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Abstract—This paper provides a general derivative identity for
the conditional mean estimator of an arbitrary vector signal in
Gaussian noise with an arbitrary covariance matrix. This new
identity is used to recover and generalize many known identities
in the literature and derive some new identities. For example, a
new identity is discovered, which shows that an arbitrary higher-
order conditional moment is completely determined by the first
conditional moment.

Several applications of the identities are shown. For instance,
by using one of the identities, a simple proof of the uniqueness of
the conditional mean estimator as a function of the distribution
of the signal is shown. Moreover, one of the identities is used to
extend the notion of empirical Bayes to higher-order conditional
moments. Specifically, based on a random sample of noisy
observations, a consistent estimator for a conditional expectation
of any order is derived.

Index Terms—Conditional mean estimator, empirical Bayes,
Gaussian Noise.

A full version of this paper is accessible at [1].

I. INTRODUCTION

There are several derivative identities in the literature that
relate conditional mean estimators to other quantities such
as the score function and the conditional variance. Such
identities are often used in information theory to give way
to estimation theoretic arguments (e.g., I-MMSE relationship
[2]). In estimation theory such identities are often used to
design new estimation procedures (e.g., empirical Bayes [3]).
In this work, it is shown that many of the known identities
in the literature can be derived systematically from a single
unifying derivative identity. Moreover, we use this new identity
to derive several generalizations of the previously known
identities and discover some new identities. Furthermore, the
derived identities are used to propose a generalization of an
empirical Bayes procedure.

Contribution: The contribution and the outline of the
paper are as follows:

« Section II presents the system model;

o In Section III, Theorem 1 presents a new identity for the

Jacobian of the conditional mean;
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« Section IV is dedicated to the Tweedie-Robbins-Esposito
(TRE) formula. The TRE formula relates the conditional
expectation with the score function of the output random
variable;

o In Section V, Proposition 1 presents a simple proof of a
vector version of Hatsel-Nolte identity, which relates the
Jacobian of the conditional expectation to the conditional
variance;

o In Section VI, Proposition 2 and Proposition 3 show
two vector generalizations of the recursive Jaffer’s iden-
tity, which relates higher-order conditional moments to
the derivatives of the lower-order conditional moments.
Moreover, in Section VI-B, Proposition 4 provides an
equivalent integral version of Jaffer’s identity which
shows that every higher-order conditional moment is
completely determined by the first-order conditional mo-
ment;

o Section VII is dedicated to applications of the derived
identities. In Section VII-A, Proposition VII-A shows a
small application of Hatsel-Nolte identity concerning the
maximum and minimum °‘slope’ of the conditional mean
estimator. In Section VII-B, Theorem 2 uses the new inte-
gral generalization of Jaffer’s identity to show the unique-
ness of the conditional mean estimator as a function of
the distribution of the signal. Finally, Section VII-C uses
a new integral generalization of Jaffer’s identity to extend
the notion of empirical Bayes to higher-order conditional
moments. Specifically, Theorem 3, based on a random
sample of noisy observations, proposes a consistent esti-
mator for a conditional expectation of any order; and

o Section VIII concludes the paper.

Notation: The set of all positive integers is denoted by
N, [n] is the set of integers {1,...,n}, and R™ is the set of
all n-dimensional real-valued vectors.

Deterministic scalar quantities are denoted by lowercase let-
ters, scalar random variables are denoted by uppercase letters,
vectors are denoted by bold lowercase letters, random vectors
by bold uppercase letters, and matrices by bold uppercase sans
serif letters (e.g., x, X, x, X, X). All vectors in the paper are
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column vectors.

The standard basis vectors for R” are denoted by e;, ¢ € [n].
For a matrix A, we use [A];; to denote the entry of the row ¢
and column j. The Euclidian norm of a vector x € R" in this
paper is denoted by ||x||.

