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a b s t r a c t

The strong functionalized Cahn–Hilliard equation models self assembly of amphiphilic polymers in

solvent. It supports codimension one and two structures that each admit two classes of bifurcations:

pearling, a short-wavelength in-plane modulation of interfacial width, and meandering, a long-

wavelength instability that induces a transition to curve-lengthening flow. These two potential

instabilities afford distinctive routes to changes in codimension and creation of non-codimensional

defects such as end caps and Y -junctions. Prior work has characterized the onset of pearling, showing

that it couples strongly to the spatially constant, temporally dynamic, bulk value of the chemical

potential. We present a multiscale analysis of the competitive evolution of codimension one and two

structures of amphiphilic polymers within the H−1 gradient flow of the strong Functionalized Cahn–

Hilliard equation. Specifically we show that structures of each codimension transition from a curve

lengthening to a curve shortening flow as the chemical potential falls through a corresponding critical

value. The differences in these critical values quantify the competition between the morphologies of

differing codimension for the amphiphilic polymer mass. We present a bifurcation diagram for the

morphological competition and compare our results quantitatively to simulations of the full system

and qualitatively to simulations of self-consistent mean field models and laboratory experiments. In

particular we propose that the experimentally observed onset of morphological complexity arises from

a transient passage through pearling instability while the associated flow is in the curve lengthening

regime.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Amphiphilic molecules are increasingly important in synthetic
chemistry where they permit molecular level control of the self
assembly of materials with desirable ionic and electronic con-
duction properties, [1]. A molecule is amphiphilic with respect
to a solvent if it is comprised of two components, one of which
has an energetically favorable or hydrophilic interaction with
the solvent and the other with an energetically unfavorable or
hydrophobic interaction. There is a growing literature for the con-
struction and characterization of amphiphilic diblock polymers
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comprised of polymer chains formed from adjustable lengths

of hydrophilic and hydrophobic polymers covalently bonded to-

gether. Amphiphilic molecules are typically characterized by the

Flory–Huggins parameters indicating the strength of the hy-

drophobic/hydrophilic interactions and by the aspect ratio of the

two components, [2].

When immersed in solvent, amphiphilic polymers self assem-

ble into a wide variety of structures with diverse morphologies

that include codimension one bilayers (hollow vesicles), codi-

mension two filaments (solid rods or cylinders), codimension

three micelles (solid spheres), and various defect structures with

no well defined codimension such as end-caps, ‘‘Y’’ junctions, and

mixed morphologies. The bifurcation structure of these mixtures

has been experimentally investigated for a variety of different
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diblock structures. Two seminal experiments, presented in Fig. 1,

have partially unfolded this bifurcation structure by studying the

impact of varying the solvent blend to modify strength of the

amphiphilic interaction, [3], and of varying the aspect ratio of am-

phiphilic polymer, [4]. Increasing the strength of the amphiphilic

interaction and decreasing the aspect ratio of the minority phase

produce similar results: a sequence of bifurcations in which

codimension-one bilayers yield to codimension-two filaments

which yield in turn to codimension-three micelles. In some exper-

iments these codimensional structures are reported to coexist for

a range of parameter values while others show regions of ‘‘mor-

phological complexity’’ characterized by an abundance of defects.

In this paper we analyze the coexistence, bifurcation, and

longtime evolution of well-separated, defect free, codimension

one and two structures within the context of the H−1 gradient

flows of the strong scaling of the Functionalized Cahn–Hilliard

free energy. We use multiscale analysis to derive the curva-

ture driven evolution of codimension one and codimension two

structures that are sufficiently far from self intersection. We

show that the evolution of morphologies of distinct codimension

couples through their exchange of amphiphilic molecules with

the bulk. The bulk chemical potential is spatially constant and

varies temporally on a slow time scale. Most significantly, codi-

mension one and two structures switch between a regularized

curve lengthening and a curve shortening evolution as the bulk

chemical potential passes through critical values. This dichotomy

presents a mechanism for morphological competition in which

structures of one codimension grow at the expense of the other.

This suggests that, in the absence of defects, the coexistence

of structures with distinct codimensions is not generic however

the resolution into structures of homogeneous codimension may

require a substantial transient. This finding is supported by ex-

perimental results, see [5], which report that transient structures

can persist for months.

There are two mechanisms for a codimension one or two

structure to develop an initial defect: self intersection and

pearling. Pearling bifurcations are high-frequency tangential

modulations of the width of the codimensional structure. In a

companion paper, [6], we characterized the onset of the pearling

bifurcation, showing that within the strong scaling of the func-

tionalized Cahn–Hilliard free energy the onset of pearling is

independent of the shape of the codimension one or two struc-

ture, but couples to the transient value of the bulk chemical

potential. Self intersections can be non-local, arising when the

initial intersection points are well separated in distance measured

along the curve, as in a Fig. 8 intersection. They can also be

local, as arises when a surface develops large curvatures, such as

when the radius of a sphere tends to zero. In both cases the self

intersections arise from the evolution of the underlying manifold

that characterizes the structure. Curve-shortening flows render

the manifold smaller and drive their curvatures towards constant

values. Conversely, curve lengthening flows act like backward

heat equations for the interfacial curvature and are well known

to be locally ill-posed. We derive a regularized curve length-

ening flow that includes a higher-order surface diffusion. The

regularized curve lengthening is locally well posed evolution, but

causes the underlying curve to grow and ‘‘meander’’ or buckle,

and typically leads to finite-time non-local self intersections. In

both cases the finite-time singularities can be arrested by the

quenching element of the flow which slows the normal velocity

as the far-field chemical potential approaches an equilibrium

value. Depending upon initial conditions, our results can pre-

dict either a relaxation to an equilibrium state or provide the

mechanisms for the generation of defect states.

Our analysis is particularly relevant to the study of morpholo-

gies derived from casting processes in which an initial suspension

of amphiphilic molecules, reflecting a high bulk chemical po-

tential, nucleates out structures of various codimension which

initially grow, absorbing the amphiphilic molecules from the bulk

suspension and lowering the bulk chemical potential. As the

chemical potential falls it may trigger or inhibit pearling bifurca-

tions in one or both codimensions, or trigger transitions from the

regularized curve lengthening to curve shortening. We compare

our asymptotic results to simulations of the full system, to sim-

ulations of self-consistent mean-field density functional models

of amphiphilic polymer melts, and to experimental bifurcation

diagrams.

1.1. The functionalized Cahn–Hilliard free energy

The Functionalized Cahn–Hilliard (FCH) free energy models

the free energy of a binary mixture of an amphiphilic molecule

and a solvent. It supports stable network morphologies including

codimension one bilayers and codimension two filaments as well

as pearled morphologies and the defects such as end-caps and

Y -junctions, [7–11]. The FCH free energy takes the form

F(u) :=
∫

Ω

1

2

(

ε2∆u − W ′(u)
)2 − εp

(

ε2η1

2
|∇u|2 + η2W (u)

)

dx,

(1.1)

where W is a smooth double-well potential with local minima

at u = b± with b− < b+. The two wells have unequal depths

that are normalized so that W (b−) = 0 > W (b+) and the left

well is non-degenerate in the sense that α− := W ′′(b−) > 0.

The value of α− is a key parameter that controls the rate of

exchange of amphiphilic molecules between the bulk and the

various morphologies. Here ε ≪ 1 is small parameter corre-

sponding to the ratio of length of the amphiphilic molecule to

the domain size, u = b− is associated to a bulk solvent phase,

while the quantity u−b− > 0 is proportional to the density of the

amphiphilic phase. The first term in the integrand of (1.1) is called

the Willmore or the quadratic term, as it denotes the square of

a variational derivative of a Cahn–Hilliard type free energy. The

quadratic term is positive, and we refer to the class of u ∈ H2(Ω)

for which the residual of the quadratic term is small compared to

ε as morphologies. The second grouping of terms in the integrand,

multiplied by εp, is called the functionalization terms. The strong

and weak scalings of the FCH free energy correspond to the choice

p = 1 and p = 2, respectively in (1.1) and represent two

natural choices of distinguished limits between the residual of

the quadratic term and the typical scaling of the functionalization

terms. In the strong scaling of the FCH, the O(ε) functionalization

terms typically dominate the generically O(ε2) residuals from the

quadratic terms, in the weak scaling both terms balance at O(ε2).

The analysis of this paper focuses on the strong scaling of the FCH

free energy for which the bifurcation analysis is more accessible.

The functionalization parameters η1 and η2 characterize key

properties of the amphiphilic molecules. Specifically η1 > 0

models the strength of the hydrophilic interaction, modeling

the propensity of amphiphilic molecules to form monolayers by

rewarding increases in interfacial area or curve length with a

decrease in free energy. The parameter η2 ∈ R encodes the aspect

ratio of the amphiphilic molecule, as discussed in Section 4.3.

Equivalently these parameters are analogous to the surface and

volume energies typical of models of charged solutes in confined

domains, see [12] and particularly equation (67) of [13]. With

these parameter choices the minus sign in front of the func-

tionalization terms has great significance — it incorporates the

propensity of the amphiphilic surfactant phase to drive the cre-

ation of interface. Indeed, experimental tuning of solvent quality

identifies molecular level phase separation and self assembly in
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Fig. 1. Morphological bifurcation diagrams for two classes of amphiphilic polymers in solvent. (left) Morphology of Polystyrene (PS)–Polyacrylic acid (PAA) diblocks as

function of increasing water content in water–dioxane solvent blend (horizontal axis) and polymer %-weight fraction of the overall mixture (vertical axis). Increased

water volume fraction drives bifurcation to lower codimensional morphologies without inducing pearling. From [3]. Reprinted with permission from AAAS. (right)

Morphology of amphiphilic Polyethylene oxide (PEO)–Polybutadiene (PB) diblock suspension as function of the PEO weight fraction, wPEO (horizontal axis) for molecular

weights of PB fixed at NPB = 45 and 170 (vertical axis). Defect loaded phases are observed for the higher value of NPB . Images of polymer morphologies are included

inset, as well as schematic representations of codimension one, two, and three morphologies and ‘Y’ junctions. From [4]. Reprinted with permission from AAAS.

amphiphilic mixtures with the onset of negative values of surface

tension in mesoscale agglomerates, [14] and [15].

Prior work on FCH gradient flows has focused on the weak

scaling, corresponding to p = 2 in (1.1). In [9] the authors de-

rived the geometric evolution of bilayers at the quenched mean-

curvature flow on the O(ε−1) time scale and as a surface area

preserving Willmore flow on the O(ε−2) time scale. The geometric

evolution of codimension two structures was derived in [16], ob-

taining a curvature driven competitive geometric evolution of the

filament curve on the O(ε−1) time scale and a length-preserving

Willmore type flow on the O(ε−2) time scale. Moreover, it was

found that the codimension one and two structures can co-exist

on the faster O(ε−1) time scale in the weak FCH, but compete on

the longer O(ε−2) time scale. However, rigorous investigation of

the pearling bifurcation in the weak FCH is complicated by its

leading order coupling to the curvature of the underlying curves.

Conversely in the strong scaling of the FCH, the pearling bifurca-

tion is independent of morphology and was rigorously character-

ized in [6] for a wide class of codimension one and two structures.

In the remainder of this paper we consider the strong scaling

of the FCH free energy. Fixing Ω = [0, L]d ⊂ R
d for d = 2, 3, . . .

and applying periodic boundary conditions to H4(Ω), the first

variation of F , also called the chemical potential µ, associated to

a spatial distribution u ∈ H4(Ω) takes the form

µ := δF

δu
(u) = (ε2∆− W ′′(u) + εη1)(ε

2∆u − W ′(u)) + εηdW
′(u),

(1.2)

where ηd := η1 − η2. The Functionalized Cahn–Hilliard equation

is the associated H−1 gradient flow,

ut = ∆µ(u), (1.3)

supplemented with periodic boundary conditions on Ω . The

choice of the H−1 gradient is a reflection of its status as the

simplest local gradient that preserves mass. The mathematical

focus of the paper is on the multiscale analysis of the evolution

codimension one and two structures. On the O(ε−1) time scale we

find that the H−1 gradient flow drives well separated filament

and bilayer structures through a competitive, mean-curvature

driven flow mediated through the common value of the spatially
constant far-field chemical potential, µ1 defined in (2.17). We
show in Section 2 that the nonlocal Mullins–Sekerka problem
familiar to Cahn–Hilliard evolution is present but is unforced, and
on the long time scales we consider the far-field chemical poten-
tial relaxes to a trivial, spatially-constant for both codimension
one bilayer and codimension two filament morphologies. As a
consequence, the geometric evolution is local.

