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Protecting the Grid Against MAD Attacks
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Abstract—Power grids have recently been shown to be
vulnerable to MAnipulation of Demand (MAD) attacks using
high-wattage IoT devices. In this paper, we introduce two forms
of defenses against line failures caused by these attacks: 1) we
develop two algorithms named SAFE and IMMUNE for finding
efficient operating points for generators during the normal
operation of the grid such that no lines are overloaded instantly
after any potential MAD attacks, and 2) assuming lines can
temporarily tolerate overloads, we develop efficient methods to
verify in advance if such overloads can quickly be cleared by
changing the operating points of the generators after any attacks.
We then define the novel notion of oD-robustness for a grid
indicating that line overloads can either be prevented or cleared
after any attacks based on the two forms of introduced defenses if
an adversary can increase/decrease the demands by at most «
fraction. We demonstrate that practical upper and lower bounds
on the maximum « for which a grid is « D-robust can be found
efficiently in polynomial time. Finally, we evaluate the
performance of the developed algorithms and methods on
realistic power grid test cases.

Index Terms—Power grid, IoT, cyber attacks, demand
manipulation, control.

I. INTRODUCTION

OWER grids, as one of the most essential infrastructure

networks, have been repeatedly shown in the past few years
to be vulnerable to cyber attacks. The most infamous example
of these attacks was on the Ukrainian grid that affected about
225,000 people in December 2015 [1]. However, smaller scale
attacks on regional power grids have been shown in a recent
report to be more common and pervasive [2]. As indicated in
the report, “Hackers are developing a penchant for attacks on
energy infrastructure because of the impact the sector has on
people’s lives” [2].

Because of this ever-growing threat, there has been a signifi-
cant effort by researchers in recent years to find methods to pro-
tect the grid against cyber attacks. These efforts have been
mainly focused on potential attacks that directly affect different
components of power grids’ Supervisory Control And Data
Acquisition (SCADA) systems. Many system operators prefer
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to completely disconnect their SCADA systems from the Inter-
net in the hope that their systems remain unreachable to hackers.

Despite these efforts, the power demand side of the grid
operation, which is not controlled by SCADA, has been
neglected as being directly susceptible to attacks in security
assessments due to their predictable nature. However, as the
authors [3] and Dabrowski et al. [4] have recently revealed,
the universality and growth in the number of high-wattage
Internet of Things (IoT) devices, such as air conditioners and
water heaters, have provided a unique way for adversaries to
disrupt the normal operation of power grid, without any
access to the SCADA system [5], [6]. In particular, an adver-
sary with access to sufficiently many of such high-wattage
devices (i.e., a botnet), can abruptly increase or decrease the
total demand in the system by synchronously turning these
devices on or off, respectively. We call these attacks MAnipu-
lation of Demand (MAD) attacks (see Fig. 1).

An abrupt increase/decrease in the total demand results in
abrupt drop/rise in the system’s frequency. If this drop/rise is
significant, generators will be automatically disconnected
from the grid and a large scale blackout occurs within sec-
onds [3], [4]. If the drop/rise in the frequency is not significant,
the extra demand/generation can automatically be compen-
sated by generators’ primary controllers, and the frequency of
the system will be stabilized. As a result of this automatic
change in the generation—and demand by the adversary—the
power flows in the transmission network change based on
power flow equations. Since the power flows are not con-
trolled by the grid operator at this stage, this change in the
power flows may result in line overloads and consequent line-
trippings. These initial line failures can initiate a cascading
line failure and result in a large scale blackout in the grid [3].
For example, it has been demonstrated that only a 1% increase
in the demands at certain scenarios may initiate a cascading
failure leading to 86% power outage in the system.

The grid operator can protect the grid against initial drop/rise
in the system’s frequency caused by a MAD attack by ensuring
that the system has enough inertia (mostly through rotating gen-
erators) and there is enough available spinning reserve (i.e., gen-
erators have enough extra generation capacity) [3]. However,
protecting the grid against possible line overloads and failures
after a MAD attack, which is the main focus of this paper, is
more analytically and computationally challenging. Such
defenses require the grid operator to analyze all possible MAD
attacks and their consequences on the power flows and select
operating points for the generators (i.e., their power generation
output) to satisfy the power demands such that no lines are over-
loaded after any MAD attacks.
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Fig. 1. The MAD attack. An adversary with access to an IoT botnet of high-

wattage devices can remotely and synchronously switch on/off these devices
in order to change power flows on the lines in a power transmission network
and cause line overloads and failures.

We first focus on finding operating points (namely robust
operating points) with the minimum cost for the generators such
that no lines are overloaded after the automatic primary response
of the generators to any MAD attacks. Since changes in power
flows after a MAD attack directly depend on generators’ operat-
ing points, finding the optimal operating points for the genera-
tors requires solving a nonconvex and nonlinear optimization
problem which is hard in general. Despite this hardness, we
develop two algorithms named the Securing Additional margin
For generators in Economic dispatch (SAFE) Algorithm and
the Iteratively MiniMize and boUNd Economic dispatch
(IMMUNE) Algorithm for finding suboptimal yet robust operat-
ing points for the generators efficiently. The SAFE Algorithm
provides robust operating points for the generators by solving a
single Linear Program (LP). The IMMUNE Algorithm, on the
other hand, requires a few iterations until it converges, but it
provides robust operating points with lower costs than the ones
obtained by the SAFE Algorithm.

In situations for which the operating cost of the grid in a
robust state is costly (or no robust operating points exists due
to lack of enough resources), the grid operator may decide to
allow temporary line overloads—by increasing thresholds on
circuit breakers—in the case of a MAD attack, and clear the
overloads during the secondary control. During the secondary
control, which comes right after the automatic primary con-
trol, the grid operator can directly change generators’ operat-
ing points in order to bring back the system’s frequency to its
nominal value and clear any line overloads. To make sure that
line overloads can be cleared during the secondary control, the
grid operator needs to verify in advance whether for any
potential MAD attack, there exist operating points for the
generators satisfying demands such that no lines are over-
loaded (namely, the grid is secondary controllable). However,
due to the extent of the attack space, checking all possible
attack scenarios is computationally impractical. Hence, we
develop several predetermined control policies that can be
used to verify the secondary controllability of the grid in most
scenarios with no false positives.

We then evaluate the robustmess of grids against MAD
attacks with different magnitudes. The magnitude of an attack
can be determined by the fraction of demand (denoted by «)
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that the adversary can increase or decrease at each location. We
call a grid o D-robust if either line overloads can be prevented
(i.e., robust operating points exist for generators) or they can be
cleared during the secondary control (i.e., the grid is secondary
controllable) after any MAD attacks by an adversary that can
change the demands by at most a fraction «. In general, finding
the maximum « such that a given grid is aD-robust, is hard.
However, by focusing on grid secondary controllability and the
developed predetermined control policies, we provide efficient
methods for computing practical upper and lower bounds on the
maximum ¢« in polynomial time.

Finally, we evaluate the performance of the developed algo-
rithms and controllers numerically. For example, in the New
England 39-bus system, we show that the SAFE and IMMUNE
Algorithms find operating points for the generators with at
most 6 and 2 percent increase in the total operating cost such
that the grid is robust against MAD attacks of magnitude
a = 0.08. We also evaluate the performance of the developed
methods for approximating the maximum « such that the grid
is aD-robust and show that for example in the New England
39-bus system, the provided lower and upper bounds are tight
and are equal to the maximum o™** = 0.0962.

To the best of our knowledge, our work is the first to study
the effects of potential MAD attacks on the power flows in the
grid and provide efficient preventive algorithms to avoid line
failures after the primary control response, and also efficient
methods to verify if the line overloads can be cleared during
the secondary control. These algorithms and methods can be
adopted by grid operators to protect their systems against
MAD attacks now and in the near future.

The rest of this paper is organized as follows: Section II
provides related work and Section III presents a brief introduc-
tion to the power system’s operation and control. In Section IV,
we introduce the MAD attacks and provide their basic proper-
ties. In Section V, we present the SAFE and IMMUNE
algorithms and in Section VI, we provide efficient methods for
verifying secondary controllability of a grid. Section VII
provides methods to evaluate the robustness of grids against
MAD attacks and Section VIII presents numerical results.
Finally, Section IX provides concluding remarks and future
directions. To improve the readability of the paper, some of the
proofs are moved to Section X.

II. RELATED WORK

Power systems’ vulnerability to failures and attacks has
been widely studied in the past few years [7]-[12]. In a recent
work [13], Garcia et al. introduced Harvey malware that
affects power grid control systems and can execute malicious
commands. Theoretical methods for detecting cyber attacks
on power grids and recovering information after such attacks
have also been developed [14]-[22]. Another related type of
cyber attacks called load redistribution attacks has been stud-
ied by Yuan et al. [23]. However, these type of attacks change
only the measurements at the loads in order to force the grid
operator into problematic corrective actions rather than actu-
ally changing the loads as have been studied in our work.
Overall, most of the previous work on protecting the grid
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against attacks have focused on attacks that directly target the
power grid’s physical infrastructure or its control system.

