𝑦 − `) (𝑦 − `)⊤ (𝑦 − `)⊤ℎ

− 2(𝑛 + 2) (𝑛 + 1) (E(𝑦 − `) (𝑦 − `)⊤`⊤ℎ
+ E` (𝑦 − `)⊤ (𝑦 − `)⊤ℎ + E(𝑦 − `)`⊤ (𝑦 − `)⊤ℎ)
− 2(𝑛 + 1)``⊤`⊤ℎ.

Without loss of generality, we assume ∇2Φ(𝑥) = 𝐼 . Then, we have
(𝑛 + 2) (𝑛 + 1)E(𝑦 − `) (𝑦 − `)⊤ ⪯ 𝐼 and (𝑛 + 1)``⊤ ⪯ 𝐼 .
For the first term, (25) shows that

∥(𝑛 + 1) (𝑛 + 2) (𝑛 + 3)E(𝑦 − `) (𝑦 − `)⊤ (𝑦 − `)⊤ℎ∥𝐹 = 𝑂 (𝜓𝑛) .
The Frobenius norm of the next three terms are bounded by

2

��`⊤ℎ�� (𝑛 + 2) (𝑛 + 1)E(𝑦 − `) (𝑦 − `)⊤

𝐹
≤ 2

√
𝑛 ∥`∥ ≤ 2

and so is the last term:

2

(𝑛 + 1)``⊤

𝐹

��`⊤ℎ�� ≤ 2.

□

To conclude this section, we remark that the universal and en-

tropic barriers do not satisfy our symmetry condition. Consider

a rotational cone 𝐶 =
{
𝑥 :

∑𝑛
𝑖=2

𝑥2

𝑖
≤ 𝑥2

1
, 0 ≤ 𝑥1 ≤ 1

}
and any

point 𝑥 = (𝑥1, 0, . . . ,0). Then symmetric body around 𝑥 , namely

𝐾 = 𝐶 ∩ (𝑥 −𝐶) has the property that (a) the John ellipsoid satisfies

𝐸 ⊂ 𝐾 ⊂
√
𝑛𝐶 (as it does for any symmetric convex body) and

(b) the inertial ellipsoid has a sandwiching ratio of 𝑛, proving that

ā ≥ 𝑛 = Ω(a2) . For the entropic barrier, we have a similar result be-

cause multiplying the indicator function of this symmetric convex

body with an exponential function of the form 𝑒−𝑐
𝑇 𝑥

still has the

same property for the inertial ellipsoid. This example highlights
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the advantages of barriers with John-like ellipsoids (log barrier, LS

barrier) vs Inertia-like ellipsoids (universal, entropic).

A PROOFS
A.1 Proof of Lemma 1.1

Proof. Let ℎ = 𝑦 − 𝑥 , 𝑥𝑡 = 𝑥 + 𝑡ℎ and 𝜙 (𝑡) = ℎ⊤H(𝑥𝑡 )ℎ. Then,��𝜙 ′(𝑡)�� = ����ℎ⊤ 𝑑𝑑𝑡 H(𝑥𝑡 )ℎ
���� ≤ 2∥ℎ∥3𝑥𝑡 = 2𝜙 (𝑡)3/2 .

Hence, we have

���� 𝑑𝑑𝑡 1√
𝜙 (𝑡 )

���� ≤ 1. Therefore,
1√
𝜙 (𝑡 )
≥ 1√

𝜙 (0)
− 𝑡 and,

𝜙 (𝑡) ≤ 𝜙 (0)
(1 − 𝑡

√
𝜙 (0))2

. (26)

Now we fix any 𝑣 and define𝜓 (𝑡) = 𝑣⊤H(𝑥𝑡 )𝑣 . Then,��𝜓 ′(𝑡)�� = ����𝑣⊤ 𝑑𝑑𝑡 H(𝑥𝑡 )𝑣
���� ≤ 2∥ℎ∥𝑥𝑡 ∥𝑣 ∥2𝑥𝑡 = 2𝜙 (𝑡)𝜓 (𝑡).

Using (26) at the end, we have���� 𝑑𝑑𝑡 ln𝜓 (𝑡)
���� ≤ 2

√
𝜙 (0)

(1 − 𝑡
√
𝜙 (0))

.

Integrating both sides from 0 to 1,����ln 𝜓 (1)𝜓 (0)

���� ≤ ∫
1

0

2

√
𝜙 (0)

(1 − 𝑡
√
𝜙 (0))

𝑑𝑡 = 2 ln( 1

1 −
√
𝜙 (0)
) .

The result follows from this with𝜓 (1) = 𝑣⊤H(𝑦)𝑣 ,𝜓 (0) = 𝑣⊤H(𝑥)𝑣 ,
and 𝜙 (0) = ∥𝑥 − 𝑦∥2𝑥 . □

A.2 Proof of Lemma 1.2
Proof. Let 𝑥𝑡 = (1 − 𝑡)𝑥 + 𝑡𝑦. Then, we have

∥H(𝑥)−
1

2 (H(𝑦) − H(𝑥))H(𝑥)−
1

2 ∥𝐹

=

∫
1

0

∥H(𝑥)−
1

2

𝑑

𝑑𝑡
H(𝑥𝑡 )H(𝑥)−

1

2 ∥𝐹𝑑𝑡 .

We note that H is self-concordant. Hence, Lemma 1.1 shows that

∥H(𝑥)−
1

2

𝑑

𝑑𝑡
H(𝑥𝑡 )H(𝑥)−

1

2 ∥2𝐹

= TrH(𝑥)−1

(
𝑑

𝑑𝑡
H(𝑥𝑡 )

)
H(𝑥)−1

(
𝑑

𝑑𝑡
H(𝑥𝑡 )

)
≤ 1

(1 − ∥𝑥 − 𝑥𝑡 ∥𝑥 )4
TrH(𝑥𝑡 )−1

(
𝑑

𝑑𝑡
H(𝑥𝑡 )

)
H(𝑥𝑡 )−1

(
𝑑

𝑑𝑡
H(𝑥𝑡 )

)
≤ 4

(1 − ∥𝑥 − 𝑥𝑡 ∥𝑥 )4
∥𝑥 − 𝑥𝑡 ∥2𝑥𝑡

≤ 4

(1 − ∥𝑥 − 𝑥𝑡 ∥𝑥 )6
∥𝑥 − 𝑥𝑡 ∥2𝑥

where we used the strong self-concordance in the second in-

equality and Lemma 1.1 again for the last inequality. Hence,

∥H(𝑥)−
1

2 (H(𝑦) − H(𝑥))H(𝑥)−
1

2 ∥𝐹 ≤
∫

1

0

2∥𝑥 − 𝑥𝑡 ∥𝑥
(1 − ∥𝑥 − 𝑥𝑡 ∥𝑥 )3

𝑑𝑡

=

∫
1

0

2𝑡 ∥𝑥 − 𝑦∥𝑥
(1 − 𝑡 ∥𝑥 − 𝑦∥𝑥 )3

𝑑𝑡

=
∥𝑥 − 𝑦∥𝑥

(1 − ∥𝑥 − 𝑦∥𝑥 )2
.

□
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