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This paper presents an implementation of a homotopy path tracking algorithm for polyno-
mial numerical continuation on a graphical processing unit (GPU). The goal of this algo-
rithm is to track homotopy curves from known roots to the unknown roots of a target
polynomial system. The path tracker solves a set of ordinary differential equations to
predict the next step and uses a Newton root finder to correct the prediction so the path
stays on the homotopy solution curves. In order to benefit from the computational perfor-
mance of a GPU, we organize the procedure so it is executed as a single instruction set,
which means the path tracker has a fixed step size and the corrector has a fixed number
iterations. This trade-off between accuracy and GPU computation speed is useful in numer-
ical kinematic synthesis where a large number of solutions must be generated to find a few
effective designs. In this paper, we show that our implementation of GPU-based numerical
continuation yields 85 effective designs in 63 s, while an existing numerical continuation
algorithm yields 455 effective designs in 2 h running on eight threads of a workstation.
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1 Introduction
Freudenstein and Roth [1] described what they called a

parameter-perturbation procedure to compute the solution of a set
of non-linear equations starting from a known solution of another
similar set of equations. They used this technique to solve the synth-
esis equations for a four-bar linkage that guides a coupler point
through nine specified task positions [2]. Wampler et al. [3] returned
to this nine point synthesis problem with what they called numerical
polynomial continuation and identified Roth and Freudenstein’s
approach as a type of numerical continuation.
Zangwill and Garcia [4] described a wide range of problems that

can be solved by tracking the paths of a homotopy, such as nonlinear
programming, economic equilibria, and game theory. Morgan [5]
applied this approach to finding all of the solutions of a system of
polynomial equations. Tsai and Morgan [6] used numerical polyno-
mial continuation to solve for the inverse kinematics of a general 6R
robot, which was an important outstanding problem at the time.
Since then numerical continuation has improved in capabilities,

see Ref. [7]. Now a variety of software packages for numerical con-
tinuation are available, such as Bertini [8], PHCpack [9], HOM4PS
[10], and POLSYS_GLP [11].
Homotopy solution of a system of polynomials follows the

known roots of a starting polynomial system as its coefficients are
smoothly changed into the coefficients of the target polynomial
system [7]. The process of following the transformation of these
known roots into the roots of the target system is known as path
tracking and can be parallelized for distributed computation [11].
Graphics processing units (GPUs) were developed to accelerate

rendering calculations in computer graphics [12]. These devices
execute the same instruction set for each pixel in a display at very
high speed. This capability has been deployed in other applications
where identical sets of instructions are executed for a large number
of cases. Examples are computational fluid mechanics [13], robot
motion planning [14,15], and deformable body modeling for com-
puter graphics [16].

In contrast to parallelization on a cluster of central processing
units (CPUs), parallelization on a GPU requires the execution of
identical instruction sets on a collection of threads known as a
warp to ensure maximum performance. Verschelde and Yoffe
[17] introduced the use of a GPU for polynomial homotopy,
using it to evaluate the polynomials and their derivatives with
extended precision mathematics. The result was speeds of almost
20 times the speed of computation on a single CPU.
In order to increase the performance for path tracking on a GPU

in a numerical polynomial continuation solver, a strategy to manage
changes in step size is needed, because the execution of a condi-
tional statement in one thread can pause the computation in other
threads of a warp until the conditional is completed. Verschelde
and Yu [18,19] manage this by providing three levels of adaptive
step sizes for tracking the tens of thousands solution paths in GPU-
based polynomial homotopy solver as well as using higher preci-
sion to more accurately track paths.
This paper presents a different strategy for path tracking using a

GPU in a polynomial continuation solver, which avoids changes in
step size. Paths for which the desired accuracy has not yet been
achieved are grouped and computed with a smaller step size. This
approach is well-adapted to the need for high-speed path tracking
of many thousands of paths needed to solve the design equations
for the kinematic synthesis of mechanisms, see for example
Ref. [20].

