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Abstract—Power grids have recently been shown to be
vulnerable to MAnipulation of Demand (MAD) attacks using
high-wattage IoT devices. In this paper, we introduce two forms
of defenses against line failures caused by these attacks: 1) we
develop two algorithms named SAFE and IMMUNE for finding
efficient operating points for generators during the normal
operation of the grid such that no lines are overloaded instantly
after any potential MAD attacks, and 2) assuming lines can
temporarily tolerate overloads, we develop efficient methods to
verify in advance if such overloads can quickly be cleared by
changing the operating points of the generators after any attacks.
We then define the novel notion of aD-robustness for a grid
indicating that line overloads can either be prevented or cleared
after any attacks based on the two forms of introduced defenses if
an adversary can increase/decrease the demands by at most a
fraction. We demonstrate that practical upper and lower bounds
on the maximum a for which a grid is aD-robust can be found
efficiently in polynomial time. Finally, we evaluate the
performance of the developed algorithms and methods on
realistic power grid test cases.

Index Terms—Power grid, IoT, cyber attacks, demand
manipulation, control.

I. INTRODUCTION

POWER grids, as one of the most essential infrastructure

networks, have been repeatedly shown in the past few years

to be vulnerable to cyber attacks. The most infamous example

of these attacks was on the Ukrainian grid that affected about

225,000 people in December 2015 [1]. However, smaller scale

attacks on regional power grids have been shown in a recent

report to be more common and pervasive [2]. As indicated in

the report, “Hackers are developing a penchant for attacks on

energy infrastructure because of the impact the sector has on

people’s lives” [2].

Because of this ever-growing threat, there has been a signifi-

cant effort by researchers in recent years to find methods to pro-

tect the grid against cyber attacks. These efforts have been

mainly focused on potential attacks that directly affect different

components of power grids’ Supervisory Control And Data

Acquisition (SCADA) systems. Many system operators prefer

to completely disconnect their SCADA systems from the Inter-

net in the hope that their systems remain unreachable to hackers.

Despite these efforts, the power demand side of the grid

operation, which is not controlled by SCADA, has been

neglected as being directly susceptible to attacks in security

assessments due to their predictable nature. However, as the

authors [3] and Dabrowski et al. [4] have recently revealed,

the universality and growth in the number of high-wattage

Internet of Things (IoT) devices, such as air conditioners and

water heaters, have provided a unique way for adversaries to

disrupt the normal operation of power grid, without any

access to the SCADA system [5], [6]. In particular, an adver-

sary with access to sufficiently many of such high-wattage

devices (i.e., a botnet), can abruptly increase or decrease the

total demand in the system by synchronously turning these

devices on or off, respectively. We call these attacks MAnipu-

lation of Demand (MAD) attacks (see Fig. 1).

An abrupt increase/decrease in the total demand results in

abrupt drop/rise in the system’s frequency. If this drop/rise is

significant, generators will be automatically disconnected
from the grid and a large scale blackout occurs within sec-

onds [3], [4]. If the drop/rise in the frequency is not significant,
the extra demand/generation can automatically be compen-

sated by generators’ primary controllers, and the frequency of

the system will be stabilized. As a result of this automatic
change in the generation–and demand by the adversary–the

power flows in the transmission network change based on
power flow equations. Since the power flows are not con-

trolled by the grid operator at this stage, this change in the

power flows may result in line overloads and consequent line-
trippings. These initial line failures can initiate a cascading

line failure and result in a large scale blackout in the grid [3].
For example, it has been demonstrated that only a 1% increase

in the demands at certain scenarios may initiate a cascading

failure leading to 86% power outage in the system.

The grid operator can protect the grid against initial drop/rise

in the system’s frequency caused by a MAD attack by ensuring

that the system has enough inertia (mostly through rotating gen-

erators) and there is enough available spinning reserve (i.e., gen-

erators have enough extra generation capacity) [3]. However,

protecting the grid against possible line overloads and failures

after a MAD attack, which is the main focus of this paper, is

more analytically and computationally challenging. Such

defenses require the grid operator to analyze all possible MAD

attacks and their consequences on the power flows and select

operating points for the generators (i.e., their power generation

output) to satisfy the power demands such that no lines are over-

loaded after anyMAD attacks.
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We first focus on finding operating points (namely robust

operating points) with the minimum cost for the generators such

that no lines are overloaded after the automatic primary response

of the generators to any MAD attacks. Since changes in power

flows after a MAD attack directly depend on generators’ operat-

ing points, finding the optimal operating points for the genera-

tors requires solving a nonconvex and nonlinear optimization

problem which is hard in general. Despite this hardness, we

develop two algorithms named the Securing Additional margin

For generators in Economic dispatch (SAFE) Algorithm and

the Iteratively MiniMize and boUNd Economic dispatch

(IMMUNE) Algorithm for finding suboptimal yet robust operat-

ing points for the generators efficiently. The SAFE Algorithm

provides robust operating points for the generators by solving a

single Linear Program (LP). The IMMUNE Algorithm, on the

other hand, requires a few iterations until it converges, but it

provides robust operating points with lower costs than the ones

obtained by the SAFEAlgorithm.

In situations for which the operating cost of the grid in a

robust state is costly (or no robust operating points exists due

to lack of enough resources), the grid operator may decide to

allow temporary line overloads–by increasing thresholds on

circuit breakers–in the case of a MAD attack, and clear the

overloads during the secondary control. During the secondary

control, which comes right after the automatic primary con-

trol, the grid operator can directly change generators’ operat-

ing points in order to bring back the system’s frequency to its

nominal value and clear any line overloads. To make sure that

line overloads can be cleared during the secondary control, the

grid operator needs to verify in advance whether for any

potential MAD attack, there exist operating points for the

generators satisfying demands such that no lines are over-

loaded (namely, the grid is secondary controllable). However,

due to the extent of the attack space, checking all possible

attack scenarios is computationally impractical. Hence, we

develop several predetermined control policies that can be

used to verify the secondary controllability of the grid in most

scenarios with no false positives.

We then evaluate the robustness of grids against MAD

attacks with different magnitudes. The magnitude of an attack

can be determined by the fraction of demand (denoted by a)

that the adversary can increase or decrease at each location. We

call a grid aD-robust if either line overloads can be prevented

(i.e., robust operating points exist for generators) or they can be

cleared during the secondary control (i.e., the grid is secondary

controllable) after any MAD attacks by an adversary that can

change the demands by at most a fraction a. In general, finding

the maximum a such that a given grid is aD-robust, is hard.

However, by focusing on grid secondary controllability and the

developed predetermined control policies, we provide efficient

methods for computing practical upper and lower bounds on the

maximum a in polynomial time.

Finally, we evaluate the performance of the developed algo-

rithms and controllers numerically. For example, in the New

England 39-bus system, we show that the SAFE and IMMUNE

Algorithms find operating points for the generators with at

most 6 and 2 percent increase in the total operating cost such

that the grid is robust against MAD attacks of magnitude

a ¼ 0:08. We also evaluate the performance of the developed

methods for approximating the maximum a such that the grid

is aD-robust and show that for example in the New England

39-bus system, the provided lower and upper bounds are tight

and are equal to the maximum amax ¼ 0:0962.
To the best of our knowledge, our work is the first to study

the effects of potential MAD attacks on the power flows in the

grid and provide efficient preventive algorithms to avoid line

failures after the primary control response, and also efficient

methods to verify if the line overloads can be cleared during

the secondary control. These algorithms and methods can be

adopted by grid operators to protect their systems against

MAD attacks now and in the near future.

The rest of this paper is organized as follows: Section II

provides related work and Section III presents a brief introduc-

tion to the power system’s operation and control. In Section IV,

we introduce the MAD attacks and provide their basic proper-

ties. In Section V, we present the SAFE and IMMUNE

algorithms and in Section VI, we provide efficient methods for

verifying secondary controllability of a grid. Section VII

provides methods to evaluate the robustness of grids against

MAD attacks and Section VIII presents numerical results.

Finally, Section IX provides concluding remarks and future

directions. To improve the readability of the paper, some of the

proofs are moved to Section X.

II. RELATED WORK

Power systems’ vulnerability to failures and attacks has

been widely studied in the past few years [7]–[12]. In a recent

work [13], Garcia et al. introduced Harvey malware that

affects power grid control systems and can execute malicious

commands. Theoretical methods for detecting cyber attacks

on power grids and recovering information after such attacks

have also been developed [14]–[22]. Another related type of

cyber attacks called load redistribution attacks has been stud-

ied by Yuan et al. [23]. However, these type of attacks change

only the measurements at the loads in order to force the grid

operator into problematic corrective actions rather than actu-

ally changing the loads as have been studied in our work.

Overall, most of the previous work on protecting the grid

Fig. 1. The MAD attack. An adversary with access to an IoT botnet of high-
wattage devices can remotely and synchronously switch on/off these devices
in order to change power flows on the lines in a power transmission network
and cause line overloads and failures.
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against attacks have focused on attacks that directly target the

power grid’s physical infrastructure or its control system.

The possibility of load altering attacks on smart meters and

large cloud servers has been first introduced by Mohsenian

et al. [24]. Their work was mostly focused on minimizing the

total cost of protecting the loads (which is not always possible,

especially for distributed IoT devices) against such attacks.

Amini et al. [25] have also recently studied the effects of load

altering attacks on the system’s dynamics and ways to use the

system’s frequency as feedback to improve an attack. How-

ever, until very recently, practical ways to perform such

attacks on a large-scale and their consequences on power

flows were not fully studied [3]. Hence, little attention has

been given to protecting the grid against line failures caused

by these type of attacks.

In three very recent papers, Dvorkin and Sang [26],

Dabrowski et al. [4], and our work [3] revealed the possibility

of exploiting compromised IoT devices to manipulate the

demands and to disrupt the normal operation of the power grid.

