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Abstract—The nonlinear Gaussian-noise (GN) model is a useful
analytical tool for the estimation of the impact of distortion
due to Kerr nonlinearity on the performance of coherent optical
communications systems with no inline dispersion compensation.

The original nonlinear GN model was formulated for coherent
optical communications systems with identical single-mode fiber
spans. Since its inception, the original GN model has been modi-
fied for a variety of link configurations. However, its application
to coherent optical communications systems with hybrid fiber
spans, each composed of multiple fiber segments with different
attributes, has attracted scarcely any attention.

This invited paper is dedicated to the extended nonlinear GN
model for coherent optical communications systems with hybrid
fiber spans. We review the few publications on the topic and
provide a unified formalism for the analytical calculation of the
nonlinear noise variance.

To illustrate the usefulness of the extended nonlinear GN
model, we apply it to coherent optical communications systems
with fiber spans composed of a quasi-single-mode fiber segment
and a single-mode fiber segment in tandem. In this configuration,
a quasi-single-mode fiber with large effective area is placed at
the beginning of each span, to reduce most of the nonlinear
distortion, followed by a single-mode fiber segment with smaller
effective-area, to limit the multipath interference introduced by
the quasi-single-mode fiber to acceptable levels. We show that
the optimal fiber splitting ratio per span can be calculated with
sufficient accuracy using the extended nonlinear GN model for
hybrid fiber spans presented here.

Index Terms—Nonlinear Gaussian-noise (GN) model, coherent
optical communications systems, hybrid fiber spans.

I. INTRODUCTION

Modeling of the fiber nonlinearities has been the cornerstone
of optical communications theoretical research since the early
days of the field [1]. The one-dimensional, scalar nonlinear
Schrödinger equation [1] and its vector counterpart, the Man-
akov equation [2], that govern the propagation of optical wave-
forms in optical fibers, have been intensively studied for direct-
detection and coherent optical communications systems [1].
In particular, over the last decade, there has been considerable
progress in finding approximate analytical solutions of these
equations for coherent optical communications systems with
no inline dispersion compensation, e.g., [3]–[14].

The conventional nonlinear Gaussian-noise (GN) model
[5]–[7], [9] has gained popularity over time due to its relative

simplicity compared to other, more accurate but more elab-
orate mathematical formulations [10], [11]. According to the
nonlinear GN model, signal distortion due to Kerr nonlinearity
can be represented by a zero-mean, complex Gaussian additive
noise. The variance of the latter is calculated in a closed-form
from fiber and system parameters [7], [9].

Since its inception, the original nonlinear GN model has
been constantly refined, e.g., [12], and has been modified for
a variety of link configurations, e.g., [15], and most recently,
e.g., [16], [17]. However, to the best of our knowledge,
its application to coherent optical communications systems
with hybrid fiber spans composed of multiple fiber segments
of different fiber types has hardly received any attention to
date. Notable exceptions are the papers [18], [19] devoted to
quasi-single-mode fibers, as well as more recent publications
focusing on optical phase conjugation [20] and on discrete
Raman amplification [21].

This invited paper is dedicated to the extended nonlinear
GN model for coherent optical communications systems with
hybrid fiber spans. In the first part of the paper, we review the
few publications on the topic and provide a unified formalism
for the analytical calculation of the nonlinear noise variance.
In the second part of the paper, we apply the proposed model
to coherent optical communications systems with fiber spans
composed of quasi-single-mode fiber and single-mode fiber
segments. We show that the optimal fiber splitting ratio per
span can be calculated with sufficient accuracy using the
extended nonlinear GN model for hybrid fiber spans presented
here.

II. ANALYTICAL MODEL

A. System topology

Consider a long-haul coherent optical communications sys-
tem with no inline dispersion compensation. The system is
composed of Ns identical fiber spans of length `s each.
There are Nf fiber types per span with lengths `sk , where
k = 1, . . . , Nf . The k−th fiber segment in each span is char-
acterized by its attenuation coefficient ak, its group velocity
dispersion (GVD) parameter β2k

, and its nonlinear coefficient
γk. The attributes of each fiber segment are constant along its
length. Different fiber segments have different fiber attributes.
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At the end of each fiber span, there is a lumped optical
amplifier of gain G equal to the span loss and noise figure
FA.

