
Distributed and Collision-Free Coverage Control of a Team of Mobile
Sensors Using the Convex Uncertain Voronoi Diagram

Jun Chen and Philip Dames

Abstract— In this paper, we propose a distributed coverage
control algorithm for mobile sensing networks that can account
for bounded uncertainty in the location of each sensor. Our
algorithm is capable of safely driving mobile sensors towards
areas of high information distribution while having them
maintain coverage of the whole area of interest. To do this,
we propose two novel variants of the Voronoi diagram. The
first, the convex uncertain Voronoi (CUV) diagram, guarantees
full coverage of the search area. The second, collision avoidance
regions (CARs), guarantee collision-free motions while avoiding
deadlock, enabling sensors to safely and successfully reach their
goals. We demonstrate the efficacy of these algorithms via a
series of simulations with different numbers of sensors and
uncertainties in the sensors’ locations. The results show that
sensor networks of different scales are able to safely perform
optimized distribution corresponding to the information distri-
bution density under different localization uncertainties.

I. INTRODUCTION

Coverage control is the problem of optimally covering a
space using a collection of sensors. In a dynamic setting,
this involves reactively adjusting the distribution of sensors
over the mission space as new information is collected. This
problem has been widely studied by roboticists in robot
surveillance, deployment, multi-target search and tracking,
etc. For example, consider a team of drones tasked with
tracking the spread of a forest fire in a mountainous area.
Here the team must trade off between remaining in areas
with known fires to collect information about the current
conditions and maintaining surveillance of the whole area
to detect the birth of new fires. While they do this, the
robots must simultaneously account for the uncertainty in
their positions to properly track the fire and to maintain a
safe distance between robots at all times to avoid collisions.

Both centralized and distributed methods have been con-
sidered to solve such problems. A number of authors have
studied coverage control strategies. Hussein et al. [1] pro-
posed a centralized cooperative coverage control strategy
with guaranteed collision avoidance to achieve a desired
effective coverage level of each point in the search domain.
While events happening at each point may be detected with
some level of confidence, the probability density of events
happening is assumed to known a priori instead of being
detected online by sensors.

Distributed algorithms often scale better to large net-
works and over large geographic regions than centralized
approaches, leading to a rising amount of research interest.

J. Chen and P. Dames are with the Department of Mechan-
ical Engineering, Temple University, Philadelphia, PA 19122, USA
{jchen,pdames}@temple.edu

This work was supported by NSF Grant IIS-1830419.

Other have proposed gradient-based distributed coverage
control schemes to maximize the probability of detecting
randomly occurring events in a mission space using a team
of mobile sensors [2], [3]. However there is no guarantee of
sensor collision since sensor dimension were not taken into
consideration.

Voronoi-based methods [4] are among the most popular
choices to solve distributed coverage control problems in
recent years. Lloyd’s algorithm iteratively drives each sensor
in a convex environment towards the weighted centroid of its
local Voronoi cell where the sensor detection probability is
optimal [5], [6]. Collision avoidance is guaranteed for point
sensors since cells never overlap, and each sensor only moves
in its own cell. This can be extended to sensors with finite
size using buffered Voronoi cells, which shrink each cell to
ensure collision avoidance [7]. By encoding the information
distribution, which is a time-varying density function, as the
importance weighting function in Lloyd’s algorithm, sensors
are able to reach their optimized location for detection. One
example of an information density function could be the
probability density function of target positions the sensors
aimed at tracking over the area of interest. Schwager et
al. [8] extended Lloyd’s algorithm and derived a control
law enabling sensors to approximate the information density
function from measurements while maintaining or seeking a
near-optimal sensing configuration. Schwager et al. [9] later
proposed a controller using an adaptive control architecture
for sensors to learn a parameterized model of that measured
distribution in the environment. Dames [10] used the proba-
bility hypothesis density (PHD) as the weighting function in
Lloyd’s algorithm to guide a team of sensors towards areas
of high target density detected by on board sensors.