The possibility of load altering attacks on smart meters and
large cloud servers has been first introduced by Mohsenian
et al. [24]. Their work was mostly focused on minimizing the
total cost of protecting the loads (which is not always possible,
especially for distributed IoT devices) against such attacks.
Amini et al. [25] have also recently studied the effects of load
altering attacks on the system’s dynamics and ways to use the
system’s frequency as feedback to improve an attack. How-
ever, until very recently, practical ways to perform such
attacks on a large-scale and their consequences on power
flows were not fully studied [3]. Hence, little attention has
been given to protecting the grid against line failures caused
by these type of attacks.

In three very recent papers, Dvorkin and Sang [26],
Dabrowski et al. [4], and our work [3] revealed the possibility
of exploiting compromised IoT devices to manipulate the
demands and to disrupt the normal operation of the power grid.
Dvorkin and Sang [26] modeled their attack as an optimization
problem for the adversary—with complete knowledge of the
grid—to cause circuit breakers to trip in the distribution net-
work. Dabrowski et al. [4] studied the effect of demand
increases caused by remote activation of CPUs, GPUs, hard
disks, screen brightness, and printers on the frequency of the
European power grid. In [3], we analyzed the effects of sudden
increase and decrease in the demand via an [oT botnet of high-
wattage devices from various operational perspectives and
demonstrated that besides frequency instability, such attacks
can also result in widespread cascading line failures in the
transmission network leading to large-scale blackouts. Never-
theless, practical preventive defenses against possible line fail-
ures caused by these attacks have not been developed yet.

Finally, while there have been extensive efforts in recent
years to develop efficient algorithms for solving the Optimal
Power Flow (OPF) problem [27]-[29] and its different varia-
tions including Security Constrained OPF (SC-OPF) [30]
(which considers grid robustness against possible line outages)
and Chance Constrained OPF (CC-OPF) [31] (which consid-
ers uncertainty in the output of the renewable resources), since
these works do not consider grid robustness against adversar-
ial changes in the demands, our work is different from previ-
ously studied variations of the OPF problem. Moreover, the
second part of this work deals with secondary controllability
of the grid after an attack which is a totally different problem
from OPF and its variations.

III. MODEL AND DEFINITIONS

In this section, we provide a brief introduction to power sys-
tems’ operation and control. Our focus is on the power trans-
mission network.

Throughout this paper, we use bold uppercase characters to
denote matrices (e.g., A), italic uppercase characters to denote
sets (e.g., V), and italic lowercase characters and overline arrow

to denote column vectors (e.g., 5). For a matrix Q, Q; denotes

th -\ th

its i'* row, ¢;; denotes its (¢,7)" entry, and Q7 denotes its
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transpose. For a column vector ¢, ng denotes its transpose, and
19]l; :=>"iy lyi| is its l;-norm. For a variable z, sgn(z)
denotes its sign, and = and x denote its upper and lower limits,
respectively. For a vector g, for simplicity of notation, we drop
the vector sign ~ in denoting vectors of upper and lower limits
on the entries of 4/ as ¥ and y, respectively. Finally, €1, ..., €,
denote the fundamental basis of R” and T = >i, € denotes
the all ones vector.

A. Power Flows

Power flows are governed by a set of differential equations.
In the steady-state, using phasors, these differential equations
can be reduced to a set of algebraic equations on complex
numbers known as the Alternating Current (AC) power flow
model. Due to the nonlinearity of AC power flow equations and
the computational complexity of solving these equations, in
practice and in day-ahead power grid contingency analysis and
planning, the linearized version of these equations known as
the Direct Current (DC) power flow model is widely being
used [27]. Hence, in this work, we also use the DC power flow
model for our analysis. This allows us to focus on the complexi-
ties of MAD attacks instead of nonlinearity of AC power flows.
Nevertheless, the main ideas of the algorithms developed in
this work can be extended to the AC power flow model as well
(e.g., by combining them with the recently introduced convex
relaxation methods for solving the AC Optimal Power Flow
(ACOPF) problem [28]), albeit not effortlessly.

We represent the power grid by a connected directed graph
G = (V,E) where V ={1,2,...,n} and E = {e1,...,en}
are the set of nodes and edges corresponding to the buses and
transmission lines, respectively (the definition implies
V| =n and |E| = m). Each edge e is a set of two nodes
e = (i,7). (Direction of the edges are arbitrary.) py > 0 and
Py > 0 denote the vector of power demand and supply values,
respectively. Accordingly, p = p; — pg denotes the vector of
total supply and demand values. Since the sum of supply
should be equal to the sum of demand,

"p=o0, (1)

in which T is an all ones vector. In the DC model, lines are also
assumed to be purely reactive, implying that each edge
e = (4,7) € Eis characterized by its reactance x. = x;; > 0.

Given the power supply/demand vector 5 € R™*! and the
reactance values, the vector of power flows on the lines
,}?E R™*! can be computed by solving the following linear
equations:

Af =7, (2)

YD6 = 7, (3)
where 6 € R™*! s the vector of voltage phase angles at nodes,
D € {—1,0,1}"*"™ is the incidence matrix of G defined as,

0 if e, is not incident to node i,
dij, = 1 if e is coming out of node i,
—1 if e is going into node i,
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Y :=diag([1/x¢,,1/xe,, ..., 1/2,,]) is a diagonal matrix
with diagonal entries equal to the inverse of the reactance val-
ues, and A = DYDY is the admittance matrix of G."

Since A is not a full-rank matrix, we follow [8] and use the
pseudo-inverse of A, denoted by A™ to solve (2) as 6 = A*p.
Once 6 is computed, f can be computed from (3) as
]? =YD ATp. For the convenience of notation, we define
B := YD”A™. Hence, f = Bp.

B. Power Grid Operation

Stable operation of the power grid relies on the persistent
balance between the power supply and demand. In order to
keep the balance between the power supply and the demand,
power system operators use weather data as well as historical
power consumption data to predict the power demand on a
daily and hourly basis [33]. This allows the system operators
to plan in advance and only deploy enough generators to meet
the demand in the hours ahead without overloading any power
lines. This planning ahead consists of two parts: unit commit-
ment and economic dispatch.

In unit commitment which is mainly performed daily, the
grid operator selects a set of generators to commit their avail-
ability during the day-ahead operation of the grid. But the actual
operating points of the generators (i.e., generation outputs) are
determined by the operator during the day and in the process
known as economic dispatch. The main goal of the operator
during economic dispatch is to ensure reliable operation of the
grid with minimum power generation cost. When feasibility of
the power flows is also considered during economic dispatch,
the process is also known as Optimal Power Flow (OPF) prob-
lem. Since in practice feasibility of power flows is always being
considered, these two terms can be used interchangeably most
of the times.

In this work, we mainly focus on ensuring the robustness of
the grid during the economic dispatch. Extending our methods
to the unit commitment process is beyond the scope of this
paper and is part of the future work. Hence, here we assume that
the set of available generators are given. The main challenge is
to obtain a favorable operating point for these generators.

1) Optimal Power Flow: In the OPF problem, given the
vector of predicted demand values py, the grid operator needs
to find the operating point vector p;, for the generators such
that supply matches the demand (i.e., IT(ﬁ'g —pa) = 0), the
operating and physical constraints are satisfied, and the operat-
ing cost of the generators are minimized.

In particular, each line f;; has a thermal power flow limit f_u
limiting the amount of power that a line can safely carry. If the
power flow on a line goes above this limit (i.e., overloads), in
most of the cases, it will be tripped by a circuit breaker in
order to keep the line from breaking due to overheating.
Hence, during the normal operation of the grid

il < fijs V0, §) € E. (4)

! The admittance matrix A is also known as the weighted Laplacian matrix
of the graph [32] in graph theory.
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The amount of power that each generator py; is generating is
also limited by a maximum (pg) and a minimum (p,;) value.
If there are no generators at node 7, then Dg; = py; = (. Hence,

Py < Dy < Py (5)

The generation cost at each generator is a given by a cost
function ¢;(z) in $/hr. Given these cost functions, the OPF
problem can be formulated as follows:

min 21 a(pa),

st (1),(2), (3), (4),(5), (6)
P=Dg —Pd-

Several methods for finding an optimal solution to (6) depend-
ing on the cost functions exist in the literature [27]. Here, we
assume that the cost functions are convex and therefore the
OPF problem can be solved optimally in polynomial time.
Our main focus in Section V is on how to add additional con-
straints to the OPF problem to ensure grid robustness against
MAD attacks without making the problem nonconvex.

C. Frequency Control

In power systems, the rotating speed of generators corre-
sponds to the frequency. When demand becomes greater than
supply, the rotating speeds of turbine generators’ rotors deceler-
ate, and the kinetic energy of the rotors is released into the
system in response to the extra demand. Correspondingly, this
causes a drop in the system’s frequency. This behavior of turbine
generators corresponds to Newton’s first law of motion and is
calculated by the inertia of the generators. Similarly, the supply
being greater than the demand results in acceleration of the
generators’ rotors and a rise in the system’s frequency.

This decrease/increase in the frequency of the system can-
not be tolerated for a long time since frequencies lower than
their nominal value severely damage the generators. If the
frequency goes above or below a threshold value, protection
relays turn off or disconnect the generators completely. Hence,
in case of a demand increase, within seconds of the first signs
of a decrease in the frequency, the primary controllers at gen-
erators activate and increase the mechanical input to the gen-
erators which increase the speed of the generator’s rotor and
correspondingly the generator’s output and frequency of the
system [34]. The rate of decrease/increase in the frequency of
the system, before activation of the primary controllers,
directly depends on the total inertia of the system. Systems
with a higher number of rotating generators have higher inertia
and therefore are more robust against sudden demand changes
or generation losses.