We consider wavelength division multiplexing (WDM) and
polarization division multiplexing (PDM) based on ideal
Nyquist channel spectra. The latter are created using square-
root raised-cosine filters with approximately zero roll-off fac-
tor at the transmitter and the receiver. Furthermore, without
loss of generality, we assume that a WDM PDM optical signal
is composed of an odd number Nch wavelength channels with
spacing ∆ν ' Rs, where Rs is the symbol rate. The optical
bandwidth of the transmitted signal is B0 = NchRs. We
denote by P the total average launch power per channel (in
both polarizations). We want to evaluate the performance of
the center WDM PDM channel at wavelength λ.

B. Effective optical signal-to-noise ratio

The performance of coherent optical systems without in-line
chromatic dispersion compensation is related to the effective
optical signal-to-noise ratio (OSNReff) at the receiver input.
This quantity takes into account the amplified spontaneous
emission (ASE) noise, the crosstalk, and the nonlinear distor-
tion. For engineering purposes, we assume that all the above
effects can be modeled as independent, zero-mean, complex
Gaussian noises. More specifically, the OSNReff measured at
a resolution bandwidth ∆νres can be well described by the
analytical relationship [6], [22]

OSNReff =
P

ã+ β̃P + γ̃P 3
, (1)

where ã is the ASE noise variance, β̃P is the crosstalk vari-
ance, and γ̃P 3 is the nonlinear noise variance. The coefficients
ã, β̃, and γ̃ depend on fiber and system parameters.

C. Nonlinear noise variance

For coherent optical communications systems with hybrid fiber
spans, the nonlinear noise coefficient is given by the double
integral

γ̃ ' 16

27

N2
s∆νres

R3
s

∫ B0/2

−B0/2

∫ B0/2

−B0/2

ξ (f1, f2) df1df2. (2)

Expression (2) is similar to the nonlinear GN formula eq.
(18) in [6] for a single fiber type per span. The integrand
ξ (f1, f2) is written as a product of a four-wave mixing
efficiency term η (f1, f2) and a phased-array term φ (f1, f2)

ξ (f1, f2) := η (f1, f2)φ (f1, f2) . (3)

The four-wave mixing efficiency per span is

η (f1, f2) :=

∣∣∣∣∣∣
Nf∑
k=1

γ̂k (f1, f2) L̂effk
(f1, f2)

∣∣∣∣∣∣
2

, (4)

where γ̂k (f1, f2) are the complex nonlinear fiber coefficients

γ̂k(f1, f2) := γke
−

∑k−1
m=1 αm(f1,f2)`sm , (5)

and L̂effk
(f1, f2) are the complex effective lengths, defined as

L̂effk
(f1, f2) :=

1− e−αk(f1,f2)`sk

αk(f1, f2)
. (6)

The introduction of the complex nonlinear fiber coefficients
γ̂k and the complex effective lengths L̂effk

provides a con-
venient mnemonic rule since the four-wave mixing efficiency
per span η (f1, f2) is expressed in terms of a simple weighted
sum (14) of the complex nonlinear coefficients (5) times the
normalized complex effective lengths (6) of the different fiber
segments.

