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Target Detection With Imperfect Waveform
Separation in Distributed MIMO Radar
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Abstract—This paper considers target detection in distributed
multiple-input multiple-output (MIMO) radar with imperfect
waveform separation at local receivers. The problem is formu-
lated as a binary composite hypothesis testing problem, where
target residuals due to imperfect waveform separation are explicitly
modeled as a subspace component in the alternative hypothesis,
while disturbances including the clutter and thermal noise are
present under both hypotheses. Under assumptions of fluctuating
and non-fluctuating target amplitude over a scan, e.g., Swerling
models, we particularly consider a distributed hybrid-order Gaus-
sian (DHOG) signal model and develop the generalized likelihood
ratio test (GLRT) which relies on the maximum likelihood (ML)
estimation of the target amplitude and the residual covariance
matrix under the alternative hypothesis. The Cramér-Rao bounds
(CRBs) on estimating the target amplitude and residual subspace
covariance matrix are derived. Simulation results in both local
and distributed scenarios confirm the effectiveness of the proposed
GLRT and show improved performance in terms of receiver op-
erating characteristic (ROC) by exploiting the existence of target
residual component.

Index Terms—Moving target detection, distributed MIMO
radar, hypothesis test, subspace model, generalized likelihood ratio
test, maximum likelihood estimation, Cramér-Rao bound.

I. INTRODUCTION

IN RECENT years, target detection using orthogonal MIMO
waveforms have received significant interest. In this work, we

focus on target detection using distributed MIMO radar, which
employ widely separated antennas to form the transmit and,
respectively, receive aperture, and probe a scene using multiple
orthogonal waveforms. The distributed MIMO detection allows
one to exploit the spatial or geometric diversity to enhance
target detection, since targets often exhibit significant azimuth-
selective backscattering with tens of dB of fluctuation in their
radar cross section (RCS) [1]–[4]. The effect of clutter was also
studied in [3], [5]–[7] for moving target detection. Other related
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efforts have been placed to waveform design [8]–[13], synchro-
nization effect [14]–[16], exploitation of target sparsity in the
spatial and/or Doppler domains [17], [18], impact of nonhomo-
geneous interference and registration errors [19]–[21], optimal
transmit power allocation and antenna configuration [22]–[25],
exploitation of prior knowledge [26]–[28], deployment on mov-
ing platforms [29] and cooperative radar-communication plat-
forms [30]–[32].

These studies usually assume the multiple transmitters trans-
mit orthogonal probing waveforms with zero cross-correlation,
and these transmit waveforms are perfectly separated at each
receiver by matched filter processing. However, such ideal wave-
form separation is impossible across all Doppler frequencies
and time delays [33], [34]. Therefore, the effect of waveform
residuals has to be considered in the target detection for dis-
tributed MIMO radars. Particularly, [34] and [35] investigated
the sensitivity or robustness of distributed MIMO detectors
under the condition of imperfect waveform separation. In the
following, we provide a mathematical model explicitly account-
ing for target residuals due to imperfect waveform separation. It
is interesting to see that, the target residuals only appear when
the target of interest is present, i.e., in the alternative hypothesis,
and the residual content shows a subspace structure spanned
by Fourier bases of bistatic Doppler frequencies over different
transmitter-receiver (Tx-Rx) pairs.

In this paper, we take into account the existence of such target
residuals in the baseband receiving signal and formulate the tar-
get detection as a binary composite hypothesis testing problem
where the alternative and null hypotheses differ from not only
the target signal but also the target residual. We consider several
standard models on the target amplitude over a scan, fluctuating,
non-fluctuating or both, and propose a distributed hybrid-order
Gaussian (DHOG) model. Under the DHOG model, we derive
the exact ML estimation under the alternative hypothesis and
the exact GLRT. It is found that the exact ML estimation yields
closed-form solutions in certain circumstances depending on
the geometry of terms related to the received signal, target
steering vector, residual subspace matrix, and disturbance co-
variance matrix, and requires a numerical optimization of a
monotonically increasing function over a confined region. The
Fisher information matrix (FIM) associated with the parameter
estimation problem is also derived and utilized to find the
Cramér-Rao bounds (CRBs) on unknown parameter estimation
under the alternative hypothesis. Simulation results in both
local and distributed scenarios confirm the effectiveness of the
proposed GLRT and show much improved performance in terms
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Fig. 1. Moving target detection of distributed MIMO radar and baseband signal at local receivers.

of receiver operating characteristic (ROC) by exploiting the
existence of target residual component.

The remainder of the paper is organized as follows. The signal
model is introduced in Section II. In Section III, we present the
distributed MIMO detection problem with three formulations
of the target residuals: 1) distributed first-order Gaussian model
(DFOG); 2) distributed second-order Gaussian model (DSOG);
and 3) a new distributed hybrid-order (first-order and second-
order) Gaussian model. Section IV proposes the GLRT solution
to the DHOG formulation with exact ML estimation for the
target amplitude and the residual covariance matrix. Simulation
results are provided in Section V. Finally, conclusions are drawn
in Section VI.

II. SIGNAL MODEL: ACCOUNTING FOR TARGET RESIDUAL

FROM IMPERFECT WAVEFORM SEPARATION

Consider a distributed MIMO system with M transmit sites
(Tx) and N receive sites (Rx) in Fig. 1. We assume that the
distributed MIMO system probes a common area of interest
using M orthogonal waveforms from M transmit antennas.
Pulsed transmission is employed as in standard Doppler radars.
Each transmitter sends a succession of K periodic pulses, i.e.,
K repetitions of an orthogonal waveform, over a coherent pro-
cessing interval (CPI). Specifically, at them-th transmit site, the
transmitted burst of pulses are given as

s̃m(t) = βmum(t)ej(2πf0t+ψm), (1)

where

um(t) =
K−1∑

k=0

upm(t− kTPRI), (2)

is the baseband transmitted signal, upm(t) is the complex enve-
lope of a single pulse, βm is the transmit amplitude at the m-th
transmitter, f0 is the carrier frequency, and ψm is the initial
phase. The pulse waveform upm(t) is of duration Tp and has
unit energy. Assuming a moving target at a distance Rm to the
m-th transmitter and a distance Rn to the n-th receiver with a
speed of v = [vx, vy]

T , the observed signal s̃n(t) (see Fig. 1)
at the n-th receiver consists of echoes from a moving target

illuminated by M orthogonal transmitting waveforms [3]

s̃n(t) =

M−1∑

m=0

αnmξnmβmum(t− τnm)

× ej2π(f0+fnm)(t−τnm)ejψm , (3)

where αnm accounts for the channel gain for the (m,n)-th Tx-
Rx pair:

αnm =

√
GmT G

n
Rλ

2

(4π)3R2
mR

2
n

, (4)

given the transmitting and receiving antenna gains GmT and GmR
and the wavelength λ = c/f0 with c denoting the waveform
speed, ξnm is the target reflection amplitude for the (m,n)-th
Tx-Rx pair, τnm = (Rm +Rn)/c is the delay for the (m,n)-th
Tx-Rx pair, and

fnm =
TPRI

λ
[vx(cos θtm + cos θrn) + vy(sin θtm + sin θrn)]

(5)

is the normalized bistatic target Doppler frequency with θt/r
denoting the transmitting/receiving angles with respect to the
target. It is worth noting that, for a distributed MIMO radar with
widely separated Tx-Rx pairs, it can observe both vx and vy due
to multiple different projections of the velocity vector v into
distinct observable bistatic velocities. For a mono-static radar,
only the radial target velocity can be observed.