2 Path Tracking
Numerical polynomial continuation obtains the roots of a system

of n polynomials, P(x) = (p1, p2, . . . , pn) in n unknowns x ∈
C

nx1 = (x1, x2, . . . , xn) by starting with a system S(x) that has the
same total degree, M. The start system S(x) is constructed so that
these roots have known values yk, k= 1, …, M, that is

S(yk) =

s1(yk)
s2(yk)

..

.

sn(yk)
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0
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0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, k = 1, . . . , M (1)
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The M roots �xk of P(x) are obtained by smoothly transforming
the roots of S into those of P and tracking the paths vk(t)= (v1k, v2k,
…, vnk) as t varies from 1 to 0; the initial positions of the roots are yk
= vk(1) and their final positions are �xk = vk(0). Note that while S(x)
starts with M roots, the target system P(x) may have fewer than M
roots. The number of roots isP(x) is upper bounded byM.
The homotopy H(x, t) that transforms S into P is given by the

polynomial system,

H(x, t) = S(x) t + P(x) (1 − t) (2)

A path vk(t) exists for each root of the start system and is a solution
of the polynomial system H(x, t), that is

H(vk, t) =

s1(vk)t + p1(vk)(1 − t)
s2(vk)t + p2(vk)(1 − t)

..

.

sn(vk)t + pn(vk)(1 − t)
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,

k = 1, . . . , M

(3)

In order to describe a strategy to track these paths, consider the
Taylor series expansion of the homotopyH(x, t) in x and t, given by

H(x+Δx, t +Δt)=H(x, t)+
∂H
∂x

Δx+
∂H
∂t

Δt + higher order terms

(4)

Introduce the notation,

Jx =
∂H
∂x

and Ht =
∂H
∂t

(5)

where Jx is an n× n matrix and Ht an n× 1 vector with elements Jij
and Hi, respectively, given by

Jij =
∂si
∂xj

t +
∂pi
∂xj

(1− t), Hi = si − pi, i, j= 1, . . . , n (6)

Now consider a point (x, t) that is sufficiently close to a path v(t)
of the homotopy, such thatH(x, t) ≈ 0. Then, we can predict a new
point p= x+Δx at t+Δt by setting H(x+Δx, t +Δt)= 0 and
solving for the first-order terms of Eq. (4) to obtain

p= x− J−1x (x, t)Ht(x)Δt (7)

This is the Davidenko equation and the solution is known as the
“prediction” step of the path tracker and is achieved using a
solver for ordinary differential equations.
If H(x, t) is not sufficiently close to a path, thenH(x, t) ≠ 0, and

we compute c= x+Δx forΔt= 0 such thatH(x + Δx, t) ≈ 0. From
Eq. (4), we obtain

c = x − J−1x (x, t)H(x, t) (8)

This is called the “correction” step of the path tracker and is an
example of Newton’s method for root finding. Path tracking exe-
cutes a sequence of these prediction and correction steps to track
the paths from S(x) to P(x).

3 Numerical Path Tracking
In this section, we present the series of computations that perform

path tracking for numerical polynomial continuation that will be
executed on a GPU. Because the initial step of the path tracker
begins with a known root of the start system, we begin by predicting
the next value using the Runge–Kutta–Fehlbreg method, see
Ref. [21]. For convenience, introduce the notation f(x, t) for the
vector function in Eq. (7), so we have,

Δx = −J−1x (x, t)Ht(x)Δt = f(x, t) (9)

For step size Δt, the next prediction point p of a path can be

calculated using the Runge–Kutta fourth-order formulas,

p(t + Δt) = x(t) +
1
6
(K1 + 2K2 + 2K3 +K4) (10)

where

K1 = Δt f(x, t)

K2 = Δt f x +
1
2
K1, t +

1
2
Δt

( )

K3 = Δt f x +
1
2
K2, t +

1
2
Δt

( )

K4 = Δt f(x +K3, t + Δt)

(11)

This calculation of p involves four evaluations of f for different
arguments, each of which requires finding the inverse of the n× n
Jacobian matrix Jx.

