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Abstract—Learning techniques are advancing the utility and
capability of modern embedded systems. However, the challenge
of incorporating learning modules into embedded systems is that
computing resources are scarce. For such a resource-constrained
environment, we have developed a framework for learning
abstract information early and learning more concretely as time
allows. The intermediate results can be utilized to prepare for
early decisions/actions as needed. To apply this framework to a
classification task, the datasets are categorized in an abstraction
hierarchy. Then the framework classifies intermediate labels from
the most abstract level to the most concrete. Our proposed
method outperforms the existing approaches and reference base-
lines in terms of accuracy. We show our framework with different
architectures and on various benchmark datasets CIFAR-10,
CIFAR-100, and GTSRB. We measure prediction times on GPU-
equipped embedded computing platforms as well.

Index Terms—adaptive concreteness, resource-constrained sys-
tem, cyber-physical system, adaptive neural network

I. INTRODUCTION

Learning techniques have been advancing in many areas
and contexts of modern computing, and embedded systems
are no exception. The challenge of incorporating a learning
module into an embedded system is that resources, such as
size, power, time, memory, etc., are not abundant, unlike in
general purpose systems. However, in the literature of learning
techniques, such a resource-constrained operating environment
has not received much attention. With this motivation in mind,
we propose a framework that enables a classification module
to obtain information at different abstraction levels given a
constrained resource, in particular, time.

To take a well-studied case, a classifier system takes input
and determines which of several classes most likely correspond
to the given input. In the real-time embedded context, such a
system can provide benefit by obtaining an abstracted result
quickly and continuing to work toward computing a final
answer as long as time permits. For example, as shown in
Fig. 1, recognizing a category that contains a “stop” sign (i.e.,
urgent signs) is more time-critical than one containing “speed
limit” signs. This is because a stop sign requires early action
in a timely manner.

To support this functionality, the input data can be hierar-
chically categorized like the example shown in Fig. 2. In fact,
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CNN-based architectures or ResNet-based architectures (which
also include multiple convolutional layers, [1]) are hierarchical,
in that lower-level features are extracted first, and higher-level
features are obtained later. Therefore, such models can naturally
be adapted to the problem of hierarchical classification.

The proposed architectural framework not only realizes this
functionality, but also enhances overall classification accuracy.
The schematic description in Fig. 3 shows our framework,
which enables multi-level classification. The key idea is the
introduction of “Classification Feature Feedback” (CFF) which
feeds back each level’s classification feature to the main
flow. This functionality enables a later-level classification to
build on the previous classification knowledge. In addition,
the knowledge from the intermediate classifications is also
incorporated into losses - the local losses are aggregated with
different weights into the global loss.

With CNN and ResNet architectures, we show that the
proposed framework consistently improves the overall accuracy
performance across multiple datasets. We also measure predic-
tion times on GPU-equipped embedded computing platforms
and demonstrate the feasibility and practicality of ABC.

II. NETWORK ARCHITECTURE FOR ABSTRACT PREDICTION
BEFORE CONCRETENESS (ABC)

To facilitate the production of intermediate classifications, we
categorize the input data in an abstraction hierarchy as shown
in Fig. 2. The network provides abstract (coarser) classifications
earlier before producing the final concrete classification, as
the framework’s name suggests, ABC (Abstract prediction
Before Concreteness). Hence, as shown in Fig. 3, each level
produces input refinements that are fed into the ongoing feed-
forwarding process. The total number of classification levels
in the hierarchy corresponds to the number of levels in the
hierarchy of the target dataset.

Any layered neural network architecture can implement
the ABC architectural skeleton and provide hierarchical
classification results. In this paper, we study two architectures
that implement ABC; one uses basic CNN components (for a
shallower neural network) and the other uses ResNet blocks
(for a deeper neural network). Although both architectures
are convolutional neural networks sharing many similarities,
we also consider a ResNet-based architecture because of their
current prominence in the literature and frequent usage in
image-processing applications.



Fig. 1: Conceptual overview of hierarchical classification task.

Fig. 2: Example abstraction hierarchy.

