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A B S T R A C T

In this work, a statistical stability metric and novel hybrid statistical-machine learning ammonia forecasting
model are developed to improve the accuracy and precision of municipal wastewater treatment. Aeration for
biological nutrient removal is typically the largest energy expense for municipal wastewater treatment plants
(WWTP). Ammonia-based aeration control (ABAC) is one approach designed to minimize excessive aeration by
adjusting air blower output from online ammonia measurements rather than from a dissolved oxygen (DO)
sensor, which is the conventional aeration control approach. We propose a quantitative stability metric, Total
Sample Variance, to compare system-wide variability of competing aeration control strategies. Using this metric,
the performance of traditional DO and ABAC control strategies with varying setpoints and control parameters
were compared in a medium-sized WWTP, and the most stable strategy was identified and implemented at the
facility. To further improve ABAC performance, ammonia forecasting models were constructed using both sta-
tistical and machine learning to improve the accuracy of the aeration control system. Diurnal, diurnal-linear,
artificial neural network (ANN), and hybrid diurnal-linear-ANN forecasting models were trained on real-time
plant-wide process data. The diurnal-linear and diurnal-linear-ANN forecasts were found to most accurately
forecast ammonia; improving upon the existing ammonia measurement by up to 32% and 46%, respectively,
whereas the ANN model forecast was only able to improve by up to 8%. This work demonstrates the ease and
flexibility of integrating statistics and machine learning methods for developing new treatment models in
conventional WWTP for features in full-scale conventional activated sludge systems.

1. Introduction

One of the greatest threats to surface waterways in the United States
is nutrient pollution [1]. The removal of nitrogen, specifically am-
monia, from domestic wastewaters at municipal wastewater treatment
plants (WWTP) is important to limiting nutrient loading into the en-
vironment and protecting aquatic life from toxic effects [2]. As states’
regulatory agencies implement increasingly stringent nutrient dis-
charge limits on WWTP, the cost of wastewater treatment will sub-
stantially increase with the implementation of new treatment technol-

ogies to achieve higher nitrogen removal [3]. The most widely-used
strategy for ammonia removal is nitrification, which introduces dis-
solved oxygen (DO) via industrial air blowers to facilitate microbial
uptake and conversion of organic nitrogen and ammonia in wastewater
to nitrate. Consequently, aeration is one of the largest operating ex-
penses for most WWTP [4].

In conventional biological treatment, air blower output is increased
or decreased proportional to the difference between the measured
concentration of DO and a target DO concentration using a propor-
tional-integral-derivative (PID) controller. The DO concentration set-
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point for nitrification is usually between 0.5 and 3 mg/L, but is con-
tingent on site-specific factors such as the maximum ammonia loading
rate [5]. While DO control can achieve complete ammonia removal, the
strategy has multiple drawbacks; most notably, the DO setpoint is a
poor surrogate of the immediate process demand, and thus, air is often
supplied in excess of what is required for ammonia removal. To save
energy and continuously achieve complete ammonia removal at
WWTP, a new aeration paradigm is needed.

Ammonia-based aeration control (ABAC) is a control strategy that
adjusts air flow to meet an ammonia concentration setpoint [6]. ABAC
is typically implemented as feedforward, feedback, or hybrid systems.
Feedforward ABAC utilizes microbial kinetic process models to cal-
culate the aeration demand given a variety of operating parameters
such as solids retention time and influent ammonia concentration [7].
This approach can reduce aeration demand but is costly to implement;
requiring extensive sampling and specialized knowledge for accurate
model calibration and implementation. Feedback ABAC does not re-
quire kinetic process models, but instead adjusts aeration based on the
measured ammonia concentration within the process using multiple
nested PID controllers in a cascade control configuration. In the case of
ABAC cascade control, an ammonia sensor and setpoint define the
outer/master control loop while inner/slave control loops define
control variables such as DO, air blower flow, and air blower speed. In
feedback controller design, actuator and sensor dynamics within a
process and wear-and-tear on the equipment that controls the process
are frequently ignored [8]. For aeration at WWTP, this can lead to a
large delay between a change in demand and the aeration provided.
When the aeration required to treat ammonia is not immediately met,
the difference between the measured ammonia value and the setpoint
becomes large, and the air blower speed is increased proportional to
the difference. This can result in large and short-lived air flow peaks,
causing blowers to ramp up and down excessively, thereby con-
tributing to peak energy demand. As the daily peak energy demand is
used to calculate a WWTP’s electricity bill, a reduction of these
aeration peaks will ultimately reduce energy and operating costs.
Hybrid control approaches combine elements of feedforward and
feedback control; however, these approaches have two universal
limitations:

• Ammonia sensors are generally prone to drifting, noisy measure-
ments, and require frequent field calibration.

• PID aeration control is inherently based on past measured process
values due to the time delay between a measurement and a cor-
rective control action. The resulting measurement delay is unable to
accurately anticipate current and future process conditions due to
the highly dynamic nature of biological wastewater treatment pro-
cesses.

To address both drawbacks, this study (1) proposes a stability metric
to measure abnormally varied conditions and to compare control stra-
tegies. To specifically address the second drawback, this study also (2)
develops a forecasting model for ammonia that could be incorporated
into a feedback ABAC system. For the latter objective, statistical and
machine learning models were used to forecast ammonia concentra-
tions, which would replace real-time ammonia measurements. The
advantage of forecasting using statistical and machine learning models
is that no additional sampling, microbiological analysis, or proprietary
software is required to build a process model. Additionally, a forecast

can overcome the delay of feedback control and easily replace the
current measured value of ammonia in the supervisory control and data
acquisition (SCADA) system of a WWTP.