All of the above-mentioned coverage control strategies
assume that the locations of the mobile sensors are perfectly
known. This is a strong assumption which is not true in prac-
tice, though occasionally localization error can be ignored
to some degree. To account for uncertainty in the positions
of points, researchers have recently proposed the uncertain
Voronoi diagram (UV diagram), or fuzzy Voronoi diagram,
an extended Voronoi partitioning strategy that divides uncer-
tain spatial databases by using a Gaussian distribution to
model the uncertainty [11]–[13]. However, none of these
works have been applied to the task of collision avoid-
ance or decentralized control. Most recently, two variants
of the buffered Voronoi diagram were proposed for multi-
agent collision avoidance with localization uncertainty, the
buffered uncertainty-aware Voronoi cell (B-UAVC) [14] and
the probabilistic buffered Voronoi cell (PBVC) [15]. Neither



of these methods makes any guarantees for coverage during
a search task.

In this paper, we introduce a novel coverage control
method inspired by these ideas to construct a convex un-
certain Voronoi (CUV) diagram over the mission space,
which accounts for uncertainty in the locations of sensors
and iteratively drives each sensor to the weighted centroid
of its CUV cell using Lloyd’s algorithm. Simultaneously,
we propose a collision avoidance algorithm which guarantees
safety and avoids “deadlock”, the phenomenon where sensors
block each other from moving to their respective goals.
Our goal is to propose a distributed, collision-free control
strategy that leads sensors to congregate in areas with higher
information density while maintaining full coverage of the
search space.

II. PROBLEM FORMULATION

A sensing network with n sensors S = {s1, . . . , sn}
is performing surveillance in an open convex polygonal
environment A ⊂ R2. Let Q = {q1, . . . , qn} denote the
true sensor locations. The dynamics of each sensor are
modeled by the first order equation q̇i = ui, where ui is the
control input at time t. A time-varying information density
function φ(x) indicates the information content at each point
x ∈ A. Note that we remove time t for simplicity of notation
in this paper. The information density function could be
a probability density function (PDF) of events of interest
occurring in a certain area (which can be updated recursively
using Bayesian filters [16]) or some other density functions
such as the PHD, which can be maintained over time using
the distributed PHD filter [10].

A. Lloyd’s Algorithm

We let ‖x− qi‖ denote the Euclidean distance between a
point x ∈ A and the location of sensor si. Let f(‖x−qi‖) be
a monotonically increasing function, which may be used to
quantify the cost of sensing due to degradation of a sensor’s
ability to measure events with increasing distance. As defined
in [5], a partition of A is a collection of n polygons W =
{W1, . . . ,Wn} ⊂ R2 with disjoint interiors and whose union
is A.

At time t, the locational optimization functional is defined
as follows:

H(Q,W) =
n∑

i=1

∫
Wi

f
(
‖x− qi‖

)
φ(x)dx, (1)

where Wi is dominance region of sensor si, e.g., the region
that sensor si is responsible for. The goal is for the team to
minimize the functional (1), both with respect to the partition
setW and the sensor positions Q. MinimizingH with respect
to W induces a partition on the environment Vi = {x |
i = arg mink=1,...,n ‖x − qk‖}. In other words, Vi is the
collection of all points that are the nearest neighbor of si.
This is the Voronoi partition, as Figure 2a shows, and these
Vi are the Voronoi cells, which are convex by construction.

Minimizing H with respect to Q leads each sensor to the
weighted centroid of its Voronoi cell [5], that is

q∗i =

∫
Vi
xφ(x) dx∫

Vi
φ(x) dx

, (2)

The dynamic version of Lloyd’s algorithm continuously finds
the control input

ui = −kprop(qi − q∗i ), (3)

where kprop > 0 is a positive gain. By following this control
law, the sensors asymptotically converge to the weighted
centroids of their Voronoi cells. Lloyd’s algorithm therefore
drives each sensor to the position with maximum detection
probability iteratively over the entire mission space.