In (5), (6), we have defined the complex attenuation coeffi-
cients as

αk(f1, f2) := ak + i∆βk(f1, f2), (7)

where ∆βk(f1, f2) denote the propagation constant mis-
matches for different fiber segments in each span,

∆βk(f1, f2) := −4π2β2k
f1f2. (8)

The coherent addition of the contributions of successive
fiber spans to the total nonlinear noise leads to a phased-array
term φ (f1, f2), as in the original nonlinear GN model [7], [9].
The difference is that, in the hybrid fiber span case, the phased-
array term depends on the average phase mismatch (10) of
all optical fibers per span. More specifically, the normalized
phased-array term in (3) is defined as

φ (f1, f2) :=
1

N2
s

sin2 [Ns∆β (f1, f2) `s/2)]

sin2 [∆β (f1, f2) `s/2]
, (9)

where ∆β(f1, f2) is the average propagation constant mis-
match

∆β(f1, f2) := `−1
s

Nf∑
k=1

∆βk(f1, f2)`sk . (10)

To simplify the calculation of (2), we can substitute N1+ε
s

for N2
s φ (f1, f2), where ε is a fitting constant [7]. The case

ε 6= 0 corresponds to partially-coherent addition of the
contributions of successive fiber spans to the total nonlinear
noise. For ε = 0, nonlinear noises from different spans add
incoherently.

D. Literature review

Formulae (2)-(10) were derived assuming that the fiber param-
eters a, β2, and γ are piecewise functions of the propagation
distance. While the formalism presented here is most general,
previous publications studied important special cases where
one or more of the aforementioned fiber parameters were
allowed to vary along the link length. For instance, Shieh
and Chen [4] examined the case of multi-segment fiber spans
composed of a transmission fiber followed by a dispersion
compensating fiber (DCF) sandwiched between two EDFAs.
Furthermore, the nonlinear GN model formalism proposed by
Curri et al. [15] for Nyquist-WDM coherent optical systems
using Raman amplification contained a general theoretical
framework that could be potentially exploited for the analysis
of nonlinear accumulation in systems with multiple fiber seg-
ments per span (not necessarily comprising Raman amplifiers).
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Independently, Downie et al.[18, Section IV] and Miranda et
al. [19] extended the conventional Gaussian noise model to
the performance evaluation of coherent optical communication
systems with hybrid fiber spans composed of quasi-single-
mode fibers (QSMFs) and single-mode fibers (SMFs). In par-
allel, Al-Khateeb et al. [20, equation (4)] derived almost iden-
tical expressions to (2)-(10) for distributed Raman systems. A
minor difference is that all fiber segments in [20, equation
(4)] have the same nonlinear coefficient γ. Most recently,
Krzczanowicz at el. [21] published an analytical formula for
the nonlinear noise accumulation in optical communications
systems using discrete Raman amplifiers, which is reminiscent
of the formula of [19] derived in a different context. In
conclusion, the analytical model presented in this paper cannot
claim to be fundamentally new but is rather a synthesis of
formalisms from previous publications.
E. Computing the nonlinear noise coefficient

For computational convenience, the double integral (2) can be
converted into a single integral by using a transformation of
integration variables.

To begin, since ξ (f1, f2) is an even function of f1, f2, we
can reduce the region of integration to the upper right quadrant
of the coordinate plane

γ̃ =
64

27

N2
s∆νres

R3
s

∫ B0/2

0

∫ B0/2

0

ξ (f1, f2) df1df2. (11)

The integrand ξ (f1, f2) depends only on the product of the
integration variables f1f2 so it is beneficial to define a new
integration variable ζ := f1f2/2f

2
φ, where fφ is the average

phased-array bandwidth [3] f−1
φ := 2π

√
|β2| `s, and β2 is the

average GVD parameter β2 := `−1
s

∑Nf

k=1 β2k
`sk .

By changing the integration variables from f1, f2 to f1, ζ,
and using iterated integration, the double integral can be
transformed into a single-integral

γ̃ = κ

∫ ζ0

0

ln

(
ζ0
ζ

)
ξ (ζ) dζ , (12)

where we defined

κ :=
128

27

f2
φ

R2
s

N2
s , ζ0 :=

B2
0

8f2
φ

. (13)

The integrand ξ (ζ) is written as ξ (ζ) = η (ζ)φ (ζ) , where

η (ζ) :=

∣∣∣∣∣∣
Nf∑
k=1

γ̂k (ζ) L̂effk
(ζ)

∣∣∣∣∣∣
2

, (14)

φ (ζ) :=
1

N2
s

sin2(Nsζ)

sin2(ζ)
. (15)

The final integral (12) is an improper integral of the second
kind (i.e., the integrand becomes infinite at the lower end of
the integration interval).