Dvorkin and Sang [26] modeled their attack as an optimization

problem for the adversary—with complete knowledge of the

grid—to cause circuit breakers to trip in the distribution net-

work. Dabrowski et al. [4] studied the effect of demand

increases caused by remote activation of CPUs, GPUs, hard

disks, screen brightness, and printers on the frequency of the

European power grid. In [3], we analyzed the effects of sudden

increase and decrease in the demand via an IoT botnet of high-

wattage devices from various operational perspectives and

demonstrated that besides frequency instability, such attacks

can also result in widespread cascading line failures in the

transmission network leading to large-scale blackouts. Never-

theless, practical preventive defenses against possible line fail-

ures caused by these attacks have not been developed yet.

Finally, while there have been extensive efforts in recent

years to develop efficient algorithms for solving the Optimal

Power Flow (OPF) problem [27]–[29] and its different varia-

tions including Security Constrained OPF (SC-OPF) [30]

(which considers grid robustness against possible line outages)

and Chance Constrained OPF (CC-OPF) [31] (which consid-

ers uncertainty in the output of the renewable resources), since

these works do not consider grid robustness against adversar-

ial changes in the demands, our work is different from previ-

ously studied variations of the OPF problem. Moreover, the

second part of this work deals with secondary controllability

of the grid after an attack which is a totally different problem

from OPF and its variations.

III. MODEL AND DEFINITIONS

In this section, we provide a brief introduction to power sys-

tems’ operation and control. Our focus is on the power trans-

mission network.

Throughout this paper, we use bold uppercase characters to

denote matrices (e.g., A), italic uppercase characters to denote

sets (e.g., V ), and italic lowercase characters and overline arrow

to denote column vectors (e.g.,~u). For a matrix Q, Qi denotes

its ith row, qij denotes its ði; jÞth entry, and QT denotes its

transpose. For a column vector~y,~yT denotes its transpose, and

k~yk1 :¼
Pn

i¼1 jyij is its l1-norm. For a variable x, sgnðxÞ
denotes its sign, and x and x denote its upper and lower limits,

respectively. For a vector~y, for simplicity of notation, we drop

the vector sign ~ in denoting vectors of upper and lower limits

on the entries of ~y as y and y, respectively. Finally, ~e1; . . .;~en
denote the fundamental basis of Rn and ~1 ¼ Pn

i¼1~ei denotes
the all ones vector.

A. Power Flows

Power flows are governed by a set of differential equations.

In the steady-state, using phasors, these differential equations

can be reduced to a set of algebraic equations on complex

numbers known as the Alternating Current (AC) power flow

model. Due to the nonlinearity of AC power flow equations and

the computational complexity of solving these equations, in

practice and in day-ahead power grid contingency analysis and

planning, the linearized version of these equations known as

the Direct Current (DC) power flow model is widely being

used [27]. Hence, in this work, we also use the DC power flow

model for our analysis. This allows us to focus on the complexi-

ties of MAD attacks instead of nonlinearity of AC power flows.

Nevertheless, the main ideas of the algorithms developed in

this work can be extended to the AC power flow model as well

(e.g., by combining them with the recently introduced convex

relaxation methods for solving the AC Optimal Power Flow

(ACOPF) problem [28]), albeit not effortlessly.

We represent the power grid by a connected directed graph

G ¼ ðV;EÞ where V ¼ f1; 2; . . .; ng and E ¼ fe1; . . .; emg
are the set of nodes and edges corresponding to the buses and

transmission lines, respectively (the definition implies

jV j ¼ n and jEj ¼ m). Each edge e is a set of two nodes

e ¼ ði; jÞ. (Direction of the edges are arbitrary.) ~pd � 0 and

~pg � 0 denote the vector of power demand and supply values,

respectively. Accordingly, ~p ¼ ~pg � ~pd denotes the vector of

total supply and demand values. Since the sum of supply

should be equal to the sum of demand,

~1T~p ¼ 0; (1)

in which~1 is an all ones vector. In the DC model, lines are also

assumed to be purely reactive, implying that each edge

e ¼ ði; jÞ 2 E is characterized by its reactance xe ¼ xij > 0.
Given the power supply/demand vector ~p 2 Rn�1 and the

reactance values, the vector of power flows on the lines
~f 2 Rm�1 can be computed by solving the following linear

equations:

A~u ¼ ~p; (2)

YDT~u ¼ ~f; (3)

where~u 2 Rn�1 is the vector of voltage phase angles at nodes,

D 2 f�1; 0; 1gn�m
is the incidence matrix of G defined as,

dik ¼
0 if ek is not incident to node i;
1 if ek is coming out of node i;
�1 if ek is going into node i;

8<
:
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Y :¼ diagð½1=xe1 ; 1=xe2 ; . . .; 1=xem �Þ is a diagonal matrix

with diagonal entries equal to the inverse of the reactance val-

ues, andA ¼ DYDT is the admittance matrix of G.1

Since A is not a full-rank matrix, we follow [8] and use the

pseudo-inverse of A, denoted by Aþ to solve (2) as~u ¼ Aþ~p.
Once ~u is computed, ~f can be computed from (3) as
~f ¼ YDTAþ~p. For the convenience of notation, we define

B :¼ YDTAþ. Hence, ~f ¼ B~p.

B. Power Grid Operation

Stable operation of the power grid relies on the persistent

balance between the power supply and demand. In order to

keep the balance between the power supply and the demand,

power system operators use weather data as well as historical

power consumption data to predict the power demand on a

daily and hourly basis [33]. This allows the system operators

to plan in advance and only deploy enough generators to meet

the demand in the hours ahead without overloading any power

lines. This planning ahead consists of two parts: unit commit-

ment and economic dispatch.

In unit commitment which is mainly performed daily, the

grid operator selects a set of generators to commit their avail-

ability during the day-ahead operation of the grid. But the actual

operating points of the generators (i.e., generation outputs) are

determined by the operator during the day and in the process

known as economic dispatch. The main goal of the operator

during economic dispatch is to ensure reliable operation of the

grid with minimum power generation cost. When feasibility of

the power flows is also considered during economic dispatch,

the process is also known as Optimal Power Flow (OPF) prob-

lem. Since in practice feasibility of power flows is always being

considered, these two terms can be used interchangeably most

of the times.

In this work, we mainly focus on ensuring the robustness of

the grid during the economic dispatch. Extending our methods

to the unit commitment process is beyond the scope of this

paper and is part of the future work. Hence, here we assume that

the set of available generators are given. The main challenge is

to obtain a favorable operating point for these generators.

1) Optimal Power Flow: In the OPF problem, given the

vector of predicted demand values ~pd, the grid operator needs

to find the operating point vector ~pg for the generators such

that supply matches the demand (i.e., ~1T ð~pg � ~pdÞ ¼ 0), the

operating and physical constraints are satisfied, and the operat-

ing cost of the generators are minimized.

In particular, each line fij has a thermal power flow limit fij
limiting the amount of power that a line can safely carry. If the

power flow on a line goes above this limit (i.e., overloads), in

most of the cases, it will be tripped by a circuit breaker in

order to keep the line from breaking due to overheating.

Hence, during the normal operation of the grid

jfijj � fij; 8ði; jÞ 2 E: (4)

The amount of power that each generator pgi is generating is

also limited by a maximum (pgi) and a minimum (pgi) value.
If there are no generators at node i, then pgi ¼ pgi ¼ 0. Hence,

pg � ~pg � pg: (5)

The generation cost at each generator is a given by a cost

function ciðxÞ in $=hr. Given these cost functions, the OPF

problem can be formulated as follows:

min
~u;~f;~pg

Pn
l¼1 clðpglÞ;

s.t. ð1Þ; ð2Þ; ð3Þ; ð4Þ; ð5Þ;
~p ¼ ~pg � ~pd:

(6)

Several methods for finding an optimal solution to (6) depend-

ing on the cost functions exist in the literature [27]. Here, we

assume that the cost functions are convex and therefore the

OPF problem can be solved optimally in polynomial time.

Our main focus in Section V is on how to add additional con-

straints to the OPF problem to ensure grid robustness against

MAD attacks without making the problem nonconvex.

C. Frequency Control

In power systems, the rotating speed of generators corre-

sponds to the frequency. When demand becomes greater than

supply, the rotating speeds of turbine generators’ rotors deceler-

ate, and the kinetic energy of the rotors is released into the

system in response to the extra demand. Correspondingly, this

causes a drop in the system’s frequency. This behavior of turbine

generators corresponds to Newton’s first law of motion and is

calculated by the inertia of the generators. Similarly, the supply

being greater than the demand results in acceleration of the

generators’ rotors and a rise in the system’s frequency.

This decrease/increase in the frequency of the system can-

not be tolerated for a long time since frequencies lower than

their nominal value severely damage the generators. If the

frequency goes above or below a threshold value, protection

relays turn off or disconnect the generators completely. Hence,

in case of a demand increase, within seconds of the first signs

of a decrease in the frequency, the primary controllers at gen-

erators activate and increase the mechanical input to the gen-

erators which increase the speed of the generator’s rotor and

correspondingly the generator’s output and frequency of the

system [34]. The rate of decrease/increase in the frequency of

the system, before activation of the primary controllers,

directly depends on the total inertia of the system. Systems

with a higher number of rotating generators have higher inertia

and therefore are more robust against sudden demand changes

or generation losses.

