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Abstract— The authors recently developed a distributed al-
gorithm to enable a team of homogeneous robots to search for
and track an unknown and time-varying number of dynamic
targets. This algorithm combined a distributed version of the
PHD filter (for multi-target tracking) with Lloyd’s algorithm
to drive the motion of the robots. In this paper we extend
this previous work to allow a heterogeneous team of ground
and aerial robots to perform the search and tracking tasks
in a coordinated manner. Both types of robots are equipped
with sensors that have a finite field of view and which may
receive both false positive and false negative detections. The
aerial robots may vary the size of their sensor field of view
(FoV) by changing elevation. This increase in the FoV coincides
with a decrease in the accuracy and reliability of the sensor.
The ground robots maintain the target tracking information
while the aerial robots provide additional sensor coverage. We
develop two new distributed algorithms to provide filter updates
and to make control decisions in this heterogeneous team. Both
algorithms only require robots to communicate with nearby
robots and use minimal bandwidth. We demonstrate the efficacy
of our approach through a series of simulated experiments
which show that the heterogeneous teams are able to achieve
more accurate tracking in less time than our previous work.

I. INTRODUCTION

Target search and tracking are fundamental problems in
robotics, with applications to mapping, environmental mon-
itoring, surveillance, search and rescue, and more [1]. Many
situations call for performing these two tasks simultaneously,
where the same team of robots must search a space in order
to detect the presence of any targets of interest and then track
the motion of any targets that are detected. Most approaches
to solve these problems utilize a homogeneous team of
robots, allowing all robots to utilize the same governing
equations, while a few others seek to utilize a heterogeneous
team for superior results. However, we will demonstrate that
a heterogeneous team is able to achieve superior results,
as long as the coordination mechanism allows the different
types of robots to take advantage of their unique capabilities.

Coverage control in heterogeneous sensor networks has
been studied by a number of researchers [2]–[6] with the
objective of allowing teams mobile sensors with different
sensor footprints, detection models, etc. to complete a uni-
form task together (e.g., surveillance, coverage, or search)
under a uniform control law. In contrast, each subteam of
our proposed heterogeneous robot team belongs to a separate
distributed control system in order to take advantage of
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Fig. 1. Information sharing process between and within the two cooperating
homogeneous teams.

its unique capabilities in all aspects including kinematic,
sensing, and power.

The coordination of mixed air-ground robot teams has
been studied in recent years [7]–[11]. However, all of these
prior works use a ground station to monitor the air team,
to facilitate communication between air and ground robots,
or to make control decisions. Yu et al. [12] proposed a
distributed cooperative planning algorithm for a combined
air-ground team to search and track in urban environments.
However, this approach is limited to a single target. The
main contribution in our work is the development of a
novel distributed algorithm, outlined in Fig. 1, that enables
an air-ground robot team to search for and track multiple
targets. By using distributed algorithms, our approach scales
to arbitrarily large teams of robots and ensures that the
multi-robot system is robust to the failure of any individual
agent(s). The advantage of our proposed method lies in
its ability to scale up both team scale and the number of
subteams while taking advantage of each type of robot in
order to achieve more accurate tracking in less time, which
has not shown in previous literature.

In the combined search and tracking task, the targets
may be either stationary or dynamic, the number of targets
may change over time as they enter or leave the area of
interest, and the target motion is uncertain. Additionally, the
robots are equipped with noisy and unreliable sensors. To
provide a reliable target estimate that accounts for all of these
sources of uncertainty, we use the Probability Hypothesis
Density filter [13], which provides an estimate of the spatial
density of targets. Note that unlike other multi-target trackers,
the PHD filter does not provide target tracks, i.e., unique
identities of each target [14]. However, the goal of this work
is to locate and track all of the targets, not to uniquely
identify each individual target. Furthermore, compared to
other multi-target trackers, the PHD filter offers a straight-



forward computational form and does not require solving
the data association problem, i.e., matching measurements to
targets, a difficult and computationally intensive task when
the density of targets is high.

