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A B S T R A C T   

Decentralized wastewater treatment (WWT) can be an energy and resource efficient alternative to the traditional, 
centralized WWT paradigm for water-stressed communities. However, to operate economically, decentralized 
facilities do not typically have a WWT operator on-site full-time, so a real-time monitoring scheme is needed to 
quickly detect system faults and isolate the features associated with or affected by faults to ensure adequate 
treated water quality. Data collected from WWT facilities exhibit temporal dependence and experience natural 
fluctuations in the mean due to environmental and operator-controlled factors, violating the assumptions of 
many existing fault detection and isolation (FD&I) methods. To address this, we develop a complete data-driven 
FD&I method tuned to handle the unique features of WWT data that can be run in real-time and illustrate how it 
performs with data from a decentralized WWT facility in Golden, Colorado, USA. Enhanced visualization tech
niques are designed to assist operators in identifying features associated with the fault. We present three case 
studies with known faults and demonstrate how this method can aid operators in detecting and diagnosing the 
cause of a fault more quickly.   

1. Introduction 

In the traditional water management paradigm, municipal and in
dustrial wastewater is collected and conveyed to centralized wastewater 
treatment (WWT) facilities for removal of contaminants before 
discharge to the environment (e.g., rivers, lakes). However, the demand 
for additional water resources in arid or water-stressed regions makes 
decentralized WWT systems an attractive option. In decentralized WWT 
systems, wastewater is treated close to the point of generation, which 
allows the treated water to be reused locally. Treatment can even be 
tailored to provide water of different qualities for various reuse appli
cations such as toilet flushing or irrigation. Not only can this new 
paradigm provide an additional water source for a community’s water 
portfolio, but it is also more resource and energy efficient because it does 
not require pumping wastewater over long distances for collection and 
distribution [1–3]. 

The major drawback of decentralized WWT is that these smaller fa
cilities have higher operating expenses. It is often not feasible for 
decentralized facilities to have an operator on-site twenty-four hours a 
day to monitor system operations. However, without operator oversight, 
faults can quickly propagate through the system, which can have serious 

operational, financial, environmental, or public health implications. 
Thus, a fault monitoring platform is needed that would allow one 
operator to simultaneously monitor multiple facilities remotely. Fault 
detection (FD) is the detection of abnormal system behavior, or behavior 
that deviates from accepted, in control (IC) conditions. In a high- 
dimensional setting like WWT in which dozens of process variables 
are monitored, knowledge of the presence of out of control (OC) con
ditions is not completely informative; it is also important to identify the 
variables within the system that have shifted, known as fault isolation 
(FI). Then, operators are well-equipped to begin diagnosing the fault and 
correcting it. 

Newhart et al. [4] summarize the existing monitoring paradigms 
used in the majority of WWT facilities and emphasize the need for more 
advanced data-driven monitoring strategies tailored for WWT. The most 
common process control approach in WWT is to identify an acceptable 
for each monitored variable and when the value exceeds a threshold, the 
variable is identified as OC, and an alarm is triggered. However, static 
univariate thresholds tend to detect faults slowly because they do not 
account for the relationship among variables within the system [4]. 
Typically, after an alarm is triggered by one variable in the system, 
operators attempt to identify other variables affected by the fault in 
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order to diagnose the cause. This course of action includes visually 
interpreting time series plots of the individual variables. Even for 
highly-skilled operators who are familiar with the system, it is difficult 
to visually identify the affected variables among many; especially for 
faults that increase in magnitude and severity slowly over time. There
fore, an advanced real-time monitoring strategy is required to detect 
faults in a WWT system and identify the components associated with the 
fault. 

A wealth of statistical literature exists for FD and FI, collectively 
referred to as multivariate statistical process monitoring (MSPM). Review 
papers by Woodall and Montgomery [5] and Reis and Gins [6] provide a 
good overview of the current methods and problems in the field. Control 
charts such as the multivariate exponentially weighted moving average 
(MEWMA) chart [7], Hotelling’s T2 chart [8], and multivariate cumu
lative sum (MCUSUM) chart [9] remain popular FD methods among 
practitioners, and many variations and improvements have been pro
posed (e.g., [10–15]). Common FI methods include contribution plots, 
variable thinning methods, and post-signal diagnostic variable selection 
methods. Contribution plots visualize the contribution of each variable 
to the fault, but the contribution of one variable can propagate to other 
variables, known as the “smearing effect,” which can lead to misdiag
nosis [16]. An alternative to contribution plots that reduces the smear
ing effect is reconstruction-based contribution (RBC) [17–19], but RBC 
can still result in misdiagnosis in complex fault settings in which mul
tiple variables are affected. Variable thinning methods focus on thinning 
or reducing the number of variables prior to monitoring in order to have 
more power in detecting the fault [20–25]. Alternatively, some methods 
monitor all variables, and after a fault is detected, variable selection 
approaches such as forward selection and lasso estimation are used to 
identify the shifted variables [26–29]. 

