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Abstract— Deep-learning driven safety-critical autonomous
systems, such as self-driving cars, must be able to detect
situations where its trained model is not able to make a
trustworthy prediction. This ability to determine the novelty of
a new input with respect to a trained model is critical for such
systems because novel inputs due to changes in the environment,
adversarial attacks, or even unintentional noise can potentially
lead to erroneous, perhaps life-threatening decisions. This paper
proposes a learning framework that leverages information
learned by the prediction model in a task-aware manner to
detect novel scenarios. We use network saliency to provide the
learning architecture with knowledge of the input areas that are
most relevant to the decision-making and learn an association
between the saliency map and the predicted output to determine
the novelty of the input. We demonstrate the efficacy of this
method through experiments on real-world driving datasets
as well as through driving scenarios in our in-house indoor
driving environment where the novel image can be sampled
from another similar driving dataset with similar features or
from adversarial attacked images from the training dataset.
We find that our method is able to systematically detect novel
inputs and quantify the deviation from the target prediction
through this task-aware approach.

I. INTRODUCTION

One of the most successful examples at the forefront of
autonomous systems is self-driving cars, vehicles with the
ability to sense their environment and navigate the road
without human direction and supervision. These technolo-
gies are powered by machine learning algorithms trained
extensively on mass amounts of data collected from driving
in real life and in simulation [1], [2]. As this technology
rapidly progresses, there is an increasing concern with regard
to safety. Deep neural networks are not trained with safety
concerns in mind and are themselves a cause of worry due
to the lack of transparency in its decision-making process.
Trust in safety-critical autonomous systems like self-driving
cars is tied directly to the amount of knowledge we have of
the internal decision-making mechanism. It is non-trivial to
determine what types of situations a model is able to make a
safe decision and what types it will make an erroneous and
perhaps life-threatening one. Recent works have shown that
simple adversarial attacks such as the addition of noise can
drastically change the prediction of the model [3], [4], [5].
These attacks need not be adversarial, as a shift in lighting or
the addition of “rain” on an image can also affect the model
prediction [6]. Detection of these attacks in today’s world is
an important features that we would ideally like to have in
deep-learning models.
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Fig. 1. (Top) The original image and correctly predicted steering angle of 0
degrees. (Middle) The Fast Gradient Sign Method (FGSM) attack image and
predicted steering angle of 26 degrees at an € = 0.001 level. (Bottom) Out-
of-distribution image. The middle and bottom examples demonstrate two
classes of novel images we consider: adversarial and out-of-distribution.

Novelty detection is relevant when the quantity of “novel”
data is insufficient to construct an explicit model of out-
of-distribution classes, rather the general approach is to
model the “in-class” data [7]. Novelty detection is a difficult
problem because the amount of available “in-class” data is
small relative to the amount of the possible “out-class” data.
For example, a model trained on only the MNIST numbers
[8] should be able to determine when it is presented with
letters, rather than the numbers the model was trained on,
that the letters are novel data. A more subtle “out-class” data
is also the set of adversarially-modified of seemingly similar
images of MNIST numbers that would actually distort the
prediction module’s accuracy.

For visual-based systems, novelty detection typically
hinges on determining the novelty of the input image and its
similarity to the large set of training data that the model has
seen [9], [10]. These approaches can be overly pessimistic
with held-out images from the same dataset that the model
might still be able to make a good prediction on. On the other
hand, these approaches can also be overly trusting of images
that look close in similarity to the training set and yet would
produce a poor prediction. This is because these methods
are able to handle only environments where the images are
highly structured. In real-world problems, the difficulty arises
from the high dimensional, diverse space from which the
images are sampled from. We would like to have models
that can determine novelty not only for structured datasets,
but also for real world autonomous systems. A robust novelty
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detection method should be able to detect images not only
from an entirely unseen environment but also from images of
a seen environment that have been slightly modified through
adversarial attacks.