Previously, we introduced a distributed version of the PHD
filter and tested it with ground-only [15] and air-only [16]
teams. We used the output of the PHD filter as the impor-
tance weighting function within Lloyd’s algorithm [17]. This
effectively drives the robots to follow previously detected
targets and to explore unknown areas that may contain
targets. However, we will demonstrate that a straightforward
application of this previous approach to a heterogeneous
team is not as effective as an approach that treats each type
of robot differently. Specifically, we exploit the differences
in robots’ mobility and computation to develop distributed
algorithms to enable this coordination. We demonstrate the
efficacy of this approach, relative to a naı̈ve extension of
the algorithms for a homogeneous team, through a series of
simulated experiments. It is beyond the scope of this paper
to compare our work against a centralized solution [7]–[11].

II. PROBLEM FORMULATION

A team of Rg ground robots and Ra aerial robots track
the motion of an unknown number of targets, which move in
a convex polygonal environment E ⊂ R2. The environment
must be convex in order to compute the Voronoi cells, though
this requirement can be relaxed by using the results from
Bhattacharya et al. [18]. At time t, the pose of ground robot
rg is qtrg ∈ SE(2) and of aerial robot ra is qtra ∈ SE(3). At
each time step, a robot r (either ground or air) collects a set
of m measurements, Z = {z1, . . . , zm}. m varies over time
due to false positive and false negative detections and due to
the motion of both targets and robots, which cause targets
to enter and leave the sensor field of view (FoV). The team
seeks to determine the set of targets, Xt = {xt1, . . . , xtn},
where each xti ∈ E. Note that this set encodes both the
number of targets (i.e., the cardinality of the set |Xt|) and
the state of each target (i.e., the elements of the set xti).

A. PHD Filter

The sets X and Z from above are realizations of random
finite sets (RFSs). An RFS is a set containing a random
number of random elements, e.g., each of the n elements xi
in the set X = {x1, . . . , xn} is a vector indicating the state
of a single target [19]. The first order moment of an RFS
is known as the Probability Hypothesis Density (PHD) [20],
which we denote v(x). The PHD takes the form of a target
density function over the state space of a target. The PHD
filter recursively updates this target density function in order
to track the motion of the targets. Note that the PHD filter
is the continuous version of the bin-occupancy filter [21].

The PHD filter uses three models to describe the motion
of the targets: 1) The motion model, f(x | ξ), describes the
likelihood of an individual target transitioning from an initial
state ξ to a new state x. 2) The survival probability model,
ps(x), describes the likelihood that a target with state x will
continue to exist from one time step to the next. 3) The

birth PHD, b(x), encodes both the number and locations of
the new targets that may appear in the environment.

The PHD filter also uses three models to describe the
ability of robots to detect targets: 1) The detection model,
pd(x | q), gives the probability of a robot with state q
successfully detecting a target with state x. Note that the
probability of detection is identically zero for all x outside
the sensor FoV. 2) The measurement model, g(z | x, q),
gives the likelihood of a robot with state q receiving a
measurement z from a target with state x. 3) The false
positive (or clutter) PHD, c(z | q), describes both the number
and locations of the clutter measurements.

Using these target and sensor models, the PHD filter
prediction and update equations are:

v̄t(x) = b(x) +

∫
E

f(x | ξ)ps(ξ)vt−1(ξ) dξ (1)

vt(x) = (1− pd(x | q))v̄t(x) +
∑
z∈Zt

ψz,q(x)v̄t(x)

ηz(v̄t)
(2)

ηz(v) = c(z | q) +

∫
E

ψz,q(x)v(x) dx (3)

ψz,q(x) = g(z | x, q)pd(x | q), (4)

where ψz,q(x) is the probability of a sensor at q receiving
measurement z from a target with state x. In this work we
represent the PHD using a set of weighted particles [22].

B. Lloyd’s Algorithm

Lloyd’s algorithm minimizes the value of the functional

H({q1, . . . , qR) =

∫
E

min
r∈{1,...,R}

f
(
d(x, qr)

)
φ(x) dx, (5)

where d(x, q) measures the distances between elements in
E, f(·) is a monotonically increasing function, and φ(x) is
a non-negative weighting function. We use f(x) = x2, a
standard choice. The minimum inside of the integral induces
a partition on the environment Vr = {x | d(x, qr) ≤
d(x, qi), ∀i 6= r}. This is the Voronoi partition, and these Vr
are the Voronoi cells. Cortes et al. [23] show that the gradient
of (5) with respect to the state of each robot is independent
of the states of the other robots, and that iteratively moving
each robot r to its weighted centroid,

q∗r =

∫
Vr
xφ(x) dx∫

Vr
φ(x) dx

, (6)

achieves a local minimum of H. Our prior work introduced
the use of the PHD as the weighting function, setting φ(x) =
v(x) [16], effectively coupling the tracking and control.

