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Abstract—Deeper neural networks, especially those with ex-
tremely large numbers of internal parameters, impose a heavy
computational burden in obtaining sufficiently high-quality re-
sults. These burdens are impeding the application of machine
learning and related techniques to time-critical computing sys-
tems. To address this challenge, we are proposing an architectural
approach for neural networks that adaptively trades off compu-
tation time and solution quality to achieve high-quality solutions
with timeliness. We propose a novel and general framework,
AnytimeNet, that gradually inserts additional layers, so users
can expect monotonically increasing quality of solutions as more
computation time is expended. The framework allows users to
select on the fly when to retrieve a result during runtime. Exten-
sive evaluation results on classification tasks demonstrate that our
proposed architecture provides adaptive control of classification
solution quality according to the available computation time.

Index Terms—cyber-physical system, time-quality tradeoff,
time-critical system, adaptive neural network, machine learning

I. INTRODUCTION

Time-critical computing systems are often constrained by
the state of the dynamic physical environment in which they
operate. Moreover, in safety-critical systems such as automotive,
avionic, or medical systems, software components interact in a
carefully controlled way, therefore determinism and predictabil-
ity are important requirements [1, 2]. In contrast, modern
statistical machine learning is by nature non-deterministic.
For certain machine learning tasks, data processing cannot
be guaranteed to be complete within strict time limits.

This divergence has hindered learning modules from being
exploited and incorporated in such time-critical systems, while
time-critical computing systems are expected to evolve by
gaining intelligence so as to become more autonomous [3].
The gap widens, especially, when large numbers of internal
parameters cause the learning modules to impose a heavy
computational burden in obtaining sufficiently high-quality
results. In this paper, we address the gap by proposing
an architectural framework for a computationally flexible
learning network. Hence, as a system, the constituent learning
components can be exploited in a more adaptive manner:
instead of enforcing strict or predefined requirements for time
and quality of results, we grant the user full control over the
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time-quality trade-off on the fly at runtime. For example, in
some contexts, the user might prefer to live with 70% of the
ideal quality (which was assumed to be potentially achievable),
if doing so saves 50% of the execution cost.

Neural networks typically have very complex internal
structures, making them difficult to analyze, and making the
process of deriving early predictions practically impossible. Our
proposed framework, AnytimeNet, breaks down this complexity
into smaller transactions, so as to facilitate modularity in ob-
taining intermediate results and to support adaptive timeliness.
AnytimeNet iteratively accumulates layers on top of the network
of the previous iteration. The process provides the option of
obtaining more refined results at later iterations.

Our proposed architecture, AnytimeNet, is built over itera-
tions. At each iteration, AnytimeNet adds new blocks and can
“cache” most of the previously-executed blocks. Through this
iterative constructing/caching process, AnytimeNet achieves
monotonically increasing quality of results and saves a sub-
stantial execution expense. At the end of every iteration, a new
result is generated so the user can take the current and best-to-
date result in quality. As reported in [4, 5], the performance
gains achieved by ResNet are not solely due to network depth
but rather by a combination of multiple networks or a gradual
refinement of features from block to block. Those insights are
formalized into our iterative architecture and training procedure.

Using well-known image classification benchmark data sets,
we show how our framework achieves results efficiently in
comparison with a baseline alternative. We also demonstrate the
use of a confidence metric that can serve as an early indicator
of the likely solution accuracy and the potential gains from
further processing. The experiments show that our framework
yields monotonically improving solutions, while providing the
capability of retrieving intermediate results on the fly.

II. ANYTIMENET

A. Base Architecture

The base architecture is a simplified version of a modern
ResNet architecture [6], named BaseResNet. ResNets are deep
convolutional networks [6, 7] employing residual connections -
letting h; represent hidden layer ¢ and F' be a transformation,

hit1 = h; + FO(h)) (1)
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Fig. 1: Overall view of feed forward version of BaseResNet.
Same-color boxes represent a matching feature size section
except for IN and OUT.