The rate of increase in the output generation of generator i
during the primary control is determined by its governor droop

characteristic denoted byRi [35, Chapter 9]. In particular, after

a change in the total demand by SDpd , the primary controller of

each generator i increases its output with rate 1=Ri until the total

generation is equal to the demand again. In particular, if none of

the generators reach their generation limit, each generator i will
increase its generation by 1=Ri � SDpd=ð

Pn
l¼1 1=RlÞ. The

1 The admittance matrixA is also known as the weighted Laplacian matrix
of the graph [32] in graph theory.
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amount of power that generators can provide during the primary

control is called the spinning reserve of the generators.

Despite the stability of the system’s frequency after the

primary controllers’ response, it may not return to its nominal

value (since generators generating more than their generating

set points). Hence, the secondary controller starts within

minutes to restore the system’s frequency. The secondary

controller modifies the power set points and deploys available

extra generators and controllable demands to restore the

nominal frequency and permanently stabilizes the system.2

Fig. 2 presents an example of the way frequency of the system

changes after a sudden increase in the demand (or loss of

generation) at time 0.

IV. MAD ATTACKS

In this work, we follow the threat model that we have initially

introduced in [3]. In particular, we assume that an adversary has

already gained access to an IoT botnet of many high-wattage

smart appliances within a city, a country, or a continent. Such

access can potentially allow the adversary to increase or

decrease the demand at different locations remotely and syn-

chronously at a certain time.We call the attacks under this threat

model theMAnipulation of the Demand (MAD) attacks.

Since the focus of this work is to develop defenses against

MAD attacks rather than dealing with complexities of per-

forming such an attack (as extensively studied in [3]), we

abstract the threat model by the adversary’s power to manipu-

late the demands at each node. In particular, we assume the

demand changes at node l by an adversary are bounded by

�Dpdl � Dpdl � Dpdl. Notice that from defensive point of

view, there are no differences between an adversary with the

total knowledge of the system (a.k.a white-box attacks) and an

adversary with no knowledge of the system (a.k.a black-box

attacks), since the operator needs to make sure that the grid is

robust against any possible attacks.

The initial effect of aMAD attack, as described in Section III-

C is on the frequency of the system. However, the system opera-

tor can make the system robust against frequency disturbances

caused by MAD attacks by ensuring that enough generators

with inertia and spinning reserve are committed to operate

during the unit commitment process [3]. Theminimum required

inertia and spinning reserve should be computed based on the

potential attack size and the properties of the grid. Devices that

provide virtual inertia such as batteries, super-capacitors, and

flywheels can also be integrated into the system to increase the

total inertia [36].

Hence, the main challenge in protecting the grid against the

initial effects of MAD attacks is at the hardware level. How-

ever, the effects of MAD attacks are not limited to frequency

disturbances. Recall from Section III-A that the power flows

in power grids are determined uniquely given supply and

demand values. Therefore, most of the time, the grid operator

does not have any control over the power flows from genera-

tors to loads. Once an adversary causes a sudden increase in

the loads all around the grid, assuming that the frequency drop

is not significant, the extra demand is satisfied automatically

by generators through their primary controllers as described in

Section III-C. Since the power flows are not controlled by the

grid operator at this stage, this change in supply and demand

may result in line overloads and consequent line-trippings [3].

If the primary controllers’ response results in line overloads,

assuming that these overloads can barely be tolerated for a

short period of time, these line overloads can be cleared during

the secondary control. However, the system operator needs to

ensure in advance that possible line overloads can indeed be

cleared during the secondary control after any MAD attacks.

In this work, we focus on the effects of MAD attacks on the

power flow changes on the lines which are more challenging

from the system planning perspective. Our objectives are: (i)

to develop algorithms for finding efficient operating points for

the generators during the economic dispatch such that no lines

are overloaded after the primary control response to any

potential MAD attacks, and (ii) to design methods to efficiently

examine if line overloads after the primary control–if any–can

be cleared during the secondary control.

Notice that we assume the system have enough inertia and

reaches a steady-state after the primary controllers’ response

to a MAD attack (as in Fig. 2). Moreover, since power lines

can normally withstand sudden but momentary power surges,

in analyzing power flows after a contingency, the transient

power flows are usually neglected [27]. Therefore, it is reason-

able to use the steady-state power flow equations as described

in Section III-A for our analysis.

V. POWER FLOWS: PRIMARY CONTROL

In this section, we provide two algorithms for finding oper-

ating points for the generators during the economic dispatch

process such that no lines are overloaded after the automatic

response of the primary controllers to any MAD attacks. We

call such operating points, robust operating points.

A. Power Flow Changes

In this subsection, we present a couple of examples in order

to demonstrate the complexity of power flow analysis after the

primary controller’s response to a MAD attack.

First, as can be seen in Fig. 3 the relationship between the

power flow changes on the lines and the demand changes is

Fig. 2. A sample frequency response of the power grid to a sudden increase
in the demand (or loss of generation).

2 Part of these controls can be done during the tertiary control. However,
for simplicity and without loss of generality we refer to them as the secondary
control.
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not intuitive. For example, flow on line (2,3) is maximized

when only the demand at node 3 increases (Fig. 3(c)), whereas

when demands at both nodes 1 and 3 increase, flow on line

(2,3) increases less (Fig. 3(d)).

Another important factor affecting the amount of power flow

changes on the lines is the amount of spinning reserve at each

generator. For example, as can be seen in Fig. 4, an increase in

the demand at node 1 by 3 units may result in power flow

decrease on line (2,3) if all the generators have enough spin-

ning reserves (Fig. 4(a)). The same scenario, however, results

in power flow increase on line (2,3), if only generators 2 and 4

have spinning reserves (Fig. 4(b)).

Fig. 5 presents the relationship between power flow changes

on lines (2,3) and (5,3) versus power demand increase at node

1 during two different spinning reserve availability scenarios

in the grid shown in Fig. 3(a). As can be seen in Fig. 5(a), if

all generators have enough spinning reserve the power flows

change monotonically with the demand change. However, as

can be seen in Fig. 5(b), limited spinning reserve at generator

5 results in a nonlinear relationship between the power flows

and the demand change.

Following the examples provided in this subsection, it is clear

that power flow changes on the lines after a MAD attack highly

depend on the initial operating point of the grid and is a nonlin-

ear problem in most cases. Despite the difficulties, however, in

the next two subsections, we provide efficient algorithms for

finding efficient and robust operating points for the generators.

B. SAFE Algorithm

In order to avoid line overloads after the primary control

response to a potential MAD attack, the grid operator needs to

compute the maximum possible power flow changes on the

lines following an attack (based on Dpdl values) and enforce

the power flows on the lines in OPF to be below their capacity

minus the maximum possible changes. As shown in the previ-

ous subsection, however, the maximum power flow changes

on the lines depend on the operating point of the generators

and their spinning reserve. Therefore, one cannot compute the

maximum power flow changes on the lines independent of the

operating points to be used in the OPF problem.

One way to circumvent this problem, is to enforce all the

generators to have enough spinning reserves to keep the rela-

tionship between the power flow changes and demand changes

linear (as in Fig. 5(a)), and use this linear relationship to com-

pute the maximum power flow changes on the lines based on

the operating point of the generators. These values can then be

added to the OPF problem without making the problem non-

linear and nonconvex. Recall that since here we use DC power

flows with convex cost functions, the OPF problem is convex.

Hence, when we mention the nonconvexity of the problem, it

is due to additional constraints on the power flows.

For each load i, define ~vi ¼ ½vi1; vi2; . . .; vin�T to denote the

primary controllers’ response to a unit demand increase at load

i. If all generators have enough spinning reserve, each generator
j will increase its generation by vij :¼ ð1=RjÞ=ð

Pn
l¼1 1=RlÞ to

compensate for a unit demand increase at node i (as described in
Section III-C). Hence, by defining ~wi :¼ ~vi �~ei (recall from
Section III that ~ei is the ith fundamental basis of Rn) one can

compute the change in the flow of line e ¼ ði; jÞ solely in terms

of changes in the demands (Dpdis):

Dfij ¼ 1=xijðAþ
i �Aþ

j Þ
Xn
l¼1

Dpdl~wl: (7)

Fig. 3. An example demonstrating that increasing all demands may not necessarily result in the maximum flow on the lines. (a-b) Initial setting and power
flows, (c) power flows if demand at bus 3 increases, and (d) power flows if demand at both buses 1 and 3 increases. All generators have the same droop character-
istic and they all have enough spinning reserve.

Fig. 4. Dependency of power flow changes on the location of the spinning
reserves. (a) If all generators have spinning reserves, demand increase at bus 1
results in power flow decrease on line (2,3). (b) If only generators 2 and 4
have spinning reserves then demand increase at bus 1 results power flow
increase on line (2,3).

Fig. 5. Power flows on lines (5,3) and (2,3) in the grid shown in Fig. 3(a) as
demand at bus 1 increases. (a) If all the generators have enough spinning
reserve, and (b) if generator 5 has only 1 unit of spinning reserve.
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Recall that �Dpdl � Dpdl � Dpdl based on the grid operator’s

estimation of the adversary’s power. Hence, the maximum

flow change on line ði; jÞ can be computed using (7) as:

Dfmax
ij ¼ 1=xij

Xn
l¼1

DpdljðAþ
i �Aþ

j Þ~wlj; (8)

since for each l, Dpdl can be selected by the adversary to be

equal to �Dpdl, if ðAþ
i �Aþ

j ÞT ~wl < 0, and equal to Dpdl, if
ðAþ

i �Aþ
j Þ~wl � 0. Now, to ensure that no lines are over-

loaded after a MAD attack, all the system operator needs to do

is to replace the capacity of each line ði; jÞ in the OPF problem

by fij � Dfmax
ij . The only other constraint that needs to be

added to the OPF problem is to make sure that each generator

i with 0 < 1=Ri has enough spinning reserve to increase its

generation according to its governor droop. For this, define

SDpd :¼
Pn

l¼1 Dpdl. Hence, each generator’s operating point

should be within the following limits:

81 � i � n :
pgi þ 1=RiPn

l¼1
1=Rl

SDpd � pgi � pgi � 1=RiPn

l¼1
1=Rl

SDpd :
(9)

Therefore, the robust OPF problem can be written as follows:

min
~u;~f;~pg

Pn
l¼1 clðpglÞ;

s.t. ð1Þ; ð2Þ; ð3Þ; ð8Þ; ð9Þ;
jfijj � fij � Dfmax

ij ; 8ði; jÞ 2 E
~p ¼ ~pg � ~pd:

(10)

We call the algorithm for finding a robust operating point

for generators by limiting their operating points—to be able to

analytically compute Dfmax
ij s—and solving (10), the Securing

Additional margin For generators in Economic dispatch

(SAFE) Algorithm. Since this algorithm limits the operating

points of the generators by adding conditions (9) to the OPF

problem, it is obvious that it may not obtain the minimum cost

robust operating points for the generators. In the next subsec-

tion, we provide an algorithm, albeit computationally more

expensive, for finding robust operating points for the genera-

tors without limiting their operating points—as in (9).