C. Distributed PHD Filter

Our previous work [16] uses the Voronoi partition in
order to distribute the PHD filter across a team of robots.
Specifically, each robot is responsible for maintaining the
portion of the PHD within its cell. As the robots move, so
do their Voronoi cells. When this happens, the team transfers
ownership of portions of the PHD from one robot to another
[16, Algorithm 1]. As the targets move, they may cross



Fig. 2. A heterogeneous team of 7 ground (blue squares) and 7 aerial
robots (red squares) shown with their sensor footprints (circles). Each type
of robot has its own Voronoi partition (dashed lines) and the two types of
robots cooperate to locate targets.

the boundary from one cell into another. The distributed
version of the PHD filter prediction step, (1), requires each
robot to share the flux of targets across the boundaries of
its cell with its neighbors [16, Algorithm 2]. Finally, the
normalization term in the PHD update equation, (2), requires
an integral over the full sensor FoV. When a robot’s FoV
overlaps with the Voronoi cell of another robot, the two
robots must exchange data in order to correctly compute the
normalization term (3) [16, Algorithm 3]. When the sensor
FoV of two or more robots overlap, each robot must also
apply the measurement updates in the same order to ensure
that the resulting PHD is consistent. This enables each robot
to update the PHD using only information from its neighbors,
offering a significant advantage for large teams, like the ones
considered in this paper. We showed that this distributed
PHD filter yields identical results to a centralized filter.

III. COORDINATION OF HETEROGENEOUS ROBOTS

When using a team of heterogeneous robots, we argue
that the most effective coordination strategies should take
advantage of the differences between each type of robot.
To accomplish this, each subteam has a separate Voronoi
diagram (Figure 2). The only requirement is that each
subteam is able to move independently of the others, i.e.,
a robot in subteam 1 cannot pick an action that will cause
it to collide with a robot in subteam 2. This allows each
subteam to take advantage of their differences in mobility.

However, the subteams must still exchange information
with one another in order to effectively coordinate. In our
scenario, the most relevant piece of information is the
current target estimate, which is represented by the PHD.
One subteam maintains the PHD and shares this with the
other subteams. This allows the subteam with the greatest
computational and communication resources to perform the
tracking task. We assume that each robot has sufficient com-
munication range and bandwidth to exchange information
with all of its Voronoi neighbors and with all other robots
who have Voronoi cells that overlap with its sensor FoV.

In this paper, we assume that we have two types of robots:
one that is constrained to move on the ground and one that
moves in the air. Aerial robots have a higher maximum speed
while the ground robots have more computational resources,
which is the typical case for real-world systems.

Algorithm 1 Distributed PHD Update
1: for each aerial robot ra do
2: Send pose qtra and measurement set Zt

ra to all ground
neighbors

3: end for
4: for each ground robot rg do
5: Compute (3) within Voronoi cell Vrg
6: Send partial ηz back to the respective aerial robot(s)
7: end for
8: for each aerial robot ra do
9: Compute full normalization term (3)

10: Send normalization term to all ground neighbors
11: end for
12: for each ground robot rg do
13: Compute PHD update (2)
14: end for

A. Distributed PHD Update

Due to their superior computational resources, we utilize
the ground subteam, along with its associated Voronoi par-
tition, to maintain the distributed PHD filter [16]. In order
to incorporate the measurement data from the aerial robots,
we must add an additional step. Outlined in Algorithm 1
and Fig. 1, this requires three rounds of communication
between the subteams. First, each aerial robot ra must send
its pose and measurement set to each ground robot whose
Voronoi cell overlaps with ra’s sensor FoV. The ground
robots, which have the probabilistic sensor models for the
aerial robots stored on board, then compute the portion of
the normalization integral within their Voronoi cells and send
this back to the aerial robot. The aerial robot then computes
the full normalization term and sends this back to the ground
robots, which perform the PHD updates. Note that all of the
ground robots must apply the measurements from the aerial
robots in the same order as one another. This can be done
effectively by using the ID of each aerial robot to provide a
total ordering, just like the ordering of updates in the original
algorithm [16, Algorithm 3].