To date, there are only a small number of WWTP worldwide that
have implemented full-scale data-driven control systems. Forecasting
models have been developed for predicting influent quality [9–14],
but few models exist that are designed to adjust downstream operating
conditions for more efficient treatment. Additionally, much of the
modeling performed in the literature is limited to water quality inputs
that require hours to measure and cannot be used for real-time control
[14–16]. In contrast, our work directly models the actual biological
treatment response to influent water quality changes and can be done
in real-time. Furthermore, model errors reported in the existing lit-
erature are too large to improve real-time control (20–40%)
[17,18,14]. Specific to ammonia and ABAC modeling, Ekster et al.
[19] developed a proprietary model-driven ABAC system that relies on
specific mechanistic (air flow), mass transfer (DO), and mass loading
models to calculate ammonia removal, but requires site-specific
modeling and calibration. In contrast, the tools developed in this work
are designed for full-scale implementation that do not need such ex-
pertise and specifications. Vezzaro et al. [20] developed a phenom-
enological model to forecast influent ammonia based on a diurnal
model and historical flow and concentration measurements. Our ap-
proach further extends the diurnal model approach by (1) including
more than two harmonic pairs, (2) including a linear model of op-
erational predictor variables, and (3) pairing this diurnal-linear fore-
cast with a machine learning method to reduce error at longer forecast
horizons. Because we forecast ammonia concentrations within the
WWTP, incorporating both changing influent quality and current op-
erational conditions rather than solely forecasting influent water
quality, this represents an improvement upon previous water quality
forecasting approaches.

Another unique feature of this work is the “small” dataset used.
Most machine learning approaches for water quality prediction have
required 1–10 years of historical data [14,18]. Given that most waste-
water facilities make domestic and industrial additions to their collec-
tion system and/or upgrades to existing infrastructure, historical data
often do not accurately represent current conditions, and some vari-
ables may be sparsely sampled (e.g., intermittent sampling during op-
timization efforts). Other machine learning approaches use pilot scale
data, which were collected under steady state conditions and do not
typically account for the variability experienced at full-scale (i.e., all
possible environmental and operational conditions) [18]. Our work also
shows how machine and statistical learning can be applied to WWTPs
using smaller windows of time of 3–7 days that allow the models to
adapt quickly to infrastructure and operational changes. Additionally,
previous machine learning modeling efforts have focused on amending
artificial neural networks (ANN) with a mechanistic approach (e.g., the
Activated Sludge Model, flow and mass balances) [21,22], but the
combination of machine learning and the mechanistic models fails to
substantially improve prediction accuracy.

Statistical-machine learning hybrid models have been shown to
capture the real-time dynamics of an individual, full-scale WWTP
better than a standard mechanistic model [23]. Zhang [24] presented
a hybrid statistical (autoregressive integrated moving average or
ARIMA)-ANN model for timeseries data, and similar models utilizing
ARIMA-ANN variations have also been proposed for large sets of lab or
flow data (Ömer [21,25]). Lotfi et al. [26] similarly proposed an
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ARIMA-ANN variation that did not include operational parameters in
their prediction (influent and effluent biochemical oxygen demand,
chemical oxygen demand, total dissolved solids, and total suspended
solids). Rather, Lotfi et al. [26] utilized the values of water quality
variables not actively used in an individual model construction to
predict the response, which is not ideal for real-time forecasting. By
ignoring operational conditions in the forecasting models, the appli-
cations are limited to offline analysis and manual operational changes.
The goal of this work is to incorporate operational and environmental
conditions to adjust the forecast in real-time, using short training
windows to quickly adapt to changes to the system, so that this ap-
proach could be easily incorporated into conventional WWTP’s ex-
isting control strategies.

The contributions of this work are (1) to quantify the stability of DO
control and ABAC strategies for the Boulder Water Resource Recovery
Facility (BWRRF), a medium-sized WWTP located in Boulder, Colorado
(USA), and (2) to develop data-driven methods of forecasting ammonia
at BWRRF for the purpose of improving accuracy, reducing energy
consumption, and reducing mechanical wear of aeration systems. DO
and ABAC feedback aeration strategies were tested and compared at the
BWRRF to identify the most stable aeration control scheme, which re-
quires a balance of reliably removing ammonia to a desired con-
centration while minimizing operational variability and energy use.
The manuscript is organized as follows: a description of the BWRRF
(Section 2.1); the method and approach for quantifying variation
(Section 2.2); summary of statistical and machine learning methods
used to build the ammonia forecasting models (Section 2.3); a com-
parison of the stability metric to actual control strategy performance
(Section 3.1); and an assessment of the performance of the forecasting
models (Section 3.2). Additional guidance on full-scale implication of
this work, including code, is included in the Supplementary Informa-
tion.

2. Materials and methods

2.1. The Boulder Water Resource Recovery Facility

The BWRRF is a 25 million gallon per day (MGD) municipal WWTP,
currently operating a Four-Stage Bardenpho biological nutrient removal
(BNR) process at an average of 12 MGD. Given the high altitude of the
facility (5115 ft above mean sea level) and low daily ammonia dis-
charge limits (1.9 mg/L NH4 as N), oxygen transfer efficiency is rela-
tively low and results in high aeration demand [27]. DO control is
currently implemented using a three-layer PID cascade control strategy
that frequently over-aerates to ensure treatment during peak ammonia
loading conditions (on average, 1–2 hours per day). This approach is
energy-inefficient and causes high DO concentrations in downstream
and recycle anoxic zones, which reduces total nitrogen removal (i.e.,

inhibits denitrification). Consequently, aeration accounts for 35–50% of
BWRRF’s energy consumption. There are multiple aeration control
methods programmed into BWRRF’s SCADA system, all of which rely
on feedback cascade control: airflow, DO, and ABAC. Airflow setpoint
control adjusts valve position at the inlet of the aeration grid to produce
a desired volumetric flow of air, regardless of oxygen demand; DO
concentration setpoints adjust the airflow setpoint to achieve a DO
concentration; and ABAC setpoints adjust DO concentration setpoints to
achieve an ammonia concentration setpoint (Fig. 1). The process vari-
ables included in the control logic (y), stability analysis, and forecasting
model are located in one of BWRRF’s three aeration basins (Fig. 2).

The DO concentrations exiting Zones 6, 7, 8, and 9 of the aeration
basins are continuously monitored using Endress Hauser COS61D op-
tical DO sensors (Reinach, Switzerland). In the aerated zones (Zones
4–8), air flowrate is monitored and controlled by air valve position and
air blower speed, all of which are recorded in the SCADA system. YSI
AmmoLyt® Plus 700 ion-selective ammonia sensors (Yellow Springs,

Fig. 1. Cascade control logic for ABAC at
BWRRF. The reference signal r is the ammonia
concentration setpoint. The difference between
r and the actual ammonia measurement yNH4 is
input to the ammonia PID controller CNH4,
which adjusts the DO concentration setpoint.

