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Abstract—This paper introduces totally positive kernels and
Pólya type distributions to information theory. In particular,
it is shown that the variational diminishing property of Pólya
type distributions, which is captured by the Oscillation Theorem,
can be used to characterize the structure of capacity-achieving
distributions for a large class of channels.

I. INTRODUCTION

In his seminal paper [1], Shannon has characterized the
fundamental limit of communication over a noisy channel by
the following optimization problem:

C = max
X∈ΩX

I(X;Y ), (1)

where I(X;Y ) is the mutual information between the channel
input X , and the channel output Y , and ΩX is a constraint on
the input, e.g., ΩX = [−A,A].

Even in the simplest settings, finding the optimizer in (1) is
often too unwieldy, and in fact this feat can only be accom-
plished in certain special cases of ΩX . Under the framework
that ΩX is a compact interval, if the channel transition kernel
PY |X satisfies a mild set of regularity conditions, this work
proposes a general method that is able to characterize the
structure of the optimal input distribution by showing that
the optimal input distribution is discrete with finitely many
mass points. The method is shown to work for a wide family
of channel transition probabilities PY |X termed Pólya type
distributions.

A. Contributions and Paper Outline

The main actors in this paper, the totally positive kernels
and the Pólya type distributions, are described in Section II.
While it also contains several important theorems regarding
various properties of these type of kernels, the most important
theorem in this paper, namely the Oscillation Theorem, along
with the definitions of the two novel concepts, a transform
based on totally positive kernels and its inverse transform,1

are presented in Section II, as well.
The role of the Pólya type distributions and the Oscillation

Theorem in information theory are described in Section III.
In particular, under very mild conditions on the random
transformation PY |X , it is shown that if the constraint set
ΩX is a compact interval, then the optimizing input X in (1)

1Presuming the inverse transform exists. Existence conditions for the
inverse of the transform that is based on Pólya type functions are part of
our ongoing research.

is a discrete random variable whose number of mass points
cannot exceed the number of zeros of a downward shifted
output probability density function (pdf). Last but not least,
Section III concludes with the discussion on how such results
can be extended to channels with more abstract output spaces.

B. Past Work

In this subsection, we give a brief overview of the available
methods for finding capacity-achieving distributions. An in-
detail summary of this topic can be found in [2].

In the case when channel input and output spaces have finite
cardinalities, capacity-achieving distributions can be obtained
numerically by using the Blahut-Arimoto algorithm [3], [4].
Specifically, in the case when the channel transition probability
is symmetric (i.e., all rows of the channel transition matrix
are permutations of each other) it is well-known that the
equiprobable distribution over the input alphabet achieves the
channel capacity [5, Chapter 7.2]. Indeed, for channels with
finite alphabets, Gallager in [6, Corollary 3, p. 97] has shown
that the smallest number of channel input symbols that can
be used with nonzero probability to achieve capacity must be
less than the cardinality of the output space.

For channels whose input or output (or both) alphabet
has infinite cardinality (either countable or uncountable) the
problem of finding a capacity-achieving distribution takes a
form of an infinite dimensional optimization and is often too
difficult to solve. However, several results are known regarding
the structure of the support of capacity-achieving distributions.
For instance, in the case when the output space is finite and
the input space is an arbitrary compact set, Witsenhausen [7],
using Dubins’ hyperplane theorem, has generalized the result
of Gallager by showing that a capacity-achieving distribution
is discrete with the number of mass points upper bounded by
the cardinality of the output space. This bound is often tight.
Regretfully, Witsenhausen’s elegant approach does not work
for the arbitrary output alphabet case. Luckily, the approach
presented here is able to extend Witsenhausen’s result to more
generic output alphabet cases.

The most general approach for finding the structure of
capacity-achieving distributions, which works for arbitrary
alphabets, employs convex optimization methods [6, Theorem
4.5.1]; see also [2]. The caveat, however, is that such an
approach usually needs additional tools from complex analysis
and the theory of analytic functions. This marriage of convex
and complex analyses has been used successfully to show
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that the capacity-achieving distributions are discrete for several
practically relevant channels such as the Gaussian noise chan-
nel with an input amplitude constraint [8], Poisson channel
with an input peak-intensity constraint [9], Rayleigh fading
channel with an input power constraint [10], and arbitrary
additive channels where the noise pdf is an analytic function
[11]. However, a drawback of this technique is that the proofs
are inherently non-constructive, and the obtained results only
show discreteness without providing any type of bounds on
the support size of capacity-achieving distributions. One of the
aims of this paper is to fill this theoretical gap by providing
a constructive method based on the properties of Pólya type
distributions. Not only are the introduced tools strong enough
to show that a capacity-achieving distribution is discrete with
finite support, but they are also able to provide concrete upper
bounds on the number of elements in that support.