3.1 LU Decomposition. An effective algorithm for calculating
the inverse of Jx is known as Lower-Upper (LU) decomposition
[21]. This is achieved by permuting Jx, so that it can be factored
into the product of a lower triangular matrix L and an upper trian-
gular matrix U, that is

PJx = LU (12)

where P is an n× n matrix that permutes the rows of Jx. Write
Eq. (7) in the form,

JxΔx = −Ht Δt (13)

and substitute the LU decomposition to obtain,

PJxΔx = LUΔx = −PHt Δt (14)

We solve this equation by introducing z=UΔx and use sequential
elimination by rows to solve

Lz = −PHt Δt (15)

for z. Then, back-substitution is used to solve

UΔx = z (16)

for Δx.
This solution Δx is used to calculate each of the four terms Ki,

i = 1, 2, 3, 4 in the Runge–Kutta calculation for p.

3.2 Newton’s Correction. We assume the calculation of the
point p(t+Δt) along a path v(t) takes the point away from the
homotopy hypersurface H(x, t) = 0, so we use Newton’s method
to find the nearby root c(t+Δt). Write Eq. (8) in the form,

Jx(p, t + Δt)Δx =H(p, t + Δt) (17)

This equation can be solved using LU decomposition to calculate
Δx, which yields the correction,

c = p + Δx (18)

The usual implementation of a path tracker for numerical polyno-
mial continuation iterates Newton’s method to ensure convergence
to the homotopy hypersurface. The correction step can be repeated
multiple times until a desired level of convergence is achieved. The
computation flow of the path-tracking method is shown in Fig. 1.
Whether running on a CPU or a GPU, the path trackers use the
same predictor corrector methods. However, executing a path
tracker on a GPU presents additional challenges.

3.3 Graphical Processing Units Implementation of Path
Tracking. A GPU consists of an array of streaming multiproces-
sors (SMs), each of which is analogous to the core of a CPU.
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However, unlike a CPU that can execute different instruction sets
concurrently, the SMs of a GPU execute the same instruction set
concurrently. An important consequence of this aspect of SM com-
putation is that conditional instructions degrade the performance on
a GPU. This can occur wherever there is an IF statement or a
WHILE statement, because when the instructions of some of the
threads in a warp are different from the rest, the SM must execute
the two different instruction sets one at a time, which results in
stalled threads and under-utilization of the GPU. The amount of
under-utilization depends on the size of the instruction sets to be
used. IF statements are quite useful so they should not be avoided
all together, rather the amount of divergence should be considered
when implementing code on a GPU, particularly if maximum per-
formance is desired.
In polynomial numerical continuation, branch divergence can

occur when the path tracking step size Δt is changed, and when the
number of correction steps is changed to achieve convergence. The
path tracking algorithms of numerical polynomial continuation
solvers implement adaptive step size and convergence checking to
ensure the accuracy of each path. Unfortunately, these features can
have a large performance hit when implemented on a GPU,
because when path tracking step is changed in one thread all the
other threads in the warp are paused until the computation is com-
pleted. This happens when the number of correction steps is
changed as well.
Our approach is to introduce a new path tracking algorithm that is

a better match to the SIMT requirements of a GPU, Algorithm 1.

Our algorithm is has a fixed number N of equal steps Δt along
the path, as well as a fixed number of iterations C of the Newton
correction.

Algorithm 1 New path tracking algorithm with fixed step size
Δt.