In this paper, we show that novelty detection can be
made task-aware when provided with key characteristics
of the input data from which the task-specific decision is
being made. For this, we present a simultaneous training
framework for learning both the visual-based prediction
model and novelty detector using network saliency extracted
from the prediction task. We apply our methods to the
prediction of steering angle given the image of the road ahead
in autonomous-driving setting. We conduct experiments on
open-source driving datasets collected in the wild as well as
in our own in-house driving environment. While the proposed
method is not able to provide concrete guarantees on all types
of novel input, we show that it is able to detect a wider
array of novel scenarios, when compared to prior methods
for novelty detection. When considering specific applications
with varying fault tolerance, our novelty detection mecha-
nism gives a quantifiable result for how to trust a new piece
of input. Then based on the specific applications, one may
set thresholds or act accordingly based on the novelty scores.
For example, in an autonomous-driving setting, the car could
slow down when a highly novel situation is encountered.

II. MOTIVATION

In this work, we are interested in analyzing a deep-
learning model to determine when a novel scenario has
occurred. This is relevant for safety-critical systems because
we cannot simply trust the trained learning model without
specific guarantees or empirical results. The method that
we propose can be applied to a deep-learning model M (d)
trained on an input set D to detect novel inputs. Novelty can
be characterized in two different ways: (i) out-of-distribution
and (ii) adversarial perturbation. For the case of (i), a new
input d’ is from an out-of-distribution dataset D’ that is
dissimilar to the training set D. In the sense of (ii), an input
d" = d+ € is considered to be novel when an image d, which
is in-class with respect to the training set D, is perturbed by ¢
and changes the prediction so M (d) significantly differs from
M (d"). Specific examples of such adversarial perturbations
are provided in later sections. To be task-aware, we desire
that the network should not only be able to detect the first
case but also the latter, which is arguably more imperative
for safety-critical systems. For these systems, the novelty
detector can help the system revert to safer, conservative
decision-making or alert a human operator to take over, when
a novel, untrustworthy, and unfamiliar situation is detected.

A. Related Work

Novelty detection approaches can be classified into a few
different categories: traditional probabilistic and distance-
based novelty detection, which often suffer from the curse of
dimensionality, and newer reconstruction and domain-based
novelty detection [7]. The latter is often preferred to model
the underlying data in safety-critical systems.

Recent approaches to novelty detection have been focused
on designing and training one-class classifiers. In an one-
class classifier, all data points in the training set are consid-
ered within the target class and all other possible data points
are considered novel, so the novel class is disproportionately
large compared to the target class. These type of one-
class approaches [11], [10] have been largely focused on
classification applications. Experimental results have been
performed on datasets including MNIST, CIFAR10 [12], and
Caltech-256 [13], which are all highly structured and distinct
object datasets. Similarly Hendrycks and Gimpel [14] and
Liang et al. [15] consider settings only where the out-of-
distribution data is clearly defined by a large corpus, making
the assumption that we have an oracle for what out-of-
distribution data could look like. In reality, for real world
systems, it is difficult to quantify with a dataset what the
out-distribution could be. For example, a road trained on
sunny images could make erroneous predictions on cloudy
images, making the visually similar cloudy images novel for
the model [6].

In the context of robotic systems, Richter and Roy [9]
has provided preliminary results for an approach to nov-
elty detection for autonomous systems through training an
autoencoder to learn a representation of the training data
and determine novelty from the mean square reconstruction
error of a new image. The authors note that even their
environment is still highly structured and not representative
of real driving environments. Hence, their method of utilizing
an autoencoder to memorize training images produced good
results. In a similar application as [9], more recent work
by McAllister et al. [16] proposed the use of a generative
model, a variational autoencoder (VAE), to handle robustness
to out-of-distribution inputs. The approach transforms a new
input using the VAE into the training input distribution for
more robust prediction. While the goal is slightly tangential
to ours, we believe that the VAE model is an interesting one
to compare against for novelty detection.