The difference between the DO setpoint and the DO measurement, yDO, is input to the DO PID controller CDO, which adjusts the air flow setpoint. The same logic flows
for the air flow controller, Cflow, and air valve controller, Cvalve, which ultimately provide a certain volume of air to the aeration basins. A disturbance d, such as a
change in water quality, will impact the processes P within the basin as measured by y. The difference between the setpoints and y values will force the PID
controllers to continuously provide adjustments within their loop until all setpoints are met.

Fig. 2. Flow, zone, and sensor diagram of one of the three activated sludge
aeration basins at BWRRF. Arrows indicate the direction of flow through the
basin starting in Zone 1 (Z1) and ending in Zone 9 (Z9) where the majority of
flow is recirculated to Zone 1. Zones 4–8 (Z4-Z8) are aerated, and Zones 6–8
(Z6-Z8) have individual DO setpoints for each zone. Triangles indicate nitrate
sensors, circles indicate DO sensors used in DO control, and the star in Z7 in-
dicates the ammonia sensor used in ABAC control.
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OH) are located in the aeration basin influent channel (not shown in
Fig. 2) and in Zone 7. YSI ion-selective nitrate/nitrite sensors are lo-
cated in Zones 3 and 9. Aeration basin influent flow rates, wastewater
temperature, and pH of the plant influent are also monitored. Online
sensors are regularly maintained and calibrated by BWRRF operations
staff, and sensor measurements are periodically compared to laboratory
results.

Data at BWRRF are stored and managed in the GE Proficy® system.
Data were exported in 5-minute intervals from Proficy into Microsoft
Excel and imported to the statistical platform R for analysis.
Observations that were identified as “bad” within the Proficy system
(i.e., due to sensor calibration or power loss) were replaced with NA.
For real time analysis, process data were exported from Proficy using a
Visual Basic script, processed using R, and forecasts were exported to
Proficy using a second Visual Basic script for use within BWRRF’s
SCADA system (see Supplementary Information for Visual Basic and R
scripts).

The control strategies analyzed in this study are summarized in
Table 1. A conventional DO aeration control method with DO setpoints
for Zones 4–6, 7, and 8 of 2.5, 2.0, and 1.0 mg/L, respectively, is
considered the experimental control. For ABAC, if the measured con-
centration of ammonia exceeds the setpoint, the DO setpoint is in-
crementally increased up to 2.3, 2.3, and 1.0 mg/L for Zones 4–6, 7, and
8, respectively. If the measured concentration of ammonia is below the
setpoint, the DO setpoint is incrementally decreased to no less than 1.0,
1.0, and 0.1 mg/L for the respective zones. Three ABAC strategies were
tested, including 3.5 mg/L and 4.0 mg/L ammonia setpoints (at the
middle of the aeration basin, Zone 7 in Fig. 2) and 90 s and 300 s time
delays between PID control actions. BWRRF operators initially in-
creased the time between control actions to allow time for the DO and
ammonia sensors to stabilize. Artificially low or high sensor measure-
ments can be caused by noise or water quality changes that occur faster
than the sensors can reliably measure. Incorrect sensor measurements
cause a PID control loop to repeatedly change process conditions, which
further changes water quality and compounds the problem of sensor
instability.

2.2. Stability assessment

The goal of the stability assessment is to provide WWTP engineers
and operators with a quantitative metric to decide between two control
strategies on the basis of variability. To measure the stability of each
operating strategy holistically, we investigated Total Sample Variance
(TSV). TSV is the trace of the variance-covariance matrix of p variables
( = + + +trace( ) ... p1

2
2
2 2). A large TSV is indicative of increased

variability within the process and therefore less stability. Consequently, the
most stable operating condition has the relatively lowest TSV.

To demonstrate if one operating condition is more stable than an-
other, the difference and ratio of TSV between two conditions are
compared to a mixed population of TSV’s from both conditions (i.e.,
Monte Carlo simulation of TSV metrics). First, data from the control and
test condition are combined into a single dataset, and then randomly
split into two datasets (i, j). This random split is repeated 1000 times.
For each random reassignment, estimates of TSV are computed for each
split dataset (TSVi and TSVj). Then, a distribution of the ratio or dif-
ference between TSVi and TSVj under the null hypothesis can be ob-
tained, and the following sets of hypotheses can be tested:

> =H D H D D TSV TSV: 0 versus : 0 wherei j i j i j i j0 , 1 , , (1)

> =H R H R R TSV TSV: 1 versus : 1 where /i j i j i j i j0 , 1 , , (2)

To test the null hypothesis, the number of observations from the
random reassignments whose calculated Di j, or Ri j, are greater than the
observed TSV metric is used to approximate the p -value:

= >
=

p I R R1
1000

( )
k

k i j
1

1000

,
(3)

where Rk is the ratio of TSVs from the randomly selected subset of
observations from individual control strategies; Ri j, is the ratio of TSVs
from the observed data; and I ( ) is a function whose value is 1 if its
argument is true and 0 otherwise. Thus, Eq. (3) computes the propor-
tion of TSV ratios from the random reassignments that exceed the ob-
served TSV ratio. A similar computation can be constructed for the
difference in TSVs. A sample conclusion would be as follows: if

=TSV TSVi DO, =TSV TSVj test, and <p 0.01, then the test control scheme
is said to be significantly less variable and therefore more stable than
the conventional DO control.

2.3. Ammonia forecast

To train and test an ammonia forecasting model, observations are
aligned to simulate real-time prediction using past process data and
current ammonia data. For an original dataset with n observations,
ammonia measurement (Y ), process variables (X X X, , ..., p1 2 ) at the
current time (t), and forecast horizon ( f ), an × +n f p( ) ( 1) matrix
for training and testing is created. Given that the shortest dataset pro-
vided by BWRRF was 7.4 days, all datasets were truncated to only in-
clude 7.4 days of online process data. Models are built using 1–6 days of
process data (in intervals of 1 day or 288 observations) and are tested
on the remaining observations in sequence, updating the model for each
new observation while maintaining a constant training window size
(Table 2). Forecast horizons of 5–75 min (1–15 observations) were

Table 2
Number of observations used for training and testing each model using training
window sizes from 1 to 6 days, limited to the total number of observations for
each control strategy.