Equation (3) can be rewritten as

s̃n(t) =

M−1∑

m=0

α̃nmum(t− τnm)ej2π(f0+fnm)te−j2πf0τnmejψm

(6)

where the equivalent target complex amplitude α̃nm
�
=

αnmξnmβme
−j2πfnmτnm absorbs all time-independent phase

terms for the (m,n)-th Tx-Rx pair including the channel
gain αnm, target reflection amplitude ξnm and the phase term
e−j2πfnmτnm . After demodulation, the baseband signal at the
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n-th receiver is

sn(t) =

M−1∑

m=0

α̃nmum(t− τnm)ej2πfnmte−j2πf0τnmejψm .

(7)

A. Matched Filter Bank at Local Receivers

At the n-th receiver, a set of M matched filters as shown in
Fig. 1, each matched with one of M orthogonal transmitting
waveforms, are used to extract baseband signals corresponding
to the (m,n)-th Tx-Rx pair. For the i-th matched filter at then-th
receiver, each pulse of sn(t) is matched separately with the re-
ceiver filter hi(t) = u∗pi(−t)e−jψi , where upi(t) is the complex
envelope of the i-th waveform in (2), i = 0, . . . ,M − 1, and
ψi denotes the phase mismatch due to synchronization errors
at local matched filters. The output at the i-th matched filter is
given as

xni(t) =

∫
sn(ν)hi(t− ν)dν

=

M−1∑

m=0

α̃nme
−j2πf0τnmej(ψm−ψi)

×
K−1∑

k=0

∫

ν

upm(ν − τnm − kTr)u
∗
pi(ν − t)ej2πfnmνdν

(8)

By defining the cross ambiguity function (AF) as

χmi(τ, f) =

∫

ν

upm(ν)u∗pi(ν − τ)ej2πfνdν, (9)

xni(t) of (8) can be rewritten as

xni(t) =

M−1∑

m=0

α̃nme
−j2πf0τnmej(ψm−ψi)

×
K−1∑

k=0

χmi(t− τnm − kTr, fnm)ej2πkfnmTr . (10)

The continuous signal of xni(t) is then sampled by analog-
to-digital converters (ADCs) at instants t = τni + kTr, k =
1, 2, . . . ,K

xni(k) = xni(t)|t=τni+kTr

=

M−1∑

m=0

α̃nme
−j2πf0τnmej(ψm−ψi)

× χmi(τni − τnm, fnm)ej2πkfnmTr

= α̃nie
−j2πf0τniχii(0, fni)e

j2πkfniTr

+
∑

m �=i
α̃nme

−j2πf0τnmej(ψm−ψi)

× χmi(τni − τnm, fnm)ej2πkfnmTr , (11)

where τni needs to be aligned over different Tx-Rx pairs to
make sure all Tx-Rx pairs probe the target at the same range

bin. Therefore, {xni(k)}, k = 1, 2, . . . ,K, represent K slow-
time samples corresponding to a target at a given range bin for
all Tx-Rx pairs. It is seen that the output of the i-th matched
filter xni(k) consists of M components: the first term is the
auto-component between the i-th transmit waveform and the i-th
matched filter, and the other term sums up the cross-components
residuals between the remainingM − 1 transmit waveforms and
the i-th matched filter.

B. Modeling of Target Residuals Due to Imperfect
Waveform Separation

Current studies usually assume that the mutual orthogonal-
ity across different waveforms holds everywhere in the range-
Doppler plane, i.e., χmi(τni − τnm, fnm) = 0 in (11), and none
of these cross-components are present at outputs of matched
filter banks. However, this assumption cannot be met in prac-
tice [33], [34]. As also shown in [36], [37], the largest range-
Doppler area without ambiguity (“the clean area”) is reduced
from (ΔτΔfd)max = 1 for a singe-waveform radar to 1/M for
MIMO radar using M orthogonal waveforms. It quantitatively
confirms that the zero cross-components for the MIMO radar
case is only possible for smaller Doppler velocities and time
delays than the traditional phased array radar with coherent
waveforms. In the following, we model the outputs of matched
filters consisting of a target signal and a target residual with a
subspace structure.

Stacking the K discrete samples into a vector and defining
ᾱnm = α̃nme

−j2πf0τnmχmi(τni − τnm, fnm), we have

xni = ᾱnis(fni) +
∑

m �=i
ᾱnme

j(ψm−ψi)s(fnm), (12)

where s(f)
�
= [1, ej2πfTr , . . . , ej2π(K−1)fTr ]T . This can be

written as in a matrix form

xni = ᾱnis(fni) +Hniθni, (13)

where the subspace matrix is of dimension K × (M − 1)

Hni = [s(fn1), . . . , {s(fnm)}m �=i, . . . , s(fnM )], (14)

and the subspace coefficient vector is given as

θni =

⎡

⎢⎢⎢⎢⎢⎢⎣

ᾱn1e
j(ψ1−ψi)

...{
ᾱnme

j(ψm−ψi)
}
m �=i

...
ᾱnMe

j(ψM−ψi)

⎤

⎥⎥⎥⎥⎥⎥⎦
. (15)

From (12), it is seen that the target signal has an unknown
amplitude ᾱni and a steering vector s(fni) at the corresponding
(n, i)-th bistatic Doppler frequency fni. Meanwhile, the target
residual due to imperfect waveform separation is shown to
fall within an (M − 1) subspace spanned by (M − 1) steer-
ing vectors at the other (M − 1) bistatic Doppler frequencies
{fnm}m �=i.

Remark: It is seen from (12) that the residual amplitude ᾱnm
is a function of the ambiguity function χmi(τni − τnm, fnm) at
given delay difference τni − τnm and Doppler frequency fnm.
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As a result, the minimum possible residual can be determined
by the highest sidelobe in the ambiguity function which is a
function of the used orthogonal waveforms. If one has prior
knowledge on possible locations (τnm) and velocities fnm,
the minimum possible residual may be confined to the local
maximum value of the ambiguity function over the possible
delay-Doppler area. In case that the local maximum is negligible,
the residual amplitude {ᾱnm}m �=i may be negligible compared
with the target amplitude ᾱni.

With N receivers and M matched filters at each receiver, the
overall received signals arexni, i = 1, 2, . . . ,M ,n = 1, . . . , N .

III. PROBLEM FORMULATION OF MOVING TARGET DETECTION

In the following, we formulate moving target detection as a
binary hypothesis testing problem by explicitly accounting for
the target residual described in the above section.

A. Problem Formulation

In addition to the target signal and its residual, the disturbance
signal due to ground clutter, jamming signals and thermal noise
is present in the received signal. It is generally assumed that the
disturbance component for the (n, i)-th Tx-Rx pair, wni, has a
complex Gaussian distribution with zero mean and covariance
matrix Rni, i.e., wni ∼ CN (0,Rni).

