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ABSTRACT
Multi-graph clustering aims to improve clustering accuracy by
leveraging information from different domains, which has been
shown to be extremely effective for achieving better clustering
results than single graph based clustering algorithms. Despite the
previous success, existing multi-graph clustering methods mostly
use shallow models, which are incapable to capture the highly
non-linear structures and the complex cluster associations in multi-
graph, thus result in sub-optimal results. Inspired by the powerful
representation learning capability of neural networks, in this paper,
we propose an end-to-end deep learning model to simultaneously
infer cluster assignments and cluster associations in multi-graph.
Specifically, we use autoencoding networks to learn node embed-
dings. Meanwhile, we propose a minimum-entropy based clustering
strategy to cluster nodes in the embedding space for each graph.
We introduce two regularizers to leverage both within-graph and
cross-graph dependencies. An attentive mechanism is further devel-
oped to learn cross-graph cluster associations. Through extensive
experiments on a variety of datasets, we observe that our method
outperforms state-of-the-art baselines by a large margin.
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Figure 1: An illustrative example of multi-graph.

1 INTRODUCTION
Graphs (or networks) are prevalent in real-life applications for mod-
eling structured data such as social graphs [30], document citation
graphs [19], and neurobiological graphs [27]. As a fundamental
problem in graph analysis, graph clustering uncovers communi-
ties that are formed by densely connected nodes [13], which is
widely used for understanding the underlying structure of a graph.
Traditional methods, such as spectral clustering [29], modularity
based clustering [18], and stochastic block model [16], are mostly
developed for a single graph. The rapid growth of information in
emerging applications, however, has generated a large volume of
interdependent graphs, known as multi-graph, which necessitates
clustering algorithms that enable joint consideration of multiple
graphs and their in-between dependencies.

Fig. 1 illustrates an example of multi-graph, consisting of a col-
laboration graph on researchers and a citation graph on papers.
Between the two graphs, an edge (i.e., the dotted line) indicates
an authorship between a researcher and a paper. It is noteworthy
that such cross-graph relationships establish the inter-dependency
between the graphs thus are integral to any of their analysis. As
another example, in neurobiology, brain networks are usually built
to show the functional connectivity of the widespread brain regions
by statistical analysis of the fMRI and other signals [27]. In a brain
network, each node indicates a particular region and an edge rep-
resents functional connectivity between two regions. An emerging
paradigm in neurobiology is that cognitive analysis is performed
by jointly considering a collection of brain networks (of numerous
subjects) instead of regarding each network in isolation [10]. In
this scenario, the correspondence between the common regions in
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different networks establish the non-negligible inter-graph linkage
in the collection of graphs.

Because of the increasingly growing volume of interdependent
graphs on the web, substantial research attentions have been drawn
to multi-graph clustering [2, 13, 20, 25]. Basically, the advantage
of performing joint multi-graph clustering is two-fold. First, due
to the measurement errors and data access limitations, in prac-
tice, individual graphs are often noisy and incomplete. In contrast,
multi-graph provides complementary information to alleviate this
problem, which is more robust. Exploiting it is a promising ap-
proach for revealing the authentic manifold structures so as to
enhance clustering accuracy. Second, as a unique characteristic of
multi-graph data, the cross-graph links will enable the discovery
of new patterns that cannot be found in individual graphs. One
such important pattern is the hidden association that may be exhib-
ited between clusters from different graphs, which is essential to a
comprehensive understanding of the entire system. For instance, a
cluster of researchers (e.g., clusterA1 in Fig. 1) may publish a cluster
of papers sharing similar topics (e.g., cluster P1 in Fig. 1), which
may only be depicted by the cluster-level associations. Meanwhile,
correctly identifying cluster associations will facilitate the estab-
lishment of clear boundaries between clusters within each graph,
thus enhance clustering accuracy. For example, over a set of brain
networks, a tight association of the visual systems (i.e., clusters
of visual regions) will reduce the chance that a particular visual
region deviates from its cluster in an individual brain network.

Despite the aforementioned advantages, multi-graph clustering
remains a challenging task. First, recent intensive researches on
graph representation learning have demonstrated that graph data
are complex with highly non-linear underlying structures [31].
Hence it is important to take the potential non-linearity of the data
into account when doing graph clustering. Whereas, how to model
the non-linear hidden representations in the meantime of clustering
graphs is still an open problem till now. Second, interdependent
graphs may have quite different topological properties. For example,
one graph is dense while another is sparse. Thus it is challenging
to maintain the respective structures of individual graphs while
leveraging the consistency. Finally, although inter-graph links are
available at node-level, how to correctly infer the hidden cluster
associations and use them for reinforcing the clustering accuracy
is non-trivial, especially considering the inter-graph links are often
scarce with the presence of noise.