Each residual block F(*) is primarily characterized through
the specification (m x m kernel size and number of filters k)
of its convolution operation. When we wish to emphasize this
distinction, we include the additional notation, an)xmk The
layer configuration of a single block F'¥) is shown in Fig. 1.

As shown in Fig. 1, a feed forward version of BaseResNet
contains 3 different feature size sections, rather than 4 (or
more). As a result, it is architecturally smaller and simpler
(the final layer consists of 64 filters) than modern ResNet
architectures. Having said that, the techniques discussed in
the following section are generalizable and still apply to any
ResNet architecture. BaseResNet uses the full pre-activation
schema developed in [8]. There is a specialized input block
IN responsible for transforming an image into the appropriate
feature space, and a specialized output block OUT responsible
for transforming the features into an appropriate classification.
Given an input image x and corresponding output classification
o, we can use the notation developed above to formalize a full
pass through BaseResNet:

0= OUT(QFS) (IN(a:))) )
i=0
where Ff)(a:) = F®)(z) + = encapsulates the entire (layer
operations and identity connection) residual operation and the
large O represents repeated function composition. Note that
the special cases F(®) and F(9) (in Fig. 1 where the dimensions
change) are slightly different than the other F'(*), as they must
increase the dimensions of the input connection. Hence, in those

layers, the input is zero-padded before the addition operation.

B. Constructing AnytimeNet

The performance gains achieved by ResNet are not solely
due to network depth. Indeed, the authors in [4] stated that an
ensemble effect (i.e., the ResNet behaves as a combination of
multiple smaller networks rather than one large network) is
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Fig. 2: AnytimeNet: iterative construction with BaseResNet
blocks. Same-color boxes represent a matching feature size
section except for IN and OUT. (The superscript of F' only
matters with respect to the current iteration.)

primarily responsible for ResNet’s performance. More recently,
[5] showed that the performance may also partially be due to
progressive feature refinement, or the tendency of the network
to gradually refine features from block to block.

We formalize this insight into our training procedure by
constructing the architecture in an iterative manner. We
conceptualize the feed forward version as being composed of
number of blocks plus an input and output block. We iteratively
build AnytimeNet from these blocks, as shown in Fig. 2, by
adding additional blocks at each iteration.

In detail, an iteration is formed by obtaining a(n intermediate)
result from an OUT block as shown in Fig. 2. The first iteration
starts with one block from each section. We must have at least
one block from each section initially, in order to transform the
input to the appropriate dimensionality for the output block.
The minimal first iteration therefore consists of one block from
each section, and an input and output block. At each iteration
and for each feature size section, some number of blocks are
newly inserted above the previously transacted blocks in the
same section (dotted grey-outlined). The model can be used in
an anytime fashion by executing each iteration consecutively.
Although certain blocks need to be re-executed, significant time
savings can be incurred by caching the results of previously
executed blocks. The transparent boxes (dotted gray-outlined)
in Fig. 2 represent blocks that are not executed for the current
iteration. As a result, only the black-outlined boxes expend
execution time at each iteration. Note that, even if a block needs
to be executed for the current iteration, if it has been executed
in past iteration(s), its parameters do not need to be derived
again. That is, its parameters are shared iteration to iteration.
Only the newly introduced blocks use new parameters.



AnytimeNet iteratively provides results iteration to iteration.
Hence, as computation progresses, when a new (intermediate)
result is generated, the current prediction value is posted and
updated. That is, whenever a user accesses a result, it can take
the up-to-date and optimal level of quality.

Aside from the main architectural conception of AnytimeNet,
the process of iterative construction (number of blocks to add
and how many times to add them) must also be considered.
These choices affect the total number of iterations the network
is capable of, and also determine the amount of overhead
(repeated blocks) necessary during computation. We fix a single
iteration scheme, specified in Sec. III, as a full investigation of
potential iteration schemes is outside the scope of this paper.
We also note that one could elect to not share parameters across
repeated execution blocks (e.g., the OUT layers). Preliminary
experiments with non-shared output blocks did not show any
performance improvement, so we elected to use the simpler
model with shared repeated blocks. The shared parameter
scheme also makes the comparison between AnytimeNet and
BaseResNet more straightforward, as both models then share
the same number of parameters, resulting in a more equitable
experimental evaluation.