Using this algorithm, the mixed air-ground team can
achieve a consistent PHD estimate. This algorithm utilizes
the additional computational power of the ground robots to
maintain the filter and the additional sensing provided by
the aerial robots to detect and track targets. The algorithm
is also scalable to large teams. Each exchange of data
between any pair of robots is very low bandwidth: each step
involves sending |Z| quantities (measurements or η terms).
Furthermore, the number of robots that must communicate
with each other is of constant size with respect to the team,
since each robot is only required to communicate with its
direct neighbors.

B. Distributed Goal Assignment

Ground robots use the same distributed goal assignment
algorithm from our previous work [16]: each robot computes
the weighted centroid of its Voronoi cell using the PHD
as the weighting function and drives towards this point.



Algorithm 2 Aerial Robot Goal Assignment
1: for Each aerial robot ra do
2: Send Voronoi cell V t

ra to all ground neighbors Nra

3: end for
4: for Each ground robot rg do
5: Compute overlapping region(s) Vg,a = Vra ∩ Vrg
6: Compute partial integrals

∫
Vg,a

v(x) dx,∫
Vg,a

xv(x) dx, and
∫
Vg,a

xxT v(x) dx
7: Send results back to the respective aerial robot(s)
8: end for
9: for Each aerial robot ra do

10: Add partial integrals to get full integrals
11: Compute centroid q∗2D =

∫
xv(x) dx∫
v(x) dx

12: Compute covariance Σ =
∫
xxT v(x) dx∫

v(x) dx
− q∗2D(q∗2D)T

13: end for

Aerial robots cannot do this on their own since they have no
information about the PHD stored on board. Instead, they
must communicate with nearby ground robots to compute
their goal locations. To pick actions for aerial robots, we
take the approach from [16] and separate the motion of the
aerial robots into two components: in-plane and out-of-plane.
The in-plane motion is determined in the same way as the
ground robots, using a (separate) 2D Voronoi diagram and
applying Lloyd’s algorithm using the PHD as the importance
weighting function. Let the in-plane component of the aerial
robot’s goal position be q∗2D.

The out-of-plane motion (i.e., elevation) depends upon
the distribution of both the aerial robots and the targets
[16]. Since for most sensors, e.g., downward-facing cameras,
the diameter of the FoV is proportional to the elevation of
the robot, we must first select a desired sensor radius. We
compute this using two factors. The first factor, rcell, depends
on the spatial distribution of robots, and is the average of the
radii of the circles centered at q∗2D that are inscribed in and
circumscribe the Voronoi cell. The more densely packed the
robots are, the smaller their cells will be and so the lower
each robot needs to be to ensure coverage. The second factor,
rtargets, depends on the target distribution within the cell.

rtargets = 3
√

max
(
eig(Σ)

)
(7)

Σ =

∫
V

(x− q∗2D)(x− q∗2D)Tw(x) dx∫
V
w(x) dx

, (8)

where eig(Σ) are the eigenvalues of the matrix. The more
certain each robot is about the locations of targets, the lower
it is able to fly while ensuring coverage.

The desired radius of the sensor footprint is given by the
weighted sum of these two factors

rdes =
wcellrcell + wtargetsrtargets

wcell + wtargets
, (9)

where wcell is a constant value and wtargets =∫
V
w(x2D) dx2D is the total weight of the PHD in the

cell. This formula makes a trade-off between maintaining

coverage in order to view possible new targets and focusing
in on existing targets to maintain better tracking quality.

The aerial robots use Algorithm 2 to compute goal lo-
cations. We make a common assumption that each robot
is capable of finding its Voronoi neighbor set with local
information [24]. This distributed algorithm uses two rounds
of low-bandwidth communication in order to compute the 2D
centroid, q∗2D, and target covariance, Σ. In order to reduce
the amount of communication necessary, we use the equation
Σ = E[XXT ]−E[X]E[X]T since this allows the robots to
compute all of the terms in parallel.