The rate of increase in the output generation of generator @
during the primary control is determined by its governor droop
characteristic denoted by R; [35, Chapter 9]. In particular, after
a change in the total demand by Sy, the primary controller of
each generator 7 increases its output with rate 1/ R; until the total
generation is equal to the demand again. In particular, if none of
the generators reach their generation limit, each generator ¢ will
increase its generation by 1/R; x Sa,,/(3°,2;1/R;). The
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Fig. 2. A sample frequency response of the power grid to a sudden increase
in the demand (or loss of generation).

amount of power that generators can provide during the primary
control is called the spinning reserve of the generators.

Despite the stability of the system’s frequency after the
primary controllers’ response, it may not return to its nominal
value (since generators generating more than their generating
set points). Hence, the secondary controller starts within
minutes to restore the system’s frequency. The secondary
controller modifies the power set points and deploys available
extra generators and controllable demands to restore the
nominal frequency and permanently stabilizes the system.’
Fig. 2 presents an example of the way frequency of the system
changes after a sudden increase in the demand (or loss of
generation) at time 0.

IV. MAD ATTACKS

In this work, we follow the threat model that we have initially
introduced in [3]. In particular, we assume that an adversary has
already gained access to an IoT botnet of many high-wattage
smart appliances within a city, a country, or a continent. Such
access can potentially allow the adversary to increase or
decrease the demand at different locations remotely and syn-
chronously at a certain time. We call the attacks under this threat
model the MAnipulation of the Demand (MAD) attacks.

Since the focus of this work is to develop defenses against
MAD attacks rather than dealing with complexities of per-
forming such an attack (as extensively studied in [3]), we
abstract the threat model by the adversary’s power to manipu-
late the demands at each node. In particular, we assume the
demand changes at node [ by an adversary are bounded by
—% < Apg < @. Notice that from defensive point of
view, there are no differences between an adversary with the
total knowledge of the system (a.k.a white-box attacks) and an
adversary with no knowledge of the system (a.k.a black-box
attacks), since the operator needs to make sure that the grid is
robust against any possible attacks.

The initial effect of a MAD attack, as described in Section III-
C is on the frequency of the system. However, the system opera-
tor can make the system robust against frequency disturbances
caused by MAD attacks by ensuring that enough generators
with inertia and spinning reserve are committed to operate

2 Part of these controls can be done during the tertiary control. However,
for simplicity and without loss of generality we refer to them as the secondary
control.
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during the unit commitment process [3]. The minimum required
inertia and spinning reserve should be computed based on the
potential attack size and the properties of the grid. Devices that
provide virtual inertia such as batteries, super-capacitors, and
flywheels can also be integrated into the system to increase the
total inertia [36].

Hence, the main challenge in protecting the grid against the
initial effects of MAD attacks is at the hardware level. How-
ever, the effects of MAD attacks are not limited to frequency
disturbances. Recall from Section III-A that the power flows
in power grids are determined uniquely given supply and
demand values. Therefore, most of the time, the grid operator
does not have any control over the power flows from genera-
tors to loads. Once an adversary causes a sudden increase in
the loads all around the grid, assuming that the frequency drop
is not significant, the extra demand is satisfied automatically
by generators through their primary controllers as described in
Section III-C. Since the power flows are not controlled by the
grid operator at this stage, this change in supply and demand
may result in line overloads and consequent line-trippings [3].

If the primary controllers’ response results in line overloads,
assuming that these overloads can barely be tolerated for a
short period of time, these line overloads can be cleared during
the secondary control. However, the system operator needs to
ensure in advance that possible line overloads can indeed be
cleared during the secondary control after any MAD attacks.

In this work, we focus on the effects of MAD attacks on the
power flow changes on the lines which are more challenging
from the system planning perspective. Our objectives are: (i)
to develop algorithms for finding efficient operating points for
the generators during the economic dispatch such that no lines
are overloaded after the primary control response to any
potential MAD attacks, and (ii) to design methods to efficiently
examine if line overloads after the primary control-if any—can
be cleared during the secondary control.

Notice that we assume the system have enough inertia and
reaches a steady-state after the primary controllers’ response
to a MAD attack (as in Fig. 2). Moreover, since power lines
can normally withstand sudden but momentary power surges,
in analyzing power flows after a contingency, the transient
power flows are usually neglected [27]. Therefore, it is reason-
able to use the steady-state power flow equations as described
in Section III-A for our analysis.

V. POWER FLOWS: PRIMARY CONTROL

In this section, we provide two algorithms for finding oper-
ating points for the generators during the economic dispatch
process such that no lines are overloaded after the automatic
response of the primary controllers to any MAD attacks. We
call such operating points, robust operating points.

A. Power Flow Changes

In this subsection, we present a couple of examples in order
to demonstrate the complexity of power flow analysis after the
primary controller’s response to a MAD attack.

First, as can be seen in Fig. 3 the relationship between the
power flow changes on the lines and the demand changes is
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An example demonstrating that increasing all demands may not necessarily result in the maximum flow on the lines. (a-b) Initial setting and power

flows, (c) power flows if demand at bus 3 increases, and (d) power flows if demand at both buses 1 and 3 increases. All generators have the same droop character-

istic and they all have enough spinning reserve.
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Fig. 4. Dependency of power flow changes on the location of the spinning
reserves. (a) If all generators have spinning reserves, demand increase at bus 1
results in power flow decrease on line (2,3). (b) If only generators 2 and 4
have spinning reserves then demand increase at bus 1 results power flow
increase on line (2,3).

not intuitive. For example, flow on line (2,3) is maximized
when only the demand at node 3 increases (Fig. 3(c)), whereas
when demands at both nodes 1 and 3 increase, flow on line
(2,3) increases less (Fig. 3(d)).

Another important factor affecting the amount of power flow
changes on the lines is the amount of spinning reserve at each
generator. For example, as can be seen in Fig. 4, an increase in
the demand at node 1 by 3 units may result in power flow
decrease on line (2,3) if all the generators have enough spin-
ning reserves (Fig. 4(a)). The same scenario, however, results
in power flow increase on line (2,3), if only generators 2 and 4
have spinning reserves (Fig. 4(b)).

Fig. 5 presents the relationship between power flow changes
on lines (2,3) and (5,3) versus power demand increase at node
1 during two different spinning reserve availability scenarios
in the grid shown in Fig. 3(a). As can be seen in Fig. 5(a), if
all generators have enough spinning reserve the power flows
change monotonically with the demand change. However, as
can be seen in Fig. 5(b), limited spinning reserve at generator
5 results in a nonlinear relationship between the power flows
and the demand change.

Following the examples provided in this subsection, it is clear
that power flow changes on the lines after a MAD attack highly
depend on the initial operating point of the grid and is a nonlin-
ear problem in most cases. Despite the difficulties, however, in
the next two subsections, we provide efficient algorithms for
finding efficient and robust operating points for the generators.

B. SAFE Algorithm

In order to avoid line overloads after the primary control
response to a potential MAD attack, the grid operator needs to
compute the maximum possible power flow changes on the
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Fig. 5. Power flows on lines (5,3) and (2,3) in the grid shown in Fig. 3(a) as
demand at bus 1 increases. (a) If all the generators have enough spinning
reserve, and (b) if generator 5 has only 1 unit of spinning reserve.

lines following an attack (based on @ values) and enforce
the power flows on the lines in OPF to be below their capacity
minus the maximum possible changes. As shown in the previ-
ous subsection, however, the maximum power flow changes
on the lines depend on the operating point of the generators
and their spinning reserve. Therefore, one cannot compute the
maximum power flow changes on the lines independent of the
operating points to be used in the OPF problem.

One way to circumvent this problem, is to enforce all the
generators to have enough spinning reserves to keep the rela-
tionship between the power flow changes and demand changes
linear (as in Fig. 5(a)), and use this linear relationship to com-
pute the maximum power flow changes on the lines based on
the operating point of the generators. These values can then be
added to the OPF problem without making the problem non-
linear and nonconvex. Recall that since here we use DC power
flows with convex cost functions, the OPF problem is convex.
Hence, when we mention the nonconvexity of the problem, it
is due to additional constraints on the power flows.