C. IMMUNE Algorithm

In (7), we assumed that none of the generators reach their

maximum/minimum capacity as they increase/decrease their

generation according to their droop characteristics. However,

by allowing some generators to reach their maximum/mini-

mum capacity, one may find robust operating points for the

generators with a lower cost.

In this subsection, for brevity and to avoid repetition, we

assume that the total demand change SDpd :¼
Pn

i¼1 Dpdi can
only be positive. Hence, we focus mainly on the generators’

maximum capacity. However, the same set of equations can

similarly be derived for the case SDpd < 0 which should also

be considered separately in computing the maximum power

flow changes on the lines. In particular, whenever there is

a minimization/maximization problem with SDpd � 0 con-

straint, one should also solve a similar optimization problem

with SDpd < 0 and take the minimum/maximum of the opti-

mal value of the two optimization problems. In Section VIII,

we consider both cases for numerical evaluations.

Once a generator reaches its maximum capacity, it cannot

increase its generation anymore, and therefore other genera-

tors should generate more to compensate for the extra demand.

The following lemma provides the amount each generator

generates based on its spinning reserve and governor droop

characteristic to compensate for the extra demand after a

MAD attack.

Lemma 1. Suppose generators are ordered such that if i < j,

Riðpgi � pgiÞ � Rjðpgj � pgjÞ. Define ti :¼ Riðpgi � pgiÞ and

Si :¼
Pi

l¼1 tl=Rl þ
Pn

l¼iþ1 ti=Rl. If Si < SDpd � Siþ1, to

compensate for the extra demand, generators 1 to i reach

their maximum capacity and each generator j > i generates
1=RjPn

l¼iþ1
1=Rl

�
SDpd �

Pi
l¼1ðpgl � pglÞ

�
.

In general, as demonstrated in Figs. 4 and 5, due to power

generation limits, power flow on a line may not change mono-

tonically as demand changes in a specific node–as in (7). Hence,

the maximum change in the power flows cannot be found in a

closed form as in (8). However, onemay be able to find an upper

bound on the maximum power flow change on a line.

Upper bounds on the maximum power flow changes after a

MAD attack can be computed by assuming the worst case ini-

tial operating points and also assuming that generators can be

arbitrarily assigned to provide extra required generation. In

particular, an upper bound dDfij for the power flow changes on

line ði; jÞ can be computed by finding the worst initial operating

points for the generators ~pg and the worst possible way to

increase the power generations D~pg (in oppose to the automatic

primary controller’s response) in response to the worst possible

way to increase the demands by an adversary D~pd as follows:

dDfij :¼ max
~pg; ~Dpd;

~Dpg

1=xijðAþ
i �Aþ

j Þð ~Dpg � ~DpdÞ
��� ���

s.t. ~1T ð~pg � ~pdÞ ¼ 0;
~1T ð ~Dpg � ~DpdÞ ¼ 0;

�Dpdl � Dpdl � Dpdl; 1 � l � n
pg � ~pg � pg;

0 � Dpgl � pgl � pgl; 1 � l � n;
SDpd � 0:

(11)

Optimization (11) is a Linear Program (LP) that can be

solved efficiently for each line ði; jÞ. Using these upper

bounds, we can limit the power flows on the lines in the OPF

problem (6) as jfijj � fij � dDfij to leave enough margin for

the lines in case of a MAD attack. Hence, the solution to the

following modified OPF problem provides robust operating

points for the generators:

min
~u;~f;~pg

Pn
l¼1 clðpglÞ;

s.t. ð1Þ; ð2Þ; ð3Þ; ð5Þ;
jfijj � fij � dDfij; 8ði; jÞ 2 E
~p ¼ ~pg � ~pd:

(12)
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Enforcing the power flows on all the lines, such as ði; jÞ, to
be less than fij � dDfij as in (12) ensures that none of the lines

will be overloaded after a potential MAD attack. However,

the solution to (12) may not provide the optimal robust operat-

ing points for the generators since dDfijs only provide an upper

bound on the maximum power flow changes on the lines. To

achieve more efficient robust operating points, we introduce

an iterative algorithm that solves the OPF problem and

updates the lines’ required safety margins to ensure that none

of the lines get overloaded after a MAD attack. We will then

use the upper bounds dDfijs to prove that the algorithm will

converge to a local optimal solution.

First, given the operating points pg1; . . .; pgn to the OPF

problem, the maximum power flow change on line ði; jÞ
(denoted by Dfmax

ij ) after an attack can be computed based

on the power flow solution ~f ¼ YDTAþ~p by solving the

following optimization problem:

Dfmax
ij ¼ max

~Dpd

sgnðfijÞ
�
1=xij

Pn
l¼1 �Dpdlðaþil � aþjlÞ

þ1=xij

Pn
l¼1 flðSDpdÞðaþil � aþjlÞ

�
s.t. �Dpdl � Dpdl � Dpdl; 1 � l � n

SDpd � 0:

(13)

in which flð�Þs denote piecewise linear functions that deter-

mine the extra output of the generators based on the total

demand change SDpd . Since we assumed that pg1; . . .; pgn are

given, functions flð�Þ can be uniquely determined using

Lemma 1. sgnðfijÞ in the objective of (13) is to ensure that

the maximum changes are in the direction of increase in

the power flow on line ði; jÞ. Hence, for all lines

Dfmax
ij � 0.3

Lemma 2. Optimization (13) can be solved in polynomial

time for each ði; jÞ 2 E.

Proof. Without loss of generality, assume that generators are

ordered such that t1 � t2 � . . . � tn as defined in Lemma 1. It

is easy to see that by using Lemma 1 and defining S0 :¼ 0,
one can solve (13) in different linear regions of flð�Þs by

considering additional conditions for SDpd (for 0 � z < n):

Sz � SDpd < Szþ1: (14)

Under condition (14), flð�Þs can be determined as follows:

flðSDpdÞ ¼
pl � pl l � z;
1=Rl

�
SDpd�

Pz

w¼1
ðpw�pwÞ

�
Pn

w¼zþ1
1=Rw

l > z:

8<
: (15)

Hence, all the flð�Þ are either constant or linear functions in

(13) and therefore (13) can be solved efficiently using LP.

Hence, by solving (13) at most n times (once for every condi-

tion (14) for different z) Dfmax
ij can be found in polynomial

time. &

Algorithm 1 Iteratively MiniMize and boUNd Economic dis-

patch (IMMUNE)

Input: G
1: flag = 1

2: Define cij :¼ fij for all ði; jÞ 2 E
3: while flag do

4: Solve the OPF problem (6) such that 8ði; jÞ 2 E : jfijj
� cij

5: if OPF is not feasible then

6: return none

7: Compute Dfmax
ij by solving (13) for all ði; jÞ 2 E

8: flag = 0

9: for ði; jÞ 2 E do

10: if fij < jfijj þ Dfmax
ij then

11: cij ¼ fij � Dfmax
ij

12: flag = 1

13: return pg1; pg2; . . .; pgn

After computing Dfmax
ij values, one can use them to verify if

any of the lines will be overloaded after an attack (e.g., by

checking if fij < jfijj þ Dfmax
ij ). If yes, then update the

required margins for the lines that may get overloaded in the
OPF problem to ensure that those lines will not be overloaded.
The OPF problem can then be solved again with new power
flow margins for the lines and the process continues until no
additional updates for the line margins are required at the
obtained operating point (which means that the obtained oper-
ating point is robust). We call this algorithm Iteratively Mini-
Mize and boUNd Economic dispatch (IMMUNE) Algorithm
(summarized in Algorithm 1).

Lemma 3. If (12) is feasible, then the IMMUNE Algorithm

converges to a local optimum solution.
Lemma 3 provides a sufficient condition such that the

IMMUNE Algorithm converges to a local optimum. However,
even if (12) is not feasible, the system operator can still run the
IMMUNE Algorithm to obtain a local optimum solution if the
OPF problem remains feasible at each iteration of the algorithm.

We can also provide an upper bound on the number of itera-

tions that IMMUNE algorithm requires to converge. For this

reason, the algorithm needs to change discrete changes to the

capacities at each iteration.

Lemma 4. If the IMMUNE Algorithm changes cij at each

iteration by a discrete amount such as cij ¼ maxfbfij
�Dfmax

ij c; fij � dDfijg, then it terminates in at most

OðPði;jÞ2EddDfijeÞ iterations.
Corollary 1. If generators’ cost functions are linear and FðnÞ

indicates the running time of the LP solver of choice with n
variables (e.g., simplex or ellipsoid algorithms), the IMMUNE

Algorithm terminates in OðmFðnÞðPði;jÞ2EddDfijeÞÞ.
Following a similar idea, one can decrease the running time

of the IMMUNE algorithm by applying more aggressive
update rules for the capacities in line 11 of the algorithm. For
example, line 11 can be replaced by cij ¼ 0:9ðfij � Dfmax

ij Þ or
cij ¼ 0:95ðfij � Dfmax

ij Þ. We call these variations of the
IMMUNE Algorithm, IMMUNE-0.9, and IMMUNE-0.95. In
Section VIII-B, we numerically evaluate and compare the per-
formance of these algorithms and demonstrate that more

aggressive update rules result in faster convergence.