C. Training and Loss Function

The loss at each iteration, L;, is the cross-entropy loss of
predicted label against the ground truth label. Then, we define
the total loss L as follows:

L=Y f(nj)-L 3)
i=j

where f is a function of n (total number of iterations) and j
(each iteration) that determines the weights for each L;. In
particular, by using f(n,j) = 1/(n —j + 1)? as the weight
scheme, we have the following total loss:

L= —4
2 G

Connecting each iteration with the loss layer promotes gradient
flow throughout the entirety of the network. The losses from
earlier iterations are weighted less than the final iteration, in
order to promote optimal final performance. We investigated
several different weighting schemes and empirically found
the one above provides the best balance between overall
performance of each iteration, and performance of the final
iteration. We find that the precise weighting scheme chosen has
the following impacts: too much weight on earlier iterations
results in an underperforming final iteration, while very low
weights on earlier iterations results in an iterative model where
the earlier iterations provide little value.

“4)

III. EXPERIMENT
A. Experimental Setup

1) Data Sets:

e CIFAR-10: The CIFAR-10 [9] consists of 60,000 32 x 32
color images - 50,000 training and 10,000 testing images.
The images cover 10 classes.

o« GTSRB: The GTSRB (German Traffic Sign Recognition
Benchmark Dataset) [10] contains 39,209 training and 12,630
testing images, covering 43 classes of traffic signs.

e SFCARS: The SFCARS (Stanford Cars) [11] is divided into
8,144 training and 8,041 testing images. The images are
classified into one of 196 classes at the level of make, model,
and year. We use the provided bounding boxes to tightly
crop the images around the car data, and we resize each
image to 48 x 48.

All datasets with bounding boxes are centered/cropped appro-
priately, and pixel-values are normalized between [0, 1].
2) Implementations:

o« ANYTIMENET: For experiments of our proposed ANY-
TIMENET, we run 7 iterations. The first iteration starts with
one block from each section. And then as the iterations
proceed, 4 more blocks in the first section are stacked and
then 3 more. This same process is applied to all sections,
consecutively. The final iteration ends with 24 inner blocks
and an IN and OUT block. The block count in each section,
and the iteration count are all design parameters.

« BASELINE: As a counterpart to compare with, we imple-
mented BASELINE which is a non-iterative single feed
forward BaseResNet (Fig. 1). For comparison purposes, it
contains 24 inner blocks and an IN and OUT block, archi-
tecturally equivalent to the final iteration of ANYTIMENET.

3) Performance Metrics and Time Measurement: While we
define accuracy as the number of correctly classified test images
over the total numbers, for confidence we use the outputs of the
final softmax layer as an approximation for model prediction
confidence. Let S(x) represent the model’s softmax output of
the correct label for an input image x. Then confidence overall
is measured as:

>, Sx)

xCtest images
#{test images}

We use the softmax output as a proxy for confidence, though
we acknowledge the caveats with treating the softmax output
layer as a sensible probability distribution. Bayesian methods
for achieving principled uncertainty estimates are superior, but
require more overhead and are outside the scope of this paper.

We measure the execution time of each iteration, caching the
outputs of previous blocks to save time as described in Fig. 2.
Training was done on both an NVIDIA Quadro P6000 and
Tesla P100. All (inference) time evaluations were performed
on the NVIDIA Quadro P6000 (Intel(R) Xeon(R) CPU E5-
2687W, 12 cores, 3.00 GHz CPU frequency, and 64 GB of
main memory) to preserve consistency of results.

4) Hyperparameters: We use the following training parame-
ters for all datasets, and for both ANYTIMENET and BASELINE:

o Number of epochs: 200 epochs for each network.

o Learning rate and decay: We initialize training with a
learning rate of 0.1 After 100 epochs, we decrease the
learning rate by a factor of 10. After another 50 epochs,
we again decrease the learning rate by a factor of 10.