To address the above challenges, in this work, we keep abreast of
the ongoing developments of graph neural networks [7, 9, 28, 31]
and pertinent AI techniques [8], and propose a novel algorithm
DMGC, (Deep Multi-Graph Clustering), based on a deep learning
model with a neural attention mechanism. Our goal is to seamlessly
perform the dual procedures of multi-graph clustering and cross-
graph cluster association, for improving clustering accuracy and
interpreting cluster associations. Specifically, DMGC maps nodes
to non-linear latent spaces via an autoencoding architecture [31]
that preserves the 1st and 2nd order proximities between nodes in
individual graphs. It manipulates the deep representations of nodes
in the manifolds of multiple graphs via a minimum-entropy based
clustering loss, whichmodels nodes and cluster centroids by Cauchy
distribution [36] and ensures tight and well-bounded clusters. In
the meantime,DMGC infers associations between cluster centroids

(i.e., the agents of clusters) over different graphs by a new attention
mechanism. To preserve the autonomy of the topological properties
of individual graphs, DMGC allows each graph to have its own
latent space, while defines attention based functions to project
cluster centroids from a unified space to the latent spaces of different
graphs. Different from many existing deep learning based methods
[26], which alternately perform representation learning and graph
clustering,DMGC is a completely end-to-end clustering model that
is pretrain-free. Our contributions are summarized as follows.

• We propose to investigate the joint problem of deep multi-
graph clustering and cross-graph cluster association, which
is entirely unsupervised thus is very challenging.

• We propose the first deep learning based multi-graph clus-
tering methods, DMGC, which is an end-to-end model with
an attention module to associate clusters across graphs.

• We develop a new minimum-entropy based loss for graph
clustering and a new attentive module for inferring cross-
graph cluster associations.

• We perform extensive experiments on a variety of real-life
datasets. The results demonstrate that DMGC outperforms
the-state-of-the-art methods by a large margin.

2 RELATEDWORK
Traditional graph clustering methods are mostly designed for a sin-
gle graph, such as spectral clustering [17], matrix factorization [11],
modularity based clustering [18], and cut-based methods [3]. Re-
cently, to tackle the highly nonlinear structures, various deep learn-
ingmethods have been proposed [1, 22, 26, 34, 37]. In [26], GraphEn-
coder is used to learn node embeddings. K-means is then applied
to get the clustering results. Several end-to-end models are also
proposed [1, 22, 34, 37]. In [37], graph clustering are discussed in
a supervised setting. Limited ground-truth clusters are utilized to
learn an embedding model that is aware of the underlying social
patterns. In [34], a unified modularized non-negative matrix fac-
torization model is proposed to incorporate both node features
and community structure for network embedding. In [22], the au-
thors extend Deepwalk [21] by adding a cluster constraint. All the
above methods are designed for a single graph and cannot handle
multi-graph data.

Recently, multi-graph has drawn increasing attention because
of its capability to model structural data from different domains [4,
12, 19, 20, 25, 32]. Various graph mining tasks have been extended
to multi-graph setting, including the ranking problem [32], net-
work embedding [4, 12, 19], and node clustering [2, 13, 20, 25].
Specifically, in [25], the authors propose linked matrix factorization
method to achieve consensus clustering results among multiple
graphs. This work is designed for a special type of multi-graph
where all graphs share the same set of nodes. In [2], matrix fac-
torization is extended to capture the inter-graph relationship by
introducing the residual sum of square loss function and clustering
disagreement loss function. In [13], the authors combine matrix
tri-factorization with a cluster alignment loss. In [20], a probabil-
ity model is proposed to detect the shared underlying clustering
patterns of different graphs. However, these matrix factorization
based methods and other shallow models may not be effective to
capture the complex underlying patterns of multi-graph.



Table 1: Main symbols

Symbol Definition
V(i ), E(i ) the node/edge set of i-th graph

ni the number of nodes in the i-th graph
A(i ) the adjacency matrix of the i-th graph
Q(i ) the cluster assignment matrix for the i-th graph
Ki the number of clusters of the i-th graph
µ(i )
k the k-th cluster centroid of the i-th graph

H(i ) the hidden representations of nodes in the i-th graph
di the embedding size of nodes in graph G (i )

z(i )k the k-th cluster centroid of G (i ) in the unified space.
д the number of graphs
I the set of available cross-graph relationships.

S(i j ) the relationship matrix between nodes in G (i ) and G (j )

C(i j ) the association matrix between clusters in G (i ) and G (j )

3 PROBLEM FORMULATION
Supposewe haveд graphs, each is represented byG(i) = (V(i), E(i))

(1 ≤ i ≤ д), where V(i) and E(i) are the sets of nodes and edges in
the graph, respectively. A(i) ∈ Rni×ni+ is the adjacency matrix of
G(i), where ni = |V(i) |. Our analysis applies to any (un)directed
and (un)weighted graphs. Thus A(i) can be either symmetric or
asymmetric, with binary or continuous entries. We use I = {(i, j)}
to denote the set of available inter-graph dependencies. For instance,
I = {(1, 2), (2, 3)} specifies two inter-graph dependencies, one
is between G(1) and G(2), and another is between G(2) and G(3).
Each pair (i, j) is coupled with a matrix S(i j) ∈ Rni×nj+ , with s

(i j)
xy

indicating the weight between node x in G(i) and node y in G(j).
For clarity, important notations are summarized in Table 1.