3 Notice that for computing the maximum power flow changes on the lines,
the SDpd < 0 case should also be considered separately to see if it results in a
larger power flow change than the one obtained from (13). However, as we
mentioned at the beginning of the subsection, here we only consider SDpd � 0
for the brevity of presentation.
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One favorable property of the IMMUNE Algorithm is that it

can be easily parallelized. This parallelization can be used to

simultaneously compute Dfmax
ij for all the lines at each itera-

tion in order to expedite the algorithm.

If the OPF problem becomes infeasible in any iteration of

the IMMUNE Algorithm, there are two ways to circumvent

the issue: (i) By considering higher temporary limits for the

lines (e.g., 1:1fij) which is a common practice in power sys-

tems operation, but the operator needs to ensure that line over-

loads can be cleared during the secondary control, or (ii) by

returning to the unit commitment problem and change the list

of committed generators to make sure (12) is feasible. We will

address the first approach in the next section in detail. How-

ever, the second approach is beyond the scope of this paper

and is part of our future work.

VI. POWER FLOWS: SECONDARY CONTROL

In cases that primary control cannot prevent line overloads,

the system operator has to clear these overloads during the

secondary control instead. In such cases, the operator needs to

make sure in advance that after the primary control’s response

to a MAD attack, there are operating points for the generators

such that the demand can be supplied with no line overloads

(i.e., the secondary controller can clear the overloads). Assum-

ing that the maximum and minimum reachable demands at

node i by an adversary are pdi and pdi, respectively, this prob-
lem can be defined as the secondary controller problem:

Secondary controller problem: For any pd1; pd2; . . . ; pdn
that 81 � i � n : pdi � pdi � pdi, are there operating points

pg1; . . . ; pgn for the generators such that 81 � i � n : pgi
� pgi � pgi,~1

T ð~pg � ~pdÞ ¼ 0, and no lines are overloaded?
Definition 1. A grid is called secondary controllable if the

answer to the secondary controller problem is yes.

Notice that operating cost of the generators are not impor-

tant during the secondary control since the secondary control-

ler activates only after a potential attack and the operator

needs to bring back the grid to its normal state as soon as pos-

sible at any cost. Fig. 6 provides an example of the secondary

controller problem. As can be seen in Fig. 6(b), when the

demands are all equal to their maximum level after a MAD

attack, the demand can be supplied by generators with no line

overloads. However, as presented in Fig. 6(c), when the

demand is increased to its maximum level at one node and

decreased to its minimum at another one, there is no possible

way to supply the demand such that no lines are overloaded.

This example clearly evinces that the secondary controller

problem is not intuitive.

In the following subsections, we study the secondary

controller problem in detail and provide efficient algorithms

to verify the secondary controllability of a power system.

A. Maxmin Formulation

One way of verifying the secondary controllability of a

power system is by exploiting linear bilevel programs [37],

[38]. The secondary controller problem can be written in the

form of a max-min linear problem which is a special form of

linear bilevel programs as follows:

max
~pd

min
~pg;~q;~f;~u

~1T~q

s.t. ð1Þ; ð2Þ; ð3Þ; ð4Þ; ð5Þ;
~p ¼ ~pg � ~pd þ~q;
qi � 0; 1 � i � n
pdi � pdi � pdi; 1 � i � n:

(16)

In optimization problem (16), vector ~pd should be selected

such that for the best possible selection of vector ~pg and posi-

tive auxiliary vector ~q, the objective value is maximized. The

following proposition relates the solution of (16) to the sec-

ondary controller problem.

Proposition 1. The optimal solution of (16) is 0 if, and only

if, the grid is secondary controllable.

Proof. If the optimal solution to (16) is 0, then for any

demand vector ~pd, the vector of generation values ~pg can be

selected such that ~1T ð~pg � ~pdÞ ¼ 0 and no lines are over-

loaded. Hence, the grid is secondary controllable. Now if the

grid is secondary controllable, then for all demand vectors

~pd, there exists a vector of generation ~pg such that ~1T ð~pd
�~pdÞ ¼ 0 and no lines are overloaded. Hence, the auxiliary

vector ~q can be selected to be equal to 0 by the minimization

part of (16) for any vector ~pd. Therefore, the optimal solution

to (16) would be 0. &

Proposition 1 clearly demonstrates that solving (16) can

determine secondary controllability of a power system. More-

over, when the optimal solution of (16) is greater than 0, the

nonzero entries of the optimal vector ~q can reveal the mini-

mum extra generation required to ensure secondary controlla-

bility of the system.

Despite many advantages of the formulation (16), the max-

min linear program is nonconvex [39] and proved to be NP-

hard [40]. Therefore existing efficient algorithms for solving

(16) only obtain local optimal solutions [38]. However, a local

optimal solution of (16) with value 0 does not guarantee the

secondary controllability of the system since the optimal solu-

tion may not be zero.

One way of solving (16) optimally, albeit in exponential

running time, is through brute force search. Following lemma

demonstrates that to solve the secondary controller problem,

one needs to check only the extreme demand points due to the

convexity of the space of all possible demand values and

linearity of power flow equations.

Lemma 5. The grid is secondary controllable, if and only if

for all pd1; . . .; pdn such that pdi 2 fpdi; pdig there exist operating

Fig. 6. Complexity of secondary controller problem. (a) Secondary control-
ler problem setting, (b) an attack that maximizes the demand, and (c) an attack
that minimizes the demand at one node and maximizes the demand at another
node.
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points pg1; . . .; pgn for the generators such that 81 � i � n :
pgi � pgi � pgi,~1

T ð~pg � ~pdÞ ¼ 0, and no lines are overloaded.
On the other hand, for a given demand vector ~pd, it can be

verified in polynomial time whether there exist operating

points for the generators that satisfy the secondary controller

problem by solving the minimization part of (16) using LP:

min
~pg;~q;~f;~u

~1T~q

s.t. ð1Þ; ð2Þ; ð3Þ; ð4Þ; ð5Þ;
~p ¼ ~pg � ~pd þ~q
qi � 0; 1 � i � n:

(17)

If the optimum solution to (17) is not 0, then the optimal

vector ~q can be used by the operator to make more generators

online for controllability of the grid. Hence by solving (17) for

all extreme demand vectors, one can verify secondary control-

lability of a system in exponential running time and also find

how to make it controllable–if it is not–based on obtained

vectors~q.
By focusing only on nodes with the largest demands, one

can approximately verify if for a subset of extreme points

there exist operating points for the generators satisfying the

secondary controller problem. In general, however, such an

approach may not be able to guarantee the secondary control-

lability of a grid. Hence, in the next subsection, we provide

sufficient conditions to ensure secondary controllability of a

grid in polynomial time.

B. Predetermined Secondary Controllers

Despite the difficulty in exact determination of secondary

controllability of a grid, in this subsection, we introduce and

exploit suboptimal predetermined controllers to verify control-

lability of a grid with no false positives (i.e., presented meth-

ods cannot determine uncontrollability of a system).

In order to verify secondary controllability of the grid, one

can find the best predetermined way to set the generation val-

ues given a demand vector ~pd such that the maximum power

flows over all demand vectors is minimized. In particular, we

define the~b-determined controller as follows.

Definition 2 (~b-determined controller). For any demand

vector ~pd, set ~pg ¼ ðPn
i¼1 pdiÞ �~b, for a vector~b satisfying:

(i) ~b � 0,

(ii) ~1T~b ¼ 1,
(iii) ðPn

i¼1 pdiÞ �~b � pg,

(iv) ðPn
i¼1 pdiÞ �~b � pg.

Definition 3. A controller is called reliable, if for all feasi-

ble demand vectors ~pd, it provides a vector of operating points

for the generators like ~pg such that j~f j ¼ jBð~pg � ~pdÞj � f .

Proposition 2. If there exists a vector ~b such that the
~b-determined controller is reliable, then the grid is secondary

controllable.

For a vector ~b satisfying conditions (i-iv) in Definition 2,

define vectors ~wi
ðbÞ :¼ �~ei þ~b for 1 � i � n (as in Section

V-B). The following lemma proves that maximum flow on the

lines over all feasible demand vectors, given a ~b-determined

controller, can deterministically be computed.

Lemma 6. Given a ~b-determined controller, the maximum

power flow on each line ek over all possible demand vectors is:

max
pd�~pd�pd

jfkj ¼
Xn
i¼1

ðpdi þ pdiÞ
2

Bk ~wi
ðbÞ

�����
�����

þ
Xn
i¼1

ðpdi � pdiÞ
2

jBk ~wi
ðbÞj:

(18)

The main question is now whether there exists a vector ~b
such that the maximum power flows as determined in (18) are

less than their capacities? We prove that one can examine this

efficiently and in polynomial time by solving the following

optimization:

min
h;~b;~f

h

s.t. (i-iv) in Definition 2;
~f ¼ jBWðbÞðpd þ pdÞ=2j þ jBWðbÞjðpd � pdÞ=2;
~f � hf;

(19)

in which matrix WðbÞ :¼ ½~w1
ðbÞ; . . .; ~wn

ðbÞ�. The following

proposition demonstrates that (19) can be solved using LP in

polynomial time. Moreover, it indicates that the optimal solu-

tion to (19) can provide the best vector~b for deterministically

controlling the grid and its optimal value demonstrates if the

corresponding~b-determined controller is reliable.