Window Size 1 Days 2 Days 3 Days 4 Days 5 Days 6 Days

Training 288 576 864 1,152 1,440 1,728
Testing 1,850 1,562 1,274 986 698 410

Table 1
Control strategies tested vary by which is the “control” variable (i.e., outer/
master loop in cascade control), the master setpoint for the control variable,
and the delay term for the master PID loop.

Control Variable Setpoint (mg/L) PID delay

Control DO 2.5 90
Test Condition 1 Ammonia 3.5 90
Test Condition 2 Ammonia 4.0 90
Test Condition 3 Ammonia 4.0 300
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evaluated in increments of 5 min (1 observation). Timeseries plots of all
monitored process variables for the following analysis can be found in
the Supplementary Information (Figures S1–S4). All variables were
scaled to zero mean and unit variance using the training dataset for
each iteration.

To quantify model fit and forecast accuracy, the coefficient of de-
termination (R2) and root mean squared error (RMSE), respectively, are
used. R2 is a measure of how well the model fits the training data. An R2

= 1 indicates that the model predicts the values used to train the model
exactly, while an R2 = 0 indicates that the model does not explain any
linear variation in the training data. Model testing performance is
evaluated using RMSE, which is a measure of average squared error
between model forecasts and the observed values. The better the
model’s forecasts, the lower its RMSE. The existing feedback control
strategy is effectively using the current ammonia value as the forecast
and is named persistence. A comparison of the forecasting models to
persistence using RMSEs is calculated as:

RMSE RMSE RMSE( )/ 100%persistence model persistence (4)

2.3.1. Diurnal-linear model
Variation of ammonia in BNR is affected by environmental and

operational conditions. The environmental component is determined by
changes in the influent water quality, which follows strong daily trends
(Fig. 3). To model this time-dependent component, a diurnal model is
fit to forecasted ammonia. The predictors are various degrees (d = 1, 2,
…, 200) of sine and cosine pairs ( +sin d t cos d t( ) ( )), where t is the

minute of the day expressed in radians from 0 to 2π.
To model the operational component of the ammonia forecast, a

multiple linear regression model is fit to ammonia, such that the com-
bined fitted diurnal-linear model is:

= + + + + +

+ + + ++ + + +

ŷ sin t cos t sin d t cos d t

y x x

ˆ ˆ ( ) ˆ ( ) ... ˆ ( ) ˆ ( )
ˆ ˆ ... ˆ

t d d

d t f d d p p

0 1 2 2 1 2

2 1 2 2 1 2 1t f t f (5)

where p is the number of process variables; x pt f is the pth process
variable lagged back some forecast horizon f ; yt f is the ammonia at
time t f ; and î are estimated linear model coefficients for i = 0, 1,
…, (2d+p + 1).

To eliminate noise and reduce variability, the final diurnal-linear
model only includes the most pertinent process variables and the op-
timum number of degrees of sine/cosine pairs by using a modified
model fit method that simultaneously achieves variable selection and
coefficient estimation. The smallest d with the relatively largest R2 is
selected as the optimum d from the 1-200 d’ s tested. The most pertinent
process variables are selected using a multivariate linear model fitting
method called adaptive lasso [28].

Multiple linear regression models have historically been fit using
ordinary least squares (OLS) where model parameters are estimated
such that the sum of squares of the residuals are minimized. The bias of
this approach is low, but it is heavily reliant on the quality of the
training dataset and can have high variance. A small change in the
training data can substantially change OLS parameter estimates [29].
Thus, an alternative fitting method is selected to reduce prediction

Fig. 3. (a) Timeseries plot of Zone 7 ammonia at BWRRF from 2019-03-01 to 2019-03-10 and (b) boxplot of the same influent ammonia binned by hour of the day
with the hourly mean indicated by red triangles. The diurnal trend illustrated in (b) can be modeled, although it cannot explain all variation in ammonia.
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variability and improve model interpretability.
Lasso (Least Absolute Shrinkage and Selection Operator) is one such

regularization method that can decrease model complexity while
maintaining or improving accuracy [30]. In lasso, the sum of squares of
the residuals are minimized along with a loss function that additionally
penalizes the size of model parameter estimates ( ĵ), shrinking insig-
nificant predictors’ coefficients to zero. The ‘shrinkage’ term re-
sponsible for driving the coefficients to zero is controlled by λ. When λ
= 0, lasso returns the same linear model coefficients as OLS. The larger
λ is, the fewer predictors will be included in the model, which de-
creases variance in the prediction. However, in some cases lasso esti-
mates are known to be biased and inconsistent. A solution proposed by
Zou [28] uses adaptive weights (wj) to overcome the limitation of tra-
ditional lasso, called adaptive lasso. The adaptive lasso loss function is
included in the objective function, which is minimized to identify the
best parameter selection and estimates:

= +
= =

+ +

=

+ +
y x wˆ min | |,

i

n

i
j

d p

ij j
j

d p

j j
1 1

2 1 2

1

2 1

(6)

where is a regularization parameter, and wj are coefficient-specific
weights.

Both the diurnal model and diurnal-linear model were trained and
tested using the glmnet package in R. Initially, 10-fold cross-validation
is used to fit a generalized linear model using ridge regression to obtain
an initial estimate of β. This method shrinks the linear model para-
meters towards zero, but not exactly zero. Then, the ridge regression
regularization parameter is selected such that the model has the smal-
lest cross-validation error. The parameter estimates from this model ( j)
are used to calculate the weights of the adaptive lasso penalty term, so
we set =w 1/| |j j . This allows different predictors to be penalized

differently based on their initial estimates and drives coefficients that
are already small to zero even faster. The final adaptive lasso model is
selected with λ within 1 standard error of the minimum cross-valida-
tion error.