« Batch norm, c: We set ¢ = 0.001.
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Fig. 3: Accuracy and confidence across the three datasets. For ANYTIMENET, the data points represent results from the first
to last iteration in order from left to right. The x-axis is cumulative time it takes to run through the entire test set. (Because
accuracy, confidence, and computation time vary across the three datasets, the axes ranges are not aligned.)

Since it is not our goal to create an optimal network, we do
not do rigorous performance tuning of the hyperparameters.

B. Experimental Results

1) ANYTIMENET and Performance Enhancement: In Fig. 3,
one point represents a result from each iteration — from
the first iteration to the last from left to right. BASELINE
provides one graph point. The x-axis shows ANYTIMENET’s
per-iteration cumulative time to run the entire test set (no
distinction in BASELINE). First, it should be noticed that most
of the intermediate results of ANYTIMENET are obtained before
BASELINE can provide a result. In addition, we can see that
the quality of results are monotonically improving in accuracy
and confidence as time proceeds.

Also significant is that ANYTIMENET exceeds BASELINE’S
performance by the final iteration on all three datasets. Although
the primary purpose of developing ANYTIMENET is to obtain
quick and ballpark intermediate results, the fact that in most
cases ANYTIMENET eventually outperforms BASELINE also
suggests a direction on how to architect and train a high-

performing ResNet. This stems from directly connecting earlier
blocks to the loss layer (refer to (3)), incorporating the iterative
refinement of features directly into the training procedure.

Aside from the main results, the shape of the “steps” depends
on how many or in which feature section blocks are added.
For the first iteration, there is one block of each type. For
subsequent iterations, we consecutively fill out each section
(starting from the bottom and moving upward) by adding 4
blocks and then 3 blocks. This results in a total of 7 iterations
to build an 8 block ANYTIMENET.

2) Correlation between Accuracy and Confidence: Unlike
the training stage, during the inference (runtime) there is no
reference to compare with the currently obtained result. Fig. 3
(comparing Fig. 3(a) & 3(b), 3(d) & 3(e), and 3(g) & 3(h))
shows how confidence - as an indirect observable indicator of
accuracy during inference - align with accuracy.

In Fig. 4, we visualize the average per-class confidence
and accuracy. Each dot represents the average confidence and
accuracy value for a single class. As the model progresses
through iterations, the distribution of classes shifts upwards,
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Fig. 4: Correlation of confidence and accuracy in results of ANYTIMENET. Accuracy and confidence are averaged per class.

indicating an improvement both in accuracy and confidence.
Moreover, the overall relationship between confidence and
accuracy is linear, further indicating that confidence can be a
potential proxy for output quality during runtime.

3) Overhead of Re-executed Blocks: As Fig. 2 presents,
unlike BASELINE, ANYTIMENET expends time repeating
certain calculations — the OUT block is repeated with each
iteration, along with several blocks in the second and third
sections. Because first section blocks are never repeated and
those expend the most computational energy, the total overhead
is relatively low, but there is “no free lunch”, so to speak.
Enabling the capacity for early iterations necessarily adds
some repeated blocks, resulting in increased computation
time. We found that the scheme we chose minimized this
overhead without negatively impacting ultimate classification
performance. Table I shows the total number of blocks executed
by (i.e., up to and including) each iteration. In practice,
ANYTIMENET expends roughly the same amount of time as
BASELINE by iteration 5. From the dataset information and time
measurements from Table I, we can provide Table II, showing
the average block computational cost per iteration. We can see
that the average cost decreases as the iterations progress. This
is because of the asymmetrical nature of the added blocks, i.e.,
a block from the 1st section is more expensive than one from
the 3rd section, and one from the 2nd section is in between.
Additionally, in ANYTIMENET, more low-overhead blocks

(e.g., OUT) are re-executed than in BASELINE.

4) Comparison Depending on Datasets: Both the overall per-
formance and the performance of ANYTIMENET vs. BASELINE
differs on each of the three datasets. The overall performance
(of both networks) is best on GTSRB, second best on CIFAR-
10, and worst on SFCARS. The reasons for these overall
performance differences are twofold:

1) Amount of training data: The datasets have widely
differing amounts of training data per class. On average,
CIFAR-10 contains 5,000 training images per class, GT-
SRB contains about 911 training images per class, and
SFCARS contains about 41 training images per class. That
is, SFCARS is trained with fewer samples but needs to
classify the images more precisely, and CIFAR-10 is vice
versa and GTSRB is in between.