B. Localization Uncertainty Regions

In this paper, we assume that each sensor si only knows
its estimated position q̂i and the associated covariance matrix
Σi. We assume that this covariance does not change over time
for simplicity, but may vary between different sensors. We
find the eigendecomposition of Σi:

Σi = RΛR−1, (4)

where R is the square 2 × 2 matrix and Λ is the diagonal
matrix with eigenvalues λ1, λ2 on the diagonal. We define
the localization uncertainty region of sensor si to be Bi =
B(q̂i, ri), which is a ball centered at q̂i with radius

ri = c max
j
λj (5)

where c is a positive constant. The probability of sensor si
being located within this region is then

p(qi ∈ Bi) =

∫
Bi

exp
{
− 1

2 (x− q̂i)T Σ−1
i (x− q̂i)

}
2π det(Σi)

1
2

dx,

(6)
In this paper we use c = 3 so that the region covers at
least 99.73% (minimum achieved when λ1 = λ2) of all
possible locations of si, though any other level set of the
covariance matrix could be used to guarantee a desired level
of confidence.

We use a Gaussian distribution in the discussion above as
it is a standard choice for modeling localization uncertainty.
However, our approach could also be used with other non-
Gaussian distributions so long as one can define a bounded,
circular region. This is required to construct the CUV dia-
gram, as we will see in Section II-C.

C. Uncertain Voronoi Diagram

Xie et al. [11] defined the uncertain Voronoi (UV) diagram
and proposed a centralized method to construct the UV
diagram over a convex region. In this paper, we define a
UV cell in a similar way as follows:

Definition 1 (UV Cells). The UV cell of a sensor si is Ui =
{x | p(i = arg mink=1,...,n ‖x− qk‖) > 0}, the collection of
points in A such that si has a nonzero probability to be the
nearest sensor to each point x ∈ Ui.



Fig. 1. Figure shows the UV edge Eright(left) of sensor sright with
respect to sensor sleft (red curve). The X’s at (1, 0) and (−1, 0) are the
estimated locations of sright and sleft, respectively. Dashed circles represent
the localization uncertainty regions of the sensors. The black area contains
all of the points whose nearest sensor is uncertain.

A UV cell Ui contains all possible Voronoi cells generated
from all possible combinations of the positions of sensor
si and each of its neighbors. Therefore, by assigning each
sensor to be responsible for all information in its UV cell,
the coverage of the whole environment is guaranteed even
with the localization uncertainty of sensors. In other words,
no matter where each sensor is actually located within in
uncertainty region, the union of all of the UV cells will be
equal to the entire environment, ∪iUi = A.

Let distmax(q̂i, x) and distmin(q̂i, x) denote the maximum
and minimum distances between sensor si’s estimated lo-
cation q̂i and x, respectively. Constructing the UV cell for
sensor i is equivalent to finding a collection of points in A
between si and each other sensor sj , i 6= j that meet the
following condition:

distmax(q̂i, x) = distmin(q̂j , x). (7)

The resulting dividing line from (7) between si and sj ,
denoted by Ei(j), is called a UV-edge of si with respect to
sj . It is proved in [11] that for a circular uncertainty region,
Ei(j) is a hyperbola, as Figure 1 shows. Without loss of
generality, let the center of the hyperbola be at the midpoint
of the line segment connecting q̂i to q̂j and that this line
segment is parallel with the x axis. The hyperbola is then
given by

x2

a2
− y2

b2
= 1 (8)

where

a =
ri + rj

2
c =
‖q̂i − q̂j‖

2
b =
√
c2 − a2 (9)

Note that the locations of the sensors are located at (c, 0)
and (−c, 0), which correspond to the foci of the hyperbola.
Generally when Σi is a non-singular non-diagonal matrix,
Xie et al. defined in their work [11] a “possible region”
and used it for centralized UV diagram construction, which
inspires our proposed distributed CUV diagram construction
algorithm in section III.

(a) Voronoi diagram (b) CUV diagram

Fig. 2. A Voronoi diagram and a CUV diagram with 15 cells. Green
markers are estimated sensor locations. Note that CUV cells are a superset
of the original Voronoi cells and that CUV cells overlap with one another.