While spatially constant, the far-field chemical potential µ1 =
µ1(t), is temporally dynamic and is linearly proportional to the
density of free amphiphilic molecules in the bulk. It serves as
a key bifurcation parameter, triggering two potential types of
instability for each codimension of morphology. Indeed, in [17]
it is shown for the FCH free energy that the pearling and self
intersection via geometric motion are the only possible mecha-
nisms to generate defects in bilayers. In the companion paper, [6],
a sharp condition for pearling stability is derived that relates
the chemical potential to the parameter ηd and constants that
depend implicitly on the form of the double-well W . Specifically
the bilayers are stable with respect to the pearling bifurcation if
and only if

µ1Sb + ηdλb,0


ψb,0





2

2
< 0, (1.4)

and similarly filaments are pearling stable if and only if

µ1Sf + ηd

(



ψ ′
f ,0,0





2

LR
+ λf ,0,0



ψf ,0,0





2

LR

)

< 0, (1.5)

where λb,0 is the ground-state eigenvalue of the linear oper-
ator Lb,0, defined in (2.7), with eigenfunction ψb,0, and λf ,0,0
is the ground state eigenvalue of the linear operator Lf ,0,0, de-
fined in (3.16), with the corresponding eigenfunction ψf ,0,0. The
constants Sb, Sf are the shape factors of the bilayers and the
filaments, respectively, defined by the relations

Sb :=
∫

R

Φb,1W
′′′(φb)ψ

2
b,0 dz,

Sf := 2π

∫ ∞

0

Φf ,1W
′′′(φf )ψ

2
f ,0,0 RdR. (1.6)

Here φb and φf are the bilayer and filament profiles, defined
in (2.6) and (3.10), while Φb,1 and Φf ,1, defined in (2.8) and
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(3.17), encode the impact of a change in chemical potential on

the shape of the bilayer and filament, respectively. For each

codimension, if the shape factor is negative then pearling stability

is favored by large (positive) values of µ1, while if it is positive

then pearling stability is favored for small (negative) values of µ1.

In [11] the existence of pearled codimension one circular and flat

equilibrium was demonstrated in R
2 for the strong FCH.

1.2. Summary of analytical results

Our main analytical result is the derivation of curvature driven

flow laws valid on slow time τ = εt for codimension one and two

structures embedded in Ω ⊂ R
3 via a multiscale analysis. Bilayer

and filament morphologies are defined as dressings of collections

of admissible interfaces and curves, respectively. We consider

an admissible codimension one interface Γb, see Definition 2.1,

with O(1) area and codimension two curve Γf , see Definition 3.1,

with O(ε−1) length. We assume the reaches of these two classes

of surfaces, as defined in (2.2) and (3.4) respectively, are all

disjoint and introduce the composite solution defined in (4.2). The

evolution of these composite solutions under the gradient flow

(1.3) is parameterized at leading order by the triple (Γb,Γf , µ1)

according to their ε-scaled normal velocities

Vb = νb(µ1 − µ∗
b)H0 + εkb∆sH0, (1.7)

Vf = −
[

νf (µ1 − µ∗
f )κ⃗ + εkf ∂

2
s κ⃗
]

. (1.8)

Here we have introduced the mean curvature H0 and Laplace–

Beltrami operator ∆s of Γb and vector curvature κ⃗ = (κ1, κ2) and

surface diffusion ∂2s of Γf . On this slow time τ = εt , the chemical

potential satisfies

dµ1

dτ
= − α2

−
|Ω|

[

mb

∫

Γb

νb
(

µ1 − µ∗
b

)

H2
0 − εkb|∇sH0|2 ds

+ 2πmf ε

∫

Γf

νf
(

µ1 − µ∗
f

)

|κ⃗|2 − ε|∂sκ⃗f |2 ds
]

+ O(ε2), (1.9)

where the constants νb > 0, kb > 0, and mb > 0, are defined

in (2.51) while νf > 0, kf > 0, and mf > 0 defined in (3.77).

While the surface diffusion terms are formally lower order, they

are leading order singular perturbations that keep the resulting

flow locally well-posed.

The system (1.7)–(1.9) describes the competitive dynamics

between codimension one and two morphologies. The key critical

values

µ∗
b = − kb

2νb
(η1 + η2), (1.10)

µ∗
f = kf

νf
η1, (1.11)

indicate the value of µ1 at which the rates of amphiphilic

molecule insertion and ejection are balanced for bilayers and fila-

ments, respectively. Specifically, if the far-field chemical potential

lies above this number, then structures of the corresponding

codimension will grow. Indeed, the rate of change of the area of

bilayers is given by

∂τ |Γb| =
∫

Γb

VbH0 ds =
∫

Γb

νb(µ1 −µ∗
b)H

2
0 − εkb|∇sH0|2 ds, (1.12)

with the corresponding expression

∂τ |Γf | =
∫

Γf

Vf · κ⃗ ds =
∫

Γf

νb(µ1 −µ∗
f )|κ⃗|2 − εkf |∂sκ⃗|2 ds, (1.13)

for the length of the filaments. The competitive dynamics system

provides the leading order evolution so long as the interfaces

remain admissible with disjoint reaches and the µ1-dependent

pearling conditions (1.4)–(1.5) hold. The surface diffusion terms

in (1.7)–(1.8) are relevant to mass balance only if the gradients

of the curvatures become asymptotically large or if µ1 becomes

asymptotically close to one of the critical values µ∗
b or µ∗

f . In

particular, it follows from (1.9) that net growth of bilayers and

filaments corresponds to a decrease in µ1, while large curvature

gradients enhance the ejection rates and increase the value of µ1.

Remark. For the codimension two filament term to contribute to

the evolution of the chemical potential, µ1, at leading order, we

assume that their collective length |Γf | is O(ε−1). Our generic as-

sumption on the codimension one phase is the surface area |Γb| =
O(1), so that both bilayers and filaments occupy an O(ε) volume

fraction. This limits the applicability of the asymptotic results

as the assumption of disjoint reaches becomes non-generic, and

represents a significant caveat in the application of our analytical

results. Since the geometric flow reduction does not apply to mor-

phologies with defects, both a large number of short filaments

or a small number of long filaments complicate the non-self

intersection assumption. Our analysis applies to each disjoint

component of filament morphology separately, and while ε ≪ 1

is small, it is viewed as fixed within the model and need not be

vanishingly small. A more detailed analysis of mass scaling in the

ε → 0 convergence issues for FCH models can be found in [19].

For µ1 > µ∗
b we call the normal velocity (1.7) a regularized

(codimension one) curve lengthening flow and a (codimension

one) curve shortening flow if µ1 < µ∗
b , with similar terminology

for the codimension two flow based upon the sign of µ1 − µ∗
f .

When the structures have a homogeneous codimension, then in

the absence of singularities in the curvature flow, Eq. (1.9) drives

the chemical potential µ1 to the corresponding critical value, µ∗
b

or µ∗
f , and the leading-order term in the geometric flow goes to

zero, and the system is said to be ‘‘quenched’’. To illustrate the

nature of the geometric flow, it is instructive to rewrite it as a

corresponding evolution equation for the curvatures. For codi-

mension one structures in two space dimensions, up to tangential

reparameterization it takes the simple form

∂τH0 = −(∆s+H2
0 )Vb = −(∆s+H2

0 )
(

νb(µ1 − µ∗
b)H0 + εkb∆sH0

)

.

(1.14)

For the curve lengthening regime, the dominant term is a back-

ward heat equation, with a fourth-order regularization and a H3
0

nonlinearity with a negative (stable) coefficient. For the curve

shortening regime, both differential terms are stabilizing, but

the cubic nonlinearity has a positive coefficient that supports

finite time singularity which may be arrested by the fourth order

regularization.

In numerical simulations the curve lengthening flows, with

µ1 > µ∗
b,f show distinct regimes. For positive but O(ε) values of

µ1−µ∗
b the bilayer interfaces will bend and buckle at O(1) length

scales, leading to shapes reminiscent of a meandering river. This

regime is called a ‘‘meandering flow’’, and is studied rigorously

in [20]. For O(1) positive values of µ1 −µ∗
b the curve lengthening

flows can lead to growth of high-curvature regions which self

intersect on a τ = O(1) length scale. For filaments this can lead

to the formation of many closed loops, see Figures 2 and 3 of [4]

for experimental examples or Fig. 5 of this article for an example

of meandering motion within the FCH gradient flow.
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Fig. 2. Molecular dynamics simulations of amphiphilic molecules with distinct aspect ratios. Increasing the size of the hydrophilic head group, relative to a fixed

tail leads to a preference for morphologies with increasing codimensions: (b) bilayers with edge caps (codim 1), (c) branched filaments (codim 2), (d) unbranched

filaments (codim 2), and (e) micelles (codim 3). Morphologies with higher codimension have a higher density of free-floating amphiphilic molecules in the far-field

(bulk), corresponding to a higher critical value of µ1 .

Source: Reprinted from [18], with permission from Elsevier.

1.3. Competition and morphological complexity

Our main scientific results are the conjectured mechanisms

for the morphological bifurcations observed in the casting of am-

phiphilic suspensions. In particular we propose a mechanism for

the onset of the so-called ‘‘morphological complexity’’ observed

in the experimental casting processes presented in Fig. 1 (right).

In a casting process amphiphilic molecules are dispersed (mixed)

in a solvent and the mixture is allowed to relax, generically

leading to self-assembly of structures with distinct codimension.

For the shorter chains, NPB = 45 corresponding to the lower

horizontal row of symbols, casts from molecules with increas-

ing weight fraction of the amphiphilic PEO component (wPEO –

horizontal axis) lead to a series of codimensional bifurcations

in which the self-assembly prefers structures with increasing

codimension. Indeed experiments produce first bilayers (codi-

mension one) marked (B), then bilayers coexisting with cylinders

(codimension two) marked (B + C), then cylinders, then cylinders

coexisting with spheres (codimension three) marked (S), and

finally spheres. A similar series of codimensional bifurcations are

presented in Figs. 1(left) and 2. In the former the bifurcations

are induced by lowering the percentage of water in the water–

dioxane solvent which forms the basis for the casting. In the

latter they are realized within coarse-grained molecular dynamics

simulations of casting processes by increasing the size of the

hydrophilic head group, and hence the aspect ratio, of a simple

three-group amphiphilic molecule.

We conjecture that the competitive dynamics implicit in the

system (1.7)–(1.9) forms the basis for these codimensional bifur-

cations. In a casting process there is initially a relatively large

density of dispersed amphiphilic molecules, corresponding to

a high value of the far-field chemical potential µ1. As various

structures self-organize, amphiphilic molecules are removed from

the far-field and the scalar value of µ1 falls. The critical values

µ∗
b and µ∗

f , given in (1.10)–(1.11), gauge the relative ability of

the corresponding bilayer and filament morphologies to absorb

and retain amphiphilic molecules from the far-field (bulk) envi-

ronment. The morphology with the lowest corresponding critical

value will, in the absence of defects, lower the value of µ1 and

drain the mass of the morphologies with higher critical values of

µ1. Increasing values of either η1 or η2 will drive µb greater than

µf and trigger a competitive imbalance that favors codimension

two filaments over codimension one bilayers. We argue in Sec-

tion 4 that increasing the aspect ratio of the amphiphilic molecule

corresponds to an increase in the value of η2, while decreasing

the percentage of water within the water–dioxane solvent blend

corresponds to an increase in the value of η1. These produce

shifts in µ∗
b,f in agreement with bifurcation from codimension

one to codimension two. The coexistence of codimension one

and two structures for large parameter ranges are not supported

by the analysis. However the time scale to reach equilibrium

can be quite long, [5] suggest times on the order of months,

and we propose that longer experimental trials may decrease

the size of the regions of coexistence. We do not present an

analysis of codimension three micelles within this work as they

do not have a spatially extended direction that can accommodate

incremental growth, rather simulations suggest that they swell,

form dumbbell shapes, and then break into distinct micelles. This

behavior is outside the scope of our analysis.

For the longer NPB = 170 chains in Fig. 1(right), increasing

wPEO one finds that the codimensional bifurcation structure is

interrupted by the onset of so-called ‘‘morphological complex-

ity’’. Specifically, the casting sequences yield bilayers, bilayers

coexisting with branched filaments, strongly connected network

morphologies, and Y -junction dominated filaments, before re-

verting to the familiar codimension two and codimension three

structures. The term morphological complexity refers not only to

the wide variety of possible outcomes, but also to the difficulty in

controlling the outcomes, see [4] and [5]. Our second conjecture is

that morphological complexity arises from the interplay between

the pearling bifurcation, the competitive dynamics, and the evolv-

ing value of µ1. Indeed, the criteria for pearling stability depends

upon the value of µ1, see (1.4) and (1.5), and as µ1 deceases

during the casting it may trigger or inhibit pearling stability. In

particular, in Section 4.4.2 we present regimes in which bilayers

have a competitive advantage over filaments, but are transiently

pearling unstable, while filaments are globally pearling stable.

This cascade of bifurcations provides mechanisms to produce

complex blends of defects and morphologies and affords a clear

mechanism for hysteresis. In such an environment the ultimate

outcome of a given casting process could depend sensitively on

secondary effects such as the rate at which amphiphilic molecules

are initially added to the dispersion or upon spatial inhomo-

geneities. The spatial complexity of the end states in this regime

is born out both by experiments and by simulations of the FCH

free energy, see Fig. 10 (center and right).