We are interested not only in detecting novelty in terms
of out-of-distribution data (i.e., a dataset sampled from an
entirely different distribution), but also detecting adversarial
perturbations that can bring about novelty that will directly
affect the task even though the input image may not seem
visually different from what can be seen from the training
set (example shown in Figure 1). While adversarial attacks
on categorical prediction variables with classes is frequently
studied [17], the problem of adversarial attacks on a regres-
sion problem is still an open question [18]. One white-box
adversarial attack that we consider in this work is the Fast
Gradient Sign Method (FGSM) [19]. FGSM is a simple,
yet effective Lo, bounded attack where given training point
(z,vy), loss function J, model parameters 6, perturbation e,
a resulting adversarial input Z is computed as:

Tr=ux +€- Slgn(sz(av‘r?y))

White-box attacks [6] assume access to the model parameters
6, which is not necessarily realistic.
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III. TASK-AWARE NOVELTY DETECTION

In this paper, we target an application of predicting
steering angle from the raw pixels of a given road image
captured by a single front-facing camera [2], which is a
regression problem. The prediction network from the road
image is typically in the form of a Convolutional Neural
Network (CNN) which allows the network to detect useful
road features for steering prediction without the need for
human-selected criteria.

A. Incorporating Task Awareness

Fig. 2. A preliminary experiment on the Udacity self-driving car dataset
to demonstrate that VBP masks are tied to learned features. (Top) Original
image view of the road (Middle) Generated VBP mask on network trained
with random steering angles (Bottom) Generated VBP mask on network
trained with actual driving angles. This demonstrates that given meaningful
input and output, VBP can extract key areas of an image such as the edge
of the lane.

The first criteria of task-awareness is determining the key
characteristics of the input image from which the decision
is being made. This is often a challenge for deep learning
models, which are often viewed as a black box system be-
cause simple inspection of numerical weights of the network
do not convey its decision-making process. Network saliency
visualization methods such as Visual Backpropagation (VBP)
[20] give insight on what aspects of an input caused the
output. In particular, as shown in Figure 2, VBP identifies
sets of pixels of the input image that contribute most to
the predictions made by a trained CNN through combining
feature maps from deeper convolutional layers with more
relevant information with higher resolution feature maps
of shallow layers through a series of deconvolutions in a
backward pass. We extend work by [21] to use network
saliency for not only dimensionality reduction, but also for
capturing the task-relevant features.

Additionally, a second key criteria to task-awareness is the
accuracy of the prediction (e.g., on steering angle), that is
the error ||y — p(x)||1, where y is the true value and p(x)
is the predicted output for input x. We consider absolute
error because the magnitude is the aspect relevant to novelty
rather than directionality. For example, a prediction off by
+20 or -20 are both wrong. We claim that it is intrinsically
tied to the network saliency and that an input that causes

a distortion to the VBP image will cause also a distortion
to the prediction accuracy. Hence, we propose to utilize this
tie between network saliency and accuracy to detect novelty.
Given the network saliency map for an input image and a
representation of its prediction, we can infer whether the
difference between that prediction and the actual label is
close or not. For example, in the first type of novelty where
the image is clearly out-of-distribution, the network saliency
map would not look like any normal saliency map generated
by input from the training distribution. In the second type
of novelty where the input image is more similar to that of
the training data, the noise or perturbation in the image that
causes the network to make a potentially-incorrect prediction
would be captured in the perturbed prediction representation
that would not match those that have previously been seen
as correct representations with similar saliency maps.