Finally, there are several ad-hoc methods for finding
capacity-achieving distributions. One such method is the max-
imum entropy principle introduced by Shannon in [1] who
showed the optimality of a Gaussian input distribution over
the additive Gaussian noise channel with a power constraint
on the input. The maximum entropy principle has also been
successfully applied to find the capacity-achieving distribution
of an additive exponential noise channel with a first moment
constraint on the input [12]. Other ad-hoc methods use the
notion of stochastic dominance or estimation theoretic tech-
niques. For these and other methods the interested readers are
referred to [2].

C. Notation

Throughout the paper, we denote the distribution of a
random variable X by PX . Moreover, we say that a point
x is in the support, denoted by supp(PX),2 of the distribution
PX if for every open set O 3 x we have that PX(O) > 0.

The number of zeros of a function f : R→ R on the interval
I is denoted by N(I, f). Similarly, if f : C→ C is a function
on the complex domain, N(D, f) denotes the number of its
zeros within the region D. The interior of the set O is denoted
by O̊.

Finally, while the mutual information between X and Y is
denoted by I(X;Y ), the entropy of a discrete random variable
X is denoted by H(X) and the differential entropy of a
continuous random variable X is denoted by h(X).

II. MAIN TOOL: TOTALLY POSITIVE KERNELS AND PÓLYA
TYPE DISTRIBUTIONS

The main tool used in this paper is the variational di-
minishing property of Pólya type distributions introduced by
Karlin [13] in the context of the statistical decision theory.
Before introducing this key property, we shall describe some
important concepts, namely totally positive kernels and Pólya
type distributions, required in our analysis.

2Also known as “points of increase of PX” or “spectrum of PX .”

A. Totally Positive Kernels

Definition 1 (Totally Positive Kernel3). Given arbitrary real
subsets, S1 and S2, a function f : S1 × S2 → R is said to be
a totally positive kernel of order n if

det


f(x1, y1) · · · f(x1, ym)

...
. . .

...

f(xm, y1) · · · f(xm, ym)

 ≥ 0 (2)

for all 1 ≤ m ≤ n, and for all x1 < · · · < xm ∈ S1 and
y1 < · · · < ym ∈ S2. A function f is called a totally positive
kernel if it is a totally positive kernel of order n for every
choice of n ∈ N. Moreover, if (2) holds with strict inequality,
then the function f is called a strictly totally positive kernel
of order n and a strictly totally positive kernel, respectively.

In what follows, the class of strictly totally positive kernels
of order n and the class of strictly totally positive kernels are
denoted by Tn and T∞, respectively.

From Definition 1, f(·, ·) ∈ T1 if and only if

f(x, y) > 0, (3)

for all (x, y). Moreover, f(·, ·) ∈ T2 if and only if the ratio
f(x1, y)/f(x2, y) is strictly monotone decreasing in y for
x1 < x2.

Further imposing symmetry and positive (semi-)definiteness
in the definition of totally positive kernels, one recovers the
definition of positive (semi-)definite kernels.

Definition 2 (Positive (Semi-)Definite Kernel [15]). A sym-
metric function f : S×S → R is said to be a positive definite
kernel if the matrix

f(x1, x1) · · · f(x1, xm)
...

. . .
...

f(xm, x1) · · · f(xm, xm)


is positive-definite for all m ∈ N and for all x1 6= · · · 6= xm ∈
S.

Employing the relationship between positive definite matri-
ces and their determinants, as stated below, it is easy to see
that the class of strictly totally positive kernels contains that
of positive definite kernels.

Lemma 1. Let K and T∞ denote the set of all positive definite
kernels and the set of all strictly totally positive kernels,
respectively. Then, K ⊂ T∞.

Positive definite kernels are often encountered in machine
learning applications [15]. However, while the symmetry as-
sumption made in Definition 2 is common for many machine
learning applications, it is too restrictive for the purposes of
this paper.

3Definition 1 is a generalization of functions introduced by Pólya in [14]
where only the shift families, i.e., f(x, y) = g(x− y), were considered.
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The following theorem [16, Lemma 5] is a useful tool in
checking whether a given function is a member of Tn.

Theorem 1. Let µ be a σ-finite measure. For p(·, ·) ∈ Tn and
q(·, ·) ∈ Tm, suppose

r(x, y) =

∫
p(x, t)q(t, y)dµ(t). (4)

Then, r(·, ·) ∈ Tmin(n,m).