With the above modeling, the moving target detection with
the distributed MIMO radar is then formulated as the following
binary hypothesis testing problem:

H0 : xni = wni,

H1 : xni = αnis(fni) +Hniθni +wni,

n = 1, . . . , N ; i = 1, . . . ,M, (16)

where xni is the output of the i-th (out of M ) matched filter
at the n-th receiver, αni is the unknown amplitude, θni is the
target residual coefficient, Hni is the target residual steering
matrix of (14), and the disturbance wni ∼ CN (0,Rni). We
further assume that the range spaces of s and H are linearly
independent, since all M Doppler frequencies are bi-static pro-
jections of the same target Doppler frequency ontoM transmit-
ting angles (and the same receiving angle) in the view of (5)
and (13). In addition to the test signal, G target-free training
signals gni(g), g = 1, . . . , G, are available from neighboring
range cells. The purpose here is to detect if the target signal
is present in the MN matched filter outputs while exploiting
the subspace target residual whose existence is associated with
the target signal of interest.

B. Distributed First-Order Gaussian Model - DFOG

First, we model both the target amplitude αni and residual
coefficient θni as deterministic unknown parameters. In other
words, we assume the RCSs are different from different Tx-Rx
pairs but non-fluctuating from pulse to pulse throughout a single
scan (e.g., Swirling model I). With this assumption, we can
group the signal steering vector and residual subspace as an ex-
panded subspace Sni = [sni,Hni] and the unknown coefficient

β = [αni,θ
T
ni]

T . As a result, we have the following distributed
first-order Gaussian (DFOG) model:

H0 : xni = wni, n = 1, . . . , N, i = 1, . . . ,M,

H1 : xni = Sniβni +wni, (17)

where one needs to determine if the subspace signal is present
or not.

It is easy to recognize that (17) is an extension of the FOG
model of the MTD with colocated phased array of N = 1
and M = 1. One can readily apply classical solutions such as
matched subspace detectors [38], adaptive subspace detector
(ASD) [39], the Kelly’s GLRT [40], and the adaptive coherence
estimator (ACE) [39], [41], [42] with R estimated from the G
training signals. The distributed GLRT for the DFOG model has
been considered in [6].

C. Distributed Second-Order Gaussian Model - DSOG

In the case of fluctuating RCS from pulse to pulse (e.g.,
Swerling model IV), we assume the target amplitudeαni and the
subspace coefficient θni are random parameters. As a result, we
have the following distributed second-order Gaussian (DSOG)
model where the signal of interest is a random subspace signal

H0 : xni = wni, n = 1, . . . , N ; i = 1, . . . ,M,

H1 : xni = Sniγni +wni, (18)

where γni = [αni,θ
T
ni]

T ∼ CN (0M ,Γni) with 0M denoting
an all-zero vector of dimension M and Γni ∈ C

M×M denoting
the covariance matrix. It is easy to see that (18) is an extension
of the traditional SOG model considered in [43]. The detection
problem in the SOG model was solved from a GLRT principle
in [43].

D. Distributed Hybrid-Order (First-Order and Second-Order)
Gaussian Model - DHOG

Finally, we consider a hybrid case where the target amplitude
αni follows a non-fluctuating model while the target residualθni
are fluctuating from pulse to pulse due to the phase mismatch
φm − φi in (15). As a result, αni are treated as deterministic un-
known parameters whileθni are modeled as random parameters,
leading to

H0 : xni = wni, n = 1, . . . , N ; i = 1, . . . ,M,

H1 : xni = αnis(fni) +Hniθni +wni, (19)

where θni ∼ CN (0,Σni) with Σni denoting the unknown
residual subspace covariance matrix and αni is deterministic
unknown. Unlike the DFOG and DSOG models, the DHOG
model distinguishes the two hypotheses not only in the first-order
statistic but also the second-order statistic of the received signal.
It is worth noting that such a hybrid model may be useful to
represent a compound cluster of scatterers, a portion of which
exhibit non-fluctuating reflection characteristics while the others
show more rapid fluctuating reflection characteristics during a
CPI.
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Given knowledge of the residual subspaceHni, one is tempted
to project the observation xni to the subspace orthogonal to
Hni, which eliminates the residual interference, and then apply
the conventional matched filter to the projected signal for target
detection. Note that the projection is an irreversible compression
process that will lead to a loss of the signal energy (unless the
signal steering vector lies in the orthogonal subspace). This re-
sulting detector, henceforth referred to as the projection matched
filter (PMF), is in general suboptimal. In the following, we intro-
duce an alternative and better solution by jointly estimating the
parameters associated with the signal and residual interference.

IV. PROPOSED DISTRIBUTED GLRT

In this section, we assume the target velocity is known. It
is standard in radar signal detection to divide the uncertainty
region of the target velocity or Doppler frequency into small
cells and each is tested for the presence of target [45]. Therefore,
we drop the dependence of s on fni herein. We adopt a two-step
approach (like the AMF [46]) to develop the distributed MTD
scheme based on the DHOG model in (19). First, we develop
a distributed GLRT for (19) by assuming that the disturbance
covariance matrixRni is known. Then,Rni in the test statistic is
replaced by its sample covariance matrices from training signals.

A. The GLRT Principle

The GLRT principle for (19) requires the ML estimates of the
unknown parameters including the target amplitudes αni and
the subspace covariance matrices Σni. Invoking the statistical
independence across multiple Tx-Rx pairs, the MIMO-GLRT
detector takes the form of

T =

∏
n,i max

αni,Σni

f1(xni |αni,Σni )
∏
n,i f0(xni)

, (20)

where f1(xni |αni,Σni ) and f0(xni) denote the likelihood
functions for the (n, i)-th Tx-Rx pair underH1 andH0, respec-
tively. With known Rni, we can apply a pre-whitening process,
i.e., yni = R

−1/2
ni xni, to convert the problem of interest (19) to

an equivalent binary hypothesis testing as

H0 : yni ∼ CN (0, I),

H1 : yni ∼ CN (αnis̃ni, H̃niΣniH̃
H
ni + I), (21)

where s̃ni = R
−1/2
ni sni, H̃ni = R

−1/2
ni Hni and the disturbance

covariance matrix is an identity matrix due to the pre-whitening
process.

It is clear that all unknown parameters, i.e, Σni and αni,
are both under the alternative hypothesis, whereas there is no
unknown parameters in the null hypothesis. Subsequently, the
MIMO-GLRT detector takes the form of

T =
∏

n,i

Tni =
∏

n,i

max
αni,Σni

f1(yni |αni,Σni )

f0(yni)
, (22)

where Tni is the test statistic of local GLRT at one Tx-Rx pair,
f1(yni |αni,Σni ) and f0(yni) are, respectively, the likelihood
function of the whitened signal for the (n, i)-th Tx-Rx pair under

both hypotheses:

f1(yni |αni,Σni ) =
e−(yni−αnis̃ni)

HC−1
ni(yni−αnis̃ni)

πK |Cni| ,

f0(yni) =
e−yH

niyni

πK
, (23)

with Cni � H̃niΣniH̃
H
ni + I � I implying Σni is positive def-

inite, and |C| denoting the determinant of the matrix C.
In the next two subsections, we derive the ML estimates of the

subspace covariance matrix Σni and the amplitude αni. Then,
we develop the test statistic of the local GLRT Tni, followed by
the derivation of the distributed GLRT T .