In order to evaluate this integral, we split the integration
interval into two sub-intervals, [0, δ] and [δ, ζ0], where δ is in
the vicinity of ζ = 0.

For the first sub-interval, [0, δ], taking the Taylor expansion
of the integrand and integrating by parts, we obtain the
following expression∫ δ

0

ln

(
ζ0
ζ

)
ξ(ζ)dζ = ln

(
ζ0
δ

)∫ δ

0

ξ(ζ)dζ+

∞∑
k=0

δk+1

k!(k + 1)2
∂kζ ξ(0)

(16)

We can evaluate δ in (16) by imposing the condition that the
zeroth-order term of the Taylor series in (16) should be much
larger than the subsequent terms so that we can truncate the
Taylor series to the zeroth-order term. This condition yields
δ � 3

√
3/Ns for Ns � 1.

In the second sub-interval, [δ, ζ0], the integrand ξ(ζ) is
oscillatory, mainly due to the phased-array term φ(ζ). The
latter is a periodic function with period π. Principal maxima
of unit height occur at integer multiples of π. Between
consecutive principal maxima (i.e., over a range of π) there
are Ns−1 minima at multiples of π/Ns and Ns−2 subsidiary
maxima approximately midway between successive minima.

To properly sample the oscillatory integrand, we resort to
Simpson’s quadrature. The integration interval can be sub-
divided into subintervals of width π/Ns. We sample each
subinterval Nn times. Therefore, the distance between adjacent
nodes is ∆ = π/ (NsNn) .

Since the four-wave mixing efficiency η (ζ) becomes neg-
ligible for large values of ζ, to accelerate the numerical
computation, we can limit the integration interval to [δ, µ],
µ ≤ ζ0, µ = (M + 1)π, where M is a natural number. The
truncation error is bounded by∫ ζ0

µ

ln

(
ζ0
ζ

)
ξ(ζ)dζ ≤ Γ2 1

Mπ
ln

(
ζ0
Mπ

)
(17)

where Γ is defined as

Γ :=

Nf∑
k=1

γk
`sk
λk
e−

∑k−1
m=1 2λmσ

1 + e−2λkσ

2
, (18)

and we used several auxiliary quantities defined as σk :=
1
2
|β2|
|β2k |

ak`s, λk =
|β2k |
|β2|

`sk
`s
, σ := min{σk : k = 1, . . . , Nf}.

III. RESULTS AND DISCUSSION

In this section, we focus our attention on the optimal design of
a typical transatlantic coherent optical communications system
with hybrid fiber spans composed of an experimental QSMF
[23], [24] and a commercially-available, ultra-low-loss, large-
effective-area SMF without any splice losses. We evaluate,
both analytically and numerically, the performance of various
fiber configurations per span. We check the agreement between
the analytical model of the previous section and Monte Carlo
simulation, and we show that the proposed GN model is
sufficient for the determination of the optimum fiber splitting
ratio.

2020 29th Wireless and Optical Communications Conference (WOCC)



A. System parameters

We assume that the point-to-point link has total length equal
to 6,000 km and is composed of 100 km spans. Furthermore,
we assume an ideal Nyquist WDM signal composed of 9
wavelength channels, each carrying 32 GBd PDM 16-QAM.
The attenuation coefficient of the QSMF is 0.16 dB/km and
of the SMF is 0.158 dB/km. The effective mode area of the
fundamental mode for the QSMF is 250 µm2 and of the SMF
is 112 µm2. The GVD parameter β2 is -26.6 ps2/km for both
fiber types. The EDFA noise figure is 5 dB.