The advantages of using adaptive lasso are two-fold: variance re-
duction and variable selection. The goal of the model is to forecast
ammonia concentrations under environmental and operating condi-
tions that may not have been included in the training data. Reducing
the variance in model predictions prevents overfitting the model.
Variable selection is an additionally appealing trait of adaptive lasso
that (1) gives engineers and operators a better understanding of the
most important operating process variables within a system and (2)
eliminates unnecessary or noisy predictor variables. An investigation of
the variables included in each forecasting model as a function of
training window and forecast horizon provides further insight not
available using traditional machine learning techniques, like ANN,
described below.

2.3.2. Neural networks
In the event that an interpretable, linear process model cannot

forecast ammonia with the desired accuracy, machine learning tech-
niques may be a more effective substitute or addition. Conventional
mechanistic models use complex formulations that are connected in
mathematically simple ways. For example, a nutrient removal model
based on microbial kinetics can be summed for a WWTP-wide mass
balance. Machine learning methods, including ANN, use the converse
approach: simple mathematical expressions are connected by com-
plex, nonlinear functions. The detriment and advantage of ANN are
that no prior knowledge is needed to predict a process output, but
correspondingly, no information is produced about the underlying
mechanisms defining the input-output relationship [31–33].

Fig. 4. Timeseries plot of Zone 7 ammonia at
the BWRRF for all control strategies tested.
While DO and both ABAC 4.0 mg/L conditions
were able to reasonably limit Zone 7 ammonia
to 4.0 mg/L, the ABAC 3.5 mg/L test condition
experienced multiple exceedances greater than
4.0 mg/L and was unable to reduce variability.
The variability of ammonia during the ABAC
3.5 mg/L test condition suggests a faulty
sensor or abnormal environmental conditions.
ABAC 4.0 at 90 s appears to control ammonia
with more consistency (when only ammonia is
considered), but ABAC 4.0 at 300 s reduced
variation the most system-wide (when all
variables are considered).
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The most common ANN configuration is a feedforward ANN, which
uses an input layer representative of the process variables, a single
“hidden” layer of analyses, and an output layer containing the response
variable. The hidden layer is comprised of nodes, and at each node, a
sum of weighted values from the input layer is used by the node’s ac-
tivation function to produce an output. Weights for each input variable-
node connection are determined using backpropagation algorithms to
minimize the error between the predicted output and the actual output.
The feedforward ANN is one-directional and not computationally in-
tensive. The lack of model “memory” means that the feedforward ANN
neglects causality and order of observations. To consider temporally
ordered observations, recurrent neural networks (RNN) can be used;
however, while RNN were initially explored for this work, the com-
putation time was not amenable to real-time prediction, so RNNs were
excluded from this study.

Two ANN models are constructed to forecast ammonia: (1) using all
lagged process variables as inputs (referred to as the “ANN model”) and
(2) using all lagged process variables and the diurnal-linear forecast as
inputs (referred to as the “diurnal-linear-ANN model” or “hybrid
model”). The ANN training and forecasts are performed using the
Python-based TensorFlow package in R. The first hidden layer includes
10 or 11 neurons (2/3 the number of inputs for the ANN and diurnal-
linear-ANN, respectively), and the second hidden layer includes 15 or
16 neurons (the number of inputs) using a linear activation function for
all nodes, RMSprop gradient descent optimization algorithm [34], and
mean-squared-error as the objective loss function for backpropagation.
The forecast accuracy of the ANN approach is compared to the diurnal-
linear model to determine if there is a substantial improvement in using
nonlinear machine learning in forecasting in lieu of the more straight-
forward and accessible statistical model. The hybrid diurnal-linear

model with the ANN model is also considered in order to maximize
prediction accuracy. However, most work in the water quality predic-
tion literature compares ANN model predictions to linear model pre-
dictions rather than combining them, or in the case of Zhu et al. [14],
applies the ANN and linear model in parallel rather than series. Addi-
tional work in the literature combining mechanistic and machine
learning models have not yet performed better than a machine learning
model alone [21,22].

3. Results and discussion

3.1. Stability assessment

The initial implementation of ABAC at BWRRF (Test condition 1:
ABAC 3.5 mg/L at 90 s) experienced a wide range and high frequency
of ammonia fluctuations, as shown in Fig. 4. A follow-up with BWRRF
operations staff revealed that the ammonia sensor developed a thick
biofilm between an initial cleaning and calibration on April 19 and a
second cleaning and calibration on April 30. The biofilm growth could
have prevented the transfer of ammonia ions away from the sensor at
low concentrations, which may explain why the ammonia values do
not approach zero in ABAC 3.5 mg/L at 90 s, unlike the other test
conditions. Once the sensor was serviced and the ammonia setpoint
increased, ABAC 4.0 mg/L at 90 s demonstrated substantially more
process stability. When the PID update frequency was increased from
90 s to 300 s, the tendency for the system to “overreact” was further
reduced, thus leading to the least variable operating condition. Cor-
respondingly, the TSV of ABAC 3.5 mg/L at 90 s is larger than all other
test conditions and serves as an indicator of imprecise instrumentation
and control. As illustrated in Fig. 5, TSV is found to decrease as the
control strategies become more tuned and stable.

To determine if the TSV for the most qualitatively stable strategy
(ABAC 4.0 mg/L at 300 s) is significantly less than the other control
strategies tested, two metrics were examined: the difference in TSV’s
(Eq. 1) and the ratio of TSV’s (Eq. 2). As shown in Fig. 6, a Monte
Carlo simulation approximated the distribution of a mixed popula-
tion (i.e., under the null hypothesis), and from this population, a p
value was calculated (Eq. 3). The histograms are approximately
normally distributed, so both the difference and ratio of TSV values
are considered stable metrics. In all cases except ABAC 3.5 mg/L at
90 s, the observed difference and ratio of TSV values are significantly
smaller than the DO control strategy. The increased TSV for ABAC
3.5 mg/L at 90 s is expected due to the ammonia sensor failure
during that time.

The method utilized here (calculating TSV of two control strategies
and using a Monte Carlo simulation to determine if the difference is
significant) is not limited to aeration control or BNR and could be ap-
plied to a variety of WWTP unit processes such as anaerobic digestion
and solids settling processes. The development of such a tool to quan-
titatively assess performance will allow utilities to systematically ap-
proach system-wide optimization rather than rely on visual inter-
pretation of timeseries and single variable monitoring. In this case, the
tool assisted operations at BWRRF in deciding which ABAC strategy to
use, namely ABAC 4.0 mg/L 300 s. Additionally, TSV could be used as a
monitoring tool to detect increased variability due to sensor instability,
as shown in Test condition 1.