B. Local ML Estimation of the Residual Covariance Σni

As seen in (22), the maximization over Σni and αni can be
performed separately over each Tx-Rx pair. Therefore, we drop
the index (·)ni of Tx-Rx pairs for notation simplicity.

Note that C = H̃ΣH̃H + I. To compute |C| and C−1 in the
local likelihood function of (23) under the alternative hypothesis,
we first represent the subspace term as

H̃ΣH̃
H

= H̄EH̄
H
, (24)

where

H̄ = H̃(H̃HH̃)−1/2U, (25)

is a K × r matrix with r = (M − 1) orthonormal columns,
U ∈ C

r×r is an unitary matrix and E ∈ Rr×r is a diagonal
matrix with ei denoting its i-th diagonal element. Equivalently,
the residual covariance matrix is represented by the unitary
matrix H̄ and the diagonal matrix E. With (24), we have

C−1 = H̄ (E+ I)−1 H̄H + H̄⊥H̄⊥H

= H̄ (E+ I)−1 H̄H + (I−PH̃) , (26)

|C| =
r∏

i=1

(ei + 1). (27)

Remark: Essentially, the unitary matrix U plays as a rotation
matrix in the subspace 〈H̄〉 spanned by the (orthonormalized)
columns of H̃. This can be seen from the fact that the projection
matrix PH̃ in (26)

PH̄ = H̄
(
H̄HH̄

)−1
H̄H = H̃(H̃HH̃)−1H̃H = PH̃, (28)

is the same as the projection matrix PH̄, which is hence inde-
pendent of the rotation matrix U. In other words, 〈H̄〉 = 〈H̃〉.

Define

z
�
=

[
H̄ H̄⊥ ]H

(y − αs̃), (29)

and denote zi as its i-th element. With the help of (26) and
(27), the negative log-likelihood function (NLLF) under H1,
i.e., f1(y|α,Σ) in (23), can be expressed as

− ln f1(y
∣∣α,E, H̄ ) ∝ ln |C|+ (y − αs̃)HC−1(y − αs̃)

∝
r∑

i=1

ln(ei + 1) +
r∑

i=1

|zi|2
ei + 1

+
K∑

i=r+1

|zi|2. (30)
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The ML estimate ofE can be obtained by taking the derivative
of the NLLF with respect to ei and equating it to zero, i.e.,

êi = max
{
|zi|2 − 1, 0

}
, i = 1, 2, . . . , r. (31)

With the ML estimate of E, the NLLF (30) reduces to

∑

1≤i≤r:

|zi|2≤1

|zi|2 +
∑

1≤i≤r:

|zi|2>1

(
ln |zi|2 + 1

)
+

K∑

i=r+1

|zi|2. (32)

The next step is to derive the ML estimate of H̄ which is
equivalent to the ML estimate of U according to (25). Note
that the last term of the NLLF (32) reflects the energy of the
whitened target-free observed signal (y − αs̃) projected into
the orthogonal complement space of 〈H̃〉

K∑

i=r+1

|zi|2 = (y − αs̃)HH̄⊥H̄⊥H(y − αs̃)

= (y − αs̃)H(I−PH̃)(y − αs̃), (33)

which is hence independent of the rotation matrix U.
With these observations, the ML estimate of U is obtained by

minimizing the sum of the first two terms (32) w.r.t. U:
∑

1≤i≤r:

|zi|2≤1

|zi|2 +
∑

1≤i≤r:

|zi|2>1

(
ln |zi|2 + 1

)
. (34)

Denote η =
∑

1≤i≤r |zi|2. It is noted that

η =
∑

1≤i≤r
|zi|2 = (y − αs̃)HH̄H̄

H
(y − αs̃)

= (y − αs̃)HPH̃(y − αs̃), (35)

is also independent of the rotation matrix U. Depending on the
value of η, the ML estimate of U (or, equivalently, H̄) can be
obtained as
� η < 1: η < 1 implies that |zi|2 < 1, i = 1, 2, . . . , r. The

cost function (34) reduces to
r∑

i=1

|zi|2 = η, (36)

which is hence independent ofU (see also (35)). Therefore,
in this case,U can be an arbitrary r × r unitary matrix. And
the NLLF (32) reduces to

r∑

i=1

|zi|2 +
K∑

i=r+1

|zi|2 = ‖y − αs̃‖2 . (37)

� η ≥ 1: The ML estimate of H̄ is a matrix with one column
given by (without loss of generality, we assume the first
column)

ˆ̄HML [:, 1] =
PH̃(y − αs̃)

‖PH̃(y − αs̃)‖ , (38)

and the remaining (r − 1) columns are orthonormal to
ˆ̄HML[:, 1]. It follows zr = [

√
η, 0, . . . , 0]T . The proof can

be found in [44, Section. II.B, Appendix]). Geometrically,

in this case, we choose the rotation matrix U which rotates
the coordinate in 〈H̃〉 such that one axis aligns perfectly
with the projection of (y − αs̃) into 〈H̃〉. Then, the NLLF
(32) reduces to

ln |z1|2 + 1 +

K∑

i=r+1

|zi|2 = ln η + 1 +

K∑

i=r+1

|zi|2

= ln(y − αs̃)HPH̃(y − αs̃) + 1

+ (y − αs̃)H(I−PH̃)(y − αs̃). (39)

The above ML estimates of E and H̄ are based on a given
amplitude α. The next step is to find the ML estimate of α.

C. Local ML Estimation of Amplitude α

In this subsection, we develop the exact ML estimate of α,
which is different from the ad hoc solution in [44]. Due to the
condition on η for the ML estimate of H̄, the cost function for
the ML estimate of α is a composite function which combines
two sub-functions given by (37) and (39), respectively. More
precisely, we have the cost function for the ML estimate of α

g(α) =

{
g1(α), if α ∈ Ψ1

g2(α), if α ∈ Ψ2

, (40)

where

g1(α) = ‖y − αs̃‖2 , (41)

g2(α) = ln ‖PH̃ (y − αs̃)‖2 + 1 +
∥∥P⊥

H̃
(y − αs̃)

∥∥2 , (42)

and

Ψ1 = {α ∈ C : η(α) ≤ 1} , (43)

Ψ2 = {α ∈ C : η(α) ≥ 1} , (44)

with

η(α) = ‖PH̃ (y − αs̃)‖2 . (45)

1) Geometry of Ψ1 and Ψ2: It is easy to see that the feasible
set Ψ1 of (43) is a disk centered at αΨ1

with radius rΨ1
while

Ψ2 complements Ψ1 in the complex-valued domain. As shown
in Fig. 2, the center and radius of Ψ1 are given, respectively, by

α1 = αΨ1
=

sHPH̃y

sHPH̃s
, (46)

rΨ1
=

√
e− a

e
, (47)

where

a = ‖PH̃y‖2 ‖PH̃s̃‖2 − ∥∥s̃HPH̃y
∥∥2 , (48)

e = ‖PH̃s̃‖2 . (49)

It is worth noting that the feasible sets Ψ1 and Ψ2 are
adaptively determined by the (whitened) observed signal y, the
(whitened) subspace matrix H̃ and the (whitened) steering vec-
tor s̃. Therefore, they are fully determined by observed signals
but may vary from one scan to another scan.
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Fig. 2. Feasible areas of the cost function g(α) for the ML estimate of the
amplitude α.