Another useful instrument in verifying whether a function
f is a member of T∞ is the following theorem [17].

Theorem 2. T∞ satisfies the following:

1) (Closure Under Positive Linear Combinations) Given
{f1, . . . , fn} ⊂ T∞ and αi ≥ 0, i = 1, . . . , n, it follows
that

∑n
i=1 αifi ∈ T∞.

2) (Closure Under Limits) For any (x, y), suppose that
f∞(x, y) = limi→∞ fi(x, y) where fi ∈ T∞. Then,
f∞ ∈ T∞.

B. Pólya Type Distributions

Building upon the familiarity with the totally positive ker-
nels established in the previous section, we define Pólya type
distributions as follows:

Definition 3 (Strictly Pólya Type Distribution). Let S be an
arbitrary real subset and I be an open interval. A distribution
P (·|x) on the set S that depends on the parameter x ∈ I is
said to be a strictly Pólya type-n distribution if

P (y|x) = β(x)

∫ y

−∞
f(t, x)dν(t), (5)

where ν is a σ-finite measure, β(·) > 0 is the normalization
constant and f(·, ·) ∈ Tn. If P (·|x) is a strictly Pólya type-n
distribution for all n ∈ N, then P (·|x) is said to be a strictly
Pólya type-∞ distribution.

To make it easier to refer to them, in what follows the class
of strictly Pólya type-n and the class of strictly Pólya type-∞
functions are denoted by Pn and P∞, respectively.

Immediate from the above definition, observe that a contin-
uous distribution is a member of P∞ if and only if its pdf is
an element of T∞. Similarly, a discrete distribution is in P∞
if and only if its probability mass function (pmf) is contained
in T∞.

Note that many distributions are members of P∞. As an
example, consider the large family of single-parameter expo-
nential distributions whose cumulative distribution functions
(cdfs) can be written as

F (y|x) = λ(x)

∫ y

−∞
extdµ(t), (6)

where λ(x) > 0, f(x, t) = ext ∈ T∞, and µ is some σ-
finite measure. While a non-exhaustive list of Pólya type-∞
distributions is given in Table I, some other examples from
P∞ can be found in [13], [16] and [18].

TABLE I: Common Distributions that are Pólya type-∞. We
denote the pdf’s by f(·|x); and the pmf’s by p(·|x).

Distribution Name PDF or PMF

Gaussian f(y|x) =
1
√
2π

e−
(y−x)2

2 , y ∈ R, x ∈ R

Laplace f(y|x) =
1

2
e−|y−x|, y ∈ R, x ∈ R

Poisson p(y|x) =
xye−x

y!
, y ∈ N ∪ {0}, x ≥ 0

Noncentral Chi-Square
f(y|x) = 1

2
e−

y+x
2

( y
x

) k−2
4 I k

2
−1

(
√
xy),

y ≥ 0, x ≥ 0, k > 0

Binomial
p(y|x) =

(n
y

)
xy(1− x)n−y ,

y ∈ {0, 1, . . . , n}, x ∈ [0, 1]

Gamma f(y|x) =
1

xk
yk−1e−

y
x , y > 0, x > 0, k > 0

Still, not every probability distribution is a member of P∞.
A non-example is the Cauchy distribution, whose density is
given by

f(y|x) =
1

π

1

1 + (y − x)2
. (7)

Clearly, f ∈ T1. To see that f 6∈ Tn for n ≥ 2, observe that
choosing (x1, x2, y1, y2) = (1, 2, 3, 4) results in

det

f(y1|x1) f(y2|x1)

f(y1|x2) f(y2|x2)

 = − 1

(10π)2
< 0, (8)

violating the condition in (2).

C. Oscillation Theorem

An important feature of the Pólya type distributions is their
variational diminishing property, which is captured by the
Oscillation Theorem. The following definition sets the stage
for this property.

Definition 4 (Number of Sign Changes of a Function). The
number of sign changes of a function ξ on the set S is given
by

S (S, ξ) = sup
m∈N

 sup
yi∈S :

y1<···<ym

N {ξ(yi)}mi=1

 , (9)

where N {ξ(yi)}mi=1 is the number of sign changes of the
sequence {ξ(yi)}mi=1.

Proven in [16], the following theorem is the main tool in
connecting the number of zeros of the output pdf fY ? (or pmf
pY ? in the case of discrete output alphabet) to the number of
mass points of a capacity-achieving input distribution PX? .