Fig. 5. Observed TSV for each control configuration. The least variable and
most stable operating condition appears to be ABAC at 4.0 mg/L ammonia
setpoint and 300 s PID update frequency. The most variable and least stable
operating condition appears to be ABAC at 3.5 mg/L ammonia setpoint and 90 s
PID update frequency. Visual inspection of the timeseries plots found in the
Supplemental Information (Figure S2) and Fig. 4 by operators confirms this
conclusion.
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3.2. Ammonia forecast

To further improve the performance of ABAC, forecasting models
were designed such that the model forecast could be used as the input
for the feedback cascade control system at BWRRF. The diurnal-linear
model and ANN models were fit, tested, and compared to determine
which modeling approach would provide the greatest performance
improvement over persistence for predicting future ammonia con-
centrations.

3.2.1. Diurnal-linear model
The diurnal component of WWTP influent flows and loads is a well-

known phenomenon (Fig. 3) but is rarely accounted for in daily op-
eration. To begin modeling the diurnal variation, an initial model fit

used a single sine/cosine pair. However, this approach did not capture
all cyclic patterns visible in the timeseries and autocorrelation plots.
Further testing evaluated model fit using between 1 and 200 sine/co-
sine pairs to forecast Zone 7 ammonia concentration. Fig. 7 plots model
fit as a function of the number of sine/cosine pairs up to 10 pairs. The
best diurnal model was effectively achieved using a 6-degree diurnal
model. The relatively low R2 value of the ABAC 3.5 mg/L at 90 s control
configuration (Test condition #1) is likely due to the abnormal process
variation caused by a sensor failure, evident in the minimum and
maximum ammonia values discussed in the previous section (Fig. 4).
The diurnal model is independent of the forecast horizon but dependent
on the training window size.

To accurately forecast ammonia, the environmental and opera-
tional variations not described by diurnal effects are modeled by

Fig. 6. Histograms of the TSV difference or ratio for a randomized sample of two control strategies. Red dots indicate the observed TSV difference or ratio for a given
comparison. For example, “DO vs 4.0 mg/L - 300 s” illustrates the difference of TSV (TSVDO - TSV4.0,300s) and the ratio of TSV (TSVDO / TSV4.0,300s). If TSVDO is
significantly larger than TSV4.0,300s, then the difference would be positive, and the ratio would be greater than 1. The p values are calculated by the percentage of
differenced or ratio of TSV values from the mixed population that are above the observed differences or ratios. If p < 0.01, then the difference is said to be significant.
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multiple linear regression, which is fit using adaptive lasso with the
time-dependent diurnal terms and monitored process variables
(Fig. 2). In Fig. 8, the multiple linear regression model fit is plotted
versus time for each training window (1–6 days) and illustrates mul-
tiple trends. Model fit is found to be a function of forecast horizon, size
of the training window, and day of the week. As the forecast horizon
increases, variation unaccounted for by the linear model emerges, and
the model fit deteriorates. Thus, the diurnal-linear model performs
best with shorter forecast horizons (highest R2). Shorter training
windows may also have comparatively higher training R2 than longer
training windows because the model encompasses a smaller range of
environmental and operating conditions. A shorter training window
may be needed when adapting to weekend conditions as opposed to
weekdays, which tend to exhibit more nonlinear patterns regarding
time, flow, and load. However, shorter training windows produce
model parameter estimates that may be unstable and exhibit poor
forecast accuracy in the testing set (i.e., parameter estimates may be
unrepresentative); this is examined next.

An analysis of model forecast errors on the withheld testing set (i.e.,
model accuracy given data not used in fitting the model itself) de-
monstrates a common trend in statistical learning: a high training R2

does not always correlate to a low testing RMSE. Fig. 9 plots the
average training R2 and testing RMSE for the DO and ABAC 4.0, 90 s

control strategies as a function of forecast horizon. Similar to Fig. 8, the
shorter the training window the larger the R2, averaged across all
testing days. However, the actual performance of the forecast in a
control loop is measured by RMSE. RMSE also appears to be a function
of training window size, but the direction of the relationship is entirely
dependent on the control strategy. For example, shorter training win-
dows performed best across all forecast horizons for the DO control
strategy, but the converse is true for the ABAC strategies. Compared to
persistence, the diurnal-linear model performs better than persistence
for forecast horizons greater than 15-minutes. To implement the
diurnal-linear model, the variability of the control system within the
training window will impact whether a long or short window of time is
necessary. Additionally, R2 alone should not be used as a selection
criteria for such a forecasting model. RMSE or another metric of testing
error (see [29]) should be used to identify the best choices to tune a
model.

To demonstrate the potential impact of supplementing the diurnal-
linear model forecast in lieu of the current ammonia sensor value, the
percent improvement between the persistence forecast and the model
forecast is calculated (Equation 4). Only the 5, 25, 50, and 75-minute
forecast horizons are shown in Table 3 for brevity, but all forecast
horizons can be found in the Supplementary Information (Table S1). A
forecast horizon should be selected based on the time required to

Fig. 7. Diurnal model fit as function of degree for each control configuration using 1 day (top), 3 days (middle), and 6 days (bottom) of training data. The red line
indicates the R2 for a 10th degree diurnal model, which is effectively achieved using 6 degrees or fewer. The high R2 of the 1 day model compared to the 6 day is a
consequence of the 1 day window containing less variation.
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trigger and implement a single cascade control action. The delay is a
function of hydraulic retention time (HRT), which is the travel time
between the inlet to the basin and the sensor measurement for the
master PID control loop. Depending on the required forecast horizon, a
training window can then be selected with the largest percent im-
provement (i.e., reduction in error by RMSE over persistence). At
BWRRF, the average HRT between the beginning of the aeration basin
and the ammonia sensor location is 25 min. An additional 15–25
minutes is required for the ammonia ion-selective electrodes and DO
sensors to stabilize, so a forecast horizon of 50 min is needed. Across all
control strategies listed in Table 1, the 50-minute diurnal-linear

forecasts improved over persistence between 20% and 52%. In general,
a short forecast horizon performs best when trained on short windows
of time. Conversely, large forecast horizons (>15–25 min, depending
on the control strategy) require larger training windows. Specifically
for the ABAC 4.0 mg/L at 300 s (the ABAC configuration selected by
BWRRF for implementation), a 6-day training window can improve the
50-minute forecast performance by 30%. Functionally, this means that
the PID loop will be triggered 30% sooner than under the current
control strategy. For ABAC, this additional treatment time will pri-
marily address the daily morning peak flow event in which the influent
flow increases from ∼12 MGD to ∼20 MGD over the course of 60–120