Launching light in the fundamental mode of an ideal,
straight, perfectly-cylindrical QSMF results, in theory, in
pure single-mode propagation without coupling to higher-
order modes. In practice, however, there always exists random
coupling from the fundamental mode to higher-order modes
and vice versa because of fiber irregularities. This leads to
the generation and propagation of a multitude of copies of the
signal waveform across the fiber link. Due to modal dispersion,
these signal copies propagate at various group velocities and
interfere, either constructively or destructively, with the main
signal propagating on the fundamental mode. This effect is
referred to as multipath interference (MPI) [25], [22]. For
modeling the impact of MPI-induced crosstalk, we assume
that the QSMFs under consideration exhibit weak coupling
between the fundamental mode group LP01 and the higher-
order mode group LP11. For engineering purposes, we assume
that MPI can be modeled as independent, zero-mean, complex
Gaussian noises with a good degree of accuracy. Then, the MPI
coefficient β̃ in (1) can be calculated using power coupled-
mode theory [22].
B. Monte Carlo simulation results

Fig. 1 shows the variation of Q−factor as a function of the
launch power per channel for different fiber configurations,
where the QSMF length per span is varied in the range 0–
100 km in steps of 5 km. Lines represent least-squares fit of
Monte Carlo simulation data with (1). To distinguish various
simulation cases, we identify individual traces with different
colors: fiber configurations with QSMF in the range 0–45 km
are shown in pink and the remaining configurations for QSMF
in the range 45–100 km per span are shown in cyan. We
highlight the extreme cases for 0 km, 45 km, and 100 km
using thick red, black, and blue lines respectively.

We observe that the optimum Q−factor increases as the
QSMF length per span is increased up to 45 km. For QSMF
segments longer than 45 km, the optimum Q−factor gradually
declines, eventually reaching a 0.4 dB decrease at 100 km from
the peak performance achieved at 45 km.

C. Analytical model validation

Since it is cumbersome to display both the analytical model
and the numerical data on the same graph, we shall hereafter
focus only on the extreme cases for 0 km, 45 km, and 100 km
of the above graph. Then, we replot the Q−factor against the
average launch power as given by the Monte Carlo simulation
for three different configurations of QSMF and SMF (Fig. 2),

Fig. 1: Q-factor as a function of the total launch power per
channel for different QSMF lengths per span. (Conditions:
System length: 6,000 km, 100 km spans, QSMF effective mode
area: 250 µm2, SMF effective mode area: 112 µm2. No MPI
compensation. Lines: Fitting using (1).)

i.e., using only SMF (in red), only QSMF (in blue), and a
45/55 mix of QSMF and SMF (in black). We distinguish two
cases:

(a) 0% MPI compensation at the coherent receiver (Fig. 2a):
The optimum Q−factor increases from 5.9 dB for SMF to
7 dB for 45/55 mix of QSMF and SMF and then drops to
6.7 dB for QSMF only. In this specific case, the optimum
Q−factor is maximized with the use of 45 km QSM fiber
per span. The Q−factor improvement for using hybrid
fiber spans compared to using SMF exclusively is 1.2
dB.

(b) 100% MPI compensation (Fig. 2b): The optimum
Q−factor increases from 5.9 dB for SMF, to 7.5 dB for
45/55 mix of QSMF/SMF, to 7.8 dB for QSMF only. In
this specific case, the optimum Q−factor is maximized
with the exclusive use of QSMF per span. The Q−factor
improvement for using only QSMF as opposed to using
SMF exclusively is 1.9 dB.

The lines in Fig. 2 are obtained by least squares fitting of the
numerical results using (1). Notice that the numerical results
and the fitted lines agree extremely well and this is a strong
indication that (1) is indeed an accurate model. However, the
analytical calculation of γ̃ in (1) from first principles using
the proposed nonlinear GN model is rather inaccurate.

1) Q vs. P curves: Next, we check the accuracy of the
proposed nonlinear GN model against Monte Carlo simulation.
We will show that the proposed nonlinear GN model describes
qualitatively the general shape of the simulated Q vs. P curves
but it does not provide pointwise accuracy. Nevertheless, as we
are going to see subsequently, despite its quantitative errors,
the proposed nonlinear GN model is sufficient for a quick
determination of the optimum fiber splitting ratio.