The gradient of a function f : R®™ — R is denoted by
Vxf(x) € R™, and the Jacobian matrix of a function f :
R™ — R™ is denoted by Jxf(x) € R™*", that is

9fi(x)

Uxf(x))i; = oz,
The Hadamard product between A € R"*" and B € R"*™
will be denoted by A ® B. Moreover, A@”7 n € N denotes
the Hadamard product repeated n times on the matrix A. For
a function f : R™ — R", we use the following version of the
higher-order gradient V©'f, v € N, which is defined as

[VQUf(x)]i = 88::1) [f(X)L‘, 1€ [TL] 2)

II. MODEL

The underlying model considered through this paper is
described by the following input-output relationship:

Y =X +N, 3)

i € [m],j € [n]. (1

where N € R" is a zero mean, normally distributed with
the covariance matrix Ky, and independent of X € R".
Throughout the paper Ky is assumed to be a positive definite
matrix, and we make no assumptions about the probability
distribution of X.

ITI. A NEW IDENTITY FOR THE CONDITIONAL
EXPECTATION
The main result of this paper is the following theorem.
Theorem 1. Let U € R™ be an arbitrary function of X €
R™. Then,
LE[UY =y] = Cov(U, XY = y)Ky', y €R™. ()
Proof: See Appendix. |

Conversely, Theorem 1 can be re-written as

E[U;[Y =]
Yy
— E[U,[Y = 0] +f Cov(Up, XY = t)K! -dt,  (5)
0

where i € [m], and § is a line integral over an arbitrary path
between 0 and y.

We now discuss some consequences of the identity in
Theorem 1. Specifically, this would be done by evaluating
Theorem 1 with different choices of U such as U = X, and
U= (XX"k1X keN

IV. TWEEDIE-ROBBINS-ESPOSITO IDENTITY
The proof of Theorem 1 will rely on the following identity:

Vyfy(y)

fr(y) '
where fy(y) is the probability density function (pdf) of Y.
We note that the quantity v}fj ‘((y()y ) s commonly known as the
score function.

EX[Y =y] =y +Kn (©)

Literature Review: The scalar version of the identity in
(6) has been derived by Robbins in [4] where he credits
Maurice Tweedie for the derivation. The vector version of
the identity in (6) was derived by Esposito in [5]. Therefore,
throughout this paper, we refer to the identity in (6) as
Tweedie-Robbins-Esposito identity or TRE for short.

The application of the TRE identity in (6) can considerably
simplify the computation of E[X|Y] as we do not need to
derive the conditional distribution Px|y and only require to
compute fy(y) and the gradient of fv(y). For an example
of such an application, the interested reader is referred to [6]
where the TRE identity was used to compute E[X|Y] for the
case where X is uniform on a sphere.

The observation that, via the TRE identity, the conditional
expectation can be represented only in terms of the marginal
distribution of the output Y has led to the development of the
empirical Bayes procedure [4]; the interested reader is referred
to [3] for an overview of the empirical Bayes procedure.

The TRE identity has also been used in the proofs of the
scalar and vector versions of the [-MMSE relationship in [7]
and [8], respectively.

V. THE IDENTITY OF HATSELL AND NOLTE
By setting U = X in (4) we arrive at the following identity.

Proposition 1. For y € R™.
JLEX|Y =y] = Var(X|Y = y)Ky" (7

Literature Review: The identity in (7) has been first
derived by Hatsell and Nolte in [9] for the case of Kn = .
The general version in (7) was first derived in [8] where it was
used, together with the TRE identity in (6), to give a proof of
the vector version of the I-MMSE relationship.

In [10], the scalar version of the identity in (7), was used
to show that the minimum mean squared error is Lipschitz
continuous with respect to the Wasserstein distance.

VI. JAFFER’S IDENTITY

In [11], Jaffer has shown the following identity:
for k € N U {0}

E [Xkﬂ Y = y}

= aniyE[X’“\Y =y|+E[XF|Y =y EX|Y =], ©®)
where o2 is the variance of the noise. To the best of our

knowledge, Jaffer’s identity in (8) has had little applications
and is not well known. In what follows, we develop several
vector generalizations of Jaffer’s identity. Moreover, we derive
an alternative but equivalent integral version of the Jaffer’s
identity and show how this new identity can be used to prove
uniqueness of the conditional mean estimator. We also use
this integral identity to extend the notion of empirical Bayes
to higher order conditional moments.
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A. Vector Generalization of Jaffer’s Identity

Given the fact that there is no unique generalization of
higher moments to the vector case, several vector generaliza-
tions of the identity in (8) are possible. Next, we present two
such generalizations.