Fig. 8. Fit of diurnal-linear model as a function of training window size as measured by R2. Due to the difference in flow and ammonia loading patterns between
weekdays and weekends, the model fit declines over the weekend. Shorter training windows generally produce a higher R2 values, demonstrating the large daily
variation in operating and environmental conditions experienced at WWTP.
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min. The preemptive response with a forecasted ammonia PID control
strategy will appropriately increase air flow to prevent exceeding the
ammonia concentration setpoint. Additionally, the 50-minute forecast
will trigger a reduction in air flow when the peak event wanes. How-
ever, the current control strategy uses minimum air flow and DO con-
centration setpoints to ensure treatment under all conditions, which
inevitably leads to over-treatment and excessive energy use. Given the
knowledge that the system will proactively adjust to peak flow condi-
tions, more precise process control with forecasted master control
variables may provide BWRRF operations staff the flexibility to lower
the minimum air flow and DO concentration setpoints, reduce over-
treatment, and ultimately save energy.

Further investigation into the structure of the diurnal-linear models
fit using adaptive lasso provides insight as to which process variables
are most important in forecasting and controlling ammonia in the DO
and ABAC systems. The absolute values of the model coefficients are
averaged across each training window size and forecast horizon and are
plotted in Fig. 10. Variable selection for each model is also found to be a
function of training window size and forecast horizon. For most models,
the current values of influent ammonia, Zone 7 ammonia, and Zone 9
DO are the most important process variables to forecast future Zone 7
ammonia. Interestingly, non-ammonia process variables become more
important as the forecast horizon increases while the importance of the
current ammonia sensor measurement decreases. This may suggest that
the future value of ammonia is more dependent on the quality of the
recirculated activated sludge (i.e., Zone 9 DO, Zone 3 nitrate/NO3).
This reinforces our premise that the current measured value of am-
monia is not the best representation of future ammonia values and

Fig. 9. Training R2 (left) and testing RMSE (right) for the models tested on the DO and ABAC 4.0 mg/L, 90 s control configurations. The black dashed line is the RMSE
of the persistence forecast, which corresponds to the ammonia sensor’s current measured value as the forecast.

Table 3
Average percent improvement for all control strategies (DO and ABAC) by
training window length and forecast horizon for the diurnal-linear model.
Positive values indicate that the model forecast was more accurate than the
persistence forecast. Bolded values are the best performing training window for
a given forecast horizon and control strategy.

Control Configuration Training Window 5 Min 25 Min 50 Min 75 Min

DO 1 Day 2.2 23.0 18.2 16.7
2 Day −1.1 23.5 17.4 15.5
3 Day −4.1 19.0 19.6 15.3
4 Day −2.7 18.3 16.1 14.6
5 Day −2.4 16.4 14.2 14.5
6 Day −2.5 20.2 17.8 14.9

ABAC 3.5 mg/L, 90 s 1 Day 1.2 −17.8 −20.8 −13.9
2 Day −1.4 16.2 11.3 5.1
3 Day −3.4 15.6 17.5 14.9
4 Day −1.9 20.8 20.8 22.7
5 Day −2.4 17.4 18.3 19.0
6 Day −2.8 23.2 24.7 24.2

ABAC 4.0 mg/L, 90 s 1 Day 2.5 21.6 24.7 28.7
2 Day −3.5 27.2 28.4 27.6
3 Day −3.9 24.5 23.6 24.5
4 Day −3.7 34.0 35.3 36.1
5 Day −4.1 39.9 43.7 44.9
6 Day −2.7 46.7 51.9 52.7

ABAC 4.0 mg/L, 300 s 1 Day 0.4 2.0 −11.5 −18.5
2 Day −3.3 2.4 −49.5 −104.8
3 Day −3.8 20.2 21.7 24.1
4 Day −3.2 24.9 22.1 22.0
5 Day −3.1 24.8 26.7 25.3
6 Day −3.0 23.8 30.0 31.7
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illustrates the potential for a forecasting model to substantially improve
upon BWRRF’s existing control strategy. Here, the use of adaptive lasso
for variable selection as opposed to knowledge-based selection is found
to be critical. For example, the conventional feedforward ABAC models
only include influent ammonia to calculate air demand and would ne-
glect the impact of oxygen bleed through into anoxic zones, thereby
preventing complete nitrogen removal from the system.

3.2.2. Neural networks
The use of ANN to forecast ammonia is intended to capture the

nonlinear environmental and operational process relationships that
cannot be represented in the simpler diurnal-linear model. A compar-
ison of the diurnal, diurnal-linear, ANN, and diurnal-linear-ANN model
forecasts for the ABAC 4.0 mg/L at 300 s control strategy are shown in
Fig. 11. The results demonstrate that the ANN overfits to the training
data and does not accurately forecast ammonia in the testing dataset,
producing forecasts that are worse than persistence. The lack of vari-
able selection in ANN could contribute to the poor forecast accuracy by
overtraining to noise present in the training dataset and missing the
underlying patterns controlling ammonia concentration. A more com-
plex ANN model may be required to forecast more accurately; however,
the computation time required may make this approach impossible to
integrate into the existing BWRRF control framework. Furthermore,
such “black-box” models tend to be unappealing to process engineers
because the important drivers of variation in ammonia cannot be
identified.