For each load 4, define ¥; = [v;1,vi2, .. -, uin]T to denote the
primary controllers’ response to a unit demand increase at load
1. If all generators have enough spinning reserve, each generator
j will increase its generation by v;; := (1/R;)/(3>_/., 1/R;) to
compensate for a unit demand increase at node ¢ (as described in
Section III-C). Hence, by defining w; := v; — €; (recall from
Section III that € is the ith fundamental basis of R™) one can
compute the change in the flow of line e = (i, j) solely in terms
of changes in the demands (Ap;s):

n

Afiy=1/zi;(A = A))D  Apai. (7)
=1
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Recall that —Apy < Apy < Apy based on the grid operator’s
estimation of the adversary’s power. Hence, the maximum
flow change on line (7, j) can be computed using (7) as:

AfE™ =1/2; > Apal(A] — A, (8)
I=1

since for each [, Apy can be selected by the adversary to be
equal to —Apg, if (A} — A]*)Tzﬁl < 0, and equal to Apy, if
(A} — Aj*)ﬁ')l > (0. Now, to ensure that no lines are over-
loaded after a MAD attack, all the system operator needs to do
is to replace the capacity of each line (4, j) in the OPF problem
by fi; — A Ji;™. The only other constraint that needs to be
added to the OPF problem is to make sure that each generator
i with 0 < 1/R; has enough spinning reserve to increase its
generation according to its governor droop. For this, define
% := Y., Apa. Hence, each generator’s operating point
should be within the following limits:

Vi<i<n:
) 1/R; ) — 1/R;
@ + 47:1 /R, SApd < Pgi < DPgi In:—l /R, SApd'

9)

Therefore, the robust OPF problem can be written as follows:

IQin Z;L:I q (p,ril)a

st (1),(2),(3),(8),(9),
|fiil < fij: AfEe, V(i,j) € E

P = Dy — Pa-

(10)

We call the algorithm for finding a robust operating point
for generators by limiting their operating points—to be able to
analytically compute A f72**s—and solving (10), the Securing
Additional margin For generators in Economic dispatch
(SAFE) Algorithm. Since this algorithm limits the operating
points of the generators by adding conditions (9) to the OPF
problem, it is obvious that it may not obtain the minimum cost
robust operating points for the generators. In the next subsec-
tion, we provide an algorithm, albeit computationally more
expensive, for finding robust operating points for the genera-
tors without limiting their operating points—as in (9).

C. IMMUNE Algorithm

In (7), we assumed that none of the generators reach their
maximum/minimum capacity as they increase/decrease their
generation according to their droop characteristics. However,
by allowing some generators to reach their maximum/mini-
mum capacity, one may find robust operating points for the
generators with a lower cost.

In this subsection, for brevity and to avoid repetition, we
assume that the total demand change Sy, := >/ ; Apg; can
only be positive. Hence, we focus mainly on the generators’
maximum capacity. However, the same set of equations can
similarly be derived for the case Sy,, < 0 which should also
be considered separately in computing the maximum power
flow changes on the lines. In particular, whenever there is
a minimization/maximization problem with Sy, , > 0 con-
straint, one should also solve a similar optimization problem
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with Sy, < 0 and take the minimum/maximum of the opti-
mal value of the two optimization problems. In Section VIII,
we consider both cases for numerical evaluations.

Once a generator reaches its maximum capacity, it cannot
increase its generation anymore, and therefore other genera-
tors should generate more to compensate for the extra demand.
The following lemma provides the amount each generator
generates based on its spinning reserve and governor droop
characteristic to compensate for the extra demand after a
MAD attack.

Lemma 1. Suppose generators are ordered such thatif: < 7,
Ri(Pgi — gi) < Rj(Pgj — pyj)- Define t; := Ri(pyi — pgi) and
S; = Z;:l tl/Rl + ZIH:HI ti/Rg. If S < SAPd < Sii1, to
compensate for the extra demand, generators 1 to ¢ reach
their maximum capacity and each generator j > 7 generates
% (SAPd =21 (P — pgl))'

In general, as demonstrated in Figs. 4 and 5, due to power
generation limits, power flow on a line may not change mono-
tonically as demand changes in a specific node—as in (7). Hence,
the maximum change in the power flows cannot be found in a
closed form as in (8). However, one may be able to find an upper
bound on the maximum power flow change on a line.

Upper bounds on the maximum power flow changes after a
MAD attack can be computed by assuming the worst case ini-
tial operating points and also assuming that generators can be
arbitrarily assigned to provide extra required generation. In
particular, an upper bound A f;; for the power flow changes on
line (7, j) can be computed by finding the worst initial operating
points for the generators p; and the worst possible way to
increase the power generations Apy (in oppose to the automatic
primary controller’s response) in response to the worst possible
way to increase the demands by an adversary Apy as follows:

Afij = max 1/zij(AS — A;)(Apg — Apy)
Pg-Apg.Apg
s.t. (py — pa) =0,

17(Ap, — Apa) = 0,

—Apy < Apg < Apg, 1<1<n
Py < Py < Py,
OSApglnggl_pgh 1§l§n7

SAPd > 0.
(11)

Optimization (11) is a Linear Program (LP) that can be
solved efficiently for each line (i,j). Using these upper
bounds, we can limit the power | flows on the lines in the OPF
problem (6) as |f;;| < fij — Afi; to leave enough margin for
the lines in case of a MAD attack. Hence, the solution to the
following modified OPF problem provides robust operating
points for the generators:

> alpg),

(1),(2),(3),(5),
|fijl < fij —Afij, V(i,j) € B
P =Py — Pa-

min
0.f.pg

s.t. (12)
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Enforcing the power flows on all the lines, such as (¢, j), to
be less than f_lj — Af;j as in (12) ensures that none of the lines
will be overloaded after a potential MAD attack. However,
the solution to (12) may not provide the optimal robust operat-
ing points for the generators since A f;;s only provide an upper
bound on the maximum power flow changes on the lines. To
achieve more efficient robust operating points, we introduce
an iterative algorithm that solves the OPF problem and
updates the lines’ required safety margins to ensure that none
of the lines get overloaded after a MAD attack. We will then
use the upper bounds A f;s to prove that the algorithm will
converge to a local optimal solution.

First, given the operating points pgi,...,pg to the OPF
problem, the maximum power flow change on line (3, )
(denoted by A fm‘“‘) after an attack can be computed based
on the power ﬁow solution f YD?ATF by solving the
following optimization problem:

Afip = max sgn(fi;) (1/% >0 —Apala; —aj)

\Dd
1/ Y0 FlSapy)af = @)
st.  —Apy < Apg < Apgy, 1<1<n
SApd > 0.

(13)

in which f(-)s denote piecewise linear functions that deter-
mine the extra output of the generators based on the total
demand change Sy,,. Since we assumed that pgi, .. ., py, are
given, functions f;(-) can be uniquely determined using
Lemma 1. sgn(f;;) in the objective of (13) is to ensure that
the maximum changes are in the direction of increase in
the power flow on line (¢,5). Hence, for all lines
Afmax > 0. 3

Lemma 2. Optimization (13) can be solved in polynomial
time for each (i, j) € E.

Proof. Without loss of generality, assume that generators are
ordered such that t; <ty < ... <{, as defined in Lemma 1. It
is easy to see that by using Lemma 1 and defining Sj := 0,
one can solve (13) in different linear regions of fi(-)s by
considering additional conditions for S, (for 0 < 2z < n):

S, < Sap; < Sig1- (14)
Under condition (14), fi(-)s can be determined as follows:
D —pi I < 2,
fl(SAp,i) = 1/31(531,’]*22:1(%*171“)) I> 2 (15)
ZZ':Z+1 I/R“ '

Hence, all the fj(-) are either constant or linear functions in
(13) and therefore (13) can be solved efficiently using LP.
Hence, by solving (13) at most n times (once for every condi-
tion (14) for different z) A fi';.‘a" can be found in polynomial
time. |

3 Notice that for computing the maximum power flow changes on the lines,
the Sy,, < 0 case should also be considered separately to see if it results in a
larger power flow change than the one obtained from (13). However, as we
mentioned at the beginning of the subsection, here we only consider Sy,, > 0
for the brevity of presentation.
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Algorithm 1 Iteratively MiniMize and boUNd Economic dis-
patch IMMUNE)

Input: G
I: flag=1
2:  Define ¢;; := f;; forall (i,5) € E
3:  while flag do
4: Solve the OPF problem (6) such that V(i,j) € E : |f;]
< ¢jj

5: if OPF is not feasible then
6: return none
7. Compute A fj#* by solving (13) for all (4, j) € E
8: flag=0
9: for (i,j) € Edo

10: if fi; < |fijl + Af3* then

11: C,7:f,7—A ir;lax

12: flag=1

13: return pyi,pg, . .., Pgn

After computing A f}7** values, one can use them to verify if
any of the lines will be overloaded after an attack (e.g., by
checking if fw < |fijl +Af;j™). If yes, then update the
required margins for the lines that may get overloaded in the
OPF problem to ensure that those lines will not be overloaded.
The OPF problem can then be solved again with new power
flow margins for the lines and the process continues until no
additional updates for the line margins are required at the
obtained operating point (which means that the obtained oper-
ating point is robust). We call this algorithm Iteratively Mini-
Mize and boUNd Economic dispatch IMMUNE) Algorithm
(summarlzed in Algorlthm 1).

Lemma 3. 1f (12) is feasible, then the IMMUNE Algorithm
converges to a local optimum solution.

Lemma 3 provides a sufficient condition such that the
IMMUNE Algorithm converges to a local optimum. However,
even if (12) is not feasible, the system operator can still run the
IMMUNE Algorithm to obtain a local optimum solution if the
OPF problem remains feasible at each iteration of the algorithm.

We can also provide an upper bound on the number of itera-
tions that IMMUNE algorithm requires to converge. For this
reason, the algorithm needs to change discrete changes to the
capacities at each iteration.