IV. SIMULATIONS

We conduct a set of simulated experiments using MAT-
LAB in order to demonstrate the efficacy of our proposed
distributed estimation and control algorithms. All robots
know their pose at all times and are modeled as point
robots that are both holonomic and kinematic. Ground robots
have a maximum speed of 2 m/s while aerial robots have a
maximum speed of 10 m/s. The elevation of each aerial robot
is constrained to a certain range, since flying too low could
lead to collisions with ground robots and UAVs are legally
restricted to a maximum elevation. Each robot is equipped
with an isotropic sensor with a finite sensing range to detect
targets (5 m for ground robots). All targets within the sensor’s
FoV will be detected with equal possibility. As an aerial
robot moves up in elevation, its sensor FoV increases in size
while the detection probability decreases and the noise and
clutter increase. All of the sensor and target models match
those from our previous work [16].

The environment is an open 100 × 100 m area with no
obstacles. All robots begin each trial at randomized locations
within a 20 m × 10 m box at the bottom center of the
environment. Aerial robots begin at an elevation of 5 m. The
PHD is represented by a uniform grid of particles. The grid
resolution is 1 m, and initially the weight of each particle
is set to wj = 10−4, so that the total expected number
of targets is initially 1. We use the first order Optimal
SubPattern Assignment (OSPA) metric [25], a commonly-
accepted approach, with cutoff distance 10 m to measure the
average error between true target set X and measurement set
Z. A lower OSPA value indicates a more accurate tracking
of the target set.

We consider two scenarios, one in which the targets are
stationary and one in which the targets are dynamic. When
the targets are stationary, the team explores for a maximum
of 300 s. We plot the median value of the OSPA error over
the final 50 s of the run to get the steady-state value. In the
case of dynamic targets, the number of targets varies over
time as new targets enter the search area and others leave it.
To measure the steady-state performance, the robots explore
for 1000 s and we plot the median OSPA error over the final
300 s, giving time for the robots to spread out across the
environment. In both cases, we also measure the 95% rise
time of the OSPA error metric, meaning the time it takes
for the OSPA error to reach a value within 5% of the final



(a) OSPA – 20 Static Targets (b) OSPA – 20 Dynamic Targets

(c) Rise Time – 20 Static Targets (d) Rise Time – 20 Dynamic Targets

Fig. 3. Boxplots showing the results of teams using our old algorithm
(black) and our new algorithm (red). The teams consist of 30–90 total
robots, including 20 aerial robots, and track 20 static or dynamic targets.
(a) and (b) show the steady-state OSPA error while (c) and (d) show the
95% rise time of the OSPA error.

steady-state value. We perform 10 trials of each configuration
and show boxplots of all results.

1) Comparison with Previous Method: We first want to
demonstrate that a team using our proposed coordination
algorithm performs better than a team using our previous
approach [16]. To do this we consider robot teams consisting
of 20 aerial robots plus a varying number of ground robots,
from 10–70, for a total team size of 30–90 robots. In the first
scenario (old), we will use a naı̈ve extension of our previous
work: the team uses a single shared Voronoi diagram and
both types of robots maintain portions of the PHD. In the
second scenario (new), the heterogeneous team will use
the algorithm proposed in this paper. Note that the target
behavior is identical for both scenarios, so the only difference
is in the motion of the robots (which also influences the
measurements received).

Figure 3 shows the results of these trials, with the new
team outperforming the old team in terms of accuracy,
precision, speed, and repeatability. Figures 3a and 3b show
that teams using new have a lower steady-state OSPA error
and the spread in values is smaller compared to teams using
old. Furthermore, Fig. 3c and 3d show that teams using
new have a lower median rise time and a smaller spread.
The only instances when the old team has a lower rise time
is when the steady-state OSPA error is significantly higher,
which naturally takes less time to reach.