We emphasize that the morphological complexity conjecture

encompasses structures with codimensional defects that are out-

side of our analysis. Moreover, the pearling bifurcation cannot

be robustly suppressed within the FCH gradient flows. The ex-

periments and simulations exhibiting the simple codimensional

bifurcation route do not display signs of pearling bifurcation.
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In particular there is no mechanism within the FCH energy to

explain why pearling would be expressed in longer polymers

and inhibited in shorter but otherwise identical polymers. These

limitations of the model are expanded upon in the discussion of

Section 5. In [21] and [22] two-component extensions of the FCH

are proposed which possess more detailed internal layer struc-

ture and afford precise mechanisms to robustly inhibit pearling

bifurcations.

In Sections 2 and 3, respectively, we apply a multiscale analy-

sis to derive the long time-scale evolution of admissible codimen-

sion one and two structures under the FCH equation. In particular

we extract the coupling of the bulk chemical potential on the

curvature driven flow. In Section 4 we extend these results to

composite morphologies, deriving the laws governing their com-

petitive evolution. We present bifurcation diagrams that show the

regions of pearling stability and curve shortening of each mor-

phology, and compare them to simulations of the FCH equation,

to self consistent mean field density functional theory simula-

tions, and to the experimental bifurcation diagrams presented

in Fig. 1. These are the first results that explicitly quantify the

complexity of the transients associated to amphiphilic polymer

blends and identify the role of the pearling bifurcation in the

generation of complex network morphologies.

2. Geometric evolution of codimension one structures

In this section we derive the geometric evolution of admissible

codimension one interfaces, which we refer to as bilayers. These

calculations are carried out in R
d for d ≥ 2 but we will restrict

our attention to R
3 for the analysis of filaments. We consider the

local, mass-preserving H−1 gradient flow of the strong FCH given

in (1.3). The multiscale analysis of this section follows closely

from the calculations of [16], which considered the weak scaling

of the FCH gradient flow. For brevity we present only the main

calculations.

It is well known that for the single-layer interfaces supported

in Cahn–Hilliard type models, that is codimension one interfaces

which separate distinct phases, the O(1) and O(ε−1) time scales

yield Stefan and Mullins–Sekerka problems for the interfacial

motion [23–25]. For single layers motion of the interface requires

transport of materials on either side. For bilayers we derive these

reduced flows, but they have trivial solutions, as the interfa-

cial motion of an interface with the same material on either

side does not require long-range transport but is facilitated by

permeation. The result is a local geometric flow, driven by mem-

brane curvatures and coupled to the bulk value of the chemical

potential.

2.1. Admissible codimension one manifold and their dressings

Given a smooth, closed (d − 1)–dimensional manifold Γb im-

mersed in Ω ⊂ R
d, we define the local ‘‘whiskered’’ coordinates

system in a neighborhood of Γb via the mapping

x = ρ(s, z) := ζb(s) + εν(s)z, (2.1)

where ζb : S ↦→ R
d is a local parameterization of Γb and

ν(s) is the outward unit normal to Γb. The variable z is often

called the ε-scaled, signed distance to Γb, while the variables

s = (s1, . . . , sd−1) parameterize the tangential directions of Γb.

Definition 2.1. For any K , ℓ > 0 the family, Gb
K ,ℓ, of admissible

interfaces is comprised of closed (compact and without bound-

ary), oriented d − 1 dimensional manifolds Γb embedded in R
d,

which are far from self-intersection and with a smooth second

fundamental form. More precisely,

(i) The W 4,∞(S) norm of the 2nd Fundamental form of Γb and

its principal curvatures are bounded by K .

(ii) The whiskers of length 3ℓ < 1/K , in the unscaled distance,

defined for each s0 ∈ S by, ws0 := {x : s(x) = s0, |z(x)| <
3ℓ/ε}, neither intersect each-other nor ∂Ω (except when

considering periodic boundary conditions).

(iii) The surface area, |Γb|, of Γb is bounded by K .

For an admissible codimension one interface Γb the change of

variables x → ρ(s, z) given by (2.1) is a C4 diffeomorphism on

the reach of Γb, defined as the set

Γb,ℓ :=
{

ρ(s, z) ∈ R
d
⏐

⏐

⏐
s ∈ S,−ℓ/ε ≤ z ≤ ℓ/ε

}

⊂ Ω, (2.2)

with complement Γ̃b,ℓ := Ω\Γb,ℓ. On the reach we may expand

the Cartesian Laplacian in terms of the Laplace–Beltrami operator

∆s and the curvatures,

ε2∆x = ∂2z + εH0(s)∂z + ε2(zH1∂z +∆s) + O(ε3), (2.3)

where Hi(s) is related to the ith powers of the curvatures

Hi = (−1)i
d−1
∑

j=1

ki+1
j , (2.4)

and, in particular, H0 is the mean curvature of Γb. See [9] for more

details.

Definition 2.2. Given an admissible codimension one interface

Γb ∈ G
b
K ,ℓ and f : R → R which tends to constant value f∞ at an

exponential rate as z → ±∞, then we define the H2(Ω) function

fΓb (x) := f (z(x))χ (|z(x)|/ℓ) + f∞(1 − χ (|z(x)|/ℓ)), (2.5)

where χ : R → R is a fixed, smooth cut-off function which takes

values one on [0, 1] and 0 on [2,∞). We call fΓb ∈ L2(Ω) the

dressing of Γb with f ∈ L2(R), and by abuse of notation will drop

the Γb subscript when doing so creates no confusion.

Within the reach Γb,ℓ of an admissible Γb the quadratic term

within the FCH, (1.1), can be re-written in the codimension one

whiskered coordinates system (2.1). Setting the quadratic term

equal to zero, and formally taking the leading order terms in ε

leads to a second-order ODE in z. The bilayer profile φb, is defined

to be the solution of this equation

∂2z φb = W ′(φb), (2.6)

which is homoclinic to the left well b− of W . We denote by

Ub ∈ L2(Ω) the dressing of Γb by φb ∈ L2(R), and introduce the

associated linear operator

Lb,0 := ∂2z − W ′′(φb). (2.7)

This is a Sturm–Liouville operator on L2(R) and has a positive

ground-state eigenvalue λb,0 > 0 with eigenfunction ψb,0 ≥
0 and a translational eigenvalue λb,1 = 0 associated to the

eigenfunction ψb,1 = φ′
b. In addition, we define the functions

Φb,j := L
−j

b,01, (2.8)

for j = 1, 2 which converge to a non-zero value at z = ±∞. We

also define their Γb dressings, which are denoted by Φb,1 and Φb,2

by the abuse of notation mentioned above.

2.2. Inner and outer expansions

Assuming initial data arising from the dressing of an admissi-

ble initial codimension one interface Γb(t0) ∈ G
b
K ,ℓ, we describe

the coupled geometric evolution of the interface and the far-field
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chemical potential as a flow in time t . We consider formal, multi-

scale analysis of the density u and the chemical potential µ. In the

far-field or bulk region, Γ̃b,ℓ := Ω\Γb,ℓ, the outer solution u has

the expansion

u(x, t) = u0(x, t) + εu1(x, t) + O(ε2). (2.9)

Within the reach or inner region, Γb,ℓ, we use the whiskered

coordinates with the ε-scaled distance z to the interface. The

standard assumption is that the inner solution ũ is smooth in

the tangential s-variables. However the leading order result is a

curvature driven flow whose coefficient may switch sign. Flow

against curvature is not locally well posed due to uncontrollable

growth in high-frequency growth terms. To regularize this, we

incorporate a two-scale tangential expansion, introducing the fast

tangential variable S := s/
√
ε, so that the inner variable admits

the expansion.

u(x, t) = ũ(s, S, z, τ ) = ũ0(s, S, z, τ ) + εũ1(s, S, z, τ ) + O(ε2).

(2.10)

The inclusion of the fast tangential variable promotes a formally

lower order surface diffusion term to the leading order, where it

regularizes the curve lengthening flow. The normal velocity V =
V (s, S, t) of Γb is denoted by

V (s, S, t) := −ε ∂z
∂t
. (2.11)

On the slow time τ = εt , the time derivative of the inner

density function ũ, defined in (2.10), combined with the normal

velocity, (2.11), takes the form

∂ ũ

∂t
= −ε−1V (s)

∂ ũ

∂z
+ ∂ ũ

∂τ

∂τ

∂t
. (2.12)

At the interface we have the standard matching conditions

lim
h→0±

u(x + hν, τ ) = lim
z→±∞

ũ(s, S, z, τ ). (2.13)

which reduce to the relations

u±
0 (x, τ ) = lim

z→±∞
ũ0(s, S, z, τ ), (2.14)

u±
1 (x, τ ) + z∂νu

±
0 (x, τ ) = lim

z→±∞
ũ1(s, S, z, τ ). (2.15)

where ∂ν is the derivative in the normal direction of Γb, and u±
i

denote the values of the limits of the left-hand side of (2.13) as

h → 0± respectively.

The chemical potential, µ, defined in (1.2), admits similar

outer and inner expansions. The terms of its outer expansion are

slaved to the density u through the outer relations,

µ0 =W ′′(u0)W
′(u0), (2.16)

µ1 =(W ′′′(u0)u1 − η1)W
′(u0) + (W ′′(u0))

2u1 + ηdW
′(u0). (2.17)

For the inner expansion we introduce the nonlinear operators P

and Q to rewrite the chemical potential (1.2) as

µ̃ = P(ũ)Q (ũ) + εηdW
′(ũ). (2.18)

In the multiscale tangential variables the Laplacian expansion

(2.3) takes the form

ε2∆x = ∂2z + ε (H0(s, S)∂z +∆S)

+ ε2(zH1(s, S)∂z + zD2,S +∆s) + O(ε3), (2.19)

where ∆S is the scaled Laplace–Beltrami operator and D2,S de-

notes a higher order elliptic term in S. Details on the D2,S term

can be found in section 6 of [17] however its precise form is

immaterial to our presentation. We combine the expansion of

the Laplacian and the inner solution to obtain an expansion for
P = P0 + εP1 + ε2P2 + · · ·, where

P0 =∂2z − W ′′(ũ0), (2.20)

P1 =H0(s, S)∂z +∆S − W ′′′(ũ0)ũ1 + η1, (2.21)

P2 =zH1(s, S)∂z + D2,S +∆s − W ′′′(ũ0)ũ2 + 1

2
W (4)(ũ0)ũ

2
1, (2.22)

and for Q = Q0 + εQ1 + ε2Q2 + · · ·
Q0 =∂2z ũ0 − W ′(ũ0), (2.23)

Q1 =H0∂z ũ0 +∆S ũ0 + (∂2z − W ′′(ũ0))ũ1, (2.24)

Q2 =zH1∂z ũ0 + D2,S ũ0 +∆sũ0 + (H0∂z +∆S)ũ1

+ (∂2z − W ′′(ũ0))ũ2 − 1

2
W ′′′(ũ0)ũ

2
1. (2.25)

With these reductions we expand the inner chemical potential as

µ̃0 =P0Q0 (2.26)

µ̃1 =P1Q0 + P0Q1 + ηdW
′(ũ0), (2.27)

µ̃2 =P0Q2 + P1Q1 + P2Q0 + ηdW
′′(ũ0)ũ1. (2.28)

The second order form of the H−1 gradient induces inner–outer
matching conditions for the chemical potential,

µ±
0 (x, t) = lim

z→±∞
µ̃0(z, s, S, t),

(2.29)

µ±
1 (x, t) + z∂νµ

±
0 (x, t) = lim

z→±∞
µ̃1(s, S, z, t)

(2.30)

µ±
2 (x, t) + z∂νµ

±
1 (x, t) + 1

2
z2∂2νµ

±
0 (x, t) = lim

z→±∞
µ̃2(s, S, z, t).

(2.31)

2.3. Time scale τ = εt: quenched curvature driven flow

We focus on the first relevant slow time-scale, τ = εt , insert-
ing the time derivative and chemical potential expansions into
the FCH gradient flow, (1.3). As the interface Γb is codimension
one, it separates the region Ω into two disjoint sets, Ω\Γb =
Ω+ ∪ Ω− with the normal to Γb pointing towards Ω+. In this
bulk region we obtain the relations

O(1) : 0 = ∆
(

W ′′(u0)W
′(u0)

)

, in Ω− ∪Ω+, (2.32)

O(ε) : u0,τ = ∆
(

(W ′′′(u0)u1 − η1)W
′(u0)

+(W ′′(u0))
2u1 + ηdW

′(u0)
)

, in Ω− ∪Ω+. (2.33)

The relevant solution to the O(1) relation is the spatially constant
density, u0 = b− for which µ0 = 0. With this reduction and the
fact that W ′(b−) = 0 and W ′′(b−) := α− > 0, the O(ε) relation
reduces to

0 = ∆u1 in Ω− ∪Ω+, (2.34)

which is subject to interior layer matching and exterior boundary
conditions derived in the sequel.

In the inner region we supplement the expansion (2.10) with
the form of the Laplacian in inner variables, given in (2.3). Col-
lecting orders of ε we find

O(ε−2) : 0 = ∂2z µ̃0, in Γb,ℓ, (2.35)

where µ̃0 is defined in (2.26). This relation is satisfied by ũ0 = Ub,

which is consistent with our choice of initial data corresponding

to the dressing of an admissible bilayer with the bilayer profile.