Fig. 3. The solution region of unconstrained g2(α).

2) Solutions to Unconstrained g1(α) and g2(α): Before we
move to the ML estimation of the amplitude, let us first look at
the unconstrained optimization of g1(α) and g2(α).

To minimize g1(α) = ‖y − αs̃‖2, the solution to uncon-
strained g1(α) is

α3 =
s̃Hy

s̃H s̃
. (50)

To minimize g2(α) of (42), we notice that it consists of two
α-related terms:
� the term d1(α)

�
= ln ‖PH̃(y − αs̃)‖2 + 1 that is mini-

mized at

α1 =
sHPH̃y

sHPH̃s
⇒ α1 = αΨ1

, (51)

which is also the center αΨ1
of the feasible set Ψ1; see

Fig. 3.
� the term d2(α)

�
= ‖P⊥

H̃
(y − αs̃)‖2 that is a quadratic func-

tion minimized at

α2 =
sHP⊥

H̃
y

sHP⊥
H̃
s
. (52)

Both d1 and d2 are monotonically increasing w.r.t. α when
α moves away from the corresponding minimizer α1 or α2.
Therefore, the solution to the unconstrained g2(α) falls within

a square area cornered at α1 and α2 in the two-dimensional
complex-valued domain; see the shaded square in Fig. 3 for
illustration. Without of losing generality, we assume �{α1} >
�{α2} and �{α2} > �{α1} and denote the square area as

Ψ3 = {α ∈ C : �{α2} ≤ �{α} ≤ �{α1},
�{α1} ≤ �{α} ≤ �{α2}}. (53)

3) Local ML Estimation of Amplitude: Depending on the
geometry of Ψ1 and Ψ2, we have the following cases to develop
the ML estimate of α:

Case I (Ψ1 = ∅ and Ψ2 = C): Let us look at one extreme
case when the feasible set Ψ1 is an empty set and Ψ2 covers all
complex-valued domain. In this case, the cost function g(α) of
(40) reduces to the unconstrained g2(α). As stated above, the
solution to the unconstrained g2(α) is confined in the set Ψ3. It
can be effectively found by a gradient descent method initiated
at either α1 or α2.

The existence of Case I can be determined by the following
sufficient condition (recall the geometry of Ψ1 and Ψ2)

a ≥ e and e <∞ ⇒ rΨ1
≤ 0. (54)

The condition of e = ‖PH̃s̃‖2 <∞ is satisfied as long as the
steer vector s has a finite energy, since e reflects the energy of the
whitened steering vector s̃ projected into the whitened subspace
〈H̃〉. The other condition of a ≥ e can be checked as

a ≥ e⇒ ‖PH̃y‖2 ‖PH̃s̃‖2 ≥ ∥∥s̃HPH̃y
∥∥2 + ‖PH̃s̃‖2 , (55)

once the observed signal, steering vector and residual subspace
are given.

Case II (Ψ1 = C and Ψ2 = ∅): On the other hand, Ψ1 can
expand to the whole complex-valued domain while Ψ2 vanishes
to an empty set. Correspondingly, the cost function g(α) of (40)
reduces to the unconstrained g1(α). As also stated above, the
solution to the unconstrained g1(α) is given by α3 of (50).

The existence of Case II can be readily checked as

e = ‖PH̃s̃‖2 = 0 ⇒ rΨ1
= ∞, (56)

which is equivalent to saying that the whitened subspace 〈H̃〉 is
orthogonal to the whitened steering vector 〈s̃〉, i.e.,

〈H̃〉 ⊥ 〈s̃〉. (57)

In the considered distributed MIMO scenario, the condition
of 〈H̃〉 ⊥ 〈s̃〉 implies that s(fni) is completely orthogonal to its
target residual subspace H̃ of (14) formed by other (M − 1)
Doppler frequencies s(fnm) with m �= i. Since all M Doppler
frequencies are bi-static projection of the same target Doppler
frequency onto M transmitting angles (and the same receiving
angle), it is highly unlikely that 〈H̃〉 ⊥ 〈s̃〉 holds.

Case III (Ψ1 �= ∅ and Ψ2 �= ∅): When neither Ψ1 nor Ψ2

is an empty set, we need to evaluate the two constrained cost
functions: g1(α) over Ψ1 and g2(α) over Ψ2, then compare the
two minimum values, and find the global minimum for g(α).
Further depending on the geometry of Ψ2 and α3, we have the
following two scenarios in Case III (see Fig 4):
� Scenario A (Ψ2 ∩Ψ3 �= ∅): As shown in Fig. 4(a), the

feasible set Ψ2 is partially overlapped with the solution
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Fig. 4. The geometry for Case III; (a) Scenario A: Ψ2 ∩Ψ3 �= ∅; and (b) Scenario B: Ψ2 ∩Ψ3 = ∅.

set Ψ3 to the unconstrained g2(α). As a result, the solution
to the constrained optimization g2(α) must happen to the
overlapping area between Ψ2 and Ψ3, the grey region in
Fig 4(a). Denoted by α�, the optimal solution can be nu-
merically found by a gradient descent method over the grey
region. On the other hand, the solution to the constrained
optimization of g1(α) over Ψ1, denoted as α�, can be
derived by a Lagrangian method, given in Appendix A.
Therefore, the global optimized solution in Case III.A is
given by

α̂ML,III-A =

{
α�, if g1(α

�) > g2(α
�)

α�, if g1(α
�) ≤ g2(α

�)
. (58)

The sufficient condition of Scenario A is given by

0 < rΨ1
≤ |α1 − α2|2, (59)

where rΨ1
, α1 and α2 are defined in (47), (46) and (52),

respectively.
� Scenarios B (Ψ2 ∩Ψ3 = ∅): As shown in Fig. 4(b), the

feasible setΨ2 has no overlapping with the solution setΨ3.
Given that g2(α) is a monotonically increasing function,
the fact that the feasible set Ψ2 excludes Ψ3 implies that
the optimal solution must be located at the boundary of the
feasible set Ψ2. As a result, the constrained optimization
g2(α) over Ψ2 reduces to

min
α
g2(α), s.t. ‖PH̃(y − αs̃)‖2 = 1, (60)

where the equality constraint denotes the circle lower
bounded Ψ2. With the equality constraint, g2(α) can be
rewritten as

g2(α) = (y − αs̃)HPH̃(y − αs̃)

+ (y − αs̃)HP⊥
H̃
(y − αs̃)

= ‖y − αs̃‖2 = g1(α). (61)

Therefore, (60) reduces to

min
α
g1(α), s.t. η(α) = ‖PH̃(y − αs̃)‖2 = 1. (62)

Now it is clear to see the the constrained minimization of
g2(α) overΨ2 is a special case of constrained minimization
of g1(α) over Ψ1. Therefore, the global cost function g(α)
reduces to

min
α
g1(α), s.t. η(α) = ‖PH̃(y − αs̃)‖2 ≤ 1, (63)

which is minimized at

α̂ML,III-B = α�. (64)

See Appendix A for the details.
The sufficient condition for this case is given as

|α1 − α2|2 < rΨ1
<∞, (65)

where rΨ1
, α1 and α2 are defined in (47), (46) and (52),

respectively.
In a short summary, the local ML estimate of amplitude can

be numerically found in Case I and Case III. A by optimizing
a monotonically increasing function over a confined area in the
complex-valued domain with explicitly computed initial values
and directly solved in closed-form expression in Case II and
Case III. B. The existence conditions for various cases can be
explicitly determined with rΨ1

, α1 and α2 defined in (47), (46)
and (52), respectively.