Proposition 3. Optimization (19) can be solved using LP.

Moreover, if the optimal value h� to (19) is less than or equal

to 1, then the ~b�-determined controller obtained from the cor-

responding solution is reliable, and therefore the grid is sec-

ondary controllable.

From (18), it can be seen that the formula for computing

maximum flow on the lines consists of two separate sums

which can be controlled by different vectors and obtained a

better controller. Hence, one can define the ð~g;~bÞ-determined

controller as follows.

Definition 4 (ð~g;~bÞ-determined controller). For any demand

vector ~pd, set ~pg ¼ ðPn
i¼1ðpdi þ pdiÞ=2Þ �~g þ ðPn

i¼1ðpdi
�pdi=2� pdi=2ÞÞ �~b, for vectors~g and~b satisfying:

(i) ~b;~g � 0,

(ii) ~1T~g ¼~1T~b ¼ 1,

(iii) ðPn
i¼1ðpdi þ pdiÞ=2Þ �~g þ ðPn

i¼1ðpdi
�pdiÞ=2Þ �~b � pg,

(iv) ðPn
i¼1ðpdi þ pdiÞ=2Þ �~g þ ðPn

i¼1ð�pdi
þpdiÞ=2Þ �~b � pg.

The ð~g;~bÞ-determined controller generalizes the~b-determined

controller (just set ~g ¼~b) and it is easy to see that the max-

imum power flow on the lines over all demand vectors,

given a ð~g;~bÞ-determined controller can be computed simi-

larly to (18) as follows:

max
pd�~pd�pd

jfkj ¼
Xn
i¼1

ðpdi þ pdiÞ
2

Bk ~wi
ðgÞ

�����
�����

þ
Xn
i¼1

ðpdi � pdiÞ
2

jBk ~wi
ðbÞj:

(20)
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Optimal ð~g;~bÞ-determined controller can be found similar

to the optimal ~b-determined controller using an optimization

similar to (19) with a few small changes:

min
h;~g;~b;~f

h

s.t. (i-iv) in Definition 4;
~f ¼ jBWðgÞðpd þ pdÞ=2j þ jBWðbÞjðpd � pdÞ=2;
~f � hf:

(21)

Again, as in the ~b-determined controller case, the optimal

value of (21) determines if the optimal ð~g;~bÞ-determined con-

troller is reliable or not. Hence, the grid operator can use (21)

to efficiently determine the secondary controllability of the

grid, albeit obtaining false negatives in some cases.

In Section VIII, we numerically evaluate the performance of

the controllers introduced in this section. Before that, however,

we demonstrate that these controllers can be used to efficiently

provide lower bounds on the maximum scale of a MAD attack

for which the grid remains secondary controllable.

VII. aD-ROBUSTNESS

Power grids are required to withstand single equipment fail-

ures (e.g., lines, generators, and transformers) with no inter-

ruptions in their operation (a.k.a. N � 1 standard) [27].

Following N � 1 standard, we define a new standard for the

grid operation to ensure its robustness against MAD attacks

called aD standard. It requires grid operators to either prevent

line overloads (as in Section V) or be able to clear them (as in

Section VI) after a MAD attack by an adversary that can

change the demands by at most a fraction at each node.4 We

call a grid that conforms with this standard, aD-robust.

In this section, for a given grid, we are interested in finding

the maximum a such that the grid is aD-robust. We denote

this value by amax. Since ensuring that line overloads can be

cleared during the secondary control is less restrictive than

preventing them after the primary control, we mainly focus on

finding the maximum a such that the grid is aD-robust based

on its ability to clear line overloads after the secondary con-

trol (i.e., grid’s secondary controllability).

As we described in the previous section, verifying the second-

ary controllability of the grid for a given upper and lower limits

on the demands is hard. Hence, we cannot expect to find the amax

efficiently. Nevertheless, in the next two subsections, we develop

efficient methods for obtaining upper and lower bounds on amax.

A. Upper Bound

Assume ~pd
y denotes the vector of predicted demand values. For

a given a, the demand vector ~pd resulted by aMAD attack will be

bounded by ð1� aÞ~pdy � ~pd � ð1þ aÞ~pdy. Now if a grid is

aD-robust, it should particularly be robust against the maximum

demand attack. Hence, finding the maximum a for which the grid

can handle the maximum demand attack provides an upper bound

for amax. Such a can be found efficiently by an LP:

max
a; ~pd;~pg;

~f;~u
a

s.t. ð1Þ; ð2Þ; ð3Þ; ð4Þ; ð5Þ;
~pd ¼ ð1þ aÞpyd;
~p ¼ ~pg � ~pd:

(22)

Proposition 4. Assume â denotes the optimal value of (22),

then amax � â.

The optimal value of (22) provides a good upper bound for

amax and can be computed efficiently. One can also consider

~pd ¼ ð1� aÞpyd to obtain another upper bound. However, if

we set ~pd ¼ ð1� aÞpyd in (22) instead of ~pd ¼ ð1þ aÞpyd, it is
easy to see that its optimal solution will be a ¼ 1. Hence, the
case of ~pd ¼ ð1� aÞpyd only provides a trivial upper bound of

amax � 1 (assuming pg ¼ 0).
In the next subsection, we provide algorithms to find lower

bounds for a based on the controllers developed in SectionVI-B.

B. Lower Bound

To find a lower bound for amax, we use the controllers in Sec-

tion VI-B to limit the secondary controller’s ability to change the

generators’ operating points. Limiting the secondary controller’s

ability allows us to efficiently approximate the maximum a, but

because of this limitation, we only obtain lower bounds for amax.

First, assume that we limit the secondary controller to the
~b-controller for a fixed ~b. We show that in this case the maxi-

mum a can be found by solving a single LP. Assume ~pg
� is the

optimal solution to (22) with value â and set ~b ¼ ~pg
�=k~pg�k1

(i.e., the controller only scales down the generation compared to

the maximum demand case). Using (18), we show that the

optimal value of the following LP gives a lower bound for amax:

max
a;~f

a

s.t. ð1þ aÞðPn
i¼1 p

y
diÞ �~b � pg;

ð1� aÞðPn
i¼1 p

y
diÞ �~b � pg;

~b ¼ ~pg
�=k~pg�k1;

~f ¼ jBWðbÞ~pdyj þ jBWðbÞjða~pdyÞ;
jfijj � fij; 8ði; jÞ 2 E:

(23)

Proposition 5. The optimal solution a� of (23) can be found
in polynomial time using LP. Moreover, a� � amax.

Optimization (23) allows us to efficiently compute a lower

bound for amax. However, similar to Section VI-B, instead of

fixing~b, we can compute a~b that results in the largest possible

lower bound. Due to the nonlinearity of the problem, however,

we cannot optimize ~b and found maximum a in (23) simulta-

neously. The idea is to fix a, compute the optimal ~b and h

using (19), then update a using h and repeat the process until

a does not change by much. As in Section VI-B, we can use

the ð~g;~bÞ-determined controller instead of the ~b-determined

controller to improve the obtained lower bound. The method

is summarized in Module 1. When g ¼ b, Module 1 provides

a lower bound on amax like aðbÞ based on ~b-determined

controllers.

4 This is based on the assumption that the IoT bots are uniformly distrib-
uted in an area. Therefore, an adversary’s ability to change the demands is
determined by the initial demand at each node.
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Module 1 Lower Bound on amax using ð~g;~bÞ-determined

Controllers

Input: G, �
1: að0Þ ¼ â

2: flag = 1

3: i = 0

4: while flag do

5: flag = 0

6: Compute the optimal value h, ~g, and ~b of (21) for pd ¼
ð1þ aðiÞÞ~pdy and pd ¼ ð1� aðiÞÞ~pdy

7: Set aðiþ1Þ ¼ aðiÞ þ �ð1� hÞ
8: if jaðiþ1Þ � aðiÞj > 0:001 then
9: flag = 1

10: i ¼ iþ 1
11: return aðg;bÞ :¼ aðiÞ,~g, and~b

Notice that � inModule 1 should be set such that updates to a

at each iteration are neither too large that the module falls into a

loop, nor are too small that it takes a long time to converge.

Proposition 6. When g ¼ b, for a good �, Module 1 con-

verges to an aðbÞ value such that aðbÞ � amax. Moreover,

a� � aðbÞ. (Recall that a� is the optimal solution of (23).)

Proposition 7. For a good �, Module 1 converges to an

aðg;bÞ value such that aðg;bÞ � amax. Moreover, aðbÞ � aðg;bÞ.
In the next section, we numerically compare the upper

bound â, and lower bounds a�, aðbÞ, and aðg;bÞ with amax in

order to demonstrate the tightness of these bounds in approxi-

mating amax.

VIII. NUMERICAL RESULTS

In this section, we first numerically evaluate the performance

of SAFE and IMMUNE Algorithms developed in Section V.

Then, we numerically evaluate the accuracy of the upper and

lower bounds developed in Section VII in approximating the

maximum a such that the grid is aD-robust (i.e., amax).

A. Simulations Setup

For solving LP, we use CVX, a package for specifying and

solving convex programs [41], [42]. For computing the opti-

mal power flow part of the IMMUNE Algorithm, we use

MATPOWER [43] which is a MATLAB based library for

computing the power flows. We also exploit the power system

test cases available with this library for our simulations. In

particular, we use the IEEE 14-bus, 30-bus, and 57-bus test

systems, and the New England 39-bus system.