B. Training Process

We implement our approach by instantiating a two-
network architecture, as shown in Figure 3. The first of which
is the conventional predictive module [2] and the second
of which is the network-saliency based novelty detector
module. The predictive model takes in an image as input
(60x160) and consists of convolutional layers (e.g., 5 layers
with kernel sizes of 5x5/5x5/5x5/3x3/3x3) followed by fully
connected layers (e.g., 3 layers with 100, 50, and 10 nodes,
respectively) with ReLU activation into one singular output
node for steering angle, trained with mean squared error
loss. The novelty detection module takes in as input a VBP
image (60x160) and vector of size 10 which captures the
predicted steering angle. The VBP image is passed through
a convolutional layer (kernel size 4x4), max-pooling, and
ReLU activation into a fully connected layer (size 256). The
set of VBP images are extracted through one backpropoga-
tion step, we extract the current network saliency based on
the current state of the network using the input batch. The
vector is passed through a fully connected layer with ReLU
activation. The vector is extracted from the input to the
last fully connected layer from the prediction network. The
two inputs are concatenated and passed through a final fully
connected layer with ReLU activation, again with a singular
output node which is novelty, the absolute error between the
predicted steering angle and actual steering angle. We define
error prediction as n(z) := ||y — p(z)||1, where = an input
image, y the true value (but unknown for test image) and
p(z) the predicted output.

The novelty prediction forward-pass is then repeated with
adversarial training. Using FGSM, we generate a set of
adversarial images from the current training batch. We select
an ¢ = 0.02 value based empirically on selecting an €
value that consistently changes the output prediction. These
adversarial images are first passed through the prediction
module to extract the VBP images and prediction vector,
which are then used as input as another forward pass to
train the novelty detection module. We do not backpropogate
the loss of the adversarial image for the prediction module
since the goal here is not to train the prediction module
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Fig. 3. The network architecture for our novelty detection method. The network on top is the prediction module which maps input image to steering

angle using a standard CNN. The network below is the detection module which maps saliency map and prediction representation, extracted through a pass
through the prediction module, to a novelty score. The training process consists of two passes through the whole architecture, once with normal input
images and another with adversarially modified input images. However, only the first is backpropogated through the prediction module.

to be robust to adversarial modifications. Note that through
these two forward passes the none of the gradients from
the novelty detection module are backpropogated to the
prediction module, so prediction accuracy would remain the
same as in the standard training procedure.

In summary, the training process is as follows:

1) Tterate one step of the prediction module: p(x)

2) Backpropogate loss and generate the VBP mask

3) Extract last fully connected layer

4) Forward pass and backprop the detection module:

ny(x)

5) Fast Gradient Sign Method with € = 0.02 on batch.

6) Forward pass and backprop the detection module with

attack image: no(x)

In the testing phase, we first predict the steering angle,
p(z), using the prediction module, then generate n(x) from
the novelty detection module. By the definition, the n(x)
value grows as the prediction module cannot produce a
correct p(x) for the input . We can then compare this error
to the distribution of the errors that we previously saw during
training of the target class. We consider an input image to
the architecture to be novel if the error is above a certain
threshold that can be experimentally determined from the
error distribution obtained in the training phase. We select
the a = 0.01 threshold based on [9]. This means that an
input is considered novel when the novelty score is in the
99th percentile of the distribution of n(z) where z from
training set. In later sections, we demonstrate that through
experimental results, the threshold was not necessary because
the network learned a large separation between training and
novel data, but could be utilized if needed.

IV. EXPERIMENTAL RESULTS

A. Ablations to Task-Aware Network

We experimented with a few variations of the novelty
detection module to quantify whether and which components
of the proposed architecture are necessary to be able to

determine novelty. The results presented in Figure 4 compare
the proposed approach, TASK-AWARE, against the following
three variations.

No VBP: The first ablation that we consider is the use
of network saliency as part of the input to the novelty
detector network. One can consider whether the use of the
raw pixel image and the prediction representation is sufficient
to also make decisions about how large the error would be.
We verify that our results produce a distribution of novelty
prediction scores that matches the reconstruction error loss
distributions of [21].

NO ADVERSARIAL TRAINING: A second variant of the task-
aware network that we consider is removing the adversarial
training step in each iterations. With the inclusion of adver-
sarial training, the model is able to see some examples of
what incorrect behavior and perturbations to the input data
may look like.

NoO PARALLEL TRAINING: The third ablation we consider
is removing the parallel training of the prediction network
and the novelty detection network. In this set-up, we first
train the prediction module, and then subsequently train
the novelty detection module separately. We find that the
model is not able to learn to separate the novel data as well
because it was exposed to less variation of training data and
prediction errors, which is a benefit of training both networks
simultaneously (thus task-aware).

