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Deep Learning Denoising Based Line
Spectral Estimation
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Abstract—Many well-known line spectral estimators may
experience significant performance loss with noisy measurements.
To address the problem, we propose a deep learning denoising
based approach for line spectral estimation. The proposed ap-
proach utilizes a residual learning assisted denoising convolutional
neural network (DnCNN) trained to recover the unstructured noise
component, which is used to denoise the original measurements.
Following the denoising step, we employ a popular model order
selection method and a subspace line spectral estimator to the
denoised measurements for line spectral estimation. Numerical
results show that the proposed approach outperforms a recently
introduced atomic norm minimization based denoising method and
offers a substantial improvement compared with the line spectral
estimation results obtained by directly applying the subspace esti-
mator without denoising.

Index Terms—line spectral estimation, signal denoising, deep
learning.

I. INTRODUCTION

L INE spectral estimation, involving recovering the frequen-
cies, phases and amplitudes of a mixture of complex sinu-

soids from noisy samples, is a fundamental problem in statistical
signal processing. Line spectral estimation problems arise in a
variety of applications, such as direction of arrival estimation
[1], [2], inverse scattering imaging [3], passive sensing [4], and
many others. Compressed sensing (CS) based approaches, which
have attracted much attention in recent years, can be employed to
solve the line spectral estimation problem with several unique
advantages (see, e.g., [5]); however, they may also suffer the
so-called grid mismatch problem due to the use of a fixed dis-
cretized dictionary [6], [7]. Meanwhile, high-resolution spectral
estimators based on subspace decomposition, e.g., MUSIC [8],
exploit a low-rank structure of sinusoidal signals for line spectral
estimation. Subspace methods are free of the grid mismatch
problem, capable of offering accurate estimation result in low
or moderate noise, but may degrade considerably with noisy
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measurements. Some recent works bridge the gap between dis-
cretized CS algorithms and subspace methods, by utilizing an
atomic norm formulation [9], joint compressed sensing and dic-
tionary refinement formulation [10]–[14], and others, although
the computational complexity of these methods is usually high.

Another approach to line spectral estimation is based on
denoising. An atomic norm minimization (ANM) approach
was proposed in [15], which applies soft thresholding to the
noise-corrupted measurements in the atomic norm for spectral
recovery. Soft thresholding is a widely used denoiser for sparse
signal recovery problems [16]. A denoiser is an algorithm that
seeks to reduce noise or perturbation in the observed signal. To
subtract the noise, a denoiser usually leverages some inherent
structure, e.g., sparsity, low rank, etc., of the signal. These meth-
ods often need to solve a complex optimization problem and have
a high computational complexity. In addition, their denoising
performance in the presence of densely spaced frequencies is
limited.

Aside from structure-based denoising approaches, data-
driven denoising methods have been of significant interest in last
few years. Rather than relying on prior knowledge of the data
structure, deep convolutional neural networks can be trained to
automatically capture the signal structure [17]. A denoising con-
volutional neural network (DnCNN) was introduced in [18] for
image denoising, based on the so-called residual learning. It was
found that, when the observation consists of a highly structured
signal along with an unstructured noise, a deep network can
be configured to remove the desired signal in a more efficient
way than directly removing the undesired noise [19]. In essence,
such networks perform denoising in an indirect manner, by first
removing the signal to yield an estimate of the noise and then
subtracting the estimated noise from the observation to get a
denoised signal.

We propose herein a deep learning denoising based approach
for line spectral estimation. The proposed approach consists
of a DnCNN, which is configured to perform denoising for
noisy sinusoidal signals, a model order selection process, and
a line spectral estimator applied on the denoised signal. We
explain how the DnCNN is composed and the associated training
process. Numerical results show the proposed approach can
yield a substantial improvement in estimation accuracy over the
ANM method as well as the one that directly applies MUSIC to
the original observation. The benefit is attributed to the DnCNN
denoiser, which is able to reshape the eigenspectrum of the sam-
ple covariance matrix of the observed signal, leading to better
model order estimation and signal/noise subspace separation.
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Fig. 1. Proposed DnCNN for sinusoidal signal denoising. The spectra of the signal before and after denoising, as well as of the intermediate signals produced by
the DnCNN, are included in the sketch.