Modulo this form the next orders in the expansion take the form,

O(ε−1) : 0 = ∂2z µ̃1, in Γb,ℓ, (2.36)

O(1) : − V (s, S)∂z ũ0 = ∂2z µ̃2 + (H0∂z +∆S )µ̃1, in Γb,ℓ, (2.37)
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where µ̃1 and µ̃2 are defined in (2.27) and (2.28) respectively.

With the reduction ũ0 = Ub, the matching condition (2.30)

reduces to the relations ∂zµ̃1 ≈ ∂νµ0 = 0 as z −→ ±∞.

Applying these to (2.36) we find that µ̃1 is independent of z,

i.e., µ̃1 = µ̃1(s, S, τ ). Similarly, we simplify the inner expression

for µ̃1 in (2.27) which yields the expression

ũ1 = µ̃1Φb,2 − ηdL
−2
b,0W

′(Ub), (2.38)

where Φb,2 is defined in (2.8). Since µ̃1 is independent of z, the

relation (2.37) reduces to

O(1) : − V (s, S)∂zUb = ∂2z µ̃2 +∆Sµ̃1, in Γb,ℓ. (2.39)

To obtain interfacial jump conditions for µ1 we introduce

Ûb := Ub − b− > 0, and integrate (2.39) twice from 0 to z we

obtain the relation

µ̃2(z) = µ̃2(0) − V (s, S)

∫ z

0

Ûb(t) dt + z

(

∂zµ̃2(0) + V (s, S)Ûb(0)

)

+ z2

2
∆Sµ̃1(s, S). (2.40)

Comparing to the jump condition (2.31), and recalling that µ0 =
0, we deduce that ∆sµ̃1 = 0. Since Γb is closed, this implies

that µ̃1 = µ̃1(s, τ ) is constant in S. Using this information, we

integrate (2.39) with respect to z over R. As Ub is homoclinic we

obtain the relationship

lim
z→∞

∂zµ̃2(z) − lim
z→−∞

∂zµ̃2(z) = 0, (2.41)

which when reported to the matching condition (2.31) yields the

key outer interfacial jump relations

Jµ2K = 0, J∂νµ1K = 0. (2.42)

Coupling these boundary conditions with the elliptic problem

(2.34) typically yields a Mullins–Sekerka problem for the long-

range transport of material; however the homogeneous jump

conditions imply that ∆µ1 = 0 in all of Ω , which subject to the

exterior boundary conditions implies that the far-field chemical

potential, µ1, is spatially constant; however it remains a function

of time.

To extract the normal velocity we return the reduction ũ0 =
Ub to (2.28), so that P0 reduces to Lb,0 and the chemical potential

takes the form

µ̃2 =L2b,0ũ2 − Lb,0Q̃2 + (H0(s, S)∂z +∆S

− W ′′′(Ub)ũ1 + η1)(Lb,0ũ1 + H0(s, S)U
′
b) (2.43)

+ ηdW
′′(Ub)ũ1,

where we have introduced the quantity Q̃2 := Q2 − Lb,0ũ2.

Integrating (2.39) from z = −∞ to z = 0, using the matching

condition (2.31), and recalling that µ1 is constant, ∆Sµ̃1 = 0, and

Ûb → 0 as z → ±∞ yields the expression

V (s, S)Ûb(0) = lim
z→−∞

∂zµ̃2 − ∂zµ̃2(0) = ∂νµ1 − ∂zµ̃2(0)

= −∂zµ2(0). (2.44)

Using (2.44) to replace V (s)Ûb(0) in Eq. (2.40) yields

µ̃2(z) = µ̃2(0) − V (s, S)

∫ z

0

Ûb(t) dt. (2.45)

Replacing µ̃2 in (2.45) with its expression from (2.43) and solving

for L2b,0ũ2 yields an expression for ũ2

L2b,0ũ2 =Lb,0Q̃1 −
(

H0∂z − W ′′′(Ub)ũ1 + η1
) (

Lb,0ũ1 + H0∂zUb

)

− ∆SH0(s, S)∂zUb − ηdW
′′(Ub)ũ1

+ µ̃2(0) − V (s, S)

∫ z

0

Ûb(t) dt. (2.46)

Fixing the values of s and S, this equation has a solution ũ2(s, S, ·)
∈ L2(R) if and only if the right-hand side is perpendicular

to ker Lb,0, which is spanned by ∂zφb. This solvability condition is

enforced by selecting the value of V (s, S). Since the terms in (2.46)

are either functions of z or of s and S, we factor out the functions

of s and S, replace Ub with φb, and take the inner product of (2.46)

with ∂zφb in L2(R). Recalling that ũ1, defined in (2.38), is even in z

and the operator Lb,0 preserves symmetry, parity considerations

reduce the solvability condition to

H0

(

(Lb,0ũ1, ∂
2
z φb)L2(R) + (W ′′′(φb)ũ1, ∂zφb) − η1∥φ′

b∥2

L2

)

+ V∥φ̂b∥2

L2
−∆SH0∥φ′

b∥2

L2
= 0. (2.47)

From (2.6) it is easy to verify that

Lb,0

( z

2
φ′
b

)

= φ′′
b , (2.48)

Lb,0φ
′′
b = W ′′′(φb)(φ

′
b)

2. (2.49)

Using these relations and the form (2.38) of ũ1, the coefficient of

H0 in (2.47) reduces to

(Lb,0ũ1, ∂
2
z φb)L2(R) + (W ′′′(φb)ũ1, ∂zφb) − η1∥φ′

b∥2

L2

= (L2b,0ũ1,
z

2
φ′
b)L2 − η1∥φ′

b∥2

L2
,

= µ1mb + 1

2
(η1 + η2) σb.

Returning this reduction to (2.47) and solving for the normal

velocity we find

V (s, S) = µ1mb + 1
2
(η1 + η2)σb

B1

H0 + σb

B1

∆SH0, (2.50)

where here and above we have introduced the positive constants

mb :=
∫

R

φ̂b dz > 0, B1 :=





φ̂b







2

L2(R)
, σb :=



φ′
b





2

L2(R)
. (2.51)

The sign of the coefficient of H0 is indeterminate, as η2 can be

negative and moreover the bulk chemical potential µ1 varies

temporally. To emphasize this fact we introduce the constants

µ∗
b = −1

2
(η1 + η2)

σb

mb

, νb := mb

B1

, kb := σb

B1

,

(2.52)

and return the S variable to its original scaling, obtaining the

regularized curvature driven flow

V (s) = νb
(

µ1 − µ∗
b

)

H0 + εkb∆sH0. (2.53)

To close the system and fully determine the normal velocity

we evoke conservation of mass to specify the temporally vary-

ing value of the bulk external chemical potential, µ1. The mass

balance is determined by the interplay between the length of the

interface Γb and the total mass of amphiphilic material. From the

form of ũ0 and ũ1 in (2.38), we have the composite formulation

u(x, t) = Ub + ε(µ1Φb,2 − ηdL
−2
b,0W

′(Ub)) + O(ε2), (2.54)

which has the spatially constant far-field asymptotic value

u(x, t) = b− + ε
µ1

α2
−

+ O(ε2) in Ω\Γb,ℓ, (2.55)

where α− := W ′′(b−) > 0. The gradient flow (1.3) conserves the

total mass,

M :=
∫

Ω

u(x, t) − b− dx =
∫

Ω

u(x, 0) − b− dx. (2.56)
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Using the form of the composite solution, (2.54), we evaluate the

integral over the reach and its complement,

M = ε

∫

Γ̃b,ℓ

µ1

α2
−

dx+
∫

Γb,ℓ

Ûb+ε(µ1Φb,2−ηdL−2
b,0W

′(Ub)) dx+O(ε2).

(2.57)

Since Γb is admissible, its area |Γb| ∼ O(1). Changing to whiskered

coordinates in the localized integral yields

M = ε

(

|Ω|µ1

α2
−

+
∫

Γb

∫ l/ε

−l/ε

φ̂b dz ds

)

+ O(ε2). (2.58)

Our choice of initial data implies that the mass can be rescaled as

M = εM̂ + O(ε2). We also expand the surface area

|Γb| = γb,0 + εγb,1 + O(ε2). (2.59)

Evaluating the integrals in Eq. (2.58) and solving for µ1 yields the

expression

µ1 = α2
−

|Ω|
(

M̂ − γb,0mb

)

+ O(ε), (2.60)

where mb is defined in (2.51). On the other hand, the area of a

smooth curve subject to normal velocity V evolves according to

∂|Γb|
∂τ

=
∫

Γb

V (s)H0(s) ds, (2.61)

and for the normal velocity (2.53) this reduces to the result

presented in (1.12). Taking the time derivative of (2.60), using

(2.61) to eliminate d
dτ
γb,0, the normal velocity (2.53) drives the

bulk chemical potential according to

dµ1

dτ
= −α

2
−mb

|Ω|

(

νb(µ1 − µ∗
b)

∫

Γb

H2
0 (s) ds − εkb

∫

Γb

|∇sH0|2 ds
)

+ O(ε2). (2.62)

The coupled system (2.53) and (2.62) prescribes the interfacial

evolution for the dressing of an admissible codimension one

interface with a shifted bulk value of u given by (2.55).

3. Geometric evolution of codimension two structures

In this section we derive the geometric evolution of admissible

codimension two curves, called filaments, in R
3 under the H−1

gradient flow (1.3). As remarked in the introduction, we make the

assumption that the combined length of all the filament curves

scales as O(ε−1) so that the combined mass of the codimension

two structures is O(ε). This gives a comparable mass to filament

and bilayer structures, so they may contribute to the mass bal-

ance at the same order of magnitude. Codimension two structures

are much less studied than codimension one structures, however

our analysis leads to a qualitatively similar result: a surface diffu-

sion regularized curvature-vector driven normal flow that may be

curve lengthening or curve shortening depending upon the value

of the spatially constant far-field chemical potential.

3.1. Admissible codimension two curves and their dressings

Given a smooth, closed, non-self intersecting one-dimensional

manifold Γf immersed inΩ ⊂ R
3, and parameterized by the map

s ∈ Sf ↦→ ζf (s) ∈ Ω , we may uniquely decompose points x near

Γf as

x = ρf (s, z1, z2) = ζf (s) + ε (z1N1(s) + z2N2(s)) , (3.1)

where N1(s) and N2(s) are orthogonal unit vectors which are also

orthogonal to the tangent vector ζ ′
f (s), defined by

∂Ni

∂s
= −κiT, i = 1, 2, (3.2)

where

κ⃗(s, t) := (κ1, κ2)
t , (3.3)

is the normal curvature vector with respect to {N1,N2}.

Definition 3.1. For any K , ℓ > 0 the family, G
f

K ,ℓ, of admissible

curves is comprised of closed (compact and without boundary),

oriented 1 dimensional curves Γf embedded in R
3, which are far

from self intersection and with a smooth second fundamental

form. More precisely,

(i) The W 4,∞(Sf ) norm of the 2nd Fundamental form of Γf and

its principal curvatures are bounded by K .

(ii) The whiskers of length 3ℓ < 1/K , in the unscaled distance,

defined for each s0 ∈ Sf by, ws0 := {x : s(x) = s0, |z(x)| <
3ℓ/ε}, neither intersect each-other nor ∂Ω (except when

considering periodic boundary conditions).

(iii) The length, |Γf |, of Γf is bounded by K/ε.

For an admissible codimension two curve Γf the change of

variables x → ρ(s, z) given by (3.1) is a C4 diffeomorphism on

the reach of Γf , defined as the set

Γf ,ℓ :=
{

ρ(s, z) ∈ R
3
⏐

⏐

⏐
s ∈ S,−ℓ/ε ≤ |z| ≤ ℓ/ε

}

⊂ Ω. (3.4)

where z := (z1, z2). We introduce R(x) = |z(x)| which denotes the

scaled distance of x to Γf . Within the reach the cartesian Laplacian

admits the local form

ε2∆x = ∆z − εκ⃗ · ∇z + ε2(∂2s − (z · κ⃗)κ⃗ · ∇z) + O(ε3), (3.5)

where the lower order terms are immaterial for the analysis. The

Jacobian of the change of variables (3.1) takes the form

J = ε2 − ε2z · κ⃗ . (3.6)

If the underlying curve Γf evolves in time, then its normal veloc-

ity vector V = (V1, V2) of Γf at a point s(t) takes the form

V1 := −ε ∂z1
∂t

+ εz2N
2 · ∂N

1

∂t
, (3.7)

V2 := −ε ∂z2
∂t

+ εz1N
1 · ∂N

2

∂t
. (3.8)

The terms z2N
2 · ∂N1

∂t
and z1N

1 · ∂N2

∂t
reflect lower-order contribu-

tions to the normal velocity induced by the rotational motion of

the normal vectors to Γf (t). See [16] for further details.

Definition 3.2. Given an admissible codimension two curve Γf ∈
G
f

K ,ℓ and a smooth function f : R+ → R which tends to a

constant value f∞ at an O(1) exponential rate as R → ∞, we

define fΓf ∈ H2(Ω), called the dressing of Γf with f , according

to the rule

fΓf (x) := f (R(x))χ (R(x)/ℓ) + f∞(1 − χ (R(x)/ℓ)), (3.9)

where χ : R → R is a fixed, smooth cut-off function taking values

one on [0, 1], and zero on [2,∞). By abuse of notation we will

drop the Γf subscript when doing so creates no confusion.