B. Novelty Detection

The main experimental question is whether incorporating
a notion of task-awareness can detect novel scenarios that
could be encountered by a driving model that would produce
potentially dangerous results. We explore the benefits of the
proposed simultaneous methods not only through several
ablations as explained above, but also through comparisons
against existing methods:

1) Generative networks such as Autoencoders (AE) and
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Fig. 4. Histogram comparison of predicted novelty scores (n(z)) for all ablations of our task-aware model, where the blue is the training data and orange
is the attack data. A good novelty detector should be able to clearly separate the two distributions. We conduct these experiments specifically on adversarial
attacks which are the most difficult to detect, since most of these variants performed equally on detecting out-of-distribution data as in the experiments
from Table I. We find that the final Task-Aware set-up outperforms other variants. For varying set-ups, the absolute values of n(z) will vary but we can
still compare the different set-ups or methods by looking at the overlap between the blue and orange histograms.

Variational Autoencoders (VAE) [9], [16] that leverage
reconstruction loss.

2) Modified generative networks using VBP, AE+VBP
and VAE+VBP, as a form of feature extraction and
dimensionality reduction [21].

Since these methods are based on reconstruction of the
input image, to generate the VBP image for the modified
generative network, we use the same prediction module
that was trained for our task-aware to maintain the same
generated network saliency maps. We train the autoencoders
with standard mean squared error loss and the variational
autoencoders with the summed loss of reconstruction loss
with the Kullback-Leibler divergence loss. Novelty is de-
tected by establishing a cut-off threshold in reconstruction
loss based on the training loss distribution and determine if
the reconstruction for a new image is greater than the cut-off.
In our experiments we use a cut-off of a = 0.01 as in [9].

C. Out-of-distribution Datasets

In-House

Comma.ai

Udacity
Fig. 5. Example training images from the three driving-based datasets that
we considered each of which was collected with a camera mounted on the

front of the car with the steering angle recorded. Two are collected in the
wild and one indoors, but the middle and right have similar lane markings.

For our experiments, we work with three different au-
tonomous driving datasets. The first of which is the Udacity
self-driving car dataset [22], which consists of over 45,000
images collected from actual driving in Mountain View, CA.
Additionally, we work with the Comma.ai dataset [23] and
subset it to be about the same size as the Udacity dataset.
We also collected an in-house dataset from a model car
driving in an indoor driving environment. The roads in our
model self-driving environment have varied surroundings and
backgrounds, which provides for more variety than hallway-
style environment studied in [9] and [16]. We notice that
there are similarities that the Comma.ai dataset shares with
both of the other datasets as described in Figure 5. Each
dataset has annotated images with associated steering angles.

Table I presents the results of comparison between 3
different driving datasets where TRAINING is the dataset that

TABLE I
OUT-OF-DISTRIBUTION PAIRWISE COMPARISON.

Training / Test AE AE+VBP VAE VAE+VBP OURS
Udacity / In-House v v v
Udacity / Comma.ai v v v
In-House / Udacity v 0.39 v

In-House / Comma.ai v v v
Comma.ai / Udacity v v v v v
Comma.ai / In-House v/ v v 0.05 v

the prediction module was trained on and TEST is the out-
of-distribution dataset. A checkmark denotes that all of the
images in the corresponding test set were classified as novel
with respect to the training set, no checkmark denotes that
none of the images were correctly classified as novel, and
a number denotes the detection rate that is not 0 or 1. We
found that for the most part either the learned representation
was able to capture the distinctive features or it was not,
which is why the test set was either categorized as all
novel or all not novel. Out-of-distribution datasets, albeit
that ours are similar in application, are still fundamentally
different and therefore relatively easy to distinguish apart.
We observe that our method is able to perform as well as
the comparison methods. This set of experiments acts as a
baseline comparison to demonstrate that we are able to detect
the first type of novelty which is out-of-distribution data. One
observation with regards to the generative methods is that
if the test set is too similar or too simple compared to the
training set, then the method struggles to detect novelty (e.g.,
AE for Udacity/In-House). For example, the landscape of our
in-house data is significantly more plain than the Udacity
dataset, which is a reason why the in-house data actually
had a smaller reconstruction loss than the training set itself.