A. Classification Feature Feedback (CFF)

One of the contributions of our framework is Classification
Feature Feedback (CFF) which reincorporates the previous clas-
sification features to the remainder of the network, represented
as red flows in Fig. 3. CFF enables a later level classification to
build on top of the previous classification knowledge. Formally,
let H1, H2, · · · , Hi be transformations of the layers on the
branch for a classification level, and let H = Hi◦Hi−1◦· · ·◦H1.
Afterwards, CFF forwards x+H(x) to the next level rather
than just x. Effectively, CFF forms something similar to the
“shortcut connection” used in ResNet [1]. Reincorporating each
level’s classification features, H(x), enhances the performance
significantly. Although there exists CNN-based architectures
for hierarchical classification [2, 3, 4], they do not incorporate
intermediate classification features into the next levels as our
ABC does. Through experiments, we compare the performance
of both architectures, with and without CFF, and show that CFF
consistently improves performance of the final classification.

B. Loss Protocols

The loss function L for ABC models consists of a weighted
sum of the component losses,

L =
N∑

n=1

WnLn, (1)

where each Ln is the corresponding loss at classification level
n, and Wn is the corresponding weight. The precise structure
of each Ln is general, but for the purposes of our experiments,
we use the standard categorical cross-entropy loss.

Essential to final model performance is the weighting
schedule – how do we choose each Wn, and how do we
vary the the weights across the training procedure? A full
exploration of such questions is outside the scope of this paper,
but in attempting to empirically determine a fair schedule,

Fig. 3: Overview of the proposed framework.

we noted that static weighting schemes (e.g., letting a be
a constant, setting Wn = a for all n) produced universally
poor performance across models. More details are presented
in Sec. III-A.

C. Case Study 1: CNN-based architecture

The first implementation is a generic CNN-structure, show-
casing the generalizability of the ABC framework. The
overview of the CNN architecture is described in Fig. 4(a). The
skeleton of our CNN network is a slightly-modified version of
the network presented in [3, 5]. The main part of the network
consists of repeated convolution and batch normalization layers,
and the exit branches are comprised of densely-connected
layers followed by batch normalization and dropout as shown
in Fig. 4(a). The convolutions in the network begin with a
feature size of 64, and double a total of 3 times, resulting in a
feature size of 512 in the final convolution layers. The final
convolution is then flattened and passed over to a dense block



(a) CNN-based architecture. (b) ResNet-based architecture.
Fig. 4: Architecture overviews

consisting of three dense layers, two of which are dimension
1024, and the final dense layer has dimension equal to the
number of fine prediction classes.

The early exit branches have a similar structure to the final
dense block described above: three dense layers, the last of
which has dimension equal to the number of (early) classes. To
implement CFF, we perform dimensionality expansion on the
dropout layer preceding the branch’s final densely-connected
layer, and add the resulting tensor to the input of the following
convolution layer.

D. Case Study 2: ResNet-based architecture

The base architecture of our second implementation instance
is an 18-layer ResNet architecture as described in [1]. ResNets
are deep convolutional networks [1, 6] employing residual
connections, i.e., letting hi represent hidden layer i and F
represent a transformation function,

hi+1 = hi + F (hi) (2)

Each residual block F is primarily characterized through
the specification (m × m kernel size and number of filters
k) of its convolution operation. The layer configuration of
a single ResNet block can be found in Fig. 4(b) which is
ReLU→BatchNorm→Conv→ReLU→BatchNorm→Conv.

As noted earlier, our framework reincorporates the infor-
mation derived from the previous classification. The structure
of the early exit branches mirrors that of the ResNet itself,
consisting of a ResNet block, followed by an exit block
consisting of BatchNorm→ReLU→Global Pooling→Dense.
Similar to the CNN network, we reincorporate the classification
features back into the feed-forward portion of the network by
summing them with the input to the next block (see the red
arrows in Fig. 4(b)).

III. EXPERIMENTS

In this section, we examine the performance of the CNN
and ResNet models using the proposed ABC framework. We
examine both accuracy and timing metrics.

A. Evaluation Setup

All of the models presented in this section are trained on the
NVIDIA Quadro P6000 (Intel(R) Xeon(R) CPU E5-2687W, 12
cores, 3.00 GHz CPU frequency, and 64 GB of main memory).