Given {A(i)}
д
i=1, {S

(i j)}(i , j)∈I , and {Ki }
д
i=1, whereKi is the num-

ber of clusters in G(i), the goal of this work is two-fold. First, for
each node x in each G(i), we infer a cluster assignment probability
q(i)x ∈ RKi+ , with q(i)xk measuring the probability that node x belongs
to cluster k (1 ≤ k ≤ Ki ). Second, for each cluster k inG(i), we infer
a cluster association probability c(i j)k ∈ R

Kj
+ , with c

(i j)
kl measuring

the probability that cluster k inG(i) associates with cluster l inG(j)

(1 ≤ l ≤ Kj ), for any j s.t. (i, j) ∈ I. We will demonstrate that, by
jointly solving this dual task, the clustering performance will be
significantly improved in Sec. 5.

4 DEEP MULTI-GRAPH CLUSTERING
In this section, we introduce the DMGC method. Fig. 2 illustrates
the architecture of DMGC for two interdependent graphs. First,
each graph is fed to an autoencoding component to learn node em-
beddings that preserve the proximity between nodes in the graphs.
Meanwhile, for each graph, node embeddings are assigned to clus-
ter centroids (i.e., µ(i)) via measuring a Cauthy distribution. The
probabilities of cluster membership (i.e., q(i)x ) of different graphs
are then regularized by a within-graph local proximity loss and a
cross-graph cluster association loss. DMGC associates the cluster
centroids of different graphs by an attention mechanism, where the
learned attention weight specifies the relationship between clusters
of different graphs. Finally, a joint loss is trained for obtaining the

clustering results and attention weights. Next, we first introduce a
novel clustering loss based on node embeddings.

4.1 Minimum-Entropy Based Clustering
Suppose we have already transformed each node x in graph G(i)

(1 ≤ i ≤ д) to its latent embedding. Let the embedding be h(i)x ∈

R1×di , where di is the dimensionality of the embedding space of
G(i), which can be different for different i’s. In addition, for each
cluster k in G(i), we associate it with a centroid vector µ(i)k ∈ R1×di .

Later in Sec. 4.3, we will discuss our approach to learn µ(i)k ’s by
an attention based projection. For now, we use them to define a
minimum-entropy based clustering loss.

To measure the similarity between h(i)x and the k-th cluster cen-
troid µ(i)k , we employ the Cauchy distribution as a kernel function.
As discussed in [14], comparing to Gaussian kernel, a model based
on Cauchy distribution is more effective to force h(i)x apart from
the centroid µ(i)k if x does not belong to cluster k , which implies a

larger boundary. Therefore, we define a score q(i)xk to indicate the
probability that node x belongs cluster k by

q
(i)
xk =

1/(1 + | |h(i)x − µ(i)k | |22)∑
k ′ 1/(1 + | |h(i)x − µ(i)k ′ | |

2
2)

(1)

Ideally, an uneven distribution q(i)x = [q
(i)
x1, ...,q

(i)
xKi

] is highly desir-

able such that q(i)xk is clearly distinguishable from q
(i)
xk ′ (k

′ , k) if x

belongs to cluster k . One option is to minimize the entropy of q(i)x ,
which facilitates to resolve the uncertainty of a distribution [23].
Formally, the entropy of q(i)x is defined as

H (q(i)x ) = −
∑
k

q
(i)
xk logq

(i)
xk (2)

Since x logx is convex and non-positive for 0 < x < 1, we have

H (q(i)x ) = −
∑
k

q
(i)
xk logq

(i)
xk ≥ −(

∑
k

q
(i)
xk ) log(

∑
k

q
(i)
xk ) = 0

where the equality holds if and only if qx is a one-hot vector, with
q
(i)
xk = 1 indicating node x belongs to cluster k with probability

1. Therefore, by minimizing H (q(i)x ), we tend to achieve a sharp
distribution q(i)x as a clear indicator of cluster membership.

However, minimizing entropy may cause the gradient exploding
problem during the training with gradient descent. Specifically,

∂H (q(i)x )

∂q
(i)
xk

= − logq(i)xk − 1 ∈ [−1,∞)

Hence, when q
(i)
xk → 0, the above gradient tends to be very large

which will dominate the gradient of the final loss and result in
unstable results. To solve this issue, instead of minimizing Eq. (2),
we introduce an inner product based loss

−
∑
x

logσ (q(i)x (q(i)x )T ) (3)
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Figure 2: An illustrative example of DMGC using academic graphs. a) input multi-graph. b) autoencoding based node embed-
ding for preserving neighborhood structure. c) minimum-entropy based clustering, µ(i) contains all cluster centroids in the
i-th graph, Q(i) encodes the cluster memberships. d) two types of regularization in the loss function. e) clustering results.