The first generalization of (8) allows to have different
exponents across elements of X.

Proposition 2. For every m € [n], v; € NU{0}, i € [n] and

y € R
d n S - B
=E| J] (efKn'X)" (el KN'X)" Y =y
i=1:1#m
—E ] (e/KS'X)" Y =y |E [e] KXY =y]. 9)
i=1

Proof: The proof follows by evaluating (4) with U =
n —1 Vi
I[Tis, (el KN X) u

In the case when Ky is a diagonal matrix with [Kn]i; = 02
the identity (9) reduces to

n d n
V1 v; _ _ 2 = Vi _
E| Xt H XY =y _aiidyiE HX Y—y}
i=1l:1#m i=1
+E[[ XY =y | E[XnY =y]. (10)
=1

Furthermore, by setting v; = 0 for ¢ # m the identity in
(9) can be re-written in terms of the Hadamard product as
follows: for y € R", m € [n] and v € NU {0}

d _ v — (v+1)
B E (K& X) " 1Y =y] =E[(ky'X) 7" [y =y
~E[(Ky'X) 7Y =y 0 E[KY'X|Y =y]. (11)

The second generalization of (8) is in terms of powers of a
matrix.

Proposition 3. For k € N and y € R"
E[(XXT)HY = y] = KndyE [(XX)*1X[Y = y]
+E[(XXT) XY =y]E[XT|Y =y]. (12)
Proof: The proof follows by evaluating (4) with U =
(XXT)k=1X., [ ]
B. A New Perspective on Jaffer’s Identity

Next, we show that Jaffer’s identity has an alternative inte-
gral version. This new integral representation leads to several
interesting consequences. The following auxiliary lemma, the
proof of which can be found in [1], would be useful.

is equivalent to

k
fro(z) =eJo .fl(t)dtikefoz fit)dt. (14)

dx
Next, we present the integral alternative of Jaffer’s identity.

Proposition 4. Let f : R* — R” and £=° : R® — R" be
defined as follows: for i € [n] and 'y € R"

[f(y)} :efoyi]E[e;‘rngl)qY:(yl7~~~yi—17t7yi+1~~~;yn)}dt’ 15)

%

EO)] = E(y)]; (16)
Then, for k € N and y € R"
E [(K;le)@k Y = y} = O®y) o VO E(y).  (17)

Proof: By setting v; = k for i = m and v; = 0 for i = m
the identity in (9) reduces to
d
dym
-E [ (el Kn'X

m

E|(ehKa'X)" Y =y
)Y = y}

—E [(e;K;X)’“ Y = y}E el KN'X[Y =y]. (18)
Now, by defining
fielym) = B[ (ehKn'X)" Y =],

and applying Lemma 1 to (18) we arrive at

19)

E {(e,TnK;fX)’“ Y = y]

k

m Iy 1y — d m Iy )y =

o S Ele], K" X|Y=t]|dt, . ol Ele], KN X|Y=t]dt,, (20)
dyy,

where [t]; = y; for ¢ # m. The proof is concluded by using
the definition of the Hadamard product and V®? in (2). W

In the case when Ky is a diagonal matrix with [Knli; = o2
the identity (17) reduces to: for y € R and k € N

k
E[Xm|Ym = ym]
_ ok S SR Yo =tlae A8 b oL Y e
=0; ™ —em .
dyg,

2y

An important feature of the integral version of Jaffer’s iden-
tity is that any higher-order conditional moment is determined
by the first conditional moment. This observation would be
used in Section VII-B to show that the conditional expectation
is uniquely determined by the distribution of the input X.

Another identity equivalent to that in (21) is shown in the
following corollary.