Lemma 4. If the IMMUNE Algorithm changes c;; at each
iteration by a dlscrete amount such as c¢;; = = max{ L fij
—-A L’;laxj f,] Af,j} then it

O jer (Afl]-\ ) iterations.

Corollary 1. If generators’ cost functions are linear and F (n)
indicates the running time of the LP solver of choice with n
variables (e.g., simplex or ellipsoid algorithms), the IMMUNE
Algorithm terminates in O(mF (n)(3_; jep [A/\fﬂ ))-

Following a similar idea, one can decrease the running time
of the IMMUNE algorithm by applying more aggressive
update rules for the capacities in line 11 of the algorithm. For
example, line 11 can be replaced by ¢;; = 0.9(f;; — Afj™) or
cij =0.95(f; — Afi*). We call these variations of the
IMMUNE Algorlthm IMMUNE-0.9, and IMMUNE-0.95. In
Section VIII-B, we numerically evaluate and compare the per-
formance of these algorithms and demonstrate that more
aggressive update rules result in faster convergence.

terminates in at most
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Fig. 6. Complexity of secondary controller problem. (a) Secondary control-
ler problem setting, (b) an attack that maximizes the demand, and (c) an attack
that minimizes the demand at one node and maximizes the demand at another
node.

One favorable property of the IMMUNE Algorithm is that it
can be easily parallelized. This parallelization can be used to
simultaneously compute A f77** for all the lines at each itera-
tion in order to expedite the algorithm.

If the OPF problem becomes infeasible in any iteration of
the IMMUNE Algorithm, there are two ways to circumvent
the issue: (i) By considering higher temporary limits for the
lines (e.g., 1.1ij) which is a common practice in power sys-
tems operation, but the operator needs to ensure that line over-
loads can be cleared during the secondary control, or (ii) by
returning to the unit commitment problem and change the list
of committed generators to make sure (12) is feasible. We will
address the first approach in the next section in detail. How-
ever, the second approach is beyond the scope of this paper
and is part of our future work.

VI. POWER FLOWS: SECONDARY CONTROL

In cases that primary control cannot prevent line overloads,
the system operator has to clear these overloads during the
secondary control instead. In such cases, the operator needs to
make sure in advance that after the primary control’s response
to a MAD attack, there are operating points for the generators
such that the demand can be supplied with no line overloads
(i.e., the secondary controller can clear the overloads). Assum-
ing that the maximum and minimum reachable demands at
node ¢ by an adversary are pg; and pg;, respectively, this prob-
lem can be defined as the secondary controller problem:

Secondary controller problem: For any pgi,pa,-- -, Pdin
that V1 <4 < n: ps < psi < Dai» are there operating points
Dals- -+ Pgn for the generators such that V1 <i<mn: Dgi
< pgi < Pyis 17 (py — pa) = 0, and no lines are overloaded?

Definition 1. A grid is called secondary controllable if the
answer to the secondary controller problem is yes.

Notice that operating cost of the generators are not impor-
tant during the secondary control since the secondary control-
ler activates only after a potential attack and the operator
needs to bring back the grid to its normal state as soon as pos-
sible at any cost. Fig. 6 provides an example of the secondary
controller problem. As can be seen in Fig. 6(b), when the
demands are all equal to their maximum level after a MAD
attack, the demand can be supplied by generators with no line
overloads. However, as presented in Fig. 6(c), when the
demand is increased to its maximum level at one node and
decreased to its minimum at another one, there is no possible
way to supply the demand such that no lines are overloaded.
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This example clearly evinces that the secondary controller
problem is not intuitive.

In the following subsections, we study the secondary
controller problem in detail and provide efficient algorithms
to verify the secondary controllability of a power system.

A. Maxmin Formulation

One way of verifying the secondary controllability of a
power system is by exploiting linear bilevel programs [37],
[38]. The secondary controller problem can be written in the
form of a max-min linear problem which is a special form of
linear bilevel programs as follows:

max min_ ITQ’
Pd iy [0
st (1),(2),(3),(4),(5),
=1~ pi+d (16)
>0, 1<i<n

@Spdt Spdu IS <n

In optimization problem (16), vector p; should be selected
such that for the best possible selection of vector p; and posi-
tive auxiliary vector ¢, the objective value is maximized. The
following proposition relates the solution of (16) to the sec-
ondary controller problem.

Proposition 1. The optimal solution of (16) is 0 if, and only
if, the grid is secondary controllable.

Proof. 1If the optimal solution to (16) is 0, then for any
demand vector py, the vector of generation values p, can be
selected such that 17 (py —pa) =0 and no lines are over-
loaded. Hence, the grid is secondary controllable. Now if the
grid is secondary controllable, then for all demand vectors
pa» there exists a vector of generation p; such that TT(;IZ}
—py) = 0 and no lines are overloaded. Hence, the auxiliary
vector ¢ can be selected to be equal to 0 by the minimization
part of (16) for any vector p;. Therefore, the optimal solution
to (16) would be 0. u

Proposition 1 clearly demonstrates that solving (16) can
determine secondary controllability of a power system. More-
over, when the optimal solution of (16) is greater than 0, the
nonzero entries of the optimal vector ¢ can reveal the mini-
mum extra generation required to ensure secondary controlla-
bility of the system.

Despite many advantages of the formulation (16), the max-
min linear program is nonconvex [39] and proved to be NP-
hard [40]. Therefore existing efficient algorithms for solving
(16) only obtain local optimal solutions [38]. However, a local
optimal solution of (16) with value 0 does not guarantee the
secondary controllability of the system since the optimal solu-
tion may not be zero.

One way of solving (16) optimally, albeit in exponential
running time, is through brute force search. Following lemma
demonstrates that to solve the secondary controller problem,
one needs to check only the extreme demand points due to the
convexity of the space of all possible demand values and
linearity of power flow equations.

Lemma 5. The grid is secondary controllable, if and only if
forall pgi, . . ., pan Such that pg; € {Pai, pai } there exist operating
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points py1, .. ,pgn for the generators such that V1 <i <mn:
Dgi < Dgi < Dyis 17 (py — pa) = 0, and no lines are overloaded.
~ On the other hand, for a given demand vector py, it can be
verified in polynomial time whether there exist operating
points for the generators that satisfy the secondary controller
problem by solving the minimization part of (16) using LP:

17g

( (5), (17)

)
q

o"@i@
v

b (2) (3.
(>0, 1<i

S ’El/—\

<n

If the optimum solution to (17) is not 0, then the optimal
vector ¢ can be used by the operator to make more generators
online for controllability of the grid. Hence by solving (17) for
all extreme demand vectors, one can verify secondary control-
lability of a system in exponential running time and also find
how to make it controllable—if it is not-based on obtained
vectors ¢.

By focusing only on nodes with the largest demands, one
can approximately verify if for a subset of extreme points
there exist operating points for the generators satisfying the
secondary controller problem. In general, however, such an
approach may not be able to guarantee the secondary control-
lability of a grid. Hence, in the next subsection, we provide
sufficient conditions to ensure secondary controllability of a
grid in polynomial time.

B. Predetermined Secondary Controllers

Despite the difficulty in exact determination of secondary
controllability of a grid, in this subsection, we introduce and
exploit suboptimal predetermined controllers to verify control-
lability of a grid with no false positives (i.e., presented meth-
ods cannot determine uncontrollability of a system).

In order to verify secondary controllability of the grid, one
can find the best predetermined way to set the generation val-
ues given a demand vector py such that the maximum power
flows over all demand vectors is minimized. In particular, we
define the B—determined controller as follows.

Definition 2 ( E—determined controller). For any demand
vector py, set p, = (D1 pai) X B, for a vector B satisfying:

(i B>0,

i) 7g=1,
Gii) (Sp,7m) % B < 75
@) (S0 par) X B> 1y

Definition 3. A controller is called reliable, if for all feasi-
ble demand vectors py, it provides a vector of operating points
for the generators like p, such that | fl= B(p, — pu)| < f.

Proposition 2. 1If there exists a vector B such that the
B-determined controller is reliable, then the grid is secondary
controllable.

For a vector B satisfying conditions (i-iv) in Definition 2,
define vectors ;P := —¢; +B for 1 <i <mn (as in Section
V-B). The following lemma proves that maximum flow on the
lines over all feasible demand vectors, given a B-determined
controller, can deterministically be computed.
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Lemma 6. Given a B-determined controller, the maximum
power flow on each line e over all possible demand vectors is:

"~ (i + pai
max |fk| = Zi(ph 9 @) Bkwi(m

P_dﬁpbgﬁ =1

( ) (18)
Z" Ddi — Pdi B

The main question is now whether there exists a vector B
such that the maximum power flows as determined in (18) are
less than their capacities? We prove that one can examine this
efficiently and in polynomial time by solving the following
optimization:

min 7y
m.b.f
s.t. (i-iv) in Deflnltlon 2,
f=1BWP 55+ pa) /2 + BWP|(p7 — pa) /2,
f<nf,

(19)
in which matrix W =[5, .. &, #)]. The following
proposition demonstrates that (19) can be solved using LP in
polynomial time. Moreover, it indicates that the optimal solu-
tion to (19) can provide the best vector B for deterministically
controlling the grid and its optimal value demonstrates if the
corresponding B-determined controller is reliable.