where σ (·) denotes the sigmoid function. Since 0 ≤ q
(i)
xk ≤ 1 and∑

k q
(i)
xk = 1, we have

q(i)x (q(i)x )T =
∑
k

(q
(i)
xk )

2 ≤ (
∑
k

q
(i)
xk )

2 = 1

where the equality holds when qx is a one-hot vector with q(i)xk = 1,
which shows that Eq. (2) and Eq. (3) have the same optimal solution.
Also, it is worth to note that

0 ≤
∂ logσ (q(i)x (q(i)x )T )

∂q
(i)
xk

=
2q(i)xk

exp(q(i)x (q(i)x )T ) + 1
< 2

which solves the issue caused by gradient exploding.
Furthermore, to circumvent the trivial solution when all nodes

are assigned to a single cluster, we define an empirical distribution
p
(i)
k =

1
ni

∑
x q

(i)
xk , which can be considered as the soft frequency of

each cluster. Then we minimize KL(p(i) | |u(i)), the KL divergence
between p(i) and the uniform prior u(i), so as to to achieve a bal-
anced clustering. Consequently, our clustering loss for all graphs
becomes

Lc =
∑
i

[
−
∑
x

logσ (q(i)x (q(i)x )T ) + KL(p(i) | |u(i))
]

(4)

4.2 Proximity Based Constraints
Next, we discuss the 1st and 2nd order proximity based constraints
to further refine our clustering quality.
The 1st Order Proximity. Intuitively, two connected nodes are
more likely to be assigned to the same cluster. Therefore, the 1st
order proximity is introduced to capture the local graph structure
through pairwise similarity between nearby nodes. Because our
goal is clustering, instead of preserving the proximity via node
embeddings as many existing works have done [6, 7, 19, 21, 31], we
preserve the 1st order proximity by using the clustering vector q(i)x .
Formally, we minimize the following loss

L
(i)
1st = −

∑
(x ,y)∈E(i )

logσ (q(i)x (q(i)y )T ) (5)

where E(i) is the set of edges in G(i). By minimizing L(i)1st , node x
and node y tend to clustered together if they are linked in G(i).
The 2nd Order Proximity. Moreover, as demonstrated by [31],
preserving the 2nd order proximity is useful to encode the graph
structure beyond pairwise similarity. Basically, this proximity mea-
sures the similarity between the neighborhoods of nodes. Let a(i)x ∈

R1×ni be the adjacency vector of node x , i.e., the x-th row of the
adjacency matrixA(i). Thus, a(i)x encodes the neighborhood of node
x . To preserve the 2nd order proximity, we perform the following
transformation based on a(i)x

â(i)x = д
(i)

θ (i )
2
(f

(i)

θ (i )
1
(a(i)x )) (6)

where f (i)
θ (i )
1
(·) is an encoding function parameterized by θ (i)1 , д(i)

θ (i )
2
(·)

is a decoding function parameterized by θ (i)2 , and â(i)x is a recon-
struction of a(i)x . Here, f (i)

θ (i )
1
(·) andд(i)

θ (i )
2
(·) can be realized by different

options, such as the fully connected network (FC) and LSTM. In this
work, we choose FC for its good performance in our experiments.

Let h(i)x = f
(i)

θ (i )
1
(a(i)x ) be the embedding of node x , as introduced

in Eq. (1). Since the adjacency vector encodes the neighborhood
of a node, minimizing the reconstruction error between â(i)x and
a(i)x will enforce nodes with similar neighborhood to have similar
embeddings. Hence, the 2nd order proximity can be preserved in
the embedding space by minimizing

L
(i)
2nd =

∑
x ∈V(i )

| |(a(i)x − â(i)x ) ⊙ b(i)x | |22 (7)

where V(i) is the set of nodes in G(i), and ⊙ is the element-wise
product. Here, similar to [31], we introduce a weight vector b(i)x
to place more attention on the non-zero elements in a(i)x so as to
handle the sparsity in a(i)x . In particular, b(i)xy = b > 1 if a(i)xy > 0;
b
(i)
xy = 1 otherwise. In this paper, we empirically set b = 3.



Finally, putting Eq. (5) and Eq. (7) together, we achieve a proxim-
ity based loss

Lproximity =
∑
i

(
L
(i)
1st + L

(i)
2nd

)
(8)

4.3 Cross-Graph Cluster Association
In this section, we develop an attention based method to model the
association between clusters across different graphs.