1) Data Sets: We evaluate our models over three datasets:
• CIFAR-10: The original CIFAR-10 [7] dataset consists

of 60,000 32 × 32 color images, divided into a training
set of 50,000 images and a test set of 10,000 images. The
images are classified according to one of ten classes. We
created a hierarchical structure as in [3], creating a top-level
distinction between “TRANSPORT” and “ANIMAL” images,
and a secondary level classification problem consisting of
7 classes (SKY, WATER and ROAD for TRANSPORT, and
BIRD, REPTILE, PET and MEDIUM-SIZED for ANIMAL). The
concrete level classes correspond to the original classes.

TABLE I: CIFAR-100 class mapping

Metaclass CIFAR-100 Superclasses

AQUATIC ANIMALS AQUATIC MAMMALS, FISH
PLANTS FLOWERS, FRUITS AND VEGETABLES, TREES

HOUSEHOLD ITEMS FOOD CONTAINERS, HOUSEHOLD FURNITURE,
HOUSEHOLD ELECTRICAL DEVICES

INVERTEBRATES INSECTS, NON-INSECT INVERTEBRATES
ANIMALS LARGE OMNIVORES AND HERBIVORES,

REPTILES, MEDIUM-SIZED MAMMALS,
SMALL-SIZED MAMMALS, LARGE CARNIVORES

OUTDOOR OBJECTS LARGE MAN-MADE OUTDOOR THINGS,
LARGE NATURAL OUTDOOR THINGS

PEOPLE PEOPLE
VEHICLES VEHICLES 1, VEHICLES 2



TABLE II: Weight schedule for both architectures

Epoch W1 W2 W3

0 0.98 0.01 0.01
10 0.1 0.8 0.1
20 0.1 0.2 0.7
30 0.05 0.15 0.85

• CIFAR-100: The CIFAR-100 [7] dataset consists of 60,000
32× 32 color images, divided into a training set of 50,000
images and a test set of 10,000 images. The images are
classified as one of 100 classes. In addition to the 100
classes, a coarse set of labels is provided that groups the
100 original classes into a set of 20 metaclasses. We provide
one additional coarse layer that groups the 20 coarse classes
into 8 classes. We specify this mapping of coarse labels to
“extra coarse” labels in Table I.

• GTSRB: The GTSRB [8] dataset consists of a pre-divided
training and test dataset, covering 43 classes of traffic signs.
The training and test datasets contain 39,209 and 12,630
images, respectively. For a hierarchical structure, the 43
classes are abstracted into 6 higher classes (SPEED LIMIT,
OTHER PROHIBITORY, DERESTRICTION, MANDATORY, DAN-
GER, and UNIQUE (PRIORITY) SIGNS), and then we again
abstracted the 6 classes into 2 metaclasses for a higher level.
We perform simple data pre-processing, subtracting the mean

training image from the training and test set, and scaling the
pixel-values between [−1, 1]. We augmented the training data
by randomly shifting images vertically and horizontally (by a
factor of 0.1 of the total height/width) and performing random
horizontal flips.

B. CNN-based Architecture

1) Approaches, implementations, hyperparameters: We use
the following three architectures for our analysis:

• FCBASE (FlatCNNBase): As a reference architecture to
compare with, we implemented FLATBASE which is a
non-hierarchical, feed-forward CNN-based architecture.
It contains eight convolutional layers and three densely
connected layers.

• HCBASE (HierarchicalCNNBase): Based on the FCBASE
architecture, with the addition of two early prediction
branches. Equivalent to the architecture in Fig. 4(a),
without the red CFF connections.

• HCOURS (HierarchicalCNNOurs): The architecture pro-
posed in this paper. At each of the two intermediate levels,
classification features are fed back to the feed-forward
flow. This approach implements CFF – please refer to
Fig. 4(a) for details.

We use stochastic gradient descent with momentum µ = 0.9
to train all of our models. The weight schedules for each dataset
are given in Table II, and the learning rate decay schedules
are given in Table III.

2) Performance: The results are shown for each of the three
datasets. Across datasets, the consistent pattern that we need
to notice is that our proposed HCOURS clearly outperforms
HCBASE by the final-level classification. The impact of CFF

TABLE III: Learning rate schedule

CNN ResNet

Epoch Learning rate Epoch Learning rate

CIFAR-10
0 0.003 0 0.003
40 0.0005 60 0.0005
50 0.0001 80 0.0001

0 0.001 0 0.01
CIFAR-100 / 55 0.0002 60 0.001

GTSRB 70 0.00005 80 0.0001

TABLE IV: Test accuracy in CNN-based architectures.