D. Test Statistic of Local GLRTs

Given the ML estimates underH1 and the likelihood functions
under both hypotheses, it is straightforward to show that the local
GLRT test statistic of (22) is given as follows

T (y) =

⎧
⎪⎨

⎪⎩

yHy − ‖y − α̂MLs̃‖2 if η(α̂ML) ≤ 1,

yHy − ln ‖PH̃ (y − α̂MLs̃)‖2

−1−
∥∥∥P⊥

H̃
(y − α̂MLs̃)

∥∥∥
2

if η(α̂ML) > 1

(66)

where y = R−1/2x is the whitened received signal, PH̃ =

H̃(H̃HH̃)−1H̃H and P⊥
H̃

= I−PH̃ with H̃ = R−1/2H de-
noting the whitened target residual steering matrix, and s̃ =
R−1/2x is the whitened target steering vector. In addition,
η(α) = ‖PH̃(y − αs̃)‖2 and α̂ML is given in Section IV-C.
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If R is unknown, we can replace R in the local GLRT by the
sample covariance matrix from G target-free training signals
g(g), g = 1, . . . , G

R̂ =
G∑

g=1

g(g)gH(g), (67)

and the local GLRT can be equivalently expressed as

xHR̂−1x− (x− α̂MLs)
HR̂−1(x− α̂MLs), if η(α̂ML) ≤ 1,

xHR̂−1x− ln
[
(x− α̂MLs)

HP̂H(x− α̂MLs)
]
− 1

− (x− α̂MLs)
HP̂⊥

H(x− α̂MLs), if η(α̂ML) > 1,

where P̂H = R̂−1H(HR̂−1H)−1HR̂−1 and P̂⊥
H = R̂− P̂H.

An interesting observation is that η(α̂ML) can be considered
as an estimate of the significance of the target residual. If
η(α̂ML) ≤ 1, the local GLRT reduces to the conventional AMF
which essentially ignores the presence of the target residual.
Otherwise (if η(α̂ML) > 1), the local GLRT takes into account
the target residual in the test statistic.

In [44], we developed an early ad hoc solution to the local
GLRT. Instead of explicitly solving the ML estimation of the
amplitude, it finds an estimate of the amplitude α based on
a quantity which cannot be computed from the observations.
Then, this quantity is replaced by a posterior estimate with
the amplitude estimate. Based on the ad hoc estimate of α,
an approximate GLRT is derived. Albeit simpler, it loses the
asymptotic optimality of the true ML estimation and the GLRT.
In Section V-A, we compare the proposed exact GLRT with the
ad hoc GLRT of [44] and show the improved performance of
the true local GLRT proposed in this section.

E. Distributed MIMO-GLRT

According to (22), the MIMO-GLRT detector non-coherently
combines the local GLRT test statistics as

TMIMO-MTD(Y) =
∑

n,i

T (yni, s̃ni, H̃ni), (68)

where Y = [y11, . . . ,y1M ,y21, . . . ,yNM ] with yni =

R
−1/2
ni xni in the case of a known R or yni = R̂

−1/2
ni xni

if Rni is unknown

R̂ni =

G∑

g=1

gni(g)g
H
ni(g). (69)

with gni(g) denoting the g-th training signal for the (n, i)-th
Tx-Rx pair. Furthermore, s̃ni = R

−1/2
ni sni and α̂ni,ML are given

by the exact ML solution in Section IV-C. It is worth noting that
the final decision is made by aggregating the local test statistics
to a central unit.

F. Cramér-Rao Bound for Amplitude Estimation

It is seen that the main step of deriving the GLRT statistic is
to derive closed-form ML estimation of the residual subspace
covariance matrix Σ and the amplitude α. Therefore, it is worth
examining the ML estimation performance and comparing it

with corresponding CRB. As detailed in Appendix B, the FIM
for estimating α and Σ is decoupled and shows a diagonal
block structure; see Eq. (90). Thanks to the diagonal block
structure, the diagonal FIM block Iθtθt

for estimating the real
and imaginary parts of amplitude θt = [�{α},�{α}] can be
computed as

Iθtθt
= 2�{

sH(HΣHH +R)−1s
}
I2. (70)

By taking the inverse of the FIM block, the CRB for the ampli-
tude estimation is given as

CRB(α) =
1

sH(HΣHH +R)−1s
. (71)

Similarly, the CRB for estimating the residual subspace
covariance matrix Σ can be found by taking the in-
verse of the FIM block Iθsθs

of (92) where θs =
[diag{Σu}, vec{�(Σu)}, vec{�(Σu)}] groups all real param-
eters in Σ with Xu denoting the upper triangular matrix of X
and diag{X} denoting the diagonal elements of X.

V. SIMULATION

In this section, simulation results are provided to demonstrate
the performance of the proposed MIMO-GLRT detector. We
compare the proposed exact MIMO-GLRT with 1) the clair-
voyant matched filter (denoted as MF1) which is aware of the
target residual and also has perfect knowledge of the residual
covariance matrix Σni and the disturbance covariance matrix
Rni, 2) matched filter (denoted as MF2) that ignores the target
residual but assumes the knowledge of Rni, and 3) the ad hoc
GLRT proposed in [44]. For the local GLRT, we also include
the PMF.

A. Detection Performance of Local GLRT

In the case of M = 1 and N = 1, i.e., mono-static
transceivers, the distributed MIMO-GLRT reduces to the local
GLRT. To evaluate the detection performance, we consider
the same example used in [44]. Specifically, we have K = 16
and the steering vector s is given by the Fourier basis vector
u(f) = [1, e−j2πf , . . . , e−j2π(K−1)f ]T /

√
K with f = 3.8/K,

i.e., s = u(3.8/K). The signal-to-noise ratio (SNR) is defined
as

SNR = |α|2sHR−1s, (72)

where the noise covariance matrix R is chosen as [R]	κ =
ρ|	−κ| with ρ = 0.9 [44]. The target residual with r = 3 is
generated by using H = [u(f1),u(f2),u(f3)] with {fi}3i=1 =
[1/K, 2/K, 3/K] and the covariance matrix Σ is chosen as
[Σ]	κ = γρ|	−κ| with ρ = 0.6, where γ is properly chosen to
meet the preset covariance mismatch ratio

ε =
tr{HΣHH}+ tr{R}

tr{R} =
tr{Σ}
tr{R} + 1 ≥ 1. (73)

The performance is evaluated in terms of the ROC by using
Monte-Carlo trials.