In Eq. (1), we have introduced a cluster centroid µ(i)k for each clus-

ter k in each G(i). First, we discuss how to infer µ(i)k ’s. To preserve

the autonomy of individual graphs, µ(i)k ’s are defined in different
embedding spaces for different G(i)’s, which may have different
dimensionality di ’s. This discrepancy hinders comparison between
the centroids of different graphs. To solve it, we define a unified
space particularly for all cluster centroids from all graphs. As illus-
trated in Fig. 3, in this space, each centroid is represented by a vector
z(i)k ∈ R1×d with a uniform dimensionality d , which facilitates com-

parison. Then, to generate µ(i)k in individual embedding spaces, we
perform a projection from the unified space to the embedding space
of each graph by an attention based single-layer FC

µ(i)k = ReLU
(
W(i)

[
z(i)k ;

∑
l

c
(i1)
kl z(1)l ; ...;

∑
l

c
(iд)
kl z(д)l

] )
(9)

where c(i j)kl is an attention weight measuring the association be-
tween cluster centroid k in G(i) and cluster centroid l in G(j). [·; ·]
represents a concatenation function.W(i) is the weight of FC. Note
in Eq. (9), the concatenation excludes the term for within-graph
attention

∑
l c

(ii)
kl z(i)l .

By concatenating all centroids from all graphs other than G(i)

(via attention weights) together with z(i)k , the output µ(i)k is able to
capture cross-graph dependencies at the cluster-level.

To define the attention c(i j)kl , for the same reason as Eq. (1), we em-
ploy Cauchy distribution as the kernel to measure the associations
between clusters in different graphs

c
(i j)
kl =

1/(1 + | |z(i)k − z(j)l | |22)∑
l ′ 1/(1 + | |z(i)k − z(j)l ′ | |

2
2)

(10)

For example, Fig. 3 shows the attention weights between the
cluster centroids from two graphs in the unified space. The attention
weights are directional, so both c(12)11 and c(21)11 exist between the 1st
cluster inG(1) and the 1st cluster inG(2). To our best knowledge, this
is the first work to model the hidden cross-graph cluster association
by neural attention mechanism.

4.4 Cross-Graph Regularization
Next, we discuss on how to leverage the inter-graph links for clus-
tering by using the attention weights in Eq. (10). Recall that the
cluster assignment distribution of a node x in graph G(i) is q(i)x .
Intuitively, if x is strongly linked to a node y in G(j), then the clus-
ter of x and the cluster of y are likely to be associated, i.e., c(i j)kl is
large, if the two clusters are denoted by k and l . More generally, let

Embedding Space 1 Embedding Space 2Unified Space 

Attention-based 
projection

Attention-based 
projection

Figure 3: An example of the unified space with the embed-
ding spaces of two graphs. Circles are node embeddings. The
edges in the unified space represent cluster associations.

C(i j) ∈ RKi×Kj be an attention matrix whose (k, l)-th entry is c(i j)kl .

Then this intuition implies the two vectors q(i)x and q(j)y (C(i j))T are
similar in certain metric.

Now we generalize this relationship to the case when x links
to multiple nodes in G(j). Let N (i→j)

x be the set of nodes in G(j)

that are linked to x in G(i) with positive weights. To penalize the
inconsistency of clustering assignments, we propose the following
loss function.

∥q(i)x − q(i→j)
x ∥22 (11)

where

q(i→j)
x =

1∑
y∈N(i→j )

x
s
(i j)
xy

∑
y∈N(i→j )

x

s
(i j)
xy q(j)y (C(i j))T (12)

and s(i j)xy is the weight on the inter-graph link between x inG(i) and
y in G(j). Here, q(i→j)

x specifies a transferred clustering probability
of node x , through node y’s that belong to N

(i→j)
x .

Let S(i j) ∈ Rni×nj+ be a matrix with the (x,y)-th entry as s(i j)xy ,
we perform a row-normalization on it to obtain S̃(i j). Then, by
summing up Eq. (11) over all nodes in all graphs, we have the
following loss function for cross-graph regularization.

Lcross =
∑

(i , j)∈I

| |O(i j)Q(i) − S̃(i j)Q(j)(C(i j))T | |2F (13)

where we introduce a diagonal matrix O(i j) ∈ {0, 1}ni×ni , with
o
(i j)
xx = 0 if the x-th row of S̃(i j) is all-zero; and o(i j)xx = 1 otherwise.

4.5 Objective Function and Algorithm
Now, we can integrate the clustering loss in Eq. (4), the proximity
loss in Eq. (8), and the cross-graph regularizer in Eq. (13) into a
unified objective function

min
Θ,Z,W

L = Lc + αLproximity + βLcross (14)

where Θ = {θ (1)1 ,θ
(1)
2 , ...θ

(д)
2 } are parameters of the autoencoder

(Eq. (6)), Z = {Z(1), ...,Z(д)} are cluster centroids in the unified
space (Eq. (10)), and W = {W(1), ...,W(д)} are the parameters of
the FC networks for attention based centroid projection (Eq. (9)).
α and β are hyper-parameters for trade-off between different loss
components. Later in Sec. 5.5, we will evaluate the impacts of α and
β to demonstrate the importance of Lproximity and Lcross .