The line capacities are only provided for the IEEE 30-bus

and New England 39-bus systems. Hence, for the other two

systems, we set the capacities ourselves in two-different ways:

(i) following [9] for each line we set fi ¼ maxf1:2
jfy

i j;medianðj~fyjÞg, and (ii) set fi ¼ 1:1maxðj~fyjÞ, in which
~fy are the power flows given the default supply and demand

values in the test systems. When the first method is used for

determining the capacities, it is indicated by (f) in front of the

grid name, and when the second method is used, it is indicated

by (u) (e.g., see Table III).

B. Primary Control

In this subsection, we evaluate the performance of SAFE

and IMMUNE Algorithms on NEW England 39-bus and

IEEE 30-bus systems. We assume that ð1� aÞpydi � pdi �
ð1þ aÞpydi and consider different a values to capture attacks

with different magnitudes (which depends on the number of

controlled bots by an adversary).

Table I compares the performance of SAFE and three

variations of the IMMUNE Algorithm for different a val-

ues. Recall from Section V-B that IMMUNE-0.95 and

IMMUNE-0.9 are similar to the IMMUNE Algorithm but

apply more aggressive updates on the capacities in each

iteration of the algorithm. This, as mentioned in Section

V-B and demonstrated numerically here in Table I, results

in faster convergence of the algorithm. Since the OPF prob-

lem does not consider the robustness of the grid against

MAD attacks, its value is independent of the magnitude of

an expected attack (a).

As can be seen in Table I and as we expected, the grid

needs to be operated in a non-optimal operating point in order

to be robust against MAD attacks. The required percentage

increase in the operating cost of the grid obtained by the

SAFE and IMMUNE Algorithms versus a are presented in

Fig. 7. IMMUNE Algorithm results in the least amount of

increase in the operating cost. However, since as demon-

strated in Table I, IMMUNE Algorithm takes longer that

IMMUNE-0.95 and IMMUNE-0.9 Algorithms to converge,

the system operator may prefer to use IMMUNE-0.95 which

performs approximately as well as the IMMUNE Algorithm

but converges faster. Notice that due to nonconvexity of the

problem, a more aggressive update rule may not necessarily

result in a costlier operating point, as we see here that

IMMUNE-0.9 results in a lower operating cost than

IMMUNE-0.95 for a ¼ 0:06.

TABLE I
PERFORMANCE EVALUATION OF SAFE AND IMMUNE ALGORITHMS ON THE

NEW ENGLAND 39-BUS SYSTEM. COST VALUES ARE IN $=hr. NUMBERS

IN PARENTHESIS INDICATE THE NUMBER OF ITERATIONS
TOOK THE IMMUNE ALGORITHM TO CONVERGE

TABLE II
PERFORMANCE EVALUATION OF SAFE AND IMMUNE ALGORITHMS ON THE

IEEE 30-BUS SYSTEM. COST VALUES ARE IN $=hr. NUMBERS IN

PARENTHESIS INDICATE THE NUMBER OF ITERATIONS TOOK
THE ALGORITHM TO CONVERGE
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It can also be seen that SAFE Algorithm performs relatively

well in finding a robust operating point of the grid much faster

than all variations of IMMUNE Algorithm (recall from

Section V-C that SAFE Algorithm requires only to solve a

single LP). However, it may become infeasible for higher

magnitude attacks (in this case for a ¼ 0:09).
We repeated the simulations on the IEEE 30-bus system.

The results are presented in Table II. First, it can be seen that

the IEEE 30-bus system can be protected against much stron-

ger attacks (a ¼ 0:3) which demonstrates that different grids

may have different levels of robustness against MAD attacks

(we will make a similar observation in the secondary control

case in the next subsection). Unlike the New England 39-bus

case, here the IMMUNE Algorithm does not converge for the

strongest attack (a ¼ 0:3) rather than the SAFE Algorithm.

This demonstrates that each of these algorithms may be useful

in finding a robust operating point for the grid in different

scenarios–besides their running time and optimality.

As can be seen in Table II, in this case also, if the IMMUNE

Algorithm converges, it converges to a lower cost operating

point than the one obtained by the SAFE Algorithm. Here, the

IMMUNE Algorithm converged within a few iterations.

Therefore, there was no need to consider a faster variation of

the IMMUNE Algorithm as in the New England 39-bus case.

Finally, it can be seen that for a ¼ 0:31, none of the

algorithms can obtain a robust operating point for the grid.

We show in the next subsection that this case can be handled

by the secondary controller instead (assuming that lines can

handle temporary overloads).

C. Secondary Control

In order to evaluate the performance of the controllers

developed in Section VI-B, in this subsection, we focus on

their performance in approximating amax as described in

Section VII.

Table III compares the maximum a obtained by different

methods in several test cases. As can be seen and proved in

Section VII, in all cases, a� � aðbÞ � aðg;bÞ � amax � â.

Notice that for the IEEE 57-bus system, since the brute force

search algorithm needs to solve (17) about 242 times for each

given a to determine the secondary controllability of the grid,

we could not exactly determine amax. However, in the case of

IEEE 57-bus (f), after initial iterations of the brute force

search algorithm, we could determine that the grid is not sec-

ondary controllable for 0:09 � a as presented in the table.

It can be seen that â provides a very close upper bound for

amax most of the time (except in IEEE 57-bus (f)). And since

it can be computed by a single LP, the numerical results

suggest that it is an efficient and reliable way to find an upper

bound for amax. On the other hand, a� that can also be com-

puted efficiently by a single LP does not provide a very close

lower bound in the test systems that we studied here. How-

ever, aðbÞ and aðg;bÞ that require more time to be computed,

provide much better lower bounds. In particular, in the case of

New England 39-bus system aðg;bÞ ¼ â which implies that

amax ¼ aðg;bÞ ¼ â.

Although finding aðbÞ and aðg;bÞ requires solving an LP in

several iterations (as summarized in Module 1), the number of

iterations can be minimized by selecting a good step size �.
For example, the number of iterations of Module 1 versus � is

presented in Fig. 8 in the IEEE 30-bus system. As can be seen,

for the optimal � (in this case � ¼ 1:1), the module converges

in 3 iterations. Hence, it can find a good lower bound for a, as

shown in Table III, very efficiently and in polynomial time

(since it solves a single LP at each iteration). A good � can be

found in practice heuristically after the first few iterations and

observing the rate of changes.

Finally, as mentioned in Section VI, the secondary control-

lability becomes more important when the primary controller

cannot prevent line overloads, but the overloads can be toler-

ated for a short period of time. An example of such scenario

happens in IEEE 30-bus system and when a ¼ 0:31. As can

be seen in Table II, none of the SAFE and IMMUNE

TABLE III
LOWER AND UPPER BOUNDS FOR amax

Fig. 8. Number of iterations in Module 1 before it converges versus its
update step size � in the IEEE 30-bus system.

Fig. 7. Percentage increase in operating cost of the grid in order to make it
robust against MAD attacks obtained by SAFE and IMMUNE Algorithms ver-
sus the magnitude of the attack (a) in New England 39-bus system.
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Algorithms can find a robust operating point for the grid in this

case. However, as can be seen in Table III, since this value is

less that amax ¼ 0:37, any line overloads can be cleared by the

secondary controller.

D. Open Questions

As we observed in the previous two subsections, different

test systems demonstrate different levels of robustness against

MAD attacks. For example, as can be seen in Table III, the

amax for the IEEE 30-bus system is 0.37, whereas this value

for the New England 39-bus system is only 0.0962. This dif-

ference in robustness can be due to the structure of the net-

work as well as the location of the generators and loads.

Analytically studying such features and developing efficient

algorithms to improve grid robustness by adding extra lines to

a system or build future generators at certain locations would

be interesting future research directions.

Another important observation from the numerical results is

that the performance of the proposed algorithms varies in dif-

ferent test systems. For example, in the New England 39-bus

system, the IMMUNE Algorithm successfully finds robust

operating points for the generators for different a values,

whereas in the IEEE 30-bus system the IMMUNE Algorithm

may not converge for a ¼ 0:3. Moreover, as can be seen in

Table III, the approximation algorithms for estimating amax

provide tight bounds for the New England 39-bus system,

whereas the bounds are not tight for the IEEE 30-bus system.

Hence, finding sufficient conditions on the structure and prop-

erties of a test case under which the approximation bounds are

tight and the IMMUNE Algorithm is guaranteed to converge

to a locally optimal solution would be important future

research directions.

IX. CONCLUSIONS

In this paper, we have analyzed the effect of MAD attacks

on power flows in detail and presented SAFE and IMMUNE

algorithms for finding robust operating points for the genera-

tors during economic dispatch such that no lines are over-

loaded after automatic primary control response to any MAD

attacks. Moreover, we have demonstrated that in cases for

which temporary overloads can be tolerated, the system opera-

tor can approximately but efficiently verify in advance if line

overloads can be cleared during the secondary control after

any MAD attacks. Based on these two forms of defenses, we

have defined the notion of aD-robustness and demonstrated

that upper and lower bounds on the maximum a for which the

grid is aD-robust can be found efficiently and in polynomial

time. We finally have evaluated the performance of the devel-

oped algorithms and methods, and showed that they perform

very well in practical test cases.

We believe that with universality and growth in the number

of high-wattage IoT devices and smart thermostats, the proba-

bility of MAD attacks is increasing and there is an urgent need

for more studies on the potential effects of these attacks and

developing tools for grid protection. Our work provides the

first methods for protecting the grid against potential line

failures caused by newly discovered MAD attacks via IoT

devices. However, our work can be extended in several direc-

tions. A natural direction is to extend the developed results to

the AC power flow model. A more challenging research direc-

tion is to extend the methods to the unit commitment phase of

the grid operation. Since the regular unit commitment problem

is already a combinatorial problem, incorporating security

constraints into that problem will be a challenging task.