Theorem 3 (Oscillation Theorem). Given an arbitrary set
S ⊂ R and an open interval I, let p(·|·) : S × I → R be a
strictly Pólya type-∞ distribution. For an arbitrary but fixed y,
suppose p(y|·) : I → R is an n-times differentiable function.
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Assume that µ is a measure on S , and let ξ : S → R be a
function with S (S, ξ) = n. For x ∈ I, define

Ξ(x) =

∫
ξ(y)p(y|x)dµ(y). (10)

If Ξ: I→ R is an n-times differentiable function, then either
of following statements holds:

1) Ξ 6≡ 0, and S (S,Ξ) ≤ N(I,Ξ) ≤ S (S, ξ) = n; or
2) Ξ ≡ 0. This holds if and only if the supp(µ) is a subset

of zeros of ξ(·).

D. A Transform Based on Totally Positive Kernels

This section is devoted to the definition of a transform based
on totally positive kernels.

Definition 5. Let f : I → R and let p(·|·) ∈ Tn. Then, a
Pólya transform of a function f with respect to kernel p(·|·)
is defined as

P[f ](x) =

∫
f(y)p(y|x)dµ(y). (11)

An inverse of this transform, provided that it exists, is denoted
by P−1.

While the definition of this transform is clear-cut, the exis-
tence of its inverse is part of our ongoing research. Although,
it should be noted that there are cases where the inverse of
the above transform is a non-issue. For example, if p(·|x) is
Gaussian pdf with mean x, then the above transform becomes
what is known as the Weierstrass transform, which has a well-
defined inverse transform [19].

III. APPLICATION IN INFORMATION THEORY: STRUCTURE
OF CAPACITY-ACHIEVING DISTRIBUTIONS

In this section we show how the tools presented in Section II
can be used to find properties of capacity-achieving input
distributions for a large class of channels.

Consider a memoryless point-to-point channel with the
input space ΩX ⊂ R, the output space ΩY ⊂ R and the
channel transition probability PY |X . For ease of presentation,
we assume that probability measure PY |X=x has a probability
density function denoted by fY |X(·|x). We note, however, that
the results of this section generalize to more abstract cases.

Suppose that the set of all feasible inputs, ΩX ⊂ R,
is a compact interval. Observe that the compact interval
assumption on ΩX is not only ubiquitous, but it also carries
practical relevance. For example, if the channel is Gaussian,
i.e., PY |X=x ∼ N (x, 1), and ΩX = [−A,A] we have the
so-called peak-power constrained additive Gaussian channel
[8], and if the channel is Poisson, i.e., PY |X=λ ∼ Poi(λ),
and ΩX = [0, A] we have the so-called intensity constrained
Poisson channel [9].

It is well known that the capacity expression for channels
with such constraints is given by

C = max
X∈ΩX

I(X;Y ), (12)

where it is assumed that a capacity-achieving X? ∈ ΩX exists.
The situations in which a capacity-achieving distribution may
not exist, in which case the maximum in (12) should be
replaced by the supremum, are outside the scope of our present
treatment.

Using elementary tools from convex optimization, the max-
imizing input X? in (12) must satisfy the following necessary
and sufficient conditions [2].

Lemma 2. X? ∼ PX? is a capacity-achieving distribution in
(12) if and only if the following two conditions are satisfied:

∀x ∈ ΩX : i(x;PX? , PY |X) ≤ max
X∈ΩX

I(X;Y ), (13)

∀x ∈ supp(PX?) : i(x;PX? , PY |X) = max
X∈ΩX

I(X;Y ), (14)

where

i(x;PX , PY |X) = E
[
log

(
fY |X(Y |X)

fY (Y )

)∣∣∣∣X = x

]
. (15)

For our analysis, the following definition is also required:

h(Y |X = x) =

∫
log

(
1

fY |X(y|x)

)
fY |X(y|x)dy. (16)

Under very mild conditions, the next result shows that for a
Pólya type-∞ channel with a compact interval constraint ΩX
on the input, a capacity-achieving distribution is discrete with
a number of mass points not exceeding the number of zeros
of a downward shifted output pdf.

Theorem 4. Suppose that the following conditions hold:

1) PY |X is Pólya type-∞;
2) h(Y |X = ·) has an inverse Pólya transform (see Defini-

tion 5); and
3) There exists an x ∈ ΩX such that

i(x;PX? , PY |X) < max
X∈ΩX

I(X;Y ). (17)

Then,

|supp(PX?)|

≤ N
(

ΩY , fY ?(·)− e−P−1[h(Y |X=·)](·)−C
)

+ 2 (18)

<∞, (19)

provided that fY ?(·)−e−P−1[h(Y |X=·)](·)−C has finitely many
zeros on ΩY .