Level 1 Level 2 Level 3
(abstract) (concrete)

CIFAR-10
FCBASE – – 82.60 %
HCBASE 95.48 % 87.13 % 83.54 %
HCOURS 96.03 % 86.76 % 84.38 %

CIFAR-100
FCBASE – – 50.26 %
HCBASE 68.67 % 60.45 % 55.55 %
HCOURS 69.09% 58.37 % 56.43 %

GTSRB
FCBASE – – 93.97 %
HCBASE 99.24 % 99.17 % 95.03 %
HCOURS 99.30 % 99.53 % 97.24 %

itself is more directly shown by comparing HCBASE and
HCOURS. We attribute this to the impact of CFF which keeps
feeding intermediate classification features to the final level.

This suggests that given a hierarchical dataset and a goal of
accuracy in the final prediction (i.e., the user exclusively cares
about the final prediction), then the CFF architecture should be
chosen without reservation. Even if the classification target is
concerned with intermediate classifications, the CFF architec-
ture, HCOURS, is still superior for the final accuracy. Although
the accuracies for GTSRB are already high enough, our CFF
architecture still shows consistent performance improvement
for the final accuracy.

However, we find that the earlier predictions are sensitive
to the loss weight schedule. Indeed, an early weight schedule
we used set W0 = W1 = 0 and W2 = 1, meaning only the
final prediction contributed to the loss by the end of training.
This had a minor negative impact on the early branches of
HCBASE, but a significantly negative impact on the early
branches of HCOurs. Adequate time must be spent tuning
those hyperparameters to ensure competitive performance of
the early branches of HCOurs.

One other pattern is that for any hierarchical architec-
ture/dataset, result accuracy is better in abstract classification
than in concrete classification. This is intuitive, since for
abstract classification a datapoint falls into one of a smaller
number of cases than in the concrete case, creating a proba-
bilistically easier problem.

3) Timing: We performed timing measurements for our
proposed method as well as the other baseline architectures
on NVIDIA Jetson TX2 [9], an embedded computing device
targeting mainly for mobile robot applications such as the
miniaturized self-driving car shown in Fig. 1. It features a 256-
core NVIDIA Pascal GPU (1.3 tera operations per second),
which we configured to operate at the maximum frequency.
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Fig. 5: Average prediction times for different classification levels of CIFAR-10 class in CNN (left) and ResNet (right) architectures
on NVIDIA Jetson TX2 (top) and Nano (bottom). Notice the different time scales (i.e., x-axis) of the plots.

We measured the times that each architecture takes to output
the predicted class at each level (Levels 1, 2, and 3), as shown
in Fig. 5(a), using the 10,000 test images of CIFAR-10. Recall
that FCBASE outputs only the final-level class.

The hierarchical architecture (HCOURS and HCBASE) can
make (highly accurate) predictions on Levels 1 and 2 within
10 ms on average, during which the non-hierarchical FCBASE
cannot output any result. This demonstrates the capability of
ABC to enable intermediate prediction. We also observe that
the difference between HCBASE and HCOURS is negligible,
indicating that our method does not incur temporal overhead
compared to the baseline. We performed the same experiments
on NVIDIA Jetson Nano [10], a lower-end device than TX2,
and observed the same trends (except 2–3 times of increase
in prediction times due to the less-powerful GPU of Nano) as
shown in Fig. 5(c).

C. ResNet-based Architecture

1) Approaches, implementations, hyperparameters: Below
are the models used for our ResNet-based implementation:

• FRBASE (FlatResNetBase): As a reference to compare
with, we implemented FRBASE which is a non-hierarchical
feed-forward ResNet-based architecture. It is a ResNet-18,
containing 17 convolutional layers and 1 dense layer.

• HRBASE (HierarchicalResNetBase): Based on the FRBASE
architecture, with the addition of two early prediction
branches. Equivalent to the architecture in Fig. 4(b), without
the CFF connections.

• HROURS (HierarchicalResNetOurs): The architecture pro-
posed in this paper which implements CFF. That is, at each
of the two intermediate levels, classification features are fed
back to the feed-forward flow. Please refer to Fig. 4(b).

The weight schedule is the same as given in Table II, and
the learning rate schedule is given in table III.