In the worst-case scenario in which the scale of a MAD

attack is greater than grid robustness (i.e., adversary manip-

ulates the demands by greater than amax factor), the grid

operator may not be able to clear the possible line overloads

in a timely manner. This can consequently force the over-

loaded lines to trip leading to more line overloads and a

cascading failure in the system [3]. To prevent cascading

failures in such scenarios, the grid operator may apply com-

mon control algorithms such as optimal load-shedding [44]

or power grid intentional islanding [45]. However, since an

adversary can suddenly decrease the demands after an ini-

tial increase in the demands, these control algorithms may

not be effective in their classical form (e.g., a sudden

decrease in the demands after load-shedding may result in a

critical increase in the frequency of the system). Hence,

investigating ways to improve these control algorithms to

protect the grid against MAD attacks in the worst-case sce-

narios is also a problem of considerable interest.

X. OMITTED PROOFS

Proof of Lemma 1: First, notice that 1=Ri is the rate with which

generator i increases its generation to compensate for the extra

demand. Hence, ti denotes the time that generator i reaches its
maximum capacity if the total supply does not meet the demand

before ti. Accordingly, generators reach their maximum capac-

ity in the order of their ti values from smallest to largest. Using

this, it is easy to see that Si is the total change in the generation

at time ti. Therefore, if Si < SDpd , then generators 1 to i will
reach their maximum capacities before supply meets the total

demand. Moreover, since SDpd � Siþ1, generators iþ 1; . . .; n
do not reach their capacities and each contribute according to

their droop characteristic to compensate for the remaining

SDpd �
Pi

l¼1ðpgl � pglÞ. &

Proof of Lemma 3: First, notice that for each line ði; jÞ 2 E and

in each iteration of the IMMUNE Algorithm, cij is not increas-

ing. To see this, assume cij changes in the lth iteration, and

coldij and cnewij denote the value of cij before and after the change,
respectively. Since cij is changed, it means that

fij < jfijj þ Dfmax
ij . On the other hand, jfijj � coldij . Hence,

fij < coldij þ Dfmax
ij or fij � Dfmax

ij < coldij : Since cnewij

¼ fij � Dfmax
ij , therefore cnewij < coldij .

On the other hand, from (11), it is easy to verify that after

each iteration fij � dDfij � cij. Hence, cijs cannot get smaller

than the fixed values fij � dDfij and since (12) is feasible, the

OPF problem remains feasible after each iteration of the

IMMUNE algorithm. Now since cijs are non-increasing and
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limited by lower bounds, the algorithm is guaranteed to

remain feasible and converge to a local optimum solution. &

Proof of Lemma 4: In each iteration of the IMMUNE algo-

rithm, at least for a single line ði; jÞ, the cij will be updated.

Otherwise, the algorithm should terminate (either converges

or become infeasible). On the other hand, since dDfij is the

maximum possible flow change on line ði; jÞ, the cij cannot

get smaller than fij � dDfij. Hence, since the updates are dis-

crete, in the worst case that only a single capacity is updated

by a single unit at each iteration, the algorithm can take at

most
P

ði;jÞ2EddDfije iterations to terminate. &

Proof of Lemma 5: Assume ~pd
ð1Þ; ~pdð2Þ; . . .; ~pdð2

nÞ denote all

possible extreme demand vectors. Now assume that for each

extreme demand vector ~pd
ðiÞ, there exists an operating vector

~pg
ðiÞ for generators that satisfies the secondary control condi-

tions. We prove that for all demand vectors ~pd within the

upper and lower limits also there exists an operating vector ~pg
that satisfies all the secondary controller conditions. Since the

space of all the demand vectors is convex, each demand vector

~pd within the upper and lower limits can be written as a

convex combination of the extreme points such as ~pd ¼P2n

i¼1 bi ~pd
ðiÞ in which 8i : bi � 0 and

P2n

i¼1 bi ¼ 1. We show

that ~pg ¼
P2n

i¼1 bi~pg
ðiÞ satisfies all the secondary controller

conditions. First, since ~pg is a convex combination of ~pg
ðiÞs

and they are within generators upper and lower limits, so is ~pg.

Second, it is easy to see that~1T ð~pg � ~pdÞ ¼
P2n

i¼1 bi
~1T ð~pgðiÞ�

~pd
ðiÞÞ ¼ P2n

i¼1 bi0 ¼ 0. Finally, based on our assumptions, for

each i: �f � Bð~pgðiÞ � ~pd
ðiÞÞ � f . Hence, Bð~pg � ~pdÞ ¼P2n

i¼1 biBð~pgðiÞ � ~pd
ðiÞÞ � P2n

i¼1 bif ¼ f . Similarly, �f �
Bð~pg � ~pdÞ. Therefore, ~pg satisfies all the constraints of the

secondary controller problem. The reverse can also be simi-

larly proved using contradiction method. &

Proof of Proposition 2: If there exists a vector ~b that the
~b-determined controller is reliable, then for any feasible

demand vector ~pd, vector of operating points ~pg ¼
ðPn

i¼1 pdiÞ �~b satisfies the demands (i.e., ~1T ð~pg � ~pdÞ ¼ 0)

and j~f j ¼ jBð~pg � ~pdÞj � f . Therefore, the grid is secondary

controllable. &

Proof of Lemma 6: From the definition of ~wi
ðbÞ vectors, it is easy

to verify that for a demand vector ~pd, the power flow on line ek
can be computed as fk ¼

Pn
i¼1 pdiBk ~wi

ðbÞ. For jfkj to be maxi-

mized, each pid should be either equal to pdi or pdi based on signs

ofBk ~wi
ðbÞ and fk. On the other hand, it is easy to see that pdi ¼

ðpdiþpdiÞ
2 � ðpdi�pdiÞ

2 and pdi ¼ ðpdiþpdiÞ
2 þ ðpdi�pdiÞ

2 . So by consider-

ing only pdi 2 fpdi; pdig, fk can be computed as follows:

fk ¼
Xn
i¼1

pdiBk ~wi
ðbÞ ¼

Xn
i¼1

� ðpdi þ pdiÞ
2

	 ðpdi � pdiÞ
2

�
Bk ~wi

ðbÞ

¼
Xn
i¼1

ðpdi þ pdiÞ
2

Bk ~wi
ðbÞ þ

Xn
i¼1

�	 ðpdi � pdiÞ
2

�
Bk ~wi

ðbÞ:

From the equation above, it can be seen that the first part is
fixed but the second part can be selected based on the sign of
the first part in order to maximize jfkj. Hence, it is easy to see
that maximum value of jfkj is:

max
pd�~pd�pd

jfkj ¼
Xn
i¼1

ðpdi þ pdiÞ
2

Bk ~wi
ðgÞ

�����
�����

þ
Xn
i¼1

ðpdi � pdiÞ
2

jBk ~wi
ðbÞj:

&

Proof of Proposition 3: In order to solve (19) using LP, one

can define auxiliary vector ~u and matrix Q and replace the

constraint ~f ¼ jBWðbÞðpd þ pdÞ=2j þ jBWðbÞjðpd � pdÞ=2 in

(19) with following set of inequalities:

~f ¼ ~uþQðpd � pdÞ=2;
~u � BWðbÞðpd þ pdÞ=2;
~u � �BWðbÞðpd þ pdÞ=2;
Q � BWðbÞ; Q � �BWðbÞ;

in which the matrix inequalities are entry by entry. Now it is

easy to verify that since the optimization minimize h and
~f � hf , in the optimal solution ~f will be minimized and there-

fore ~u and Q will be equal to jBWðbÞðpd þ pdÞ=2j and

jBWðbÞj, respectively. Hence using the above transformation,

(19) can be solved using LP. It can be seen that if the optimal

solution h� to (19) is less than or equal to 1, then since ~f is

equal to the maximum power flow on the lines over all possi-

ble demand vectors (and corresponding generation operating

points obtained by the ~b�-determined controller) and
~f � h�f � f , the ~b�-controller is reliable. Hence, the grid is

secondary controllable. &

Proof of Proposition 4: Since in optimization (22) only the max-

imum demand case (i.e., ~pd ¼ ð1þ aÞ~pdy) is being verified to

be satisfiable by the generators with no line overloads, the opti-

mal solution of (22) only provides an upper bound for amax. &

Proof of Proposition 5: Using (18), it can be verified that the

maximum power flow on a line ði; jÞ over all the demand vec-

tors and corresponding generation vector determined by the
~b-determined controller is equal to jBWðbÞ~pdyj þjBWðbÞ

jða~pdyÞ. Hence, optimization (23) maximizes a such that the

grid is aD-robust using the specified ~b-determined controller.

On the other hand, since the operating points of the generators

are limited to the operating points obtained by the specified
~b-determined controller, it is obvious that demand vectors that

are controllable by this controller are a subset of all controlla-

ble vectors. Hence, a� only provides a lower bound for amax.

Finally, it is also easy to see that similar to the technique

presented in the proof of Proposition 3, optimization (23) can

be solved using LP and therefore a� can be computed in

polynomial time. &

Proof of Proposition 6: At each iteration, if aðiÞ > amax, then

the solution h to (19) would be greater than 1. Hence, if � is

small enough, 0 � aðiþ1Þ ¼ aðiÞ þ �ð1� hÞ � aðiÞ. Similarly,

it can be shown that if aðiÞ < amax, then aðiþ1Þ > aðiÞ. On the

other hand, for aðiÞ ¼ amax, the solution h to (19) would be zero

and aðiÞ ¼ aðiþ1Þ ¼ amax. Hence, amax is the only absorbing

point for this algorithm which it converges to (if � is small

enough). &

Proof of Proposition 7: The convergence proof is similar

to the proof of Proposition 6. It is also easy to see that
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since ~b-determined controllers are a special case of

ð~g;~bÞ-determined controllers, aðbÞ � aðg;bÞ. &
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