Data: x0, a solution to S(x);
Δt, the fixed step size;
C, the number of iterations of newtons method to execute;
N, the number of steps to take;
Result: x, a solution to P(x)
begin

x ← x0, t ← 1
for i= 1:N do

t ← t − Δt
p ← predict(H, x, t,Δt)
c ← correct(H, p, t,Δt,C)

x ← c
end

end

It is possible to implement a path tracker with an adaptive step
size on a GPU; however, this causes the all the threads of the
GPU to run at the speed of the most difficult path. Rather than

Fig. 1 The solution procedure of the ordinary differential equations for prediction and Newton’s method for correc-
tion at each path tracking step
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parallelize the path tracking, it is also useful to use the GPU to speed
up the computation of the elements of both the polynomial system
and its Jacobian matrix, see Refs. [18,19]. Our goal is to use the
GPU to minimize computation time, so we fix the step size to min-
imize conditional branching.
Tracking paths with a fixed step size can mean that we cannot

avoid the zones around areas singularities which would cause the
Jacobian matrix, Jx, to become ill-conditioned. In these zones, the
path will almost certainly not result in a solution to the target
system of polynomials. Similarly, if the number of iterations of
Newton’s correction is not enough to assure convergence, the
path will not result in a solution.
Both of these issues can be mitigated by an evaluation kernel call

that checks all of the roots computed for P(x) and identifying those
paths that do not yield accurate roots. Those that fail can be recal-
culated using a smaller step size and larger values for N and C.
This strategy sacrifices individual path tracking accuracy for
increased GPU computational performance associated with a
single instruction set.

4 Four-Bar Linkage Synthesis
In this section, we formulate the synthesis equations for a

four-bar linkage that we solve using our GPU implementation of
numerical polynomial continuation. The goal is to compute the
dimensions of a four-bar linkage that guides its coupler through
five task positions. We formulate the design problem following
Glabe and McCarthy [22] using the loop equations of the linkage.
This is different from the usual approach known as Burmester
theory that uses the constraint equations of a crank [23]. We use
this approach because it can be generalized to design more
complex linkage systems [20].
All code was implemented in the Compute Unified Device Archi-

tecture (CUDA) language and executed on an Nvidia Quadro M2000
GPU. The sections are broken up into a series of individual func-
tions known as kernel calls. A kernel call is a CUDA term for a
function that is called from the CPU, but executed on the GPU.

4.1 Loop Equations. The synthesis equations that we will
solve are obtained from the loop equations of the four-bar
linkage. Let the coordinates of the fixed pivots of the linkage be
denoted O=Ox+ iOy and C=Cx+ iCy and let the moving pivot
coordinates be A=Ax+ iAy and B=Bx+ iBy.
The loop equation defines the relationship that is preserved

among these variables throughout the movement of linkage
linkage. They obtained as the complex vector equations,

P = O + Qϕ(A − O) + Tθ(P1 − A) = C + Sψ(B − C) + Tθ(P1 − B)

(19)

where

Qϕ = eiϕ, Sψ = eiψ, Tθ = eiθ (20)

This loop equation can be used to formulate synthesis equations
for the dimensions of the four-bar linkage. First, identify five posi-
tions that are to be achieved by the end-effector of the linkage,
denoted, Γj = (θj, Pj), j= 1, …, 5, where Pj is the position of the
origin and θj is the orientation of a desired end effector pose with
respect to the x-axis. Then, evaluate the loop equations and their
conjugates for each of these task positions. The result is

O + Qj(A − O) + Tj(P1 − A) = Pj

C + Sj(B − C) + Tj(P1 − B) = Pj, j = 1, . . . , 5
(21)

and

�O + �Qj(�A − �O) + �Tj(�P1 − �A) = �Pj

�C + �Sj(�B − �C) + �Tj(�P1 − �B) = �Pj, j = 1, . . . , 5
(22)

Then, introduce the normal conditions for the angles Qj and Tj,

Qj �Qj = 1 and Sj�Sj = 1, j = 1, . . . , 5 (23)

The result is a set of polynomial equations in the coordinates O, A,
B, and C and their conjugates that define the coordinates of the
pivots of the linkage in the reference position and the relative
angles ϕj and ψj, j= 1, …, 5, that define the movement of the
linkage through the five task positions.
We can simplify these equations to eliminate the unknowns Qj,

�Qj, Sj, and �Sj by solving Eq. (21) for Qj and Sj and Eq. (22) for
�Qj and �Sj and then substitute the results into Eq. (23). This yields