Within the reach Γf ,ℓ the Cartesian Laplacian reduces formally

at leading order to the two-dimensional Laplacian in z, which may

be written in turn in polar coordinates in R. We may eliminate the

dominant terms in quadratic component of the (1.1) by taking
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u at leading order to be the dressing of the codimension two

profile φf (R), defined as the solution of

∂2Rφf + 1

R
∂Rφf − W ′(φf ) = 0, (3.10)

subject to the boundary conditions ∂Rφf (0) = 0 and φf → b− as

R → ∞. We denote the dressing of Γf with φf by Uf . As in the

codimension one case, we introduce the operator

Lf ,0 := ∂2R + 1

R
∂R − W ′′(φf ), (3.11)

corresponding to the linearization of (3.10) about φf . The op-

erator Lf ,0 is the radially symmetric reduction of the associated

cylindrical Laplacian,

Lf := ∂2R + 1

R
∂R + 1

R2
∂2θ − W ′′(Uf ). (3.12)

This operator is self-adjoint in the usual R-weighted L2(R+) inner
product,

⟨f , g⟩R :=
∫ ∞

0

f (R)g(R)R dR. (3.13)

Moreover, the translational eigenfunctions {φ′
f (R) cos(θ ), φ

′
f (R)

sin(θ )} lie in the kernel of Lf and their associated dressings of Γf

agree with {∂z1Uf , ∂z2Uf } respectively, up to exponentially small

terms. For each m ∈ N, we define the spaces

Zm := {f (R) cos(mθ )+g(R) sin(mθ )
⏐

⏐ f , g ∈ C∞(0,∞),m ∈ N}. (3.14)

These spaces are invariant under the operator Lf , and mutually

orthogonal in L2(Ω). Moreover, on these spaces Lf reduces to

Lf (f (R) cos(mθ ) + g(R) sin(mθ )) = cos(mθ )Lf ,mf + sin(mθ )Lf ,mg,

(3.15)

where

Lf ,m := ∂2

∂R2
+ 1

R

∂

∂R
− m2

R2
− W ′′(Uf ). (3.16)

Each operator Lf ,m is self-adjoint in the R-weighted inner product,

and the operator Lf ,1 has a 1-dimensional kernel spanned by its

ground state ∂Rφf > 0. For m > 1 we observe that ⟨Lf ,mf , f ⟩R <
⟨Lf ,1f , f ⟩R and since Lf ,1 ≤ 0 we deduce that Lf ,m < 0 for m > 1,

and is boundedly invertible. We denote the eigenfunctions and

eigenvalues of Lf ,m by {ψf ,m,j}∞j=0 and {λf ,m,j}∞j=0, respectively. We

address the kernel of Lf ,0 with the following assumption.

Assumption 1. We assume that the operator Lf ,0 has no kernel

and a one-dimensional positive eigenspace spanned by ψf ,0,0.

With this assumption we may define the functions

Φf ,j := L
−j

f ,01, (3.17)

for j = 1, 2 and their Γf dressings, also denoted Φf ,1 and Φf ,2.

3.2. Inner and outer expansions

Considering initial data that is close to a filament dressing of

an admissible curve, Γf (0) ∈ G
f

K ,ℓ, embedded in Ω ⊂ R
3. In the

far-field, Γ̃f ,ℓ, the outer solution u has the expansion

u(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) + O(ε3), (3.18)

and within the reach Γf ,ℓ, we incorporate a two-scale tangential

expansion, introducing the variable S = s√
ε
, and the inner spatial

expansion takes the form

u(x, t) = ũ(s, S, z, τ ) = ũ0(s, S, z, τ )

+ εũ1(s, S, z, τ ) + ε2ũ2(s, S, z, τ ) + O(ε3). (3.19)

The time derivative of the inner density function ũ, defined

in (3.18), combined with the normal velocity, (3.7), takes the form

∂ ũ

∂t
= −ε−1V · ∇zũ + ∂ ũ

∂τ

∂τ

∂t
. (3.20)

For a whisker identified by s ∈ Sf , with base point x =
ρf (s, 0) ∈ Γf we choose vectors n,m ∈ span{N1,N2} in the

normal plane of Γf at x, and choose θ so that

n = cos(θ )N1 + sin(θ )N2. (3.21)

The usual directional derivative along n is denoted

∂n := n · ∇x = cos(θ )N1 · ∇x + sin(θ )N2 · ∇x, (3.22)

and for f ∈ C∞(Ω/Γf ) we introduce the n,m limit

∂ jnf
m(x) := lim

h→0+
(n · ∇x)

jf (x + hm, t) for all j ≥ 0, (3.23)

and the limit of the gradient

∇xf
m(x) := lim

h→0+
∇xf (x + hm, t), (3.24)

where the limit exists. If f ∈ C1(Ω) then the normal derivative

of f will satisfy

∂nf
−m = ∂nf

m. (3.25)

This motivates the following definition of the jump condition.

Definition 3.3. Given a radial function f := f (R) localized on Γf ,

we define the jump of f across a given whisker by

J∂nf
mKΓf (x) := ∂nf

m(x) − ∂nf
−m(x) (3.26)

which is zero when f has a smooth extension through Γf .

With this notation we develop matching conditions

lim
R→0+

u(x + εRn, t) = lim
R→∞

ũ(s, S, R, θ, t). (3.27)

Expanding the left-hand side yields the following expression

u(x + εRn) =un
0 (x, t) + ε

(

un
1 (x, t) + R∂nu

n
0 (x, t)

)

+ ε2
(

un
2 (x, t) + R∂nu

n
1 (x, t) + 1

2
R2∂2nu

n
0 (x, t)

)

+ O(ε3), (3.28)

where un
i denotes the limit of the left-hand side of (3.27) as

εR → 0+. Equating orders of ε for the matching condition (3.27)

yields

un
0 = lim

R→∞
ũ0(s, S, R, θ, τ ), (3.29)

un
1 + R∂nu

n
0 = lim

R→∞
ũ1(s, S, R, θ, τ ). (3.30)

The chemical potential, defined in (1.2) admits similar inner

and outer expansions. The outer expansion is identical to that for

the codimension one case, see (2.16) and (2.17). To obtain the

inner expression for the chemical potential we first note that in

the multiscale tangential variables the Laplacian expression (3.5)

takes the form

ε2∆x = ∆z−ε
(

κ⃗ · ∇z + ∂2S
)

+ε2(∂2s −(z·κ⃗)κ⃗ ·∇z+2z · κ⃗∂2S )+O(ε3),

(3.31)

Introducing the nonlinear operators P and Q , the inner chemical

potential is written as

µ̃(x, t) = P(ũ)Q (ũ) + εηdW
′(ũ0) (3.32)
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where P admits the expansion P = P0 + εP1 + ε2P2 + · · ·, with

P0 = −∆z + W ′′(ũ0), (3.33)

P1 =κ⃗ · ∇z + ∂2S + W ′′′(ũ0)ũ1 − η1, (3.34)

P2 = − (z · κ⃗)κ⃗ · ∇z + 2z · κ⃗∂2S − ∂2s + W ′′′(ũ0)ũ2 + 1

2
W (4)(ũ0)ũ

2
1,

(3.35)

and similarly Q = Q0 + εQ1 + ε2Q2 + · · ·, where

Q0 = −∆zũ0 + W ′(ũ0), (3.36)

Q1 =κ⃗ · ∇zũ0 + ∂2S ũ0 +
(

−∆z + W ′′(ũ0)
)

ũ1, (3.37)

Q2 = − (z · κ⃗)κ⃗ · ∇zũ0 − 2z · κ⃗∂2S ũ0 − ∂2s ũ0

+ (κ⃗ · ∇z + ∂2S )ũ1 + (−∆z + W ′′(ũ0))ũ2

− 1

2
W ′′′(ũ0)ũ

2
1. (3.38)

With these reductions we expand the inner chemical potential as

µ̃0 =P0Q0 (3.39)

µ̃1 =P1Q0 + P0Q1 + ηdW
′(ũ0), (3.40)

µ̃2 =P0Q2 + P1Q1 + P2Q0 + ηdW
′′(ũ0)ũ1. (3.41)

The relevant matching conditions for the chemical potential ex-

tend to second order in ε:

µn
0 (x, t) = lim

R→∞
µ̃0(s, S, R, θ, t),

(3.42)

µn
1 (x, t) + R∂nµ

±
0 (x, t) = lim

R→∞
µ̃1(s, S, R, θ, t),

(3.43)

µn
2 (x, t) + R∂nµ

n
1 (x, t) + 1

2
R2∂2nµ

n
0 (x, t) = lim

R→∞
µ̃2(s, S, R, θ, t),

(3.44)

3.3. Time scale τ = εt: quenched vector-curvature driven flow

The analysis of the outer expansion of the chemical potential

is identical to the codimension one case, and we find at leading

order that u0 = b−, µ0 = 0, while at O(ε) we obtain

∆xµ1 = 0 in Ω\Γf . (3.45)

In the inner region we supplement the inner expansions (3.19)

and (3.32) with the inner expression of the Laplacian (3.5). At

leading order in ε we find

O(ε−2) : 0 = ∆zµ̃0, in Γf ,ℓ, (3.46)

where µ̃0 is defined in (3.39). This equation is consistent with the

choice of initial data ũ0 = φf which implies that µ̃0 = 0 via the

matching conditions. With this reduction the subsequent orders

become

O(ε−1) : 0 = ∆zµ̃1, in Γf ,ℓ,

(3.47)

O(1) : − V · ∇zũ0 = ∆zµ̃2 −
(

κ⃗ · ∇z + ∂2S
)

µ̃1, in Γf ,ℓ.

(3.48)

where µ̃1 and µ̃2 are defined in Eqs. (3.40) and (3.41), respec-

tively. The combined system (3.45) and (3.47) couples through

the matching condition (3.43). Since µ0 = 0 we deduce from

(3.43) that µ̃1 is bounded as R → ∞, and hence from (3.47) that

µ̃1 is constant in z. In particular µ̃1 = µ̃1(s, S, τ ) ≈ µ1. Since

ũ0 = Uf , Eq. (3.40) for µ̃1 reduces to a linear equation for ũ1,

L2f ũ1 = µ̃1 − ηdW
′(Uf ). (3.49)

By Assumption 1 we know that ker Lf ⊂ ker Lf ,1 ⊂ Z1, defined

in (3.14), while the right-hand side of (3.49) lies in Z0. Since the

spaces Zm are mutually orthogonal, we may solve for ũ1,

ũ1 = µ1Φf ,2 − ηdL
−2
f W ′(Uf ), (3.50)

where µ1 is a spatial constant and Φf ,2 is defined in (3.17). With

this simplification equation (3.48) becomes

O(1) : −V · ∇zUf = ∆zµ̃2 − ∂2S µ̃1. (3.51)

To impose interfacial matching conditions for µ̃2 we solve (3.51)

by expanding µ̃2 in (R, θ ) inner-polar coordinates associated to

the spaces {Zm}∞m=0 as

µ̃2 = A1(s, S, R) cos θ + B1(s, S, R) sin θ + C̄(s, S, R) + ξ (s, S, R, θ ),

(3.52)

where

ξ (s, S, R, θ ) :=
∞
∑

m=2

(Am(s, S, R) cos(mθ ) + Bm(s, S, R) sin(mθ )) .

(3.53)

We observe that

V · ∇zUf = ∂RUf (R) (V1 cos θ + V2 sin θ) ∈ Z1, (3.54)

while ∂2S µ̃1 ∈ Z0. We project (3.51) onto Zm where ∆z = ∂2R +
1
R
∂R − m2

R2
and arrive at the system

∂2RC + 1

R
∂RC = ∂2S µ̃1(s, S), (3.55)

∂2RA1 + 1

R
∂RA1 + 1

R2
A1 = V1(s, S)∂RUf (R), (3.56)

∂2RB1 + 1

R
∂RB1 + 1

R2
B1 = V2(s, S)∂RUf (R), (3.57)

plus homogeneous equations for {Am, Bm}∞m=2 that have non-

singular solutions Am = am(s, S)R
m and Bm = bm(s, S)R

m. The Z0

equation has solution

C(s, S, R) = C0(s, S) + R2

4
∂2S µ̃1(s, S), (3.58)

while the non-homogeneous equations, (3.56) and (3.57), have

the solutions

A1(s, S, R) = a1(s, S)R − a(R)V1(s, S), (3.59)

B1(s, S, R) = b1(s, S)R − a(R)V2(s, S), (3.60)

where a(R) is the solution of the non-homogeneous ordinary

differential equation

a′′ + 1

R
a′ − 1

R2
a = ∂RUf (R), (3.61)

which enjoys the explicit formula

a(R) = 1

R

∫ R

0

rÛf (r) dr, (3.62)

where we have introduced Ûf := Uf − b−. In particular, a(R) → 0

as R → ∞.