III. DISTRIBUTED CONTROL WITH LOCALIZATION
UNCERTAINTY

A. The CUV Diagram and Its Construction

We give the definition of a CUV diagram as follows:

Definition 2 (CUV cell). A convex uncertainty Voronoi
(CUV) cell of sensor si, denoted by Ci, is the convex hull
of its UV cell, Ui.

An example of the CUV diagram is shown in Figure 2b.

Definition 3 (CUV neighbors). The CUV neighbor set for
sensor si is denoted Ni and contains all sensors sj , j 6= i
such that Ei(j) is on the boundary of the UV cell Ui.

Proposition 1. The CUV neighbors and the Voronoi neigh-
bors of a sensor are identical.

Proof: Since Ui is the union of all possible Voronoi
cells of si, UV edges Ei(j) and Ej(i) are contours of the
union of all possible Voronoi edges between si and sj . Thus,
the UV neighbors and the Voronoi neighbors of a sensor are
identical. Since the CUV cells are convex hulls of the UV
cells, the CUV neighbors and the Voronoi neighbors of a
sensor are also identical.

Algorithm 1 shows how each sensor can construct its CUV
cell using only local information, thus enabling a team to
compute the CUV diagram in a distributed manner. Specifi-
cally, each sensor needs to know the estimated locations and
uncertainty region radii of each of its Voronoi neighbors, i.e.,
the set of agents whose Voronoi cells share an edge with its
cell. This is a standard assumption in distributed multi-agent
control algorithms [10]. Each sensor si computes the UV
edges with its own estimated location and these received
from neighbors. These UV edges sequentially divide the
original mission space and discard the portion not containing
si after each division. The CUV cell of si is then constructed
by computing the convex hull of the remaining area. Figure
3 shows a schematic diagram of a Voronoi, UV, and CUV
cells for a sensor.

B. Collision Avoidance

1) Collision Avoidance Regions (CARs): By construction,
Voronoi cells have disjoint interiors and are convex. Thus,
if point sensors have perfect knowledge of their locations



Fig. 3. Figure showing a sensor’s estimated location with its localization
uncertainty region (green) and its Voronoi cell (black), UV cell (gray), CUV
cell (red), CAR (yellow).

Algorithm 1 Distributed Construction of CUV Cells
1: for Each sensor si do
2: Get estimated location q̂i
3: Find the neighbor set Ni

4: Initialize Ai = A
5: for sj in Ni do
6: Receive q̂j and rj from sj
7: Compute UV edge Ei(j) using (8)
8: Ai ← {x ∈ Ai | x, q̂i on the same side of Ei(j)}
9: end for

10: Ci ← convex hull(Ai)
11: end for

and never move outside their responding cell, it is naturally
guaranteed that they move without collision (e.g., being at
the same location). However, this is not the case for CUV-
based control with localization uncertainty. In fact, CUV
cells always overlap with their neighbors as long as the
uncertainty region for any sensor is non-empty. Thus, we
want each sensor to perform motion only within a region
that ensures no collisions with other sensors, which we call
a collision avoidance region (CAR), shown in Figure 3.

Definition 4 (CAR). The collision avoidance region (CAR)
for sensor si, denoted Mi, is the collection of points inside of
its Voronoi cell Vi (constructed using the estimated positions
of si and each neighbor in Ni) that are at least a distance
ri + rbuffer away from any boundary of Vi, where ri is the
radius of si’s localization uncertainty region and rbuffer is a
small buffered distance.

Note that rbuffer can be used to account for the size of
mobile sensors, a stopping distance for sensors with higher-
order dynamics, the maximum distance a sensor can traverse
in between location updates, or other safe-related factors.
Also, Mi exists if and only if neighbors are initially outside
of si’s localization uncertainty region.

Proposition 2 (CAR safety). Each sensor si may go any-
where within its CAR and be guaranteed to avoid collisions
with all other sensors.