(Pj − TjP1 + TjA − O)( �Pj − �Tj �P1 + �Tj�A − �O) − (A − O)(�A − �O) = 0

(Pj − TjP1 + TjB − C)( �Pj − �Tj �P1 + �Tj�B − �C) − (B − C)(�B − �C) = 0

j = 1, . . . , 5 (24)

which form a system of ten quadratic equations.
These equations can be further simplified by selecting the first

task position as the reference frame, such that P1= (0, 0) and θ1 =
0 and measuring the remaining four task positions relative to this
frame. To do this, compute the five homogeneous transformation
matrices Hj associated with the given task positions, Γj = (θj, Pj),
j= 1, …, 5,

Hj =
cos θj − sin θj Pxj
sin θj cos θj Pyj
0 0 1

⎡
⎣

⎤
⎦, j = 1, . . . , 5 (25)

Then, transform these matrices to the first task frame of Γ1

K1j =H−1
1 Hj, j = 2, . . . , 5 (26)

Obtain the new relative task positions Γ1i = (θ1i, W1i) as

θ1i = arctan (k21/k11), W1i = (k13 + ik23), i = 2, . . . , 5 (27)

This yields two sets of loop equations relative to P1,

P: (W1i + T1iA − O)( �W1i + �T1i�A − �O) − (A − O)(�A − �O) = 0,

i = 2, . . . , 5

(W1i + T1iB − C)( �W1i + �T1i�B − �C) − (B − C)(�B − �C) = 0,

i = 2, . . . , 5 (28)

where T1i = eiθ1i . Figure 2 outlines the geometry of the relative dis-
placement of the four-bar linkage. Equation (28) is a system of eight
polynomials in eight unknowns (O, �O, A, �A, B, �B, C, �C). Each
solution of this set of equations is a candidate for a four-bar
linkage that guides its coupler link through the given set of task
positions. This polynomial system has a Bezout degree of 28=
256. We used the numerical continuation solver Bertini [8] to
compute a start system for this polynomial system and found that
it had a multi-homogeneous degree of 25.
Finding the solutions to these equations can be divided into three

separate kernel calls: PATH TRACKER, TASK GENERATOR, and SOLU-
TION FILTER.

4.2 Path Tracker. The synthesis equations P in Eq. (28) are
linear combinations of monomials formed from the variables
x = (O, �O, A, �A, B, �B, C, �C). These equations include the 16
parameters

p = (T12, T13, T14, T15, �T12, �T13, �T14, �T15, W12, W13, W14,

W15, �W12, �W13, �W14, �W15)
(29)

which are constants that define the task for the linkage to be
designed.
We use the numerical continuation software Bertini to solve start

system S that can be used for parameter continuation to solve a poly-
nomial system P(p, x) for different values of the parameters p.
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Bertini chooses a generic set of parametersq so that the start system is
S(q, x) has known roots yk.
We use the parameters q computed by Bertini to construct the

parameter homotopy,

H = P(q t + p (1 − t), x) (30)

This is computed symbolically in MATHEMATICA [24], where we
also compute symbolic equations for 8 × 8 Jacobian matrix Jx and
the 8 × 1 vector Ht; see Ref. [5]. These symbolic equations are
copied into the CUDA kernel call, which is labeled PATH TRACKER.
PATH TRACKER includes the algorithm for LU decomposition,

Runge–Kutta prediction, and Newton correction. Organizing the
calculations in this way uses the advantages of the GPU for rapid
computation; however, it means that some of the paths may not con-
verge to roots of our target system. Our formulation of the linkage
synthesis problem reduces the importance of finding any particular
root. This is discussed in Sec. 4.3.