II. PROBLEM FORMULATION

Consider a signal consisting of K complex sinusoids:

zn =
K∑

k=1

αke
−j2π(n−1)fk , n = 1, · · · , N, (1)

where fk ∈ [−0.5, 0.5) andαk denote the normalized frequency
and the complex amplitude of the k-th component, respectively.
The observation can be written as yn = zn + en, where the
signal zn is corrupted by a complex additive white Gaussian
noise en. By rewriting it into a vector form, we have

y = z+ e, (2)

where y = [y1, · · · , yN ]T , z = [z1, · · · , zN ]T and e =
[e1, · · · , eN ]T . Let h(fk) = [1, e−j2πfk , · · · , e−j2π(N−1)fk ]T .
Then z = H(f)α, where H(f) = [h(f1), · · · ,h(fK)],
f = [f1, · · · , fK ]T and α = [α1, · · · , αK ]T . The problem
of interest is to estimate sinusoidal parameters f and α from
noisy observation y when the model order K is unknown. In
this work, we consider a denoised approach that first obtains
a denoised observation ẑ from y, and then performs spectral
estimation using ẑ.

III. PROPOSED METHOD

We employ a denoising convolutional neural network
(DnCNN) for denoising. In the following, we describe the
DnCNN used for denoising and the associated training process,
and then explain how the denoised observation is used for model
order selection and spectral estimation.

A. Deep Learning Based Denoiser

As depicted in Fig. 1, a DnCNN has a layered structure,
consisting of P layers that perform convolution (Conv), batch
normalization (BN), and/or rectified linear unit (ReLU) func-
tions, the details of which are to be discussed shortly. Instead of
estimating the desired signal, a DnCNN is trained to estimate
the noise. This mechanism is known as residual learning, which
enables the deep network to remove the structured signal rather
than the unstructured noise. Compared with the conventional
approach of directly learning the desired signal, residual learning
can speed up the training process and improve the denoising
performance [18], [19].

In the first layer, DnCNN takes the real and imaginary part
of observation y and reshapes it into a 2N × 1× 1 tensor,
denoted by Y(0) ∈ R2N×1×1. The first layer consists of N1

convolutional filters W(1)
i ∈ RE1×1×1, i = 1, · · · , N1, with the

common input Y(0) ∈ R2N×1×1. The convolutional output is
expressed as W

(1)
i ∗Y(0), which has the same dimension of

2N × 1× 1 as the input with proper zero padding. A bias term
b
(1)
i ∈ R2N×1×1 is frequently added into the convolution result.

Thus the output of the convolution of the first layer can be
expressed as

Y
(1)
i = ReLU(W

(1)
i ∗Y(0) + b

(1)
i ), i = 1, · · · , N1, (3)

where the activation function ReLU(·) is given by [20]
ReLU(x) = max(x, 0). The convolution and activation opera-
tions enable the deep neural network to gradually separate signal
structure from the noisy observation through the hidden layers.

The p-th layer, p = 2, · · · , P − 1, consists of Np convolu-

tional filters W(p)
i ∈ REp×1×Np−1 , i = 1, · · · , Np, with a com-

mon input Y(p−1) ∈ R2N×1×Np−1 from the (p− 1)-st layer.
These P − 2 inner layers also implement the BN and ReLU
functions. Thus, the output of the p-th layer can be expressed as

Y
(p)
i = ReLU

(
BN

(
W

(p)
i ∗Y(p−1) + b

(p)
i

))
, i = 1, · · · , Np,

(4)
where b

(p)
i ∈ R2N×1×1 contains the bias terms added into the

convolution results and BN(·) denotes the batch normalization
unit, along with a ReLU(·) function. BN is introduced to al-
leviate the so-called internal covariate shift by incorporating a
normalization step and a scale/shift step before the nonlinearity
in each layer [21]. It can be mathematically expressed as

BN(x; γp, βp) = γp
x− E[x]

√
Var[x] + ε

+ βp, (5)

whereγp andβp are the scaling and shift factors for thep-th layer,
which can be learned from the training data, while ε is a small-
valued constant that prevents the denominator

√
Var[x] + ε

from becoming (close to) zero.
The last layer consists ofNP = 1 convolutional filterW(P )

i ∈
REP×1×NP−1 with inputY(P−1) ∈ R2N×1×NP−1 from the (P −
1)-st layer. The final noise estimate is reconstructed as

Y(P ) = W(P ) ∗Y(P−1) + b(P ), (6)

where b(P ) ∈ R2N×1×1 contains the bias terms added into the
convolution result.

Mathematically, DnCNN can be treated as a mapping
F(y,Θ) taking the observation y as input and defined by the
parameter set Θ of the DnCNN. The parameter set Θ contains
the convolution filters {W(p)

i }, bias {b(p)
i }, and scaling and

shift factors {γp, βp}. As Y(P ) forms an estimate of the real
and imaginary parts of the noise vector in (2), we can use it to
form a complex-valued noise estimate, denoted by ê. Then, we
subtract it from the observation y, and obtain a denoised signal
ẑ = y − ê.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 17,2020 at 18:16:42 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: DEEP LEARNING DENOISING BASED LINE SPECTRAL ESTIMATION 1575

B. Offline Training

To effectively remove noise in dynamic environments, we
need to train the DnCNN with a diverse set of training signals
with different frequencies and signal-to-noise ratio (SNR) con-
ditions. The frequencies of the training signals are generated as
uniformly distributed random variables over a range that covers
the signals of interest, assuming some prior knowledge of the
signal bandwidth (BW) is available. The BW of training signals
does not have to be strictly matched to that of the test signal. It
suffices to use a loose upper bound of the signal BW for training
signal generation. Another important factor in generating the
training data is the SNR. Since the SNR of the test signal is
unknown, DnCNN has to be trained with training data with a
range of SNR values.