Alg. 1 summarizes our DMGC algorithm. We use Xavier [5] to
initialize parameters, and use Adam [8] to minimize the objective



Algorithm 1: Deep Multi-Graph Clustering (DMGC)
Input: Adjacency matrices {A(i ) }

д
i=1, numbers of clusters

{Ki }
д
i=1, cross-graph relationships {S̃(i j ) }(i , j )∈I , and α , β

Output: Cluster assignments {Q(i ) }
д
i=1 and cluster associations

{C(i j ) }(i , j )∈I .

1 Initialize parameters Θ, W, clusters centroids Z;
2 while not convergence do
3 Compute {Q(i ) }

д
i=1 by Eq. (1);

4 Compute {C(i j ) }(i , j )∈I by Eq. (10);
5 Compute loss the L by Eq. (14) ;
6 Update Θ, W, and Z by minimizing L using Adam;

7 return {Q(i ) }
д
i=1, {C

(i j ) }(i , j )∈I .

Table 2: Statistics of datasets

dataset #graphs #nodes #edges #clusters
BrainNet 5 1,320 5,280 12
20news 5 4,500 99,650 6
DBLP 3 14,401 224,798 3
Flickr 2 20,728 537,213 7

function Eq. (14). The algorithm stops when the loss is stationary
or the maximum number of epochs is reached.
Time Complexity. Let the number of epochs be ℓ. Since the di-
mensionality of each embedding space di is often much smaller
than ni , we can regard it as a constant. Letmi j be the number of
cross-graph edges between G(i) and G(j). We can verify that, the
complexity of Alg. 1 isO(ℓ(

∑
i (n

2
i +

∑
i , jmi j )). Next, we discuss an

approximated approach to speedup the optimization.
Stochastic Optimization of DMGC. Different from typical re-
gression or classification objectives, where instances are indepen-
dent and identically distributed, nodes in a multi-graph are linked
to each other by both within-graph and cross-graph edges. Thus,
Eq. (14) cannot be written as an unconstrained sum of error func-
tions incurred by each node, which hinders applying stochastic
gradient descent. The difficulty is that cluster distribution p(i) in
Eq. (4) and cluster-level association C(i j) in Eq. (13) are hard to be
estimated with a small number of nodes. In order to make DMGC
scalable, we can approximately optimize the objective function
with relatively large minibatchs since a large minibatch contains
enough information to estimate cluster associations and label dis-
tributions [33]. In this manner, let |E(i) | =mi , the time complexity
becomes O(ℓ(

∑
i ni +

∑
imi +

∑
i , jmi j )), which is linear to the

graph size sincemi andmi j are often linear to the number of nodes
in real practice.

5 EXPERIMENTS
In this section, we perform extensive experiments to evaluate the
performance ofDMGC on a variety of real-life multi-graph datasets.
We have made our code publicly available1.

1https://github.com/flyingdoog/DMGC

5.1 Datasets
Four datasets from different domains with ground truth clusters
are used to evaluate the proposed DMGC, which are detailed in the
following. The statistics of the datasets are summarized in Table 2.
(1) BrainNet [27] consists of 5 brain networks, each is of one indi-
vidual. In each network, a node represents a region in human brain
and an edge depicts the functional association between two nodes.
Nodes in different graphs are linked if they represent the same
region. Each network has 264 nodes, among which 177 nodes are
detected to belong to 12 high-level functional systems (i.e., clusters),
including auditory, memory retrieval, visual etc.
(2) 20news [19] dataset has 5 graphs of sizes {600, 750, 900, 1050,
1200}. Here we follow existing work to build these graphs [19]: Each
node is a document and an edge encodes the semantic similarity
between two nodes. The cross-graph relationships are calculated
by cosine similarity between the documents in each pair of graphs.
In each graph, the nodes belong 6 different clusters corresponding
to 6 different news groups.
(3) DBLP [24] consists of three graphs: a collaboration graph, a
paper citation graph and a paper co-citation graph The collabo-
ration graph has 2,401 author nodes and 8,703 edges. The paper
citation graph has 6,000 paper nodes and 10,003 edges. The paper
co-citation graph has 6,000 paper nodes and 141,996 edges (two
nodes are linked if they cite common papers). Authors and papers
are linked through 32,048 authorships. Papers in citation graph and
co-citation graph are linked based on the identity of papers. All
authors and papers are involved in 3 clusters representing research
areas: AI, computer graphics, and computer networks.
(4) Flickr [35] dataset has a user friendship graph and a user tag-
similarity graph. Each graph has 10,364 users as nodes. The friend-
ship graph has 401,302 edges. The tag-similarity graph has 125,547
edges, where each edge represents the tag similarities between two
users. Two nodes in these two graphs are linked if they refer to the
same user. Here, all users belong to 7 clusters (i.e., social groups).