Proof: From (6) we know that sensor si must be inside
of its localization uncertainty region, i.e., dist(qi, q̂i) ≤ ri.
Therefore, Definition 2 guarantees that qi ∈ Vi. Since Vi has
disjoint interiors with its neighbors, it is guaranteed that si
will not collide with any neighbors.

Algorithm 2 Deadlock Avoidance
1: if q̂i reaches a vertex of Mi then
2: Move along either of the adjacent edges by rbuffer

3: else if q̂i reaches an edge Ek of Mi then
4: Compute distance to the right-hand vertex rv
5: if rv < rbuffer then
6: Move along Ek to the right by rv
7: else
8: Move along Ek to the right by rbuffer

9: end if
10: end if

2) Deadlock Avoidance: Deadlock is the problem that
sensor mutually block each other from reaching their goals.
While using CUV-based method, this can occur when the
goal is located in the the intersection of CUV cells. Zhou
et al. [7] proved that a deadlock can only happen under the
condition that a sensor is at a vertex or on an edge of its safe
moving region, the buffered Voronoi cell in their paper or the
CAR in our case. They proposed two heuristic solutions that
perform well in practice to alleviate deadlock phenomena,
the second of which we utilize in our implementation. This
basic idea, outlined in Algorithm 2, is to continuously break
this deadlock condition.

C. Distributed Coverage Control

As discussed in Section II-A, minimizing the cost func-
tional H with respect to the sensor dominance regions W
yields Voronoi cells Vi for i = 1, . . . , n when the sensor
locations are known. However, in our setting this final
condition is no longer true. Instead, we will utilize the CUV
cells Ci as the dominance regions Wi. By construction, the
UV cells Ui are the smallest dominance region that ensure
that each location A is within at least one sensor dominance
region. However, the UV cells are not convex so the weighted
centroid may be outside of the cell boundaries. Thus, we
choose to use the CUV cells as these are the smallest
convex regions containing the UV cells. Additionally, it is
more computationally efficient to work with convex polygons
rather than regions defined by the intersection of conic
sections.

To achieve distributed coverage control, the mobile sensors
run Algorithm 3. Each sensor iteratively finds the weighted
centroid in its CUV cell and attempts to reach it. If the
centroid is outside of its CAR, the sensor goes to the point
in its CAR that is closest to the centroid. If a sensor reaches
the boundary of its CAR, then it runs Algorithm 2 to avoid
deadlock.

IV. SIMULATIONS

We conduct simulations using MATLAB to validate our
proposed control methods. The environment is an open
100 × 100 m square mission space with no obstacles. The
information distribution function is initially the summation
of 20 Gaussian probability density functions (PDFs), each
of which has a random mean and a covariance matrix of the



Algorithm 3 Distributed Coverage Control
1: for each sensor si do
2: Compute Voronoi cell Vi
3: Compute CAR Mi using Vi, ri, rbuffer

4: Compute CUV cell Ci using Algorithm 1
5: Find weighted centroid c of Ci

6: Find goal q∗i = arg minx∈Mi
‖x− c‖

7: if q∗i in the interior of Mi then
8: Move towards c
9: else

10: Deal with deadlock using Algorithm 2
11: end if
12: end for

Fig. 4. Trajectories of each sensor in collision avoidance test. The green
markers indicate the initial positions of each sensor. Each pair of antipodal
sensors has a pair of lines with different colors showing the trajectories of
each sensor.

form σ2
envI , where I is an identity matrix and σ = 3 m. The

mean of each Gaussian PDF performs a Gaussian random
walk with maximum velocity 5 m/s, and the means may move
out of the environment and re-enter. The covariance matrices
are time invariant.

Sensors are regarded as particles, occupying no space.
Sensor motion is holonomic with a maximum velocity of
5 m/s. Sensors localize themselves at the frequency of 10 Hz
and the covariance matrix for the location of each sensor is
of the form Σi = σ2

i I , where σi is time invariant, though
it may be different for each i. The sensors begin each trial
uniformly distributed along the edges of the space, ensuring
that they begin a safe distance from each other. We assume
that each sensor is able to obtain information everywhere in
their own CUV cell. While this is a limiting assumption, the
goal of this work is to demonstrate the efficacy of the control
strategy. Practical concerns, such as sensors with limited field
of view and imperfect measurements, will be addressed in
future work. Also note the sensors use a sampling-based
integration method to calculate the centroids.