Proposition 3. Optimization (19) can be solved using LP.
Moreover, if the optimal value n* to (19) is less than or equal
to 1, then the B*—determined controller obtained from the cor-
responding solution is reliable, and therefore the grid is sec-
ondary controllable.

From (18), it can be seen that the formula for computing
maximum flow on the lines consists of two separate sums
which can be controlled by different vectors and obtained a
better controller. Hence, one can define the (¥, B)-determined
controller as follows.

Definition 4 ((7, B)-determined controller). For any demand

vector pg, set py = (3o (Pai +pai)/2) XV + (i (Pai
—Pdi/2 — pai/2)) x B, for vectors y and f satisfying:
M B.7=0,

(i) 'y =1"8=1.
(i) (327 (Pai + pai) /2) x ¥ + (i (Pai
—Pai)/2) X B < Py,
(v) (30 (Pai + pai)/2) x ¥+ (i
+pai)/2) X B = py-
The (¥, E)-determjned controller generalizes the B—determined
controller (just set ¥ = B) and it is easy to see that the max-
imum power flow on the lines over all demand vectors,

given a (y ,3) determined controller can be computed simi-
larly to (18) as follows:

"~ (Pdi + pdi
max_|fp| = Zi(pd p_d)BkIUim

pd<pd<p 1 i=1 2

(—Pai
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Optimal (7, B)-determined controller can be found similar
to the optimal S-determined controller using an optimization
similar to (19) with a few small changes:

min_ n
03B f
s.t. (i—iv) in Definition 4,
= [BWY (pz + pa) /2| + IBWP|(57 — pa) /2,
f <nf.
(21)

Again, as in the B-determined controller case, the optimal
value of (21) determines if the optimal (¥, B)-determined con-
troller is reliable or not. Hence, the grid operator can use (21)
to efficiently determine the secondary controllability of the
grid, albeit obtaining false negatives in some cases.

In Section VIII, we numerically evaluate the performance of
the controllers introduced in this section. Before that, however,
we demonstrate that these controllers can be used to efficiently
provide lower bounds on the maximum scale of a MAD attack
for which the grid remains secondary controllable.

VII. aD-ROBUSTNESS

Power grids are required to withstand single equipment fail-
ures (e.g., lines, generators, and transformers) with no inter-
ruptions in their operation (a.k.a. N — 1 standard) [27].
Following N — 1 standard, we define a new standard for the
grid operation to ensure its robustness against MAD attacks
called oD standard. It requires grid operators to either prevent
line overloads (as in Section V) or be able to clear them (as in
Section VI) after a MAD attack by an adversary that can
change the demands by at most « fraction at each node.* We
call a grid that conforms with this standard, o D-robust.

In this section, for a given grid, we are interested in finding
the maximum « such that the grid is aD-robust. We denote
this value by «™**. Since ensuring that line overloads can be
cleared during the secondary control is less restrictive than
preventing them after the primary control, we mainly focus on
finding the maximum o such that the grid is a D-robust based
on its ability to clear line overloads after the secondary con-
trol (i.e., grid’s secondary controllability).

As we described in the previous section, verifying the second-
ary controllability of the grid for a given upper and lower limits
on the demands is hard. Hence, we cannot expect to find the o™**
efficiently. Nevertheless, in the next two subsections, we develop
efficient methods for obtaining upper and lower bounds on o™**.

A. Upper Bound

Assume p;" denotes the vector of predicted demand values. For
a given «, the demand vector py resulted by a MAD attack will be
bounded by (1 —a)py’ < py < (1+ a)py’. Now if a grid is
aD-robust, it should particularly be robust against the maximum
demand attack. Hence, finding the maximum « for which the grid

“#This is based on the assumption that the IoT bots are uniformly distrib-
uted in an area. Therefore, an adversary’s ability to change the demands is
determined by the initial demand at each node.
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can handle the maximum demand attack provides an upper bound
for o™**. Such « can be found efficiently by an LP:

max_ o
o.,pg.pg.f 0

st (1),(2).(3),(4), (5),

Proposition 4. Assume & denotes the optimal value of (22),
then o™ < @.

The optimal value of (22) provides a good upper bound for
o™ and can be computed efficiently. One can also consider
pa=(1— oz)pji to obtain another upper bound. However, if
we set py = (1 — a)pil in (22) instead of py = (1 + a)pg, it is
easy to see that its optimal solution will be « = 1. Hence, the
case of py = (1 — a)p); only provides a trivial upper bound of
o™ <1 (assuming p, = 0).

In the next subsection, we provide algorithms to find lower
bounds for o based on the controllers developed in Section VI-B.

B. Lower Bound

To find a lower bound for «™**, we use the controllers in Sec-
tion VI-B to limit the secondary controller’s ability to change the
generators’ operating points. Limiting the secondary controller’s
ability allows us to efficiently approximate the maximum «, but
because of this limitation, we only obtain lower bounds for o™**.

First, assume that we limit the secondary controller to the
B controller for a fixed B We show that in this case the maxi-
mum « can be found by solving a single LP. Assume py" is the
optimal solution to (22) with value & and set f = e /05" |l
(i.e., the controller only scales down the generation compared to
the maximum demand case). Using (18), we show that the
optimal value of the following LP gives a lower bound for oe™**:

ma}x o
st (T+a) (X mh) B <Py,
(1 =) (i ph) % B> py, (23)
E}: ﬁ*/ll@*lll,
= [BWW 51| + BW| (e,
Ifzyl < fis V( i,j) € E.

Proposition 5. The optimal solution «* of (23) can be found
in polynomial time using LP. Moreover, o* < o™*.

Optimization (23) allows us to efficiently compute a lower
bound for «™**. However, similar to Section VI-B, instead of
fixing B, we can compute a B that results in the largest possible
lower bound. Due to the nonlinearity of the problem, however,
we cannot optimize B and found maximum « in (23) simulta-
neously. The idea is to fix o, compute the optimal f and 7
using (19), then update « using 7 and repeat the process until
a does not change by much. As in Section VI-B, we can use
the (¥, B)—determined controller instead of the S-determined
controller to improve the obtained lower bound. The method
is summarized in Module 1. When y = B, Module 1 provides
a lower bound on o™ like of) based on B-determined
controllers.
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TABLE I
PERFORMANCE EVALUATION OF SAFE AND IMMUNE ALGORITHMS ON THE
NEW ENGLAND 39-BUS SYSTEM. COST VALUES ARE IN $/h7. NUMBERS
IN PARENTHESIS INDICATE THE NUMBER OF ITERATIONS
ToOK THE IMMUNE ALGORITHM TO CONVERGE

« | OPF | SAFE | IMMUNE |IMMUNE-0.95 | IMMUNE-0.9
0.09 | 41264 B 13434 (7) 43805 (4) 13859 (3)
0.08 | 41264 | 43628 | 42394 (8) 12431 (3) 42982 (3)
007 | 41264 | 42665 | 41773 (5) 11991 (3) 12405 (3)
0.06 | 41264 | 42050 | 41492 (4) 11698 (3) 11534 (2)
0.05 | 41264 | 41668 | 41339 (10) | 41421 (3) 11419 (2)

Module 1 Lower Bound on o™ using (¥, f)-determined
Controllers

Input: G, A
1 o=@
2: flag=1
3 i=0
4:  while flag do
5: flag=0
6: Compute the optimal value 7, ¥, and B of (21) for pg =

(1 + a)py and pg = (1 — a)pyt

7 Set a1 = o) £ \(1 — 1)
8: if o) — o] > 0.001 then
9: flag=1

10: t=1+1

11:  return o = o 7, and B

Notice that A in Module 1 should be set such that updates to o
at each iteration are neither too large that the module falls into a
loop, nor are too small that it takes a long time to converge.

Proposition 6. When y = g, for a good A, Module 1 con-
verges to an «'®) value such that o®) < ™. Moreover,
o < alP). (Recall that o* is the optimal solution of (23).)

Proposition 7. For a good A\, Module 1 converges to an
a"#) value such that «#) < o™ Moreover, a®) < 7P,

In the next section, we numerically compare the upper
bound &, and lower bounds o*, «®, and a™#) with o™ in
order to demonstrate the tightness of these bounds in approxi-
mating o™**.

VIII. NUMERICAL RESULTS

In this section, we first numerically evaluate the performance
of SAFE and IMMUNE Algorithms developed in Section V.
Then, we numerically evaluate the accuracy of the upper and
lower bounds developed in Section VII in approximating the
maximum « such that the grid is o« D-robust (i.e., ™).