4.3 Task Generator and Solution Filter. It is the nature of
this linkage design problem that for a given task T:Γj = (θj, Pj),
j = 1, …, 5, the resulting four-bar linkage may have one or more
of a set of various defects [25,26]. To address this Plecnik and
McCarthy [27] introduced tolerance zones around the specified
task positions and randomly selected small variations within these
zones. The result is a successful set of linkages that reach task posi-
tions close to the originally specified positions, see also Ref. [28].
We implement this strategy by introducing the TASK GENERATOR

kernel call. This algorithm reads the specified task positions
Γj = (θj, Pj), j= 1, …, 5, and a set of tolerance zones
(Δθ, Δx, Δy)i, i= 1, …, 5, and writes L new tasks,

Tm: Γ jm = (θj + ρ jmΔt, Pj + σ jmΔx + iτ jmΔy)m,

j = 1, . . . , 5, m = 1, . . . , L
(31)

where ρ jm, σ jm, and τ jm are randomly generated constants between
−1 and 1. In this example, we set L, the number of task iterations, to
be 200. Our PATH TRACKER computes up to 25 roots for each of these
200 paths for 5000 possible linkage designs.

We use a third kernel call SOLUTION FILTER to evaluate each of the
5000 roots to determine if (O, A, B,C ) and (�O, �A, �B, �C) are complex
conjugates. This ensures that the root yields a physical linkage. It is
known that this synthesis problem can have at most six solutions,
which means of the 25 roots that exist for each task at most six
define physical linkages [23]. It is important to mention that
while SOLUTION FILTER does contain IF statements, the branch diver-
gence caused by these statements is quite small and thus has
minimal impact on performance.

4.4 Outline of Execution. A block diagram of our GPU-based
numerical continuation algorithm for four-bar linkage synthesis is
shown in Fig. 3. The equations for the start system, its roots, the
homotopy equations, and the derivatives Jx and Ht are programed
for execution on the GPU.
Execution starts with user input of task positions, tolerance

zones, and the number of task iterations L. The number of steps
N for the path tracker and the number C of iterations of the
Newton correction are also user-specified. We set the number of
step N= 100, step size Δt= 1/N, and set the number of Newton cor-
rections to C= 2. It reads the coefficients of the 16 parameters for
both the start system (q) and the target system (p), along with
each of the roots xk, k= 1, …, 25.
The TASK GENERATOR reads this data and writes L different tasks

to the GPU memory. The PATH TRACKER computes the roots for the
synthesis equations for each task in the GPU memory. The SOLU-
TION FILTER evaluates each of the roots obtained for all of the
tasks to determine those that define physical linkages.
The physical linkages identified in the GPU must be evaluated to

determine they are defect-free, which we call effective solutions.
Linkages with branch and circuit defects are rejected, but those
with order defects are allowed. Examples of this analysis can be
found in references such as [29] or [23]. The output of this algo-
rithm is a list of linkage designs that reach the specified task posi-
tions within the given tolerance zones.

5 Demonstration
In order to demonstrate this algorithm, we use a Lenovo worksta-

tion with an Intel Xeon 2.10 GHz CPU, running Windows 10 with

Fig. 3 Flow of calculations on the CPU (on the left) with calls to
the GPU on the right

Fig. 2 A four-bar linkagemoving from position P1 to Pi, showing
the complex vectors that form the loop equations
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an NVIDIA Quadro M2000 GPU. The five task positions together
are listed in Table 1 and shown in Fig. 4. The tolerance zones
chosen were Δθ = 0.5 deg, Δx=Δy= 0.1. The original transformed
task positions that are used with our synthesis equations are listed in
Table 2. Because the randomization can produce two different sets
of task positions with differing numbers of solutions to analyze, we
generated one standard randomized set and ran both the CPU and
GPU code on it. The time to calculate 200 iterations or 5000
threads, with the GPU is shown in Table 3 to be 63 s.
For comparison, we used MATHEMATICA 11.1 to define the synth-

esis equations for 200 randomized tasks for computation using
Bertini v1.5.1 on the Lenovo workstation. The Lenovo workstation
has multiple cores which allows Bertini to be ran in parallel using
eight CPU threads. Bertini by default performs path tracking
using an adaptive step size. The speed up using the GPU was 120
times compared with the eight CPU thread computation. One
example solution computed by the GPU is given by the coordinates
in Table 4 and shown in each of the task positions in Fig. 5.
A comparison of the results of the two calculations shows the