Corollary 1. For any k € Nand y € R

Lemma 1. Let fr, : R — R be a sequence of functions k = a* o
0,1,2,... with fo = 1. Then, the recurrence relationship dyF fr (y)ez-
d EX*Y =y] =o* = (22)
fk(x): afkfl(z)—’—fk*l(x)fl(m%k:1727--~ (13) fY(y)eﬁ
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Alternatively, let t — H, (t), m € (0,1,
tic Hermite polynomial, then

2kzm 0( ) v m)( )(UZ’?L H (’L%)
fr(y) '

..] be a probabilis-

E[X*Y =y] =
(23)

Proof: First, observe that using the scalar TRE identity
in (6) we have that

YE[X|Y =t v/t
/ #dt:/ (2 +
0 o 0 \0

2 5 t1og(fy(y)) —log(fy(0)). (25)

Inserting (25) into (21) concludes the proof of (22). The proof
of (23) follows from the generalized product rule. |

The identity in (22) can be thought of as a generalization of
the TRE identity in (6) to the higher-order moments. Similarly,
to the TRE identity the important feature of the identity in (22)
is that E[X*|Y] depends on the joint distribution Px y only
through the marginal pdf of Y. In Section VII-C, the identity
in (22) will be used to extended the empirical Bayes procedure
to higher-order conditional moments.

d
Slosv) )ar 24

VII. APPLICATIONS

In this section, we demonstrate three applications of the
above identities. For ease of exposition, we mostly focus on
the scalar case.

A. A Small Application of the Identity in (7)

The identity of Hatsell and Nolte in (7) can be used to make
various statements about the minimum and maximum ‘slope’

of E[X[Y].
Corollary 2. For every y € R"

0<Tr(J,EX|Y =y]). (26)
In addition, if || X|| < R, then
Tr(I,EX|Y =y]) < R*Tr (KY') . (27)

Proof: The proof of the lower bound follows by using (7)
together with the properties that both variances are positive
definite matrices and that the trace of product of two positive
definite matrices is positive. To show the upper bound in (27)
we use (7) together with the Cauchy-Schwarz inequality

LWEX[Y =y]) =Tr (Var(X|Y = y)Ky')  (28)
< R*Tr (K\') . (29)
|

B. Uniqueness of the Conditional Expectation via Integral
Version of Jaffer’s Identity

The identity in (21) leads to an interesting observation
that all of the higher conditional moments are completely
determined by the first conditional moment. In the next result,
we use this observation to establish the uniqueness of the
conditional expectation as a function of the distribution of X.

Theorem 2. The conditional expectation E[X|Y] is a bijec-
tive operator of the distribution of X. In other words, let Px
be the distribution of X, then

IE[Xl\ley]:E[X2|Y2:y],VyE]R<:>PX1:PX2. (30)
Proof: Let Px, = Px,, then it is immediate that
EX1|Y1 =y] = E[Xa]Y2 = y],Vy € R. (€2))

Now suppose that E[X1]Y; = y] = E[X,|Y; = y],Vy € R,
and the goal is to show that Py, = Pkx,. First, observe that by
the identity in (21) we have that for all £k € N and all y € R

E[X{|Y1 = y] = E[X5[Y2 = y). (32)

We now use (32) to establish that Py, |y,—y = Px,|y,=y for
all y € R. First, without loss of generality assume that 02 = 1.
Second, fix some y € R in (32) and let

mi k= E[XT|Y: = y], may = B[ X5V, = 9. (33)

The identity (32) implies that my, = maoy,Vk € N. The
question of whether a distribution of a real valued random
variables is determined by its moment is known as Hamburger
moment problem [12]. We now use Carleman’s sufficient
condition to check whether the moments uniquely determine
the distribution, this requires verifying that the following sum
of moments is divergent:

2k_
E Tnsz = OQ.

To show that the left side of (34) diverges we will need the
following upper bound on the conditional moments shown in
[13]: for ¢ € {1,2}

(34)

Mok < k28T /(2k — 1),k € [n] (35)
with ¢; = f (y) Applying (35) to (34) we have that
imﬁ > i 1 . (36)
o S e kR (2k - 1))
I & 1
> — T 37
27 ; k2 ((2k)!) 8

which diverges by the comparison test. Therefore, the Carle-
man condition in (34) is satisfied, and the moments determine
the distribution. In other words, we have demonstrated that
(32) implies that for all y € R

PX1\Y1:1/ :PXZ\YZZZ/' (38)

Now the equality in (38) implies that Px, = Px,. To see this
choose some measurable set A C R and observe that

Px,(A) = E[1a(X1)] 39)

=E[E [1a(X1)[Y1]] (40)

=E[E [14(X2)[Y2]] = Px,(A). (41)

This concludes the proof. ]
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Theorem 2 has been previously shown in [10]. However,
our proof here is different than that in [10], and our method
is more akin to the proof of the uniqueness of the conditional
expectation for the Poisson noise used in [14].