A. Simulations Setup

For solving LP, we use CVX, a package for specifying and
solving convex programs [41], [42]. For computing the opti-
mal power flow part of the IMMUNE Algorithm, we use
MATPOWER [43] which is a MATLAB based library for
computing the power flows. We also exploit the power system
test cases available with this library for our simulations. In
particular, we use the IEEE 14-bus, 30-bus, and 57-bus test
systems, and the New England 39-bus system.
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TABLE II
PERFORMANCE EVALUATION OF SAFE AND IMMUNE ALGORITHMS ON THE
IEEE 30-BUS SYSTEM. COST VALUES ARE IN $/h7. NUMBERS IN
PARENTHESIS INDICATE THE NUMBER OF ITERATIONS TOOK
THE ALGORITHM TO CONVERGE

o« | OPF | SAFE | IMMUNE
031 | 5652 - NE)
03 | 5652 | 61438 —@)
028 | 5652 | 5716 | 569.6 (3)
026 | 5652 | 56532 | 56522 (2)
022 | 5652 | 5652 | 5652 (1)

The line capacities are only provided for the IEEE 30-bus
and New England 39-bus systems. Hence, for the other two
systems, we set the capacities ourselves in two-different ways:
(i) following [9] for each line we set E = max{1.2
| £1], median(|f1])}, and (i) set f; = 1.1max(|f']), in which
ff are the power flows given the default supply and demand
values in the test systems. When the first method is used for
determining the capacities, it is indicated by (f) in front of the

grid name, and when the second method is used, it is indicated
by (u) (e.g., see Table III).

B. Primary Control

In this subsection, we evaluate the performance of SAFE
and IMMUNE Algorithms on NEW England 39-bus and
IEEE 30-bus systems. We assume that (1 —cx)pjﬁ < pa <
(1+ a)pIM and consider different o values to capture attacks
with different magnitudes (which depends on the number of
controlled bots by an adversary).

Table I compares the performance of SAFE and three
variations of the IMMUNE Algorithm for different o val-
ues. Recall from Section V-B that IMMUNE-0.95 and
IMMUNE-0.9 are similar to the IMMUNE Algorithm but
apply more aggressive updates on the capacities in each
iteration of the algorithm. This, as mentioned in Section
V-B and demonstrated numerically here in Table I, results
in faster convergence of the algorithm. Since the OPF prob-
lem does not consider the robustness of the grid against
MAD attacks, its value is independent of the magnitude of
an expected attack (o).

As can be seen in Table I and as we expected, the grid
needs to be operated in a non-optimal operating point in order
to be robust against MAD attacks. The required percentage
increase in the operating cost of the grid obtained by the
SAFE and IMMUNE Algorithms versus « are presented in
Fig. 7. IMMUNE Algorithm results in the least amount of
increase in the operating cost. However, since as demon-
strated in Table I, IMMUNE Algorithm takes longer that
IMMUNE-0.95 and IMMUNE-0.9 Algorithms to converge,
the system operator may prefer to use IMMUNE-0.95 which
performs approximately as well as the IMMUNE Algorithm
but converges faster. Notice that due to nonconvexity of the
problem, a more aggressive update rule may not necessarily
result in a costlier operating point, as we see here that
IMMUNE-0.9 results in a lower operating cost than
IMMUNE-0.95 for o = 0.06.
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TABLE III
LOWER AND UPPER BOUNDS FOR a™**
Test case a* aP) a(r:P) amax &
IEEE 14-bus (f)| 0.058 | 0.1649 | 0.1906 0.2117 0.2117
IEEE 14-bus (u)| 0950 | 1.0243 | 1.1454 1.1479 1.1479
IEEE 30-bus 0.214 | 0.2851 | 0.3126 0.37 0.3717
NE 39-bus 0.039 | 0.0796 | 0.0962 0.0962 0.0962
IEEE 57-bus (f)| 0.024 | 0.0307 | 0.0311 < 0.09 0.2
IEEE 57-bus (u)| 0.128 | 0.2396 | 0.2864 - 0.3468

It can also be seen that SAFE Algorithm performs relatively
well in finding a robust operating point of the grid much faster
than all variations of IMMUNE Algorithm (recall from
Section V-C that SAFE Algorithm requires only to solve a
single LP). However, it may become infeasible for higher
magnitude attacks (in this case for « = 0.09).

We repeated the simulations on the IEEE 30-bus system.
The results are presented in Table II. First, it can be seen that
the IEEE 30-bus system can be protected against much stron-
ger attacks (o« = 0.3) which demonstrates that different grids
may have different levels of robustness against MAD attacks
(we will make a similar observation in the secondary control
case in the next subsection). Unlike the New England 39-bus
case, here the IMMUNE Algorithm does not converge for the
strongest attack (o = 0.3) rather than the SAFE Algorithm.
This demonstrates that each of these algorithms may be useful
in finding a robust operating point for the grid in different
scenarios—besides their running time and optimality.

As can be seen in Table II, in this case also, if the IMMUNE
Algorithm converges, it converges to a lower cost operating
point than the one obtained by the SAFE Algorithm. Here, the
IMMUNE Algorithm converged within a few iterations.
Therefore, there was no need to consider a faster variation of
the IMMUNE Algorithm as in the New England 39-bus case.

Finally, it can be seen that for o = 0.31, none of the
algorithms can obtain a robust operating point for the grid.
We show in the next subsection that this case can be handled
by the secondary controller instead (assuming that lines can
handle temporary overloads).

C. Secondary Control

In order to evaluate the performance of the controllers
developed in Section VI-B, in this subsection, we focus on
their performance in approximating o™ as described in
Section VII.

Table III compares the maximum « obtained by different
methods in several test cases. As can be seen and proved in
Section VII, in all cases, o < alf) < qrh) < gmax < g,
Notice that for the IEEE 57-bus system, since the brute force
search algorithm needs to solve (17) about 2*? times for each
given « to determine the secondary controllability of the grid,
we could not exactly determine o™**. However, in the case of
IEEE 57-bus (f), after initial iterations of the brute force
search algorithm, we could determine that the grid is not sec-
ondary controllable for 0.09 < « as presented in the table.

It can be seen that & provides a very close upper bound for
o™ most of the time (except in IEEE 57-bus (f)). And since
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«
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Fig. 7. Percentage increase in operating cost of the grid in order to make it
robust against MAD attacks obtained by SAFE and IMMUNE Algorithms ver-
sus the magnitude of the attack («) in New England 39-bus system.

Number of lterations
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0506 070809 1 111213 14 15
A

Fig. 8. Number of iterations in Module 1 before it converges versus its
update step size A in the IEEE 30-bus system.

it can be computed by a single LP, the numerical results
suggest that it is an efficient and reliable way to find an upper
bound for o™®*. On the other hand, o™ that can also be com-
puted efficiently by a single LP does not provide a very close
lower bound in the test systems that we studied here. How-
ever, «#) and ") that require more time to be computed,
provide much better lower bounds. In particular, in the case of
New England 39-bus system o”#) = & which implies that
™ — o(v:h) = 4.

Although finding «®) and «*#) requires solving an LP in
several iterations (as summarized in Module 1), the number of
iterations can be minimized by selecting a good step size .
For example, the number of iterations of Module 1 versus A is
presented in Fig. 8 in the IEEE 30-bus system. As can be seen,
for the optimal A (in this case A = 1.1), the module converges
in 3 iterations. Hence, it can find a good lower bound for «, as
shown in Table III, very efficiently and in polynomial time
(since it solves a single LP at each iteration). A good A can be
found in practice heuristically after the first few iterations and
observing the rate of changes.

Finally, as mentioned in Section VI, the secondary control-
lability becomes more important when the primary controller
cannot prevent line overloads, but the overloads can be toler-
ated for a short period of time. An example of such scenario
happens in IEEE 30-bus system and when o = 0.31. As can
be seen in Table II, none of the SAFE and IMMUNE
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Algorithms can find a robust operating point for the grid in this
case. However, as can be seen in Table III, since this value is
less that «™** = 0.37, any line overloads can be cleared by the
secondary controller.

D. Open Questions

As we observed in the previous two subsections, different
test systems demonstrate different levels of robustness against
MAD attacks. For example, as can be seen in Table III, the
o™ for the IEEE 30-bus system is 0.37, whereas this value
for the New England 39-bus system is only 0.0962. This dif-
ference in robustness can be due to the structure of the net-
work as well as the location of the generators and loads.
Analytically studying such features and developing efficient
algorithms to improve grid robustness by adding extra lines to
a system or build future generators at certain locations would
be interesting future research directions.

Another important observation from the numerical results is
that the performance of the proposed algorithms varies in dif-
ferent test systems. For example, in the New England 39-bus
system, the IMMUNE Algorithm successfully finds robust
operating points for the generators for different o values,
whereas in the IEEE 30-bus system the IMMUNE Algorithm
may not converge for o = 0.3. Moreover, as can be seen in
Table III, the approximation algorithms for estimating o™**
provide tight bounds for the New England 39-bus system,
whereas the bounds are not tight for the IEEE 30-bus system.
Hence, finding sufficient conditions on the structure and prop-
erties of a test case under which the approximation bounds are
tight and the IMMUNE Algorithm is guaranteed to converge
to a locally optimal solution would be important future
research directions.

IX. CONCLUSIONS

In this paper, we have analyzed the effect of MAD attacks
on power flows in detail and presented SAFE and IMMUNE
algorithms for finding robust operating points for the genera-
tors during economic dispatch such that no lines are over-
loaded after automatic primary control response to any MAD
attacks. Moreover, we have demonstrated that in cases for
which temporary overloads can be tolerated, the system opera-
tor can approximately but efficiently verify in advance if line
overloads can be cleared during the secondary control after
any MAD attacks. Based on these two forms of defenses, we
have defined the notion of aD-robustness and demonstrated
that upper and lower bounds on the maximum « for which the
grid is e D-robust can be found efficiently and in polynomial
time. We finally have evaluated the performance of the devel-
oped algorithms and methods, and showed that they perform
very well in practical test cases.