From the matching condition (3.44) we see that µ̃2 grows at

most linearly as R → ∞ and

lim
R→∞

∂µ̃2

∂R
= ∂nµ

n
1 = cos θN1 · ∇xµ

n
1 + sin θN2 · ∇xµ

n
1, (3.63)

where the second equality follows from the definition of the

directional derivative along n, given in (3.22). Taking the R deriva-

tive of (3.52) and using the results above yields

∂µ̃2

∂R
= R

2
∂2S µ̃1+(a1−a′(R)V1) cos θ+(a2−a′(R)V2) sin θ+ ∂ξ

∂R
. (3.64)
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Projecting each of (3.63) and (3.64) onto Zm and matching terms,

we conclude that ξ = 0 and ∂2S µ̃1 = 0, and in particular

∂µ̃2

∂R
(s, S, R, θ, τ ) = −∂µ̃2

∂R
(s, S, R, θ + π, τ ). (3.65)

This latter result, substituted into (3.63) yields the no-jump con-

dition across the curve Γf

J∂nµ
n
1KΓf = 0, (3.66)

for any choice of normal vector n. As the codimension two curve

Γf has zero capacity, it follows from the zero-jump condition and

(3.45) that µ1 has a harmonic extension to all of Ω , and hence

is spatially constant. In particular ∇xµ
n
1 = 0 for all choices of

direction n. With these reductions µ̃2 takes the form

µ̃2 = C0(s, S) − a(R) (V1(s, S) cos θ + V2(s, S) sin θ) . (3.67)

To determine the normal velocity we substitute ũ0 = Uf into

the expression (3.41) for µ̃2, so that P0 reduces to Lf and the

chemical potential takes the form

µ̃2 =L2f ũ2 − Lf Q̃2 + (κ⃗ · ∇z + ∂2S + W ′′′(ũ0)ũ1 − η1)

× (−Lf ũ1 + κ⃗ · ∇zUf ) (3.68)

+ ηdW
′′(Uf )ũ1,

where we have introduced Q̃2 := Q2 − Lf ũ2. To solve equa-

tion (3.68) for ũ2 we rewrite it in the form

L2f ũ2 = µ̃2 − Q + Lf Q̃2, (3.69)

where

Q := (κ⃗ · ∇z + ∂2S + W ′′′(ũ0)ũ1 − η1)(−Lf ũ1 + κ⃗ · ∇zUf )

+ ηdW
′′(Uf )ũ1. (3.70)

For fixed values of s and S, the expression (3.69) can be solved

for ũ2 if and only if the right-hand side is perpendicular to

ker Lf = span{∂RUf cos θ, ∂RUf sin θ} = ker Lf ,1.

We decompose Q into its Zm components

Q = Q0 + Q1 + Q0,2, (3.71)

where Q0 ∈ Z0, Q1 ∈ Z1, Q0,2 ∈ Z0 + Z2, are given by

Q0 := −W ′′′(Uf )ũ1Lf ũ1 + ∂2S Lf ũ1 + η1Lf ũ1 + ηdW
′′(Uf )ũ1,

(3.72)

Q1 := −κ⃗ · ∇zLf ũ1 + W ′′′(Uf )ũ1κ⃗ · ∇zUf − ∂2S κ⃗ · ∇zUf

− η1κ⃗ · ∇zUf , (3.73)

Q0,2 := (κ⃗ · ∇z)
2Uf . (3.74)

Since the spaces Zm are orthogonal and Lf (Q̃2)⊥ ker Lf , the solv-

ability conditions take the form
⟨

µ̃2 − Q1, ∂ziUf

⟩

R
= 0, for i = 1, 2. (3.75)

To evaluate these conditions we expand Q1 using the expres-

sion (3.50) for ũ1,

⟨Q1, ∂ziUf ⟩R = −2πmfµ1κi − πσf
(

η1κi + ∂2S κi
)

, for i = 1, 2,

(3.76)

where we have introduced

mf :=
∫ ∞

0

Ûf RdR, σf :=
∫ ∞

0

(U ′
f )

2R dR. (3.77)

The R-weight inner product of µ̃2, given in (3.67), with ∂ziUf

yields

⟨µ̃2, ∂ziUf ⟩R = πVimf ,2, (3.78)

where we have introduced

mf ,2 :=
∫ ∞

0

Û2
f RdR. (3.79)

Substituting (3.76) and (3.78) into (3.75) we arrive at the expres-

sion for the normal velocity

V(s, S) = −2µ1mf − η1σf

mf ,2

κ⃗ − σf

mf ,2

∂2S κ⃗ . (3.80)

Introducing the quantities

µ∗
f := η1σf

2mf

, νf := 2mf

mf ,2

, kf = σf

mf ,2

, (3.81)

and return the S variable to its original scaling, we obtain the

normal velocity

V(s, S) = −
[

νf (µ1 − µ∗
f )κ⃗ + εkf ∂

2
s κ⃗
]

. (3.82)

The constant value of u1 is determined by the conservation

of total mass, and is coupled to changes in length of the curve

Γf . Combining the inner and outer expansions of u yields the

composite expansion

u(x, t) = Uf + ε(µ1Φf ,2 − ηdL
−2
f W ′(Uf )) + O(ε2) in Γf ,ℓ, (3.83)

which has the far-field asymptotics,

u(x, t) = b− + ε
µ1

α2
−

+ O(ε2) in Γ̃f ,ℓ. (3.84)

The total mass of the system is given by

M :=
∫

Ω

u(x, t) − b− dx =
∫

Ω

u(x, 0) − b− dx

=
∫

Ω\Γf ,ℓ
(u − b−) dx +

∫

Γf ,ℓ

(u − b−) dx,

(3.85)

where the outer integral takes the value
∫

Ω\Γf ,ℓ
(u − b−) dx = ε

µ1

α2
−
(|Ω| − |Γf ,ℓ|) + O(ε2). (3.86)

Using (3.83) and the Jacobian, (3.6), we evaluate the inner integral
∫

Γf ,ℓ

(u − b−) dx = ε2
∫

Γf

∫

R2

(

Ûf + ε(µ1Φf ,2 − ηdL
−2
f W ′(φf ))

+O(ε2)

)

(1 − εz · κ⃗) dz ds (3.87)

= ε22π |Γf |mf + O(ε3|Γf |).
Assuming that |Γf | ∼ O(ε−1), as is commensurate with an O(1)

amphiphilic mass, we expand

|Γf | = ε−1γf ,−1 + γf ,0 + O(ε), (3.88)

to arrive at the total mass expansion

M = ε

(

µ1

α2
−

|Ω| + 2πmf γf ,−1

)

+ O(ε2). (3.89)

Taking the τ = εt time derivative of the total mass, (3.89), and

solving for
dγf ,−1

dτ
yields

dγf ,−1

dτ
= − |Ω|

2πα2
−mf

dµ1

dτ
. (3.90)

On the other hand, any admissible codimension two curve evolv-

ing with normal velocity V satisfies

d|Γf |
dτ

= −
∫

Γf

V · κ⃗ ds. (3.91)
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Combining this expression with (3.82), (3.88), and (3.90) yields

dµ1

dτ
= ε

2πα2
−mf

|Ω|

(

−νf
(

µ1 − µ∗
f

)

∫

Γf

|κ⃗|2 ds

+εkf
∫

Γf

|∂sκ⃗|2 ds
)

+ O(ε2). (3.92)

This system exhibits the same quenching behavior as the codi-

mension one evolution, with the distinction being that the equi-

librium far-field density for a codimension two curve takes the

form

lim
τ→∞

u = b− + ε
µ∗

f

α2
−

+ O(ε2). (3.93)

4. Competitive evolution of amphiphilic suspensions

We assume that Ω ⊂ R
3 and combine the geometric flow re-

sults derived in Sections 2 and 3 with the pearling stability results

for bilayers and filaments presented in [6]. The goal is to derive

an overall picture of the complexity of transients and bifurcation

structure of the H−1 gradient flow of the strong scaling of the FCH

system.

4.1. Competitive evolution of codimension one and two systems

Fix Ω ⊂ R
3 and let Γb and Γf be admissible codimension

one and codimension two morphologies with disjoint reaches,

Γb,ℓ and Γf ,ℓ. We emphasize that Γb and Γf may be comprised

of multiple disjoint surfaces and curves. For a given value of the

chemical potential, µ1, the codimension one bilayer morphology

ub, given in (2.54) and codimension two filament morphology uf ,

given in (3.83) satisfy identical far-field asymptotics

lim
R→∞

uf = lim
z→∞

ub = b− − ε
µ1

α2
−

+ O(ε2). (4.1)

Consequently we may form the composite solution

ub,f = ub + uf −
(

b− − ε
µ1

α2
−

)

+ O(ε2), (4.2)

parameterized by Γb, Γf , and the common, slowly varying, chem-

ical potential µ1. Recalling the scalings (2.59) and (3.88) of the

surface area and length of Γb and Γf respectively, the total mass

of the composite solution satisfies

M = ε

(

µ1

α2
−

|Ω| + mbγb,0 + 2πmf γf ,−1

)

+ O(ε2), (4.3)

where mb, the bilayer mass per unit area, is defined in (2.51), and

2πmf denotes the filament mass per unit length, defined in (3.77).

Expanding M = εM̂ + O(ε2) and solving for µ1 yields relation

between the morphology size and the chemical potential µ1,

µ1 = α2
−

|Ω|
(

M̂ − mbγb,0 − 2πmf γf ,−1

)

. (4.4)

Taking the time derivative of (4.4) and using the relations (2.61)

and (3.91) to relate the growth of the curves to the normal

velocities, yields an evolution equation for the chemical potential

given in (1.9). Coupling this equation to the normal velocities for

the bilayer and filament derived in (1.7) and (1.8) gives a closed

system for the combined curve motion and far-field chemical

potential.

4.2. Analysis of competitive geometric evolution and bifurcation

The analysis presents a bifurcation diagram with four thresh-

olds that delineate distinct behaviors. The µ1 thresholds for the

pearling bifurcation, Pb and Pf , depend upon the functionalization

parameters η1 and η2 through their difference ηd := η1 −
η2. The µ1 thresholds for the transition from curve shorten-

ing to regularized curve lengthening, µ∗
b and µ∗

f given in (2.52)

and (3.81) respectively, have a more subtle dependence upon

the functionalization parameters. These relations are summarized

below:

µ1 sign(Sb) < Pb(ηd) := −ηd
λb,0∥ψb,0∥2

L2

|Sb|
, Bilayers Pearling

Stable (4.5)

µ1 sign(Sf ) < Pf (ηd) := −ηd
∥ψ ′

f ,0,0
∥2
L2
R

+ λf ,0,0∥ψf ,0,0∥2
L2
R

|Sf |
, Filaments Pearling

Stable (4.6)

µ1 < µ∗
b (η1, η2), Bilayers Curve

Shortening (4.7)

µ1 < µ∗
f (η1, η2), Filament Curve

Shortening. (4.8)

The signs of the shape factors Sb and Sf , defined in (1.6), depend

upon the choice of the double well, W , and impact not only the

sign of the right-hand sides of (4.5) and (4.6) but also the direc-

tion of the inequalities, see Fig. 3 (right). The chemical potential

and the geometric flows evolve on the same t = O(ε−1) timescale.

Within the H−1 gradient flow, the pearling instability produces

eigenvalues of size O(ε−1), [6] and hence will manifest itself on

the t = O(ε) timescale, essentially instantaneously on the time

scale of the geometric flow and the chemical potential. We define

the pearling instability region to be set of values (µ1, η1, η2) for

which either codimension one or codimension two structures are

pearling unstable.

We investigate the variation of the pearling instability regions,

and its relation to regions of curve lengthening flows, as functions

of the well shape. For simplicity we present these regions in the

µ1–ηd plane, with the assumption that η1 = 0.15, unless specified

otherwise. To parameterize the well shape we fix b± = ±1 and

insert a one-parameter well tilt, ξ into the double-well potential,

W (u; ξ ) := 1

2
(u − b−)

2

(

1

2
(u − b+)

2 − ξ

3

(

u − 3b+ − b−
2

))

,

(4.9)

where the parameter ξ controls the value of W at the right well

u = b+, see Fig. 3 (left).

For the µ1 dynamics, as η1 and η2 are fixed parameters, the

temporal evolution of µ1 traces a vertical line segment on the di-

agram, with µ1 decreasing if it is larger than both µ∗
b and µ∗

f and

increasing if it is smaller than both. The µ1-region bounded by

the points {µ∗
b, µ

∗
f } is attracting and forward invariant under the

flow see Fig. 3 (center). Within this invariant region the direction

of the flow depends upon the overall curvatures of the two classes

of morphologies; however to leading order the total area/length

of the codimensional structures with the larger equilibrium value

decreases monotonically and the other increases monotonically,

so long as the morphologies remain admissible. A simulation of

the FCH gradient flow with one spherical bilayer and two circular

filaments is presented in Fig. 4 for parameter values for which

µ∗
b < µ∗

f .

Motivated by this example, and to further illustrate the dy-

namics, we consider a composite morphology consisting of Nb

spherical bilayers of radii R1, . . . , RNb
and Nf = O(ε−1) circu-

lar filaments of radii r1, . . . , rNf
. 1 For these special shapes the
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Fig. 3. (left) Graph of the double well, W versus u for ξ = −0.9,−0.7,−0.5 (see (4.9)). (center) Diagram of the curve shortening regions in ηd–µ1 plane, for

ξ = −0.9 and η1 = 0.15. Arrows indicate the direction of the temporal evolution of µ1 under the flow (1.9). The shaded region is forward invariant and globally

attracting so long as the curves remain admissible. (right) Values of the bilayer and filament shape factors, Sb (blue) and Sf (red) as a function of the well tilt, ξ .