5.2 Baseline Methods
We compare the proposedDMGCwith the state-of-the-art methods
for single graph clustering (embedding) and multi-graph clustering
(embedding) for a comprehensive study.
(1) Spectral clustering (Spectral) [29] uses leading eigenvectors
of the normalized Laplacian matrix of a graph as node features,
based on which k-means clustering is applied to detect clusters.
(2) Deepwalk [21] is a graph embedding method that uses trun-
cated random walk and skip-gram to generate node embeddings.
(3) node2vec [6] is an embedding method that extends Deepwalk
by using a biased random walk to generate node embeddings.
(4) GraphSAGE [7] is a GNN based embedding method that can
learn node embeddings in either supervised or unsupervised man-
ner, depending on the loss function.
(5) comE [1] is a single graph clustering method that jointly learns
node embeddings and detects node clusters.
(6) MCA [13] is a multi-graph clustering method that employs
matrix tri-factorization to leverage cross-graph relationships.

https://github.com/flyingdoog/DMGC


(7)MANE [12] is a multi-graph embedding method that uses graph
Laplacian and matrix factorization to jointly model within- and
cross-graph relationships.
(8) DMNE [19] is a multi-graph embedding method that optimizes
a joint model combining an autoencoding loss and a cross-graph
regularization to learn node embeddings.

In our experiments, for the embedding methods, i.e., Deepwalk,
node2vec, GraphSAGE,MANE, and DMNE, we first apply them to
learn node embeddings, and then feed the embeddings to k-means
to obtain clustering results.
Environmental Settings. For all of the embedding methods, we
follow [21] to set the dimensionality of node embedding to 100.
For other hyperparameters of the baseline methods, we follow the
instructions in their papers to search for the optimal values and
report the best results. Specifically, for Deepwalk, node2vec, and
comE, we set walks per node r = 10, walk length l = 80, context
size k = 10, negative samples per nodem = 5. As suggested by [6],
we use a grid search over p,q ∈ {0.25, 0.5, 1, 2, 4} for node2vec. For
GraphSAGE, we use its unsupervised loss and feature-less version
for a fair comparison. The learning rate is set to 0.01 and the number
of maximum iterations is set to 2000. The number of neighbors is
3 for each layer. Negative sampling size is set to 20. For MCA,
its model parameter α and η are set to 0.1. For MANE, its model
parameter α is set to 0.1. For DMNE, we set c = 0.98, K = 3, α = 1
and β = 1. The autoencoder configuration is B− 200− 100− 200−B.
For our methodDMGC, the autoencoder configuration isni−1024−
100− 1024−ni for BrainNet, and ni − 128− 100− 128−ni for other
datasets. The model parameters α and β are set to 1. A study about
these model parameters will be discussed in Sec. 5.5. Our algorithm
is implemented with tensorflow 1.12. The learning rate is set to
0.001 and maximum iteration is set to 2000. The dimensionality of
cluster centroids in the unified space is set to 20.

5.3 Experimental Results
Effectiveness Evaluation.To evaluate the clustering performance,
we use the widely used purity accuracy (ACC) and normalized mu-
tual information (NMI) [15]. We run each experiment 10 times and
report the average results in Fig. 4. For clarity, we omit the standard
deviation. However, the performance improvement of DMGC over
baselines are statistically significant. The results ofDMNE on Flickr
are omitted because it cannot finish within 12 hours.

From the figures, we have several observations. First, we can
see that our method achieves the best results on all datasets in
terms of both metrics. The reason is that DMGC can incorporate
complementary information in multi-graph to refine the clustering
results. In the meantime, the deep neural network used in DMGC
can capture the highly non-linear patterns of nodes. Second, single
graph clustering (embedding) methods, such as Spectral,Deepwalk,
node2vec, GraphSAGE, and comE suffers from the noises and in-
completeness in the single graph. In contrast, multi-graph cluster-
ing (embedding) methods, such as DMGC, and DMNE can lever-
age complementary information different graphs to alleviate this
problem, which explains why they generally outperform single
graph methods. Third, Spectral and MANE, which are based on
eigen-decomposition of adjacency matrices, achieve relatively low

Table 3: Running time (in seconds) comparison

Dataset MCA MANE DMNE DMGC
BrainNet 5.52 170.09 71.72 66.25
20news 44.93 333.42 363.16 84.50
DBLP 722.29 1,280.61 11,252.78 433.29
Flickr 1085.38 20,200.95 >12 hours 4099.25

accuracy results on BrainNet and DBLP. This is because the adja-
cency matrices have high dimensionalities and are very sparse. The
underlying non-linearity patterns harm the effectiveness of these
two methods. In many cases, MANE, is outperformed by Spectral,
one possible reason is that its shallow model cannot well capture
the complex within- and cross-graph connections in a joint man-
ner. Last, the comparison between DMNE and DMGC shows the
advantage of joint optimization for end-to-end node clustering and
attentive cluster association across different graphs.
Efficiency Evaluation. To evaluate the efficiency of DMGC, we
compare the running time of different multi-graph clustering (em-
bedding) methods in Table 3. We repeat each experiment 5 times
and present the average running time.