In our proposed scheme, the DnCNN is trained to estimate
the residual or noise. The objective of training is to mini-
mize the difference between the output of the DnCNN and
the noise with respect to the DnCNN parameter Θ. Let St ={{y(j)}Sj=1, {z(j)}Sj=1

}
be the training set that consists of S

noise-corrupted observations and the noiseless signals. The loss
function for training is:

L(St,Θ) =

S∑

j=1

‖F(y(j),Θ)− (y(j) − z(j))‖22. (7)

Through the training process, the DnCNN parameter set Θ,
which includes the convolution filters {Wp

i }, bias {bp
i }, and

scale/shift parameters {γp, βp}), is obtained by minimizing the
above loss function. In our simulation, we use Matlab’s Deep
Learning Toolbox to train the DnCNN and obtain Θ.

C. Model Order Selection and Spectral Estimation

After denoising, model order selection and sinusoidal param-
eter estimation are performed by using the denoised data ẑ.
Many model order selection methods are available, from the
classical AIC [22] and MDL [23], to more recent techniques
tailored for specific spectral estimators [24], multi-dimensional
spectral analysis [25], and spectral analysis with quantized
data [26]. For our problem, we employ the MDL criterion for
model order selection due to its consistent performance [27].
Let L ≥ K denote an upper bound of the model order K, and
define ẑt = [ẑt, · · · , ẑt+L−1], t = 1, · · · , N − L+ 1. Usually,
L is selected such that N/3 ≤ L ≤ N/2 [27], which provides
a good trade-off among bias, variance, and spectral resolution.
The sample covariance matrix is given by

R̂ = 1
N−L+1

N−L+1∑

t=1
ẑtẑ

H
t . (8)

When data is limited (N is small), the sample covariance matrix
can be improved by forward-backward smoothing [28]: R̃ =
1
2 (R̂+ JR̂TJ), where J is the exchange matrix with ones on
the anti-diagonal and zeros elsewhere.

Given R̃, the signal and noise subspaces can be obtained
by eigendecomposition, R̃ = USUH, where S denotes a
diagonal matrix of the eigenvalues {λl}Ll=1 (arranged in a

non-increasing order) and U contains the corresponding eigen-
vectors. The MDL cost function can be written as [23]

MDL(l) = c1(l) log

(
1

L−1

∑L
m=l+1 λl

∏L
m=l+1 λ

1/(L−1)
m

)

+ c2(l), (9)

where c1(l) = (L− l)(N − L+ 1) and c2(l) =
1
2 l(2L−

l) log(N − L+ 1). The model order estimate is K̂ =
argmin1≤l≤L MDL(l).

Many methods are available to solve the spectral estimation
problem. Here, we use the MUSIC algorithm since it is simple
and is free of the grid mismatch problem. Given the model order
estimate K̂, the eigenvectors can be split in two groups, U =

[Us,Ue], where Us ∈ CL×K̂ spans the signal subspace and
Ue ∈ CL×(L−K̂) the noise subspace. The frequency estimates
can be obtained by the root-MUSIC algorithm, which computes
the roots of the following polynomial [27]:

aT(z−1)UeU
H
e a(z) = 0, (10)

where a(z) = [1, z−1, · · · , z−L+1]T . Specifically, the fre-
quency estimate f̂ can be obtained from the phase of the K̂
roots that are inside and closest to the unit circle. Finally, the
amplitude estimate α̂ can be obtained by least squares.

IV. NUMERICAL RESULTS

In this section, we present simulation results to demonstrate
the performance of the deep learning based approach for de-
noising and line spectral estimation. For simplicity, the pro-
posed method is called DnCNN-MUSIC. The SNR is defined
as SNR = N‖α‖2/σ2, where σ2 is the noise variance. The
performance metric is the mean squared error (MSE):

MSE �
K∑

k=1

min
f̂∈f̂

E[f̂ − fk]
2. (11)

We compare DnCNN-MUSIC with three other methods includ-
ing MUSIC, which applies the root-MUSIC algorithm directly
on the original data y, ANM [15], and Lasso [5]. Lasso uses
a fixed-size dictionary formed from 1024 uniformly spaced
frequency points.