Fig. 5 shows the ROC performance of the proposed detector
with four mismatch ratios. First, the results confirm that, by

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 18,2020 at 19:27:31 UTC from IEEE Xplore.  Restrictions apply. 



802 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Fig. 5. ROC (receiver operating characteristic) curves for various local detectors as a function of mismatch ratio when SNR = 0 dB. MF1: the optimal matched
filter with the knowledge of target residual; MF2: matched filter ignoring the target residual; PMF: projection matched filter; Ad hoc: an ad hoc GLRT of [44];
GLRT: proposed GLRT.

Fig. 6. MSE of the ML estimation of amplitude and corresponding CRB.

exploiting the target residual (i.e., MF1, ad hoc GLRT and
the exact GLRT), the detection performance can be improved.
Specifically, the detection performance of the three detectors
that acknowledging the target residual is better than that of

Fig. 7. The distributed MIMO radar configuration considered in simulation.

MF2 which simply ignores the existence of target residual.
Second, larger performance improvement can be achieved if the
target residual component is stronger (i.e., with larger mismatch
ratio). This observation is intuitive as the stronger the target
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Fig. 8. ROC curves for various distributed MTD detectors as a function of SINR and RINR. First row: SINR = 0 dB with RINR = {−20,−22.5} dB; Second
row: SINR = −10 dB with RINR = {−15,−20} dB.

residual, the larger the separation between the null and alter-
native hypotheses and, hence, the better detection performance.
Third, the proposed exact local GLRT obtains further perfor-
mance gain over the ad hoc GLRT of [44]. In fact, the exact
GLRT almost achieves the performance of the clairvoyant MF1
that requires the perfect knowledge of the residual covariance
matrix. Finally, the proposed exact local GLRT provides im-
proved performance than the projection-based PMF by a large
margin.

B. ML Estimation of Amplitude

Next, we evaluate the ML estimation of the amplitude in
terms of mean-square error (MSE) and compare it with the
CRB derived in Section IV-F. As shown in (71), the CRB
for amplitude estimation is inversely proportional to the factor
sH(HΣHH +R)−1s which is used as the SNR here. We gen-
erate the received signal under H1 as the same as the previous
section. Fig. 6 shows the MSE computed from 200 Monte-Carlo
runs at each SNR and the corresponding CRB for the amplitude
estimation. It is shown that the MSE and CRB linearly decrease
in the dB scale. And the simulated MSE matches well with the
CRB over all considered SNRs.

C. Detection Performance of Distributed MIMO Radar

Next, we consider a scenario of distributed MIMO configu-
ration. As shown in Fig. 7, the distributed MIMO radar has four
transmitters (blue squares) at {θti}4i=1 = (0◦, 45◦, 90◦, 180◦)
with corresponding distances (3, 3, 5, 2.5) km with respect to
the target, and two receivers (red circles) at {θrm}3m=1 =
(150◦, 270◦, 330◦) with respective distances (2, 3, 2.5) km.
Moreover, the pulse repetition frequency (PRF) is 500 Hz, the
carrier frequency is 1 GHz, and the number of pulses within
a CPI is K = 16. The target (dark hexagram) is located in
the center with a velocity 108 km/h moving toward 30◦. The
above parameters lead to a normalized target Doppler frequency
given by (5). For a given (ni)-th Tx-Rx pair, the Doppler
steering vector s(fni) is given by the Fourier basis vector
u(f) = [1, e−j2πf , . . . , e−j2π(K−1)f ]T /

√
K with f given by

(5), while the target residual matrix Hni ∈ C
K×(M−1) is given

as

Hni = [u(fn1), . . . , {u(fnm)}m �=i, . . . ,u(fnM )], (74)

where {fnm}m �=i is also computed by (5) but with different
{θti, θrn}. In addition, the disturbance (interference-plus-noise)
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covariance matrix Rni is given as

[Rni]	κ = ρ
|	−κ|
ni , (75)

with ρni is chosen to be different for different Tx-Rx pairs, and
the target residual covariance matrix Σni is given as

[Σni]	κ = β
|	−κ|
ni , (76)

where βni is chosen to be different for different Tx-Rx pairs.
The average signal-to-interference-plus-noise ratio (SINR) is
defined as

SINR =

∑
n,i |αni|2s(fni)HR−1

ni s(fni)

MN
, (77)

and the residual-to-interference-plus-noise ratio (RINR) is de-
fined as

RINR =
∑

n,i

tr{Σni}
MNtr{Rni} . (78)

Fig. 8 shows the ROC performance of the considered dis-
tributed MTD detectors with different SINRs and RINRs.
Fig. 8(a) and (b) consider a case of SINR = 0 dB. Since the
target residual may be weak compared with the target signal,
we consider a case of RINR = −20 dB and RINR = −22.5 dB,
which is 20 dB weaker than the target signal. In fact, considering
K = 16 and the high target velocity, the target residual may
appear to be even smaller than what may be observed in practice.
The results in Fig. 8(a) and (b) confirm that, the larger the target
residual, the better the detection performance. At a probability of
false alarm atPf = 0.001, the proposed exact GLRT can achieve
a probability of detection around Pd = 95%, while the MF2
detector that ignores the target residual yields a performance
around Pd = 77%. When the target residual is even weaker,
e.g., RINR = −22.5 dB, it appears that the exact GLRT detector
shows a smaller performance gain over the MF2, while the
clairvoyant MF1 still holds a reasonable performance margin
over the MF2.

Next, we reduce the SINR to SINR = −10 dB. As shown in
Fig. 8(d), with the same RINR of RINR = −20 dB, the detection
performance is reduced compared with the case of SINR = 0 dB
(comparing red curves in Fig. 8(a) and Fig. 8(d)). Particularly, the
detection performance of the MF1 is significantly lower and has
a detection performance around Pd = 20% when Pf = 0.001,
while the proposed GLRT detector can still achieve a perfor-
mance around Pd = 75%. By increasing the strength of the
target residual to RINR = −15 dB in Fig. 8(c), the detection
performance (red curves) of the proposed GLRT detector almost
reaches the detection performance at Pd = 100%, while the
MF2 achieves a detection performance around Pd = 90% when
Pf = 0.001.

VI. CONCLUSION

In this paper, we considered moving target detection using
distributed MIMO radars with orthogonal transmitting wave-
forms. Particularly, we took into account target residual terms
in the baseband receiving signal due to imperfect waveform
separation and developed explicit subspace signal models for

the target residual component at local receivers. Depending
on assumptions on the target amplitude over a scan, fluctu-
ating or non-fluctuating, we re-formulated the moving target
detection problem into a binary composite hypothesis testing
in a distributed subspace framework. We paid attention to the
distributed hybrid-order Gaussian model and developed the
exact GLRT framework by finding the maximum likelihood
estimates of the amplitude and residual covariance subspace.
With numerical verification in local and distributed scenarios, we
confirmed the effectiveness of the proposed GLRT and showed
performance gain in terms of ROC by exploiting the existence of
target residual component. Future works may include analytical
performance analysis of the proposed detector (e.g., probability
of false alarm and probability of detection) and performance
validation with more realistic datasets.