D. Adversarial Attack

In addition to detecting out-of-distribution data, we also
seek to detect data that looks more similar to the training
distribution but yet produces an erroneous output due to
adversarial perturbation. First we explore FGSM attacks by
strategically modifying input images, which assumes white-
box access. Figure 6 demonstrates that our task-aware model
is able to detect when an input becomes more perturbed (i.e.,
the novelty value, along with the prediction error, increases
with the level of perturbation). We compare FGSM attacks on
multiple variants of generative models, as shown in Figure
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Fig. 6. Novelty plotted with prediction error, demonstrating similar trends.
As the e-attack value increases, which means a greater perturbation is being
made to the input image, the prediction error increases along with our
quantification of novelty.
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Fig. 7. Adversarial noise attack on the two comparison methods where the
orange is the training set and blue is the test set. This figure can be compared
with the task-aware result from Figure 4. Since there is significant overlap
between the training and test set, we are not able to detect novel inputs. The
x-axes differ between each method because each might have different loss
metrics and might be trained on different input (normal vs. VBP images).

7. FGSM attacks at low e values are imperceptible to the
eye, as shown in Figure 1, and yet these subtle changes can
affect the prediction network. We find that autoencoder based
methods alone cannot distinguish between attack images and
the training data. This is because the model is not task-
aware. The addition of VBP helps to separate the training
and novel images but there is still significant overlap between
the novelty distributions [21].

Finally, we also experiment with a black-box approach
to adjustments the input image. In particular, we explore
realistic changes to input images which are not necessarily
adversarial in nature. These changes include increasing the
brightness to varying degrees to increasingly wash the image
out like the sun would on a bright day. We demonstrate
in Figure 8 through a similar experiment as Figure 6 that
our task-aware method can detect changes in brightness, test
images are shown in Figure 9. Our findings that brightness
can affect the prediction module aligns with findings by [6].

V. CONCLUSION

In this paper, we presented a task-aware novelty detection
framework in which key features and characteristics that are
learned in the prediction network leveraged through network
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Fig. 8. The effect of brightness changes on normalized predicted n(z)
by our task-aware method against normalized reconstruction losses by
comparison methods. The solid black line is the actual prediction error
when compared against the original image, which increases with brightness
added. We find that generative methods are not able to recognize the changes
in brightness, which can affect output prediction. A potential reason is that
mean squared error loss is not particularly sensitive to these changes [24].

1.0 Brightness Enhancement 1.5

Fig. 9. A visualization of the brightness changes on an example Udacity
image where a brightness enhancement of 1.3 on the original image is
clearly visible to the human eye. And yet, generative models were not able
to detect the difference in Figure 8.

saliency maps for novelty detection. We show that the intrin-
sic tie between learned features and accuracy of the predicted
action can facilitate the detection novel situations where
unfamiliar images or modifications to the input could cause
erroneous predictions. We applied our method on a number
of public datasets and an in-house dataset, demonstrating
that we are able to match prior work on detecting out-
of-distribution data as well as surpassing their ability to
detect adversarial attacks which include white and black-
box attacks. While our method performs well empirically on
a number of real-world datasets, we plan to develop more
concrete theory to characterize novelty for real-world deep-
learning models. We envision application layers developed
on top of our method which would utilize these novelty
scores to determine system behavior. In applications like self-
driving cars, engineers might set a novelty score tolerance.
Once surpassed, the car would revert to more conservative
driving behavior to account for the fact that the trained
model may not produce a trustworthy prediction. As deep-
learning models are adopted into everyday systems, our
model contributes towards efforts to improve safety.
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