C. Empirical Bayes for Higher-Order Conditional Moments

An interesting application of the original TRE identity is the
idea of empirical Bayes proposed by Robbins in [4]. Consider
an independent and identically distributed sequence Y7, ...,Y,
according to fy, and assume that we have a perfect knowledge
of o. Because the conditional estimator in the TRE formula
depends only on the marginal distribution of the output Y,
from the Y; observations, we can build an empirical estimate
of E[X|Y = y] by mimicking the TRE formula

QfY(y)

Yy+o'= , Yy €R,
Yy)

m(y) = (42)

where fy (y) and f:’,(y) are estimates of fy (y) and fi (y),
respectively. In other words, we are able to estimate the
E[X]Y] without the knowledge of the prior distribution on
X. The interested reader is referred to [3, Chapter 6.1] for a
historical account and impact of the empirical Bayes formula.

Let f)(/k)(y) denote the estimate of f)(,k) (y) based on a
random sample Y7, ...,Y,. Now, inspired by (22), define the
estimator of E[X*|Y" = y] as follows:

Fk—m) (,y ()™ "
mk(y) QkZm 0 ( ) },\ Ezi am Hem (Zcr)7 y € R.
Y
(43)

To estimate fx(,k) (y) we use the following steps. First,
estimate fy by using a kernel-density estimator

n

Fo=1 Y (50).

i=1

(44)

where a > 0 is the bzandwidth parameter. We take the kernel
to l?e k(t) = \/%e_%. Second, estimate f}(,k)(t) by taking the
derivative of (44) k times.

We conclude this section by showing that the estimator in
(43) is consistent.

Theorem 3. Let a = -L and t, = \/m

(0, ﬁ) and w € (0,u). Moreover, assume that E[X?] <
oo. Then, for every k € N and 0% > 0

for some u €

Chr,o
~EXMY =y]| > —22 | =0,
nee | jy<t, n

lim P l sup |k (y)

where C, » is a constant that depends only on k and o.

The proof is omitted and can be found in [1].

VIII. CONCLUSION AND OUTLOOK

This work has derived a general derivative identity for a
conditional mean estimator. This identity has been used to
recover several known derivative identities. Moreover, some
generalizations of known identieis and some new identities
have been derived. For example, a new integral version of
Jaffer’s identity has been shown and used to prove the unique-
ness of the conditional expectation. Moreover, the identities are
used to extend the notion of empirical Bayes to higher-oder
moments.

An interesting future direction would be to see if the
main identity in Theorem 1 can shed light on the vector
generalization of the single crossing property in [15]. It would
also be interesting to see if a vector version of integral Jaffer’s
identity in Proposition 2 can be used to show the uniqueness
of the vector conditional expectation as has been done for the
scalar case in Theorem 2.

APPENDIX
First, denote the pdf of N by ¢k, (n) and observe that

d
. (y —X)
*¢>KN v =X) g~y - X)'KY'(y—X) 49
= dun (y — X)ep, Ky (X — ). (46)
Second, observe the following sequence of steps:
d
. E[UJY =]
d (bKN (y — X):|
—E U/ 47
= dyn, [ fy(y) @7
d drn(y — X)}
=FE|U 48
[ dym  fr(y) )
d d
_E|lgd TN TV RIUY = y] T
) Y =175
(49)
=E [Ue] Ky'X[Y = y]
d
- fx(y)
~E[U[Y =ylel Ki'y —E[U]Y = y] 2=~ "7 (50
=E [Ue!] KN'X[Y =y]
_ Vv fY(Y)>
—E[U|Y =y]e! [ Kly + 2222 51
UIY = yle] (ka'y + T )
=E [Uel KN'X[Y =]
—~E[U|Y =y|E[e], K‘1X|Y =y] (52)
=E[UX"Y =y| Ky 'en
~E[U]Y =y]|E [XT\Y =y|Kx'en (53)
= Cov(U,X[Y = y)Kx'em, (54)

where the equalities follow from: (47) using Bayes’ theorem;
(50) using the expression in (46); and (52) using the TRE
identity in (6). This concludes the proof.
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