Fig. 5. Distribution of sensors and information after 100 simulated seconds.
Green markers show the true positions of 30 sensors and red crosses show
their current goals, i.e., the weighted centroid of their CUV cells. The
information distribution is shown in grayscale in the background, with darker
indicating more information. The sensors were originaly uniformly spaced
along the boundaries of the environment.

A. Collision Avoidance

Before testing the control algorithm, we first show how
sensors avoid collision and deadlock. Eight sensors are
evenly distributed at the edges of the mission space at the
beginning, formulating four pairs of antipodal sensors, as
Figure 4 shows. The goal is for the sensors in each pair to
exchange positions. All sensors start moving to their goals
simultaneously with the same velocity. Due to this symmetry,
all sensors approach the center at the same time, blocking
the way of the other sensors. As Figure 4 shows, all sensors
were able to successfully avoid collision and eventually reach
their goals.

B. Optimized Coverage

1) Single Trial: We first show a single trial using 30
sensors. Each sensor has a localization error σi randomly
distributed in the range [0.2, 0.3] m (so ri ∈ [0.6, 0.9] m).
All sensors begin uniformly distributed along the boundaries
of the environment, and the trial lasts for 100 s. The results
are shown in Figure 5. We see that most sensors end up
clustered in the areas of high information density, while a
few of others stay in low information density area in order to
maintain coverage of the entire mission space. Some sensors
have not reached their temporary goals since the information
density changes over time, resulting in the continuous change
of the weighted centroids in their CUV cells.

2) Comparison of Trials: We then conduct a large array
of experiments to show the performance of different sensing
networks. We define dense-information regions as regions
that are within 3σenv of the means of the Gaussian PDFs
in the information distribution function. To measure the
performance of the team, we use two metrics. First, we
measure the fraction of the total area that lies within the
dense information regions, denoted as the dense-information
proportion (DIP). Second, we measure the fraction of the



(a) localization error 0.1-0.2 m (b) localization error 0.2-0.3 m (c) localization error 0.3-0.4 m

(d) localization error 0.4-0.5 m (e) localization error 0.5-0.6 m

Fig. 6. Boxplots showing the OSP (black) and the DIP (blue) percentages for networks with 10-50 sensors and different localization errors σi. Each
boxplot contains the results from 10 trials.

total number of sensors believed to be within high-density
regions, i.e., q̂i in the high-density region, denoted as the
optimized sensor proportion (OSP). The difference between
the OSP and the DIP will demonstrate the ability of our con-
trol algorithm to guide sensors to areas of high information
density. Specifically, we want the OSP to be significantly
higher than the DIP, indicating that the sensors are gathering
at locations with high information value.

We compare sensing networks of 9 different sizes from
10 sensors to 50 sensors. For each network size we test 5
different uncertainty region sizes, drawing σ from uniform
distributions ranging from [0.1, 0.2] m to [0.5, 0.6] m. We run
10 trials for each configuration. We log the data for 300 s
and use only the last 200 s to compute the OSP and the
DIP for each sensing network since it takes up to 100 s for
the OSP to reach steady state. The mean and range of the
DIP are nearly identical for all tests, indicating that the total
information density over the mission space is relatively stable
for all tests. The results show that for all sensing networks,
the OSP is at least two times larger than the DIP, meaning
that all of the team has optimized the sensor locations.

For each network size, the OSP decreases as the range of σ
increases. This is expected, since increasing σ also increases
the minimum allowable distance between sensors using the
CAR. The result is that fewer sensors are able to gather
within high density areas. We also see that for this particular
environment, the team size that maximizes OSP is around
20. This makes sense as there are 20 separate components
in the information distribution function.