The change in sign of Sb near ξ = −0.8 flips the direction of the inequality in (4.5) . (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

Fig. 4. Simulation of the FCH gradient flow for ε = 0.03, η1 = 0.15, η2 = 0.24, and ξ = −0.15. For these values µ∗
b < 0 < µ∗

f and after a short transient bilayers

will grow while filaments shrink. (a) Initial data consisting of two circular filaments and a spherical bilayer inside the [−π, π]3 computational domain. (b) 2D slice

along x–z plane (y = 0) of initial data. (c) 3D pose of the t = 200 (τ = 6) final computation stage and (d) corresponding 2D slice showing the larger bilayer and

smaller filament radii.

competitive evolution (1.7)–(1.9) reduces to

Ṙi = νb
(

µ1 − µ∗
b

) 2

Ri

, i = 1, . . . ,Nb, (4.10)

ṙj = νf
(

µ1 − µ∗
f

) 1

rj
, j = 1, . . . , ε−1Nf , (4.11)

µ̇1 = − α2
−

|Ω|

⎛

⎝16πmbνb(µ1 − µ∗
b)Nb + ε4π2mf νf (µ1 − µ∗

f )

Nf
∑

j=1

1

rj

⎞

⎠ ,

(4.12)

where the dot notation denotes differentiation with respect to

τ = t/ε. The µ1 evolution depends upon the spherical bilayers

only through their total number. Consistent with the discus-

sion above, the bulk chemical potential µ1 decreases if µ1 >

max{µ∗
b, µ

∗
f } and increases if µ1 < min{µ∗

b, µ
∗
f }. The radii shrink

or grow depending upon the signs of µ1 − µ∗
b and µ1 − µ∗

f .

If both Nb and Nf are positive, and µ∗
b ̸= µ∗

f then the system

has no equilibrium. Assuming for simplicity of presentation that

µ∗
b < µ∗

f , then after a possible transient the system enters a

regime in which all spheres are growing and all circular filaments

are shrinking. The radii rj will then decrease to zero in finite

time due to the inverse relation between ṙj and rj. If the zero

radius filaments are removed from the system and the remaining

filaments re-indexed, then after a transient the set of hoops will

be empty (Nf = 0) and only spheres will remain. At this point

µ1 will relax (quench) at an exponential rate from above to µ∗
b

as the spherical radii grow, albeit at an exponentially decreasing

rate as µ1 quenches to µ∗
b . The equilibrium will be a collection

of spherical bilayers of differing radii. We emphasize that in the

growing regime spherical shapes are unstable to perturbation

under the full flow (1.7). Manifestation of this instability requires

sufficiently large values of νb(µ1 − µ∗
b) > 0 in relation to the co-

efficient εkb of the surface diffusion term in (1.7), and is triggered

more easily with increasing radius. However, if the non-spherical

excursions are not so large as to induce self-intersection, then

the shapes return to spherical as µ1 quenches to µ∗
b . Fig. 5

presents a simulation of the full FCH gradient flow that illustrates

this phenomenon, while a rigorous derivation of the transient

instability regime of the curve lengthening flow in 1 + 2D for

nearly circular bilayers is presented in [20].

In Fig. 6, the pearling bifurcation lines are added and the full

stability diagram is shown for values of the well-tilt parameter

ξ = −0.85,−0.7,−0.45, and −0.2. For ξ = −0.85, Sf is

positive, Sb is slightly negative, and for positive values of µ1

filament pearling instability region contains the bilayer pearling

instability region. As ξ is decreased from −0.7 to −0.45 the two

pearling instability lines almost coincide, and for ξ = −0.2 they

have crossed, with the filament pearling instability region now

lying above the bilayer pearling instability region for µ1 > 0.

In all figures the intersections of the pearling instability lines

occur to the left of the crossing of the curve lengthening lines.

This implies that increasing ηd from negative values will excite

pearling bifurcations at smaller values of ηd than those for which

the filament morphology becomes dynamically favored over the

bilayer morphology. For the non-generic value of ηd at which

the critical values µ∗
b = µ∗

f coincide, codimension one and two
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Fig. 5. Simulation of the FCH gradient flow corresponding to a single circular bilayer in [−2π, 2π ]2 ⊂ R
2 in the regularized curve lengthening regime. The larger

radii and value of µ1 −µ∗
b , compared to simulations presented in Fig. 4, induce the interfacial meander. Yet larger initial values of µ1 −µ∗

b lead to self-intersection

and defect generation. (a) The initial data has µ1 > µ∗
b , with sufficient excess to initiate shape perturbations as the circular bilayer grows. (b) The onset of the shape

instability at time t = 484. (c) Quenching of the flow at t = 986 as the value of µ1 relaxes towards µb∗ and the higher order surface diffusion returns the interface

back to a larger, circular shape.

structures can co-exist on the t = O(ε−1) time-scales under

consideration here.

4.3. Analytic bifurcation diagrams and comparison to simulations

We compare the evolution of numerical simulations of the H−1

gradient flow of the FCH free energy, (1.3), to the corresponding

bifurcation results and to simulations from a self-consistent mean

field model. The parameters impacting stability are the func-

tionalization parameters η1 and η2, the time-dependent scaled

chemical potential µ1, and the shape of the double well, pa-

rameterized by ξ . For simplicity we fix η1 = 0.15 and vary η2
and ξ . Simulations of the strong FCH gradient flow, (1.1), were

conducted in a domain Ω = [−π, π]3 ⊂ R
3, with initial data

of the form (4.2) with Γb consisting of a single sphere of radius

R1 = 1.1 with center at (0, 0, 0) and Γf comprised of two circular

filaments of radius r1 = r2 = 1.6 oriented parallel to the x–y

plane of Ω and with center point at
(

0, 0,± 1
2
(π + R1/2)

)

. The

initial value of µ1 varied with each simulation and is reported

in Fig. 7. The system parameters are ε = 0.03, η1 = 0.15

and η2 = 0.24, hence ηd = −0.09, and four separate values

of ξ := −0.15,−0.2,−0.25,−0.3. In addition, there was one

simulation for ξ = −0.2 and η1 = η2 = 0.15. The simulations

were conducted for t ∈ [0, 100], equivalently τ ∈ [0, 3].
Results for the five simulations are superimposed upon the

corresponding µ1 − ηd bifurcation diagram and presented in

Fig. 8. The initial and final values of µ1 for each simulation are

indicated with a closed circle and closed square respectively in

each of the four diagrams. For ξ = −0.15 the value of µ1 starts

in a region of bilayer and filament pearling stability, filament

curve shortening, and bilayer regularized curve lengthening, see

Fig. 8(bottom-right). During the simulation the bilayer radius

grew, the filaments shrunk, and neither pearled, the τ = 3 end

state is presented in Fig. 7 (left/top-left). Two simulations were

conducted for ξ = −0.2, for the simulation with ηd = −0.09

the initial value of µ1 lies at the boarder of the bilayer pearling

region, and the initial stages of the simulation (t < 5) displayed

the onset of pearling, however the value of µ1 decreased out of

the pearling region as the filaments and bilayers grow and the

pearling evanescent, restoring the unpearled bilayer structure.

The end-state is presented in Fig. 7 (left/top-right), there is less

shrinking of the circular filaments than in the case η2 = −0.15

and the filaments are thinner due to the stronger well tilt. The

ξ = −0.2 simulation with ηd = 0 but an identical initial value of

µ1 starts in the middle of the bilayer pearling region, the bilayer

pearled fully (end-state not shown) and the value of µ1 increased,

see Fig. 8 (bottom-left). The simulations with ξ = −0.25 and

ξ = −0.3 begin within the bilayer pearling region, see Fig. 8

(top-left and top-right) and rapidly pearled with the ξ = −0.25

simulation pearling around t = 5 and the ξ = −0.3 simulation

fully pearled at the first output time of t = 1. The pearling leads

to an increase in µ1 as the bilayer sheds net amphiphilic molecule

mass to the bulk (far-field). The end states are depicted in Fig. 7

(left/bottom-left and bottom-right).

The bilayer pearling instability was observed by Fraaije and

Sevink, who developed a self-consistent mean field density func-

tional model describing the free energy of amphiphilic diblock

polymer surfactants embedded in solvent. Their model parame-

ters are based upon poly(propylene oxide)-poly(ethylene oxide)

diblock in an aqueous solution, see [2] and reference therein. They

simulated spherical nanodroplets of 15% solvent and 85% polymer

by volume. By decreasing the block ratio — the ratio of the length

of the hydrophilic portion of the diblock chain to the length of the

hydrophobic portion, they uncovered a series of bifurcations that

lead from stable bilayers, to pearled bilayers to a continuous fila-

ment pattern decorated with Y -junctions and endcap defects, see

Fig. 7 (center). This change in block ratio from 35% amphiphilic

polymer down to 20% amphiphilic polymer increases the aspect

ratio of the minority phase. Within the context of the FCH, the

parameter η2 weighs the energy requirement of compressing the

minority phase into the restricted core of a higher codimensional

structure, corresponding to values of u for which the double well

W is negative. In particular, bilayer profiles reside in the positive

region of the double well, W (φb) > 0, while the filament profile

accesses the negative regions of W , consequently negative values

of η2 lower the energy cost of filaments relative to bilayers. In this

sense positive values of η2 penalize higher codimensional struc-

tures, which is analogous to amphiphilic molecule aspect ratio

near one, while negative values of η2 favor the packing found in

high codimension morphologies, analogous to a high aspect ratio

amphiphilic molecule, see Fig. 7 (right). These preferences are

born out in Fig. 6: for fixed values of µ1, decreasing η2 under con-

stant η1, hence increasing ηd, results in a crossing of the pearling

stability line, leading to the pearled morphology seen in Fig. 7

(center/b and c). Further increase in ηd leads to a defect laden

filament structure, see Fig. 7 (center/d) consistent with slight

crossing of the filament pearling stability line. This sequence,

bilayer stability followed by bilayer pearling and then filament

pearling for µ1 > 0 and increasing ηd is consistent with a value

of ξ in the range [−0.4,−0.2] depicted in Fig. 6. The qualitative
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Fig. 6. A µ1–ηd bifurcation diagram versus µ1 (vertical axis) and ηd (horizontal axis) for ξ = −0.85,−0.7,−0.45 and −0.2 and η1 fixed at η1 = 0.15. Pearling

instability holds to the right of the dotted lines (blue-bilayers, red-filaments) while regularized curve lengthening holds above the solid lines (blue-bilayers, red-

filaments). Areas of pearling instability and curve lengthening are indicated in key regions. The value of µ1 is generically time dependent, and the gray shaded region

is forward invariant under the flow . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

agreement between the pearled morphologies observed in the

FCH free energy and the self-consistent density-functional model

is striking. Both models present emergent pearling with smaller,

round holes, compare Fig. 7 (left/bottom-left) and (center/b),

while fully emerged pearling leads to larger, pentagonal shaped

holes, compare Fig. 7 (left/bottom-right) and (center/c).

4.4. Comparison of analytical bifurcation diagrams to experiments

We compare the bifurcation structure derived for codimension

1 and 2 composite morphologies within the FCH gradient flow to

experimental results of Dicher and Eisenberg reprinted in Fig. 9

and of Jain and Bates reprinted in Fig. 1.

4.4.1. Bifurcations of Dicher and Eisenberg

The bifurcation experiments of Dicher and Eisenberg, [3], de-

picted in Fig. 1 (left), characterize the end-states of casts of

PS–PAA amphiphilic diblocks dispersed in a water–dioxane sol-

vent blend. Dioxane is a good solvent for both PEO and PS, but

PS, like its commercial relative styrofoam, is strongly hydrophobic

in water. Increasing the water content from zero leads to end-

state morphologies, in order: solvability, only micelles, micelles

and rods, only rods, rods and vesicles, and only vesicles. Here

micelles are codimension 3, while rods and vesicles refer to

codimension 2 and 1 respectively. An increase in water content

in the solvent is analogous to an increase in η1 — the energy

release per unit of interface formation, under constant diblock

aspect ratio, hence constant η2. This morphological bifurcation

sequence can be emulated within the FCH equation by fixing ξ =

−0.5 and η2 = −0.4 and allowing η1 to vary from 0 to 0.4. The

resulting µ1–η1 bifurcation diagram is presented in Fig. 9 (left).

The curve shortening lines are presented within the view, the

pearling stability lines are outside the view. For small values of η1
filaments are dynamically favored, while bilayers are dynamically

favored for larger values of η1. In particular, the horizontal line is

color coded to depict a probable end-state morphology of initial

data consisting of an admissible composite solution with µ1 =
0.05. Here red denotes a pure filament end-state, blue a pure

bilayer end-state and the yellow corresponds to a region of long-

time coexistence of the two morphologies due to the approximate

equality of the critical values µ∗
b = µ∗

f for η1 = 0.22. However the

bifurcation diagram lies within the pearling instability region of

both bilayers and filaments, and as a result the FCH predicts that

neither of these pure states would persist. This is a limitation in

the FCH model, with the well choice considered here the intersec-

tion of the pearling bifurcation curves occurs at smaller values of

η1 than the intersection of the curve shortening lines. Agreement

with these experimental results requires a robust inhibition of

the pearling mechanism. Indeed, the experimental dynamics for

the PS–PAA polymers considered here are largely reversible, as

shown in Fig. 9 (right), increasing and then decreasing the water

content leads to a fully reversible sequence of morphological

bifurcations. The presence of the pearling bifurcation generates

complex morphologies with strong hysteresis, see Fig. 10 (center).