impact of adaptive step size and convergence test for the Newton
corrector in Bertini as opposed to the fixed step size and fixed
number of Newton iterations. Bertini calculated fewer physical
solutions as our GPU code, but more effective designs. This is
likely due to the fact that Bertini checks for paths crossing,
whereas the GPU does not. If two paths cross, it is possible for
one path to jump to the other, resulting in a repeated solution.
When calculating the number of effective solutions in the GPU
we removed duplicate solutions. Thus, the GPU calculation pro-
vides 85 effective designs in 63 s compared to 455 effective
designs in just over 2 h of computation.

Table 1 Task position coordinates in the global frame

j θj (deg) Pj

1 80 (2.7, 4.9)
2 55 (2.8, 4.6)
3 0 (2.9, 4.4)
4 −35 (3.0, 4.2)
5 −60 (3.0, 4.0)

Fig. 4 The five task positions in the global frame

Table 2 Task positions relative to the first task frame

j θj (deg) Pj

1 0 (0, 0)
2 −25 (−0.28, −0.15)
3 −80 (−0.46, −0.28)
4 −115 (−0.64, −0.42)
5 −140 (−0.83, −0.45)

Table 3 Comparison of kinematic synthesis of eight parallel
threads on a workstation CPU with our algorithm on 5000
threads on a GPU

Hardware Time (s) Solutions Physical sols. Effective sols.

CPU 7588 3774 1510 455
GPU 63 4425 2382 85

Table 4 Joint coordinates in global frame for a selected solution

Point (x, y) coordinates

O (2.37, 4.43)
A (2.54, 4.13)
B (2.46, 4.58)
C (2.73, 4.29)

Fig. 5 An example four-bar linkage design moving the end-effector through the five task positions
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While it might be tempting to assume using 5000 threads should
be 625 times faster than eight threads, it is important to note that
GPU and CPU threads are not the same. The base clock speed for
an Nvidia M2000 GPU is 1126 MHz while the clock speed for an
Intel Xeon CPU is 2.10 GHz. Additionally, CUDA requires
threads to be grouped up into blocks, where each block is processed
by an SM, one warp at a time. The current GPU algorithm imple-
mentation uses only 25 threads per block, whereas on the
Maxwell architecture 1024 threads can be executed simultaneously
per block. This results in under-utilization of the GPU. More
research into this area should be performed to further increase
GPU performance.
Additionally, it is important to note that Bertini is not optimized

to be executed on instance of the same problem with different
parameters. Bertini as a program has many file input/output opera-
tions that invariably slows the computation time down. It is impor-
tant to mention that there is a program being developed called
Paramotopy which is intended to be ran on the same problem
with different parameters, but the program was unavailable at the
time of this paper.

6 Conclusion
This paper presents an algorithm for numerical continuation on a

GPU for the solution of the polynomial systems that arise in kine-
matic synthesis. In order to obtain the benefits of increased compu-
tational speed of a GPU the algorithm must run a single instruction
set. This lead to a CUDA implementation of Runge–Kutta integra-
tion and LU decomposition corrector algorithms for the path tracker
for execution on a GPU. In order to eliminate conditional statements
that degrade the performance of the GPU, our algorithms use a
constant step-size for prediction and a fixed number of iterations
for correction. This trades accuracy of the path tracker for speed
of computation. This is well-adapted to our application to numerical
kinematic synthesis, where a large number of solutions must be gen-
erated to find a few effective designs.
A comparison of the performance of our algorithm on 5000 GPU

threads with the execution of the software Bertini on eight threads
of Lenovo workstation shows a speed up of 120 times. The
impact of the trade-off between speed and accuracy can be seen
in the fewer number of effective solutions found by the GPU 85
compared with 455 by Bertini. It seems further research is needed
to increase speed using a GPU and maintain accuracy.
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