Nonlinearities in the system that are unaccounted for in the diurnal-
linear model begin to manifest themselves as the forecast horizon gets
larger, and this is when the diurnal-linear-ANN model performs best. By
incorporating the diurnal-linear forecasts as an input to the ANN, the
testing accuracy improves over the diurnal-linear model for larger
forecast horizons (>40 min). However, the nonlinear component cap-
tured by the ANN does not result in a smooth real-time forecast. The
high-frequency variation in the forecasts could be viewed negatively if
bulk metrics, such as RMSE, are not used (Fig. 12). Nonlinearities may
also be partially modeled by the diurnal component, resulting in a high
R2 but low RMSE due to overfitting. Model performance is also affected
by error in the training window, which for full-scale implementation is
unavoidable. Thus, a model should be tested on a large window of time
to determine how well the model responds to sensor error or changing
environmental or operational conditions. By adjusting the number of
sine/cosine pairs and including the ANN, the forecast performance
generally improves. The full-scale tuned model in Fig. 12 was achieved
by iteratively adjusting the number of diurnal pairs, training window
length, and observation frequency, and comparing the RMSEmodel to
RMSEpersistence. Overall, the use of either the diurnal-linear model or the
diurnal-linear-ANN model outperforms the current control strategy for
all forecast horizons; the best performing combination of method and
training window size (i.e., smallest RMSE) for the ABAC 4.0 mg/L at
300 s control strategy is given in Table 4.

Fig. 10. Variable significance for each diurnal-linear model is calculated by the mean absolute value of the model coefficients for a particular training window,
forecast horizon, and control configuration. The top 5 process variables for each control strategy and window size are plotted. The diurnal terms are included by
summing the selected sine and cosine coefficients, represented as “Diurnal” in the figure. The strong presence of diurnal terms in all models demonstrates the
importance of incorporating process values as well as time-dependent components when modeling WWTP.
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Fig. 12. Real-time ammonia forecast in the BWRRF SCADA system during full-
scale tuning. The black line is the true concentration of ammonia in Zone 7 of
the aeration basin (“Observed”). The colored lines represent the corresponding
50-minute forecasts. The blue line is the ammonia sensor measurement used for
conventional cascade ABAC (“Persistence”). The red line is the diurnal-linear-
ANN ammonia forecast trained on 4-days of process data, 2-minute observation
frequency, and 3 diurnal pairs (“Model”). In spite of the high-frequency oscil-
lations in the diurnal-linear-ANN forecast, it is still a better representation of
anticipated conditions in the basin than the measured value of ammonia (e.g.,
RMSEmodel < RMSEpersistence). Error below 0.5 mg/L could potentially be
avoided by moving the ammonia sensor upstream in the aeration basin where
the ammonia concentrations are higher, and the sensor’s measurements would
be within the calibrated range (>1 mg/L).

Table 4
The combination of model and training window with the lowest RMSE for each
forecast horizon is listed for the ABAC 4.0 mg/L at 300 s control strategy. For
short forecast horizons, the diurnal-linear model performs best with a short to
moderate size training window. For longer forecast horizons, the hybrid
diurnal-linear-ANN model performs best with a one-day training window.

Forecast Horizon
(min)

Best Method / Window
(days)

Improvement Over Persistence
(%)

5 Diurnal-Linear / 1 0.4
10 Diurnal-Linear / 1 8.6
15 Diurnal-Linear / 2 12.9
20 Diurnal-Linear / 4 20.6
25 Diurnal-Linear / 4 24.9
30 Diurnal-Linear / 4 24.4
35 Diurnal-Linear / 4 25.0
40 Diurnal-Linear-ANN / 1 24.6
45 Diurnal-Linear-ANN / 1 25.1
50 Diurnal-Linear-ANN / 1 26.7
55 Diurnal-Linear-ANN / 1 31.9
60 Diurnal-Linear-ANN / 1 36.0
65 Diurnal-Linear-ANN / 1 38.0
70 Diurnal-Linear-ANN / 1 44.5
75 Diurnal-Linear-ANN / 1 46.1

Fig. 11. A comparison of the training R2 (left) and testing RMSE (right) of the ABAC 4.0 mg/L at 300 s delay control strategy for diurnal, diurnal-linear, ANN, and
diurnal-linear-ANN models. For this control configuration, the diurnal-linear model with longer training windows performed the best for forecasting ammonia up
through 70-minute horizons. The diurnal-linear-ANN model makes some improvement in forecasting with short training windows, particularly for large forecast
horizons.
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4. Conclusion

The ability to forecast peak flow and ammonia events at WWTP
could allow for a proactive aeration response. The current reactive
control paradigm results in multiple short-lived peak aeration events
per day, which is mechanically hard on individual blowers and requires
the use of auxiliary blowers. Consequently, the control strategy is en-
ergy intensive and inefficient. In this work, DO and ABAC aeration
control strategies are compared by their process stability using a TSV
metric, to assist in operator and engineer decision-making. To further
improve aeration control, the accuracy of a forecasted ABAC strategy
was evaluated and shown to improve upon the current persistence
forecast used in PID cascade control. Two data-driven modeling ap-
proaches were compared, statistical learning and machine learning, and
we found that the diurnal-linear was able to more accurately forecast
ammonia than a standard ANN. When the diurnal-linear model was
combined with ANN, model forecast accuracy was improved for larger
forecast horizons (>40 min), which suggests ANN are able to account
for nonlinearities that are not consequential at shorter forecast hor-
izons. The hybrid diurnal-linear-ANN forecast improvement over per-
sistence is from 24% to 46% for the 40 to 75-minute forecast horizons.

For full-scale implementation of the forecast, tuning is required to
determine the optimum number of diurnal pairs (e.g., sine/cosine
pairs), training window length, observation frequency, and forecast
horizon. Additionally, bulk metrics such as TSV and RMSE should be
used to compare process variation and error and to identify the best
diurnal-linear-ANN model configuration for a given forecasting hor-
izon. By using a forecasted value of ammonia in lieu of measured am-
monia, it may be possible to maintain a more stable effluent ammonia
concentration; for example, when high ammonia loading is forecast,
aeration will increase to keep pace with demand and will limit aeration
when low ammonia loading is forecast. Proactive aeration control
strategies that use high-quality forecasts could help small and medium-
sized WWTP reduce energy requirements while providing high-quality
effluent. The computationally feasible statistical and machine learning
models explored here can be easily integrated into a WWTP’s control
system.
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