Most fault detection and isolation (FD&I) methods require an 
assumption that the data are independent and identically distributed; 
many also require a distributional assumption such as multivariate 
normality. Data collected from decentralized WWT facilities violate 
these assumptions, making most MSPM methods inappropriate for direct 
application. Influent is more highly variable in quality and quantity than 
that of centralized facilities, resulting in a natural fluctuation in vari
ables over the course of the day, week, and season, which causes non
stationarity in the mean. Furthermore, changes in operational settings 
such as flow rates or whether a valve is open or closed can impact 
monitored variables, and these changes are not indicative of a fault. 
Because the data are collected at a high frequency (e.g., seconds to 
minutes), the data have a strong positive autocorrelation present. Finally, 
the data often do not follow a normal distribution and may exhibit some 
skewness. Because of the nonstationarity, autocorrelation, and non- 
normality present in WWT facility data, it can be especially chal
lenging to detect faults. Ignoring these characteristics can result in a 
high false alarm rate, which can be costly in terms of time and money for 
a decentralized WWT facility. Using data to then isolate the shifted 
variables can be even more challenging. 

FD in WWT settings with real data has been addressed in a few papers 
(e.g., [30–35]), but it is much more common to use artificial simulated 
data from models such as the Benchmark Simulation Model (e.g., 
[36–40]). When real data are used, often only a small subset of the 
monitored variables (less than 10) are considered, which artificially 
reduces the complexity and difficulty of monitoring in this setting [31, 
32,34,35,41]. Kazor et al. [30] and Odom et al. [33] developed 
advanced real-time FD methods that were able to effectively monitor 
more than 25 variables. However, FI has never been applied to WWT 
processes outside of Klanderman et al. [42], who proposed a retro
spective FI method using fused lasso to identify shifted variables in a 
period of historical data, so this is the first time wherein real-time FI has 
been tested in a WWT setting. 

In this paper, we present a fully integrated, real-time FD&I method 
that accounts for nonstationarity, autocorrelation, and non-normality, 
all of which are present in WWT data. First, we account for 

nonstationarity by removing any trends due to environmental or oper
ational factors, which is a common approach among practitioners 
[42–46]. Then, we apply an FD method based on principal component 
analysis (PCA) proposed by Kazor et al. [30] to the detrended data, 
which can account for temporal dependence, non-normality, and non
stationarity caused by long-term or seasonal trends not captured in the 
detrending process. For FI, we apply the post-signal diagnostic variable 
selection method proposed by Ebrahimi et al. [28], which uses adaptive 
lasso to recover the shifted variables from the principal components 
(PCs). 

Using three case studies from a demonstration-scale decentralized 
WWT facility, we illustrate the method’s performance through an 
enhanced visualization tool that we design to assist operators in the fault 
diagnosis step. We compare the results of the method with the operators’ 
post-hoc analysis of the fault to see how quickly the method detects the 
fault, which variables are identified as shifted, and if the analysis can 
provide any additional insight into the fault. The major contributions of 
our work are (1) the integration of FD and FI for a fully functional FD&I 
methodology; (2) the development of an enhanced visualization tool to 
assist with diagnosis; and (3) the illustration of the method with real and 
complex cases. The approach that we develop is tailored to the unique 
features of decentralized WWT data and is the first time that an FD&I 
approach has been applied to such a complex system, but the method
ology is flexible enough to be applied in other fields of application. 
Section 2 introduces the real-time FD&I method; Section 3 presents 
three case studies with known faults from a WWT facility in Golden, 
Colorado, USA; and Section 4 discusses the capabilities and limitations 
of the method when considering applying it to similar systems. 

2. Methodology 

The method is comprised of three primary components: training and 
detrending, detection, and isolation. A flow chart summarizing the 
method is shown in Fig. 1, which is described in the remainder of this 
section. 

2.1. Training and detrending 

Prior to monitoring, we must identify the response variables, or the 
variables in the system that we wish to monitor, and predictor variables, 
which can explain some of the variability in the response variables. We 
denote the p response variables and q predictor variables observed at 
time t as column vectors xt and wt, respectively. The first τ observations, 
which are known to be IC, are used as an initial training window. 
Numerous methods known as Phase I methods exist to identify an 
appropriate IC data set for training, estimate parameters, and set 
thresholds [47–49], and these are used in real-time monitoring schemes 
known as Phase II methods. However, Phase I methods make many of the 
same assumptions about the data as Phase II methods do and are 
therefore not appropriate for WWT data. Instead, to identify an IC 
period, we rely