TABLE V: Test accuracy in ResNet-based architectures.

Level 1 Level 2 Level 3
(abstract) (concrete)

CIFAR-10
FRBASE – – 85.83 %
HRBASE 95.08 % 86.98 % 86.08 %
HROURS 95.24 % 87.01 % 86.45 %

CIFAR-100
FRBASE – – 60.21 %
HRBASE 78.71 % 72.77% 61.88 %
HROURS 75.81 % 71.23% 62.94 %

GTSRB
FRBASE – – 94.12 %
HRBASE 99.60 % 99.55 % 94.40 %
HROURS 99.51 % 99.60 % 95.53 %

2) Performance: The performance of the ResNet variants is
shown in Table V. Although learning rate schedules differ from
the CNN case, consistent results and trends are again found in
ResNet architectures. Similar to the CNN case, we compare
three architectures, a non-hierarchical baseline, FRBASE, a
hierarchical baseline, HRBASE, and our hierarchical network,
HROURS. Across all datasets, HROURS with CFF connections
consistently outperforms the other architectures by the final-
level classification. As we noted in the CNN case, in the
final level accuracy the gap between HRBASE and HROURS
shows the impact of CFF connections. We also find that abstract
classification shows better performance than concrete one, since
abstract classification deals with an easier problem.

3) Timing: As done in Section III-B3, we performed timing
measurements with the ResNet implementation. The results
presented in Fig. 5(b) highlight further the merit of the
hierarchical approaches; both HRBASE and HROURS take
only about 13% longer than FRBASE to predict the first-level
class while the first and second level classes can be obtained
after spending only 15% and 26%, respectively, of the entire
execution time. Performing the same experiments on Jetson
Nano (shown in Fig. 5(d)) lowered these numbers to 10%
and 17%, respectively, which highlights the benefit of the



intermediate classification capability that ABC provides.

IV. RELATED WORK

For hierarchical classification, previous work has focused on
how to generate a hierarchy (i.e., hierarchical categories) for a
dataset through some learning mechanism [4, 11, 12], or on
how to enhance performance, but has not addressed exploiting
intermediate results [2, 3]. In a hierarchical dataset’s label
tree, each non-leaf node has a corresponding separate network
in [13]. Although intuitive, this may not scale well since the
model must have the same number of individual classifiers as
the number of non-leaf nodes.

The ResNet (residual net) architecture, characterized by
skip connections/identity mappings, was introduced in [1]
and was a breakthrough in deep learning. Since then, many
variants and optimizations have been explored in the literature
including [14, 15]. A further branch of work explores ResNet’s
mechanism of action – one school of thought claims the
performance of ResNet is largely due to its tendency to
behave like an ensemble of shallower networks [16, 17], while
others claim ResNet’s performance is due to its tendency
to iteratively refine features [18]. Thanks to the modularity
of ResNets, ResNet building blocks can be dropped/shuffled
without significantly impacting the network’s performance [19].
Aside from performance enhancements, the tendency of ResNet
to iteratively improve features makes it ideal for obtaining
intermediate results.

The idea of neural networks with early exits has been
explored in the literature including [20, 21]. Most of these
early-exit approaches skip layers automatically if the result
are under certain confidence thresholds midway through the
computation, just in order to enhance computational efficiency,.
This kind of architectures are well-suited to domains having
restrictions on computational costs during inference, allowing
the user to exit earlier with a coarse-grained prediction, or
expend more time and computational power to retrieve a finer-
grained prediction.

Attention methods [22, 23] first focuses on portions of
input data that are most significant to the final classification
result. Their applications are found in the literature such as
[24, 25]. However„ attention falls short of solving the problem
of hierarchical prediction, and implementing an attention
mechanism takes many more parameters that need to be trained
and increases the computational effort.

V. CONCLUSION

In this paper, we propose an architectural framework
that provides abstract classification information quickly and
provides concrete results later as time allows. Classification
feature feedback improves performance in hierarchical neural
networks. In addition, we explored weighting schemes for
losses from intermediate classifications for overall performance
enhancement. Finally, our experiments demonstrate the benefit
of ABC in providing coarse but valid information far ahead
of when a non-hierarchical baseline does. Finding an optimal

weighting scheme for intermediate losses will be one of the
directions going forward to improve the overall performance.
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