In our simulation, the DnCNN is implemented in Mat-
lab. It has P = 11 layers along with the following pa-
rameters: {Ep}11p=1 = {8, 4, 4, · · · , 4, 16} and {Np}11p=1 =
{128, 64, 32, · · · , 32, 16, 1}. Before training the network, we
first generate the training data and validation data under SNR =
15, 20, 25, 30, 35, 40 dB, with 1600 training signals and 400 vali-
dation signals for each SNR. The frequency set contains K = 5
frequencies uniformly distributed over the BW (−0.25, 0.25)
and varying independently from one training signal to another.
We use the mini-batch gradient descent method to train the
network. Each mini-batch contains 10 training signals. In each
iteration, one mini-batch is randomly picked to compute the
gradient. The Adam optimizer is employed to determine the
optimal neural parameters [29]. During the training process, we
operate the validation every 200 iterations. Training continues
until the loss does not drop for consecutive iterations. The initial
learning rate is set to be 10−3 and the learning rate drop factor
is 0.8.
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Fig. 2. Eigenspectrum (left) and MDL cost function (right) before and after
denoising. The black dashed line indicates the true model order K = 5.

The test signals containK = 5 sinusoids with frequencies and
amplitudes randomly generated from each Monte Carlo trial. In
our simulations, the testing frequencies are uniformly distributed
over the BW (−0.2, 0.2); hence the bandwidth of the training
signals is slightly larger than that of the test signals. Note that
the training data should have frequencies covering a BW no less
than that of the test signal. The length of the observed signal is
N = 64. The root-MUSIC uses L = 30 to compute the covari-
ance matrix.

We first examine the model order selection performance.
Fig. 2 shows the eigenspectrum and the MDL cost function by
using the original and, respectively, denoised data produced by
ANM, Lasso, and DnCNN denoiser. The eigenspectrum shows
the eigenvalues of the sample covariance matrix R̂ sorted in
a non-increasing order. For DnCNN, the eigenspectrum shows
a more defined boundary between the first K = 5 eigenvalues,
which are due to the sinusoidal signals, and the remaining eigen-
values, due to the noise. This implies the denoising provided by
the DnCNN allows one to better separate the signal subspace
from the noise subspace. The benefit is also reflected in the
model order selection result, which shows that DnCNN can
correctly estimate the model order with the minimum ofMDL(l)
located at K̂ = 5 in average. Meanwhile, it is seen that the
ANM and Lasso yield limited improvement in terms of both
the eigenspectrum and model order selection.

Fig. 3 compares the frequency estimation performance of
the above methods, along with their corresponding model order
selection estimates, and the Cramer-Rao lower bound (CRLB).
In addition, we include a recently introduced Bayesian off-grid
sparsity based method, called the superfast LSE [14], which
was shown to yield competitive performance for linear spectral
estimation. It can be seen from the figure that ANM and MUSIC
have similar performance for all SNR values suggesting that
ANM denoising offers limited gain. Superfast LSE outperforms
ANM by about 2 dB. Lasso is the worst at high SNRs due to
the fixed dictionary, which causes grid mismatch. The proposed
DnCNN-MUSIC performs the best among all methods and has
an improvement of about 5 dB over ANM in approaching the
CRLB.

Fig. 3. MSE of the frequency estimates versus SNR.

Fig. 4. Spectral estimates with (a) well-separated, and (b) closely space
frequencies. The black dashed lines indicate the locations of the true frequencies.

Finally, spectral estimates obtained by applying the spectral
MUSIC algorithm [27] to either the original or denoised data,
denoised by ANM or DnCNN, are presented in Fig. 4(a) when
all frequencies are well separated, and in Fig. 4(b) when some
frequencies are more closely spaced. In the first case, although
the frequencies are well separated, MUSIC and ANM-MUSIC
show one pseudo peak toward the left and miss one true peak in
the middle, while DnCNN-MUSIC does not have such issues,
indicating that DnCNN has a better denoising performance.
The second case is more challenging, involving two closely
spaced frequencies. It is seen that MUSIC and ANM-MUSIC
show a single merged peak for two closely spaced frequencies
and, furthermore, a pseudo peak toward the left. In contrast,
DnCNN-MUSIC is able to obtain all signal peaks without any
pseudo ones.

V. CONCLUSIONS

We proposed a deep learning denoising based approach to line
spectral estimation. The proposed approach employs a DnCNN
derived from residual learning for signal denoising and then the
MDL/MUSIC algorithm applied on the denoised data for line
spectral estimation. Numerical results show that the proposed
approach can benefit from deep learning and outperforms a
recently introduced ANM denosing method.
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