From Table 3, we observe MCA is the most efficient because
of its shallow matrix factorization model. MANE is based on the
eigendecomposition of adjacency matrices, thus has a high time
cost. Compared toDMNE, our method is trained in end-to-end man-
ner, and does not need pretraining, thus is faster. Overall, DMGC
runs in reasonable time w.r.t. the baseline approaches, especially
considering its intriguing performance as shown in Fig. 4.

5.4 Visualization
Node Embeddings. To better understand the difference between
the compared methods, we use t-SNE [14] to project the node
embeddings of each method to a 2D space for visualization. Fig. 5
shows the results on the first graph of 20news dataset, which has
600 nodes. Different colors represent 6 different clusters. The big
black dots in the figure represent cluster centroids.

From the figure, we can observe that deep models generally
outperform shallow models (e.g., Spectral, MANE) in representa-
tion learning. Clustering based methods, such as comE and DMGC
can detect better community structure with proper centroid posi-
tions in the embedding space than single graph embeddingmethods.
Moreover, multi-graph embedding methodsDMNE andDMGC can
effectively leverage cross-graph relationships to force apart com-
munities. By combining all the above advantages, DMGC obtains
the best embedding quality in terms of the community boundary
and centroids, which is consistent with the results in Fig. 4.
Cluster Association. Next, we visualize the cross-graph cluster
association of DMGC. To this end, we choose the first and second
graphs of 20news dataset. For comparison, we select DMNE, an-
other multi-graph embedding method without cluster association.
For both methods, the two graphs are embedded to the same hidden
space (i.e., the same dimensionality). Fig. 6 shows the comparison.
In the figure big yellow and black dots represent cluster centroids
in the first and second graphs, respectively. In Fig. 6(b), each com-
munity is marked with a label. The prefix “1” and “2” indicate graph
ID, the letters, “a”, “b”, etc., indicate cluster ID. Note that clusters
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Figure 4: Effectiveness Evaluation in terms of ACC and NMI.
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Figure 5: Visualization of node embeddings of the compared methods. (Best viewed in color.)

with the same ID but in different graphs (e.g., “1a” and “2a”) have
more cross-graph relationships than other pairs. As can be seen,
DMGC can clearly associate the right cluster pairs by drawing them
closely, which facilitates to enlarge community boundaries within
each graph for improving clustering accuracy. In contrast, DMNE
simply mixes clusters from the two graphs together. When cluster
boundary is small (e.g., left bottom of Fig. 6(a)), the associations
between clusters are hard to identify.

5.5 Parameter Sensitivity
In our model in Eq. (14), there are two major parameters α and β .
In this section, we evaluate the impacts of them, together with the
dimensionality of embedding di , on 20news dataset.

First, we vary α by {0.2, 0.4, 0.6, 0.8, 1, 2, 4}, and fix β = 0.8,
di = 100. Here, for parameter study purpose, β is set to its optimal

(a) DMNE (b) DMGC

Figure 6: Visualization of cross-graph cluster association of
DMNE and DMGC. (Best viewed in color.)

value on this dataset instead of the default value 1. Fig. 7(a) shows
the ACC and NMI averaged over the five graphs of the 20news
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Figure 7: Parameter sensitivity study on 20news.
dataset. From the figure, our method is quite stable in a wide range
of α and achieves the best performance when α = 1 in terms of
both ACC and NMI.

Next, we vary β from 0 to 1 by step 0.1, and fix α = 1, di = 100.
Fig. 7(b) shows the clustering accuracy w.r.t. different β ’s. When
β = 0, DMGC degrades to single graph clustering without using
cross-graph relationships. By comparing the performance at β = 0
and β = 0.8, it is clear DMGC can effectively leverage cross-graph
relationships to improve clustering accuracy. Also, the near optimal
performance at β = 1 justifies our parameter setting.

To evaluate di , we set d1 = ... = dд = d∗ and vary d∗ from 2 to
512, and fix α = 1, β = 0.8. The result is shown in Fig. 7(c). From
the figure, DMGC is robust to di . Specifically, when di is small, the
accuracy increases as di increases because higher dimensionality
can encode more useful information. When di reaches its optimal
value, the accuracy begins to drop slightly. This is because a too high
dimensionality may introduce redundant and noisy information
that can harm the clustering performance.

Overall, the performance of DMGC is stable w.r.t. the hyperpa-
rameters. The non-zero choices of α and β also justify the impor-
tance the proximity constraint and the cross-graph cluster associa-
tion loss of DMGC in Eq. (14).

6 CONCLUSION
To tackle the complex relationships in multi-graph, in this paper, we
proposed DMGC for multi-graph clustering. DMGC learns node
embeddings in a cluster-friendly space. A novel minimum-entropy
based strategy has been proposed to cluster nodes in such a space.
Also, w designed an attentive mechanism to capture the cluster-
level associations across different graphs to refine the clustering
quality. Through extensive experiments on a variety of real-life
datasets, we have demonstrated that the proposed DMGC is both
effective and efficient.
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