2) Task complexity: We can see that CIFAR-10 has a
higher number of training data per class than GTSRB,
yet the model performs better on the GTSRB dataset.
Indeed, the GTSRB task is easier — the objects being
classified are largely presented in a front-facing manner,
whereas in CIFAR-10, we must learn to recognize multiple
representative angles for each of the given classes. Likewise,
the objects in GTSRB are always centered within the image,
while for CIFAR-10 images the object to be classified may
be relatively small or off-center.

Likewise, there are differences between relative performance



of ANYTIMENET and BASELINE with respect to the same
dataset. In general, the final iteration of ANYTIMENET exceeds
the accuracy of BASELINE by a small amount on each
of the datasets. The exception to this is SFCARS, where
ANYTIMENET far exceeds the performance of BASELINE.
We suspect that the unusually low amount of training data per
class accounts for the highly variable performance.

IV. RELATED WORK

Developed in [6], residual learning was proposed as a means
of effectively training very deep neural networks. ResNets
have provided state of the art performance on many image-
processing tasks. Initially, the performance was assumed to be
a result of the depth of ResNet — previously, very deep neural
networks were difficult to train, and the ResNet architecture
was able to circumvent some of these training issues. However,
later work [4, 5, 12] uncovered that ResNet performance can be
partially attributed to the network behaving like an ensemble of
shallower networks, and the network’s tendency to iteratively
refine features. Due to the modularity of ResNets, blocks can
be dropped without totally destroying the model’s performance.
This attribute is used in [13] to speed up ResNet computation,
pruning blocks that contribute less to prediction accuracy.

Attention [14, 15] provides a way for a discriminative model
to focus on parts of an input image that are most important to
the final classification. While related to our goals, attention falls
short of solving the problem of granular visual understanding.
Conceptually, attention should decrease computational costs,
as the network now has some way of telling which portions
of the input data are most important to the given task. But
implementing an attention mechanism involves introducing
many more trainable parameters, resulting in longer execution
times. Because our focus is on anytime behavior, a way to
produce ballpark estimates without the overhead of many
additional parameters is preferred.

In multiple papers including [16, 17], the concept of neural
networks with early exits has been explored. However, these
early-exit strategies were developed with the goal of improving
computational efficiency by skipping layers automatically if
the result exceeds certain confidence thresholds during the

TABLE I: Cumulative block count executed by each iteration.

| IN SEC1 SEC2 SEC3 OUT | Total
Iteration 1 1 1 1 1 1 5
Iteration 2 1 5 2 2 2 12
Iteration 3 1 8 3 3 3 18
Iteration 4 1 8 7 4 4 24
Iteration 5 1 8 10 5 5 29
Iteration 6 1 8 10 9 6 34
Tteration 7 1 8 10 12 7 38

TABLE II: Per-block avg time taken per iteration (in sec.)

‘ CIFAR-10 GTSRB  SFCARS
Avg. for all iterations ‘ 0.063 0.153 0.098
BASELINE | 0.084 0.212 0.123

computation. They do not provide user-control of the tradeoff.
These strategies can save computation resources to some extent
in predefined conditions, whereas our proposed framework
grants a user full control over preferred result quality, which
may change depending on the problem domain.

V. CONCLUSION

In this work, we proposed a new architectural framework
that can be generalized in a number of DNN architectures. The
primary aim lies in granting users control over the time-quality
trade-offs, allowing them to employ adaptive timeliness for
their contexts and resource limitations. The experimental results
with different datasets exhibit that the proposed framework can
provide monotonically increasing quality of results, providing
several predictions before a non-iterative counterpart model did,
and ultimately exceeding such a model by the final iteration. In
addition, the results demonstrate that confidence is a potential
indicator of accuracy. Promising areas for future work include
further exploring the potential benefits of using non-shared
parameters across repeated execution blocks.
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