We believe that with universality and growth in the number
of high-wattage IoT devices and smart thermostats, the proba-
bility of MAD attacks is increasing and there is an urgent need
for more studies on the potential effects of these attacks and
developing tools for grid protection. Our work provides the
first methods for protecting the grid against potential line
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failures caused by newly discovered MAD attacks via IoT
devices. However, our work can be extended in several direc-
tions. A natural direction is to extend the developed results to
the AC power flow model. A more challenging research direc-
tion is to extend the methods to the unit commitment phase of
the grid operation. Since the regular unit commitment problem
is already a combinatorial problem, incorporating security
constraints into that problem will be a challenging task.

In the worst-case scenario in which the scale of a MAD
attack is greater than grid robustness (i.e., adversary manip-
ulates the demands by greater than o™ factor), the grid
operator may not be able to clear the possible line overloads
in a timely manner. This can consequently force the over-
loaded lines to trip leading to more line overloads and a
cascading failure in the system [3]. To prevent cascading
failures in such scenarios, the grid operator may apply com-
mon control algorithms such as optimal load-shedding [44]
or power grid intentional islanding [45]. However, since an
adversary can suddenly decrease the demands after an ini-
tial increase in the demands, these control algorithms may
not be effective in their classical form (e.g., a sudden
decrease in the demands after load-shedding may result in a
critical increase in the frequency of the system). Hence,
investigating ways to improve these control algorithms to
protect the grid against MAD attacks in the worst-case sce-
narios is also a problem of considerable interest.

X. OMITTED PROOFS

Proof of Lemma 1: First, notice that 1/ R; is the rate with which
generator ¢ increases its generation to compensate for the extra
demand. Hence, ¢; denotes the time that generator ¢ reaches its
maximum capacity if the total supply does not meet the demand
before ¢;. Accordingly, generators reach their maximum capac-
ity in the order of their ¢; values from smallest to largest. Using
this, it is easy to see that .S; is the total change in the generation
at time t;. Therefore, if S; < Sh,,, then generators 1 to 7 will
reach their maximum capacities before supply meets the total
demand. Moreover, since Sa,, < Sjy1, generators i + 1,...,n
do not reach their capacities and each contribute according to
their droop characteristic to compensate for the remaining
Sapg — > 11 (gt — pgr)- u
Proof of Lemma 3: First, notice that for each line (¢, j) € F and
in each iteration of the IMMUNE Algorithm, ¢;; is not increas-
ing. To see this, assume c;; changes in the I™ jteration, and
¢4 and ¢ denote the value of ¢;; before and after the change,
respectively.  Since ¢;; is changed, it means that
fij < |fijl +Af3™. On the other hand, |f;| < ¢/'. Hence,
fij < S+ AfE or fij— AfE < Ml Since v
= fij — Af™, therefore 5™ < ¢

On the other hand, from (11), it is easy to verify that after
each iteration f;; — A/\ﬁ] < ¢;;. Hence, c;;s cannot get smaller

than the fixed values f_,] — A/\ﬁ] and since (12) is feasible, the
OPF problem remains feasible after each iteration of the
IMMUNE algorithm. Now since c¢;;s are non-increasing and

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 26,2020 at 23:24:42 UTC from IEEE Xplore. Restrictions apply.



1324

limited by lower bounds, the algorithm is guaranteed to
remain feasible and converge to a local optimum solution. H
Proof of Lemma 4: In each iteration of the IMMUNE algo-
rithm, at least for a single line (3, j), the ¢;; will be updated.
Otherwise, the algorithm should terminate (either converges
or become infeasible). On the other hand, since A fij is the
maximum possible flow change on line (4, j), the c;; cannot
get smaller than f;; — Af;;. Hence, since the updates are dis-
crete, in the worst case that only a single capacity is updated
by a single unit at each iteration, the algorithm can take at
most » -, e [A fij] iterations to terminate. u
Proof of Lemma 5: Assume p;V, pi® ... pu2") denote all
possible extreme demand vectors. Now assume that for each
extreme demand vector p;(*), there exists an operating vector
ﬁ;m for generators that satisfies the secondary control condi-
tions. We prove that for all demand vectors p; within the
upper and lower limits also there exists an operating vector pj
that satisfies all the secondary controller conditions. Since the
space of all the demand vectors is convex, each demand vector
pq within the upper and lower limits can be written as a
convex combmatlon of the extreme pomts such as py =

Z?rll Bioa in which Vi: B, >0 and ZZ 1 Bi = 1. We show
that p; = ZI 1 Bi pgi satisfies all the secondary controller
conditions. First, since p; is a convex combination of p,s
and they are within generators upper and lower limits, so is py,.

Second, it is easy to see that TT(@ —py) = Zfil ﬂiTT(p*g(fJ_

) = Zil B0 =0. Finally, based on our assumptions, for
each i: —f < B(p, — pil )< f. Hence, B(p, —py) =
S BB i) S ST B = f. Similary, —f <

B(p, — pa). Therefore, p, satisfies all the constraints of the
secondary controller problem. The reverse can also be simi-
larly proved using contradiction method. u
Proof of Proposition 2: If there exists a vector B that the
p-determined controller is reliable, then for any feasible
demand vector py, vector of operating points py =

(37, pai) x B satisfies the demands (i.e., 17(p, — py) = 0)
and |f| = |B(p; — pu)| < f. Therefore, the grid is secondary
controllable. [ |

Proof of Lemma 6: From the definition of w;(#) vectors, it is easy
to verify that for a demand vector py, the power flow on line ey,
can be computed as f = Y ., puB w0;P). For | fi| to be maxi-
mized, each p;4 should be either equal to py; or pg; based on signs

of Byw; ) and fx- On the other hand, it is easy to see that pg; =

(m+pdz> (pd7 pd7) (pdz +pdz> (pd1 pdz
B and pg; =

. So by consider-
ing only pg; € {pdi, Pdi}» frcan be computed as follows:

fr= Zpdinwi(m = Z ( (P ;LM) + (P — 5 P ) By #)
=1 i=1
_ zn: (]Tdi;pdz (/3) n Z pdz pdz) )Bsz B)
=1

From the equation above, it can be seen that the first part is
fixed but the second part can be selected based on the sign of
the first part in order to maximize |f;|. Hence, it is easy to see
that maximum value of | fj| is:
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(pdz +Pd1)
max_|fl = (3" P2 g

pd<pd<pd i=1 2
"~ (Pdi — pai) -
+272 — |Bkw7;(ﬂ)|.
— -

Proof of Proposition 3: In order to solve (19) using LP, one
can define auxiliary vector @ and matrix Q and replace the
constraint f = [BW) (57 + pa) /2| + |[BW)|(57 — pa)/2 in
(19) with following set of inequalities: o

f=1+Qmi—pd/2,

i > BW (pi+pa) /2,

i > ~BW (5 + pa) /2,
Q>BWY¥ Q>-BWWY,

in which the matrix inequalities are entry by entry. Now it is
easy to verify that since the optimization minimize 7 and
f < nf, in the optimal solution f will be minimized and there-

fore @ and Q will be equal to |BW (57 + py)/2| and
|BW(’3 |, respectively. Hence using the above transformation,
(19) can be solved using LP. It can be seen that if the optimal
solution n* to (19) is less than or equal to 1, then since f is
equal to the maximum power flow on the lines over all possi-
ble demand vectors (and corresponding generation operating
points obtained by the B*—determined controller) and
fg n* f < f, the B*-controller is reliable. Hence, the grid is
secondary controllable. |
Proof of Proposition 4: Since in optimization (22) only the max-
imum demand case (i.e., py = (1 +a)py') is being verified to
be satisfiable by the generators with no line overloads, the opti-
mal solution of (22) only provides an upper bound for ¢/***, B
Proof of Proposition 5: Using (18), it can be verified that the
maximum power flow on a line (¢, j) over all the demand vec-
tors and corresponding generation vector determined by the
p-determined controller is equal to [BW#p;f| +| BW®)
|(epy"). Hence, optimization (23) maximizes & such that the
grid is o D-robust using the specified B-determined controller.
On the other hand, since the operating points of the generators
are limited to the operating points obtained by the specified
B—determined controller, it is obvious that demand vectors that
are controllable by this controller are a subset of all controlla-
ble vectors. Hence, o* only provides a lower bound for o™*.
Finally, it is also easy to see that similar to the technique
presented in the proof of Proposition 3, optimization (23) can
be solved using LP and therefore «* can be computed in
polynomial time. u
Proof of Proposition 6: At each iteration, if &’ > o™, then
the solution 1 to (19) would be greater than 1. Hence, if A is
small enough, 0 < o) = ) 4 A1l—n) < o, Similarly,
it can be shown that if &? < o™= then o) > «®. On the
other hand, for ¢! = @™**, the solution n to (19) would be zero
and o) = o)) = o™ Hence, a™* is the only absorbing
point for this algorithm which it converges to (if A is small
enough). u
Proof of Proposition 7: The convergence proof is similar
to the proof of Proposition 6. It is also easy to see that
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since B-determined controllers are a special case of

(7, B)-determined controllers, af) < V#). |
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