APPENDIX

A. Solution to (63)

First, we rewrite (63) as

min
α

‖y − αs̃‖2 , s.t. ‖PH̃(y − αs̃)‖2 ≤ 1. (79)

And note that g1(α) = ‖y − αs̃‖2 is optimized at

α3 =
s̃Hy

s̃H s̃
. (80)

On the other hand, the constraint set is given by Ψ1, i.e.,
‖PH̃(y − αs̃)‖2 ≤ 1 which is centered at α1. It is easy to see
that both the cost function and constraint are quadratic function
over α. The equivalent unconstrained optimization problem via
the Lagrange multiplier method is to minimize the expanded
function over α and λ

L(α, λ) = ‖y − αs̃‖2 + λ(‖PH̃(y − αs̃)‖2 − 1). (81)

Taking the derivative of L(α, λ) over α gives

α = (1− θ)α1 + θα3, (82)

where α3 is given in (80),

α1 =
sHPH̃y

sHPH̃s
, (83)

given in (46), and the weight θ is a function of non-negative λ

θ =
λ(s̃HPH̃s)

s̃H s̃+ λs̃HPH̃s
. (84)

It is noted that 0 ≤ θ ≤ 1 which implies that α is a convex
combination of α1 and α3 and is located in between these two
points in the complex-valued domain.

Taking the derivative of (α, λ) over λ, we have

‖PH̃(y − αs̃)‖2 = 1, (85)

which can be rewritten as e|α− α1|2 + a/e = 1, where a and
e are defined, respectively, in (48) and (49). Plugging (82) into
the above equation and considering θ ∈ [0, 1], we have

θ∗ = min

{ √
e−a
e

|α1 − α3| , 1
}

= min

{
rΨ1

|α1 − α3| , 1
}
. (86)
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Fig. 9. The geometry interpretation of α∗.

As a result, we can find a closed-form expression for α as

α∗ = (1− θ∗)α1 + θ∗α3. (87)

Geometry Interpretation of α∗: It is interesting to interpret
the solution α∗ in a geometric standpoint; see Fig. 9. First, if
rΨ1

≤ |α1 − α3|, as shown in Fig. 9(a), it implies that the global
minimizer to ‖y − αs̃‖2, i.e., α3, is excluded from the feasible
set which is a disk centered at α1 with a radius of rΨ1

. Since
the cost function is a quadratic function over α, the optimal
solution in this case must lie on the boundary of the feasible set.
More precisely, it is located at the intersection between the line
connecting α1 and α3 and the boundary of the feasible set. This
can be easily determined as

α∗ =
rΨ1

|α1 − α3|α1 +
|α1 − α3| − rΨ1

|α1 − α3| α3, (88)

which coincides with (87) when rΨ1
≤ |α1 − α3|.

On the other hand, if rΨ1
> |α1 − α3|, the case of Fig. 9(b),

the global minimizer to ‖y − αs̃‖2, i.e.,α3, is within the feasible
set which is a disk centered atα1 with a radius of rΨ1

. As a result,

α∗ = α3, (89)

which also reduces to (87) when rΨ1
> |α1 − α3|.

B. FIM of Unknown Parameter Estimation Under H1

First, group unknown parameters under H1 as

θ = [�{α},�{α}, diag{Σu}, vec{�(Σu)}, vec{�(Σu)}]
withΣu denoting the upper triangular matrix ofΣ and diag{X}
denoting the diagonal elements of X. Overall, we have (2 + r2)
real unknown parameters in θ.

Next we derive the Fisher information matrix (FIM) of the es-
timate ofθ. Note thaty ∼ CN (αs̃,C)whereC = H̃ΣH̃H + I.
It is easy to see that the mean αs̃ is only related to the target
parameter θt = [�{α},�{α}]T where �{·} and �{·} denote
the real and imaginary parts, respectively, while the covari-
ance matrix C = H̃ΣH̃H + I is a function of the parame-
ter set corresponding to the subspace covariance matrix θs =
[diag{Σu}, vec{�(Σu)}, vec{�(Σu)}]. As a result, the FIM
on estimating θ = [θt,θs] is block diagonal [47, Section 3.9],

i.e.,

I(θ) =

[
Iθtθt

02×r2
0r2×2 Iθsθs

]
, (90)

where r2 is the number of real parameters in Σ.
The first diagonal FIM block Iθtθt

can be computed as

Iθtθt
= 2�

{
s̃H(H̃ΣH̃H + I)−1s̃

}
I2, (91)

where I2 denotes the identity matrix of dimension 2. For the
other diagonal FIM block Iθsθs

, we have the following general
expression [47]

[Iθsθs
]μ,ν = tr

{
C−1

(
H̃

∂Σ

∂[θs]μ
H̃H

)
C−1

(
H̃

∂Σ

∂[θs]ν
H̃H

)}

(92)

where {μ, ν} = 1, 2, . . . , r2, and [θs]μ denotes the μ-th element
of θs. Noticing that Σ is a Hermitian matrix, i.e., Σ = ΣH , we
have the following intermediate results,

∂Σ

∂[Σ]ii
= Jii,

∂Σ

∂ [�(Σ)]ij
= Jij + Jji,

∂Σ

∂ [�(Σ)]ij
=

√−1Jij −
√−1Jji,

where Jij denotes the single-entry matrix that is 1 at the (i, j)-th
element and zero elsewhere. As a result, we have

H̃
∂Σ

∂[Σ]ii
H̃H = H̃JiiH̃

H = h̃ih̃
H
i

H̃
∂Σ

∂ [�(Σ)]ij
H̃H = h̃ih̃

H
j + h̃jh̃

H
i

H̃
∂Σ

∂ [�(Σ)]ij
H̃H =

√−1(h̃ih̃
H
j − h̃jh̃

H
i )

where h̃i denotes the i-th column of H̃. As a result, we have

I[Σ]ii,[Σ]pp = |h̃Hi C−1h̃Hp |2

I[Σ]ii,[�(Σ)]lp
= 2�

{
(h̃Hi C−1h̃Hl )(h̃Hp C−1h̃Hi )

}

I[Σ]ii,[�(Σ)]lp
= −2�

{
(h̃Hi C−1h̃Hl )(h̃Hp C−1h̃Hi )

}
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I[[�(Σ)]ij [�(Σ)]lp
= 2�

{
(h̃Hi C−1h̃Hl )(h̃Hp C−1h̃Hj )

}

+ 2�
{
(h̃Hi C−1h̃Hp )(h̃Hl C−1h̃Hj )

}

I[[�(Σ)]ij [�(Σ)]lp
= −2�

{
(h̃Hi C−1h̃Hl )(h̃Hp C−1h̃Hj )

}

− 2�
{
(h̃Hp C−1h̃Hi )(h̃Hj C−1h̃Hl )

}

I[[�(Σ)]ij [�(Σ)]lp
= 2�

{
(h̃Hi C−1h̃Hl )(h̃Hp C−1h̃Hj )

}

− 2�
{
(h̃Hp C−1h̃Hi )(h̃Hj C−1h̃Hl )

}

which allows us compute the other diagonal FIM block Iθsθs
.
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