As an illustration of the disagreement between the proposed
nonlinear GN model and the simulation results, we replot from
Fig. 2a the Monte Carlo simulation points (circles) describing
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(a)

(b)

Fig. 2: Q-factor as a function of the total launch power per
channel. (a) No MPI compensation; (b) 100% MPI compensa-
tion. (Symbols: Points: Monte Carlo simulations; Lines: Fitting
using (1).)

the variation of the Q−factor as a function of the average
launch power for the case of 45/55 QSMF/SMF mix in the
absence of MPI compensation (Fig. 3).

On the same graph, we superimpose the incoherent nonlin-
ear GN model with ε = 0 (in blue), the coherent nonlinear GN
model (in red), and the partially-coherent nonlinear GN model
with ε = 0.15 (in black). The analytical models based on
coherent and incoherent addition deviate from the numerical
results at relatively small launch powers. The peak deviation
of the analytical curves in blue and red from the numerical
results varies with the fiber attributes and system parameters.
In this particular case, if we compare the values at the maxima,
there is a mismatch of 0.4 dB between the coherent nonlinear
GN model and the simulation. The discrepancy between the
analytical and numerical results can be remedied to some
extent by using the partially-coherent nonlinear GN model
with ε as a fitting parameter (black line).

Fig. 3: Q-factor as a function of the total launch power
per channel for 45/55 QSMF/SMF mix. (Condition: No MPI
compensation.)

2) Optimum Q−factor vs. QSMF length: As another illus-
tration of the validity of the analytical model, we examine the
variation of the peak Q−factor Q0 as a function of the QSMF
length per span (Fig. 4). A major disagreement is apparent.
However, we notice that the optimum QSMF length, where
the peak Q−factor Q0 occurs, does not differ substantially
from curve to curve. The fact that we obtain essentially the
same predictions for the optimum QSMF length from all the
different variants of the analytical model is indicative of its
usefulness.

Fig. 4: Peak Q−factor Q0 vs. QSMF length `s1 per span.
(Condition: No MPI compensation.)

3) Optimum splitting ratio vs. MPI compensation: Fig. 5
shows a plot of the optimum splitting ratio vs. MPI compen-
sation. The vertical axis is normalized so that the span length
ratio varies between zero and one. Monte Carlo simulation
data are represented by blue points. The blue line shows a
phenomenological model fit of the Monte Carlo simulation
data. The blue shaded region around the blue line indicates
±0.1 dB deviations from the optimum Q−values. The other
lines show the predictions of different variants of the modified
nonlinear GN model. As the MPI compensation increases, the
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ratio `s1/`s increases to unity. The modified nonlinear GN
model predictions are within the blue region.

Fig. 5: Variation of the optimal normalized QSMF length
per span `s1/`s as a function of the percentage of MPI
compensation at the coherent optical receiver.

Besides these validity checks, there are others presented by
the authors at ECOC’17 [19] for different fiber parameters that
corroborate the current findings. Therefore, we believe that we
have established the validity of the proposed analytical model
for the practical determination of the optimum fiber splitting
ratio per span. Henceforth, instead of numerically optimizing
the lengths of the different fiber segments per span by solving
the Manakov equation, which is a time consuming process,
one can conveniently resort to the analytical model.

IV. SUMMARY

The nonlinear GN model is a well-established theoretical
framework based on a set of simplifying hypotheses en-
suring mathematical tractability. The conventional nonlinear
GN model was developed for uniform fiber spans. Here, we
generalized its formalism to the case of hybrid fiber spans.
We performed extensive Monte Carlo simulation verification
for a representative transatlantic point-to-point link of total
length equal to 6,000 km with 100 km hybrid fiber spans,
composed of an experimental QSMF and a commercially-
available, ultra-low-loss, large-effective-area SMF without any
splice losses. We showed that the modified nonlinear GN
model is sufficiently accurate for the determination of the
optimum fiber splitting ratio per span, yielding a system
performance within ±0.1 dB from the optimum Q−value.
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