The emergent behavior of the new team is such that
the aerial robots quickly spread out over the environment
at a high elevation, providing relatively low-quality mea-
surements of a large area. These measurements from the
aerial robots allow the ground robots to use information from
outside of their own sensor FoV to move directly towards

(a) OSPA – 10 Dynamic Targets (b) Rise Time – 10 Dynamic Targets

Fig. 4. Boxplots showing the results of teams of 10–80 total robots,
including 0 (black), 10 (red), and 20 (blue) aerial robots, tracking 10
dynamic targets. (a) shows the OSPA error while (b) shows the 95% rise
time of the OSPA error.

areas that likely contain targets. This symbiotic relationship
allows the full team to take advantage of the different
strengths of each type of robot, thereby achieving superior
results. In the old team, the aerial robots are significantly
slowed because all robots share a single Voronoi diagram
and so the aerial robots must first wait for the slower ground
robots to spread out.

2) Moving Targets: In order to further explore the effects
of coordination, we conduct trials using three different team
compositions: ground robots only, ground robots with 10
aerial robots, and ground robots with 20 aerial robots. In each
case there are initially 10 moving targets. As expected, all
three team compositions show decreasing OSPA errors and
rise times as the total number of robots increases. This is due
to the ability of the team to better cover the boundaries of
the environment to ensure that fewer new targets are missed
while simultaneously tracking previously detected targets. As
the team size increases, we see that the gap between the
three team compositions narrows, the results become more
consistent, and there are diminishing returns for adding more
robots. All of this occurs because the environment becomes
saturated with robots.

In every case, the ground-only team performed worse than
either of the teams with aerial robots, demonstrating the
utility of coordination. However, a team with 20 aerial robots
does not uniformly perform better than a team with 10 aerial
robots. Looking at teams with 30 total robots, we see that the
team with 20 ground and 10 aerial robots has lower OSPA
error than the team with 10 ground and 20 aerial robots.
This is because in the steady state there were approximately
15–20 targets, so only the team with 20 ground robots has
sufficient resources to track all of the targets using the higher
precision sensors. Looking at the rise time for this same case,
we see that the team with 20 aerial robots has a significantly
lower and more consistent rise time than the team with 10
aerial robots. This again supports the intuition that the aerial
robots provide more consistent information, but at a lower
quality, than the ground robots.

3) Team Composition: To further explore the effects of
team composition that we observed before, we consider the
scenario of 51 robots tracking 20 dynamic targets. Note that
the team always has at least one ground robot, to maintain
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Fig. 5. Boxplots showing the OSPA error of teams of 51 total robots,
including 1 to 50 ground robots, tracking 20 dynamic targets.

the PHD filter, and one aerial robot. Figure 5 shows the
OSPA error as a function of the number of ground robots.
Note that the minimum error occurs when the number of
ground and aerial robots are nearly equal. In this case, the
two types of robots can essentially pair off, with the aerial
robot providing lower-quality coverage of a larger area. This
reduces the number of targets that ground robots lose track
of due to repeated false negative detections over a short time
span. This is especially helpful since the targets have the
same maximum speed as the ground robots.

V. CONCLUSIONS
In this paper we propose a distributed method that enables

a heterogeneous team of ground and aerial robots to effec-
tively search for and track an unknown number of targets
in a known environment. The coordination mechanism takes
advantage of the relative strength of each type of platform:
ground robots offer increased computational ability and more
precise sensors while aerial robots offer increased mobil-
ity and a variable sensor field of view. The ground team
is responsible for maintaining the distributed multi-target
tracker, using sensor measurements from both the ground and
aerial robots. Since the control actions depend on the target
locations, this requires the aerial robots to communicate with
the ground robots in order to make decisions about where
to next move. All of this communication is done over low-
bandwidth channels and only requires local communication
links, making the data-sharing algorithms distributed and
scalable to large teams.

We demonstrate the effectiveness of the proposed hetero-
geneous coordination mechanism through a series of sim-
ulated experiments. Overall, the results indicate that teams
using the proposed method perform better than homogeneous
teams or heterogeneous teams that treat all robots identically.
We found that changing the ratio of ground to aerial robots
leads to different behavior in terms of the final tracking
accuracy and the time necessary to achieve it. The results also
show that the proposed algorithm is superior to our previous
method when applied to different types of robots.
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