Proof. Let

Ξ(x;PX? , PY |X) = i(x;PX? , PY |X)− C. (20)

Suppose that N
(
ΩX ,Ξ(·;PX? , PY |X)

)
< ∞. An immediate

consequence of Lemma 2 is the fact that if x ∈ supp(PX?)
then i(x;PX , PY |X)− C = 0. In other words,

|supp(PX?)| ≤ N
(
ΩX ,Ξ(·;PX? , PY |X)

)
. (21)
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Next, observe that Ξ(·;PX? , PY |X) can be re-written as
follows:

Ξ(x;PX? , PY |X)

=

∫
log

1

fY (y)
fY |X(y|x)dy − C − h(Y |X = x) (22)

=

∫
log

e−P−1[h(Y |X=·)](y)−C

fY (y)
fY |X(y|x)dy (23)

=

∫
ξ(y)fY |X(y|x)dµ(y), (24)

where in (23) we have used Assumption 2 that the inverse
Pólya transform of function h(Y |X = ·) exits; and in (24)

ξ(y) = log
1

fY ?(y)
−P−1 [h(Y |X = ·)] (y)− C. (25)

Now, using the fact that the fY |X is a Pólya Type-∞, and
resuming from (21)

|supp(PX?)|
≤ N

(
ΩX ,Ξ(x;PX? , PY |X)

)
(26)

≤ N
(

Ω̊X ,Ξ(x;PX? , PY |X)
)

+ 2 (27)

≤ S (ΩY , ξ) + 2 (28)
≤ N (ΩY , ξ) + 2 (29)

= N
(

ΩY , fY ?(·)− e−P−1[h(Y |X=·)](·)−C
)

+ 2, (30)

where (27) follows from restricting attention to the interior of
ΩX and accounting for possible zeros at the two boundary
points; (28) follows from Theorem 3 where we have used As-
sumption 3 to eliminate the possibility of Ξ(·;PX? , PY |X) ≡
0; (29) follows because the number of zeros is an upper bound
on the number of sign changes; and (30) follows by observing
that ξ(y) = 0 if and only if fY ?(y)−e−P−1[h(Y |X=·)](y)−C =
0.

Lastly, suppose N
(
ΩX ,Ξ(·;PX? , PY |X)

)
=∞. Then, (24)

and Theorem 3 enforce that fY ?(·) − e−P−1[h(Y |X=·)](·)−C

cannot have finitely many zeros, causing a contradiction. �

Several comments are in order.
I) An inverse Pólya transform always exists for an addi-

tive Pólya type-∞ channel with finite noise differential
entropy. That is, suppose that the channel input-output
relation is given by Y = X+Z, where the noise random
variable Z satisfies |h(Z)| < ∞, and supp(Z) = R.
In this case, h(Y |X = ·) = h(Z) is a constant, and
P−1 [h(Y |X = ·)] (·) ≡ h(Z). As a result, (18) becomes

|supp(PX?)| ≤ N
(

ΩY , fY ? − e−h(Z)−C
)

+ 2. (31)

II) Suppose, in addition to the conditions in Item I), that the
output pdf is differentiable. Then, by Rolle’s Theorem
from elementary calculus, we can loosen the upper bound
in (18) as

|supp(PX?)| ≤ N (ΩY , f
′
Y ?) + 3. (32)

Although looser, the benefit of (32) over (18) is that it
reduces the dependence on the channel capacity C, which
is typically unknown, because, in general, the maximizing
distribution is unknown.

III) The assumption that fY ?(·)− e−P−1[h(Y |X=·)](·)−C has
finitely many zeros on ΩY is not a restrictive assumption.
For example, it is satisfied when the channel is additive
and the output pdf is an analytic function4 on R. Indeed,
this is the case for an additive Gaussian channel with peak
power constraint ΩX = [−A,A]. In this case, using the
properties of the zeros of analytic functions, we arrive at

|supp(PX?)| <∞. (33)

In particular, the bound in (33) gives an alternative
method of proving Smith’s result in [8] where it was
shown that for a Gaussian noise channel the maximizing
input distribution is discrete with finitely many points. In
fact, due to limitations of the technique Smith used in
his proof, unknown before was a firm upper bound on
|supp(PX?)|, which is now shown in our recent work to
be O(A2); see [20].
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actions, I,” in Proceedings of the Third Berkeley Symposium on Mathe-
matical Statistics and Probability, Volume 1: Contributions to the Theory
of Statistics. The Regents of the University of California, 1956.
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