Matching this class of morphological bifurcation diagrams re-

quires a tuning mechanism within the well shape W that affords

robust pearling inhibition. Such a mechanism is proposed within

the context of multicomponent models in [21] and [22].
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Fig. 7. (left) The t = 100 (τ = 3) end state of simulations of the FCH gradient flow for ε = 0.03, η1 = 0.15, η2 = 0.24 from initial data described in the text

and well tilt ξ = −0.15,−0.20 (top row, left to right), ξ = −0.25,−0.3 (bottom row, left to right). The less negative values of ξ have initial values of µ1 that

inhibit pearling, for the more negative two values the bilayer pearls. Images courtesy of Andrew Christlieb and Jaylan Jones. (center) Simulations of a mean-field

density functional model of amphiphilic diblock copolymers with ratio of amphiphilic component of the diblock decreasing from (a) 35% (b) 30% (c) 25% (d) 20%. The

minority solvent-hydrophilic phase is imaged. Reprinted (adapted) with permission from [2]. Copyright 2003 American Chemical Society. (right) Depiction of aspect

ratio of lipids, a biological diblock with a short amphiphilic head and a long hydrophobic tail. The aspect ratio is defined as the lipid volume v divided by the head

cross-sectional area a and tail length l. From [26], reprinted with permission from the Wiley publication. Copyright c⃝2011 WILEY-VCH Verlag GmbH & Co. KGaA,

Weinheim.

4.4.2. Bifurcations of Jain and Bates

The experimental bifurcation diagram of Jain and Bates [4],

depicted in Fig. 1 (right), shows the end-state morphology of dis-

persions of PEO-PB with different polymer lengths and different

weight fractions of PEO, wPEO, and hence different aspect ratios

of the overall amphiphilic diblock. For comparison Fig. 10 (left)

depicts the end states of the FCH gradient flow corresponding to

values of ξ = −0.2 and η1 = 0.15 for initial values of µ1 = 0.075

and various values of ηd arising from variation in η2 which models

the changes in diblock aspect ratio. Small, negative values of η2
correspond to low values of wPEO while larger, positives values of

η2 correspond to larger values of wPEO and to negative values of

ηd. The horizontal line in Fig. 10 (left) is color coded to depict a

probable end-state of the FCH evolution starting from an admis-

sible composite solution with this value of µ1. On the left where

ηd < −0.5, an initial value of µ1 = 0.075, both codimension

one and two morphologies are in their curve lengthening region

and both would increase in surface area/length. However as µ1 is

depleted, the suspension enters the curve shortening region for

filaments, which will either vanish in finite time or pearl as µ1

crosses the red dotted line – the end result is a pure bilayer state

– indicated by the blue color of the horizontal line for this value

of ηd.

We focus on the values of ηd in [−0.35,−0.05], for which the

horizontal line is colored green, to indicate a region of morpholog-

ical complexity. The initial data lies in the bilayer pearling region,

but passes transiently through it to bilayer pearling stability re-

gion. Depending upon the form of the initial bilayer morphology

they may either fully pearl and form filament networks, or persist

as bilayers and then grow after the return to pearling stability.

Filament networks formed from the pearling of a bilayer typically

host many Y -junctions and end caps. The filament network will

expand until µ1 crosses the red-solid filament curve shortening

line, at this point any defect free filaments will shrink, although

the presence of any end-caps and Y -junctions in a particular

component will render its evolution unclear. This uncertainty is

reflected in the dotted nature of the bottom half of the green

vertical line. The end result of the evolution is strongly dependent

upon the form of the initial data, and will be very hysteretic in

this regime. The uncertainty in the evolution is consistent with

co-existing bilayers, filament networks, Y -junctured filaments,

and end-cap defects, see Fig. 10 (center) for a depiction of the

experimental morphology found in this regime and Fig. 10 (right)

for a corresponding end-state of simulation of the FCH gradient

flow from random initial data.

For large values of ηd the µ1 flow remains in the bilayer

pearling instability region, the bilayers either will not form or

will pearl and transform to filament networks with the end-

result being a Y -juncture dominated filament network. The last

prediction, for ηd = −0.02 corresponds to the triple intersec-

tion (red circle) of the descending µ1 line, the filament pearling

(red-dotted), and curve shortening (red-solid) lines. The arrival

of µ1 to the filament curve shortening line from above is con-

sistent with a stable filament phase, but the emergent pearling

bifurcation signals a transition to end-cap and micelle formation,

and corresponds to the possible coexistence of filament and mi-

celle phases. This transition from filament to filament-micelle is

reflected in the dotted nature of the yellow µ1 horizontal line

for ηd > −0.02. A final transition to a pure micelle stage is

plausible but is outside the scope of our analysis. The overall

trend depicted in Fig. 10 (left) suggests increasing ηd at fixed

η1 results in bilayers, bilayers mixed with defective filaments

(end caps and Y -junctions), filaments, and filaments coexisting

with micelles. This bifurcation sequence is in excellent qualitative

agreement with the NPB = 170 bifurcation sequence depicted in

Fig. 1 (right) as the PEO weight fraction wPEO decreases from high

values to low values, corresponding to decreasing η2 and hence

increasing ηd subject to constant values of η1.
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Fig. 8. µ1–ηd bifurcation diagrams with η1 = 0.15 for the same values of ξ as in the end-states depicted in Fig. 7 (left). For the five simulations the initial and t = 100

final value of µ1 is indicated on the corresponding bifurcation diagram with a solid black circle and square, respectively. The simulations with ξ = −0.25,−0.3 and

ξ = −0.2 with ηd = 0 lead to pearled morphologies.

Fig. 9. (left) A µ1–η1 bifurcation diagram with ξ = −0.5 and η2 = −0.4 that shows the curve shortening lines for bilayers and filaments and vertical arrows showing

generic evolution of µ1 from initial data starting at 0.05 for η1 running from 0 to 0.4. The color coding of the µ1 = 0.05 line indicates the final result of the end state

with red denoting pure filament, yellow coexistence of filament and bilayer, and blue denoting pure bilayer; compare to Fig. 1 (left) for increasing values of water

in solvent phase. (right) Complete reversibility in a PS–PAA system under change in water solvent concentration, implying robust inhibition of pearling instabilities

. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Source: From [3]. Reprinted with permission from AAAS.

The bifurcation sequence depicted in Fig. 1 (right) for NPB =
45 corresponds to a much shorter, stiffer diblock polymer. In

this regime the network and defect-laden filament phase are

not observed, rather increasing wPEO weight fraction leads to the

codimensional bifurcation sequence which leads from bilayers, to

coexistence of bilayers and filaments, to filaments, to coexistence

of filaments and micelles, and finally to micelles. While the gen-

eral trend of the codimensional bifurcation sequence is supported

by the competitive geometric motion and its bifurcations, as in

Fig. 9 (left), we reiterate that within the context of the scalar

version of the FCH free energy presented herein, the pearling

bifurcation cannot be fully suppressed.

5. Discussion

We have presented a multiscale analysis of the H−1 gradient

flow of the FCH free energy corresponding to initial data close to
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Fig. 10. (left) A µ1 − ηd bifurcation diagram for ξ = −0.2 and fixed η1 = 0.15, showing the end states of initial data with µ1 = 0.04 and varying values of η2 ,

with color coding corresponding to probable end state: blue — bilayer, green — network and defect structure (morphological complexity), red — filament, dotted

yellow — filament and micelle. Compare to experimental results of Fig. 1 (right) for NPB = 170, with increasing values of wPEO corresponding to decreasing values of

η2 . (center) Experimentally observed network, end cap, and Y -junction morphologies corresponding to the CY phase of the bifurcation diagram from Fig. 1 (right).

Scale bar is 200 nm, From [4]. Reprinted with permission from AAAS. (right) End state of simulation of FCH gradient flow corresponding to green arrow, coarsened

from random initial data, courtesy of Zhengfu Xu . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

dressings of admissible codimension one (bilayer) and codimen-

sion two (filament) morphologies. We derived their curvature

driven flow which couples to the evolving, spatially constant far-

field chemical potential, µ1. This flow is the basis of the morpho-

logical competition, which barring other bifurcations leads to an

end state corresponding to the dynamically favored morphology

with the lower critical value, µ∗
b or µ∗

f , of the far field chemical

potential. In particular we identify regimes in which the geomet-

ric flow leads to growth or evanescence of each phase through

curve shortening or regularized curve lengthening. Combining the

curve shortening/regularized curve lengthening bifurcation with

the pearling bifurcation results allows a characterization of the

evolution of defect-free connected components of bilayer and

filament morphologies. Our analysis predicts that codimension

one and two structures do not generically coexist on the long,

t = O(ε−1) time scale within the strong FCH gradient flow. Exper-

imental results show transitions between distinct codimensional

phases with relatively large margins of coexistence, however as

remarked in the experimental literature, the transients associ-

ated to these experiments are long compared to experimental

patience and transients required to achieve a single phase of

codimensional morphology may require months to years, [5].

We compared the analytical bifurcation diagram to results

from numerical simulations of the FCH gradient flow, to simu-

lations of a self-consistent mean-field density functional model

for amphiphilic polymers, and to three sets of experimental stud-

ies of amphiphilic polymers. We find that the self-consistent

mean-field density functional model proposed in [2] predicts

a bifurcation sequence of radial bilayers, pearled bilayers, and

filaments with end-cap defects in strong qualitative agreement

with the FCH bifurcation structure, in particular the structure

of the pearled spherical bilayers computed by both models are

in excellent agreement. The experimental bifurcation analysis of

Jain and Bates, [4], was conducted at two polymer lengths, long

polymers with NPB = 170 and shorter ones with NPB = 45. We

find strong qualitative agreement between the FCH bifurcation

structure and the experimental results for the longer chains, with

the FCH results suggesting that the development of morphological

complexity could be produced in a region in which bilayer pearling

and filament curve shortening bifurcations lie in close proximity,

see Section 4.4.2. The passage of the far-field chemical potential

through these bifurcations engenders network morphologies with

Y -junctions, end-caps, and stable pearled filaments. The analyti-

cal basis of the complexity suggests a mechanism for hysteresis:

the passage through these sequences of bifurcations will not be

readily reversed by a non-adiabatic return of the state variables.

The FCH model with the parameter choices presented herein

does not qualitatively reproduce all of the experimental results.

Both the solvent quality bifurcation experiments of Dicher and

Eisenberg, [3] and the short polymer NPB = 45 experiments of

Jain and Bates do not show evidence of pearling bifurcations.

Complex morphology is not exhibited, and Dicher and Eisenberg

show that for their experimental parameters the morphology is

remarkably reversible: hysteresis is not observed. However, the

Dicher and Eisenberg experimental bifurcation structure is well

described by the dynamical favoritism arising from the mor-

phological competition. To match the full range of experimental

results the FCH free energy needs a tunable mechanism to ro-

bustly inhibit the pearling bifurcation. These can be achieved in

two ways. The first is physically motivated: pearling is a modu-

lation of bilayer width, and shorter polymers are stiffer and lead

to bilayers with a less compressible width. The compressibility

of the bilayer is tunable through the slope of the well W at the

value u at which the bilayer density is greatest, generically the

second W = 0 crossing. Tuning this slope to be large represents

a stiffer diblock and may serve to inhibit the pearling mechanism.

The second mechanism is mathematically motivated: the pearling

bifurcation arises from a balance between the positive eigenvalue

λb,0 of the linearization Lb,0, see (2.7) about the bilayer profile,

and the negative eigenspace of the Laplace–Beltrami operator,

∆s. The balance cannot occur if the operator Lb,0 is non-self

adjoint and whose positive real part spectrum have non-zero

imaginary parts. This arrangement can be tuned and detuned

within a multicomponent model, providing precisely the desired

mechanism for robust pearling inhibition. This mechanism was

discussed in section 5 of [21] and forms the basis of the study of

the singularly perturbed systems in [22].

There remains a considerable amount to address within the

family of FCH energies. While the FCH is at some level a phe-

nomenological model with parameter values that are not directly

tunable from first principles, the FCH parameter values can be

fit to experiments, or subscale molecular simulations, much like

Flory–Huggins parameters. Nonetheless, fitting the full form of

a complicated well W , especially for multicomponent models,

may be challenging. Even within the simple model presented

here, the role of micelles on morphological competition has not

been addressed, and their stability, including their growth into

dumbbells and end-caped filaments is a primary instability mode
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that leads adiabatically from a codimension three structure into a

defective codimension two structures. As there are almost no an-

alytical characterization of defect modes, the micelle to dumbbell

instability is worthy of study on a purely mathematical basis.
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