V. CONCLUSIONS

We propose a distributed control algorithm for a mobile
sensing network that optimizes the sensor locations to im-
prove detections while maintaining coverage of the entire
mission space, accounting for uncertainty in the location of
each sensor, and guaranteeing safety. This approach uses two
novel variants of the Voronoi cell: the convex uncertainty
Voronoi (CUV) diagram and the collision avoidance region
(CAR). Sensors are able to construct both the CUV and
the CAR in a distributed fashion, using only local infor-
mation about sensors’ estimated locations and the associated
uncertainty of these estimates. The sensors then recursively
drive to the weighted centroid of their CUV cells, using the
information distribution function to determine the relative
weights of each location in the environment. This enables
sensors to move to regions with high information density.
The CARs then restrict the motion of each sensor to avoid
collision with others and to avoid becoming stuck in any
deadlock configuration.

Our simulation results show that the proposed algorithm
functions as desired. Furthermore, we explore the effects
of changing the size of the network and the scale of the
localization error on the performance of the team. We see that
increasing localization error results in larger spacing between
sensors. Future work will focus on performing hardware tests
using teams of mobile robots and incorporating a mechanism
to estimate the information distribution function online.



REFERENCES

[1] I. I. Hussein and D. M. Stipanovic, “Effective coverage control for
mobile sensor networks with guaranteed collision avoidance,” IEEE
Transactions on Control Systems Technology, vol. 15, no. 4, pp. 642–
657, 2007.

[2] W. Li and C. G. Cassandras, “Distributed cooperative coverage control
of sensor networks,” in Proceedings of the 44th IEEE Conference on
Decision and Control. IEEE, 2005, pp. 2542–2547.

[3] M. Zhong and C. G. Cassandras, “Distributed coverage control and
data collection with mobile sensor networks,” IEEE Transactions on
Automatic Control, vol. 56, no. 10, pp. 2445–2455, 2011.

[4] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations:
concepts and applications of Voronoi diagrams. John Wiley & Sons,
2009, vol. 501.

[5] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[6] Q. Du, M. Emelianenko, and L. Ju, “Convergence of the Lloyd algo-
rithm for computing centroidal Voronoi tessellations,” SIAM Journal
on Numerical Analysis, vol. 44, no. 1, pp. 102–119, 2006.

[7] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-
line collision avoidance for dynamic vehicles using buffered Voronoi
cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–
1054, 2017.

[8] M. Schwager, J. McLurkin, and D. Rus, “Distributed coverage control
with sensory feedback for networked robots.” in robotics: science and
systems, 2006, pp. 49–56.

[9] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive
coverage control for networked robots,” The International Journal of
Robotics Research, vol. 28, no. 3, pp. 357–375, 2009.

[10] P. M. Dames, “Distributed multi-target search and tracking using the
phd filter,” Autonomous Robots, pp. 1–17.

[11] X. Xie, R. Cheng, M. L. Yiu, L. Sun, and J. Chen, “UV-diagram:
a Voronoi diagram for uncertain spatial databases,” The VLDB
JournalThe International Journal on Very Large Data Bases, vol. 22,
no. 3, pp. 319–344, 2013.

[12] M. Jooyandeh, A. Mohades, and M. Mirzakhah, “Uncertain Voronoi
diagram,” Information processing letters, vol. 109, no. 13, pp. 709–
712, 2009.

[13] W. Evans and J. Sember, “Guaranteed Voronoi diagrams of uncertain
sites,” in 20th Canadian Conference on Computational Geometry,
2008, pp. 207–210.

[14] H. Zhu and J. Alonso-Mora, “B-UAVC: buffered uncertainty-aware
Voronoi cells for probabilistic multi-robot collision avoidance,” in The
2nd IEEE International Symposium on Multi-robot and Multi-agent
Systems, 2019.

[15] M. Wang and M. Schwager, “Distributed collision avoidance of
multiple robots with probabilistic buffered Voronoi cell,” in The
2nd IEEE International Symposium on Multi-robot and Multi-agent
Systems, 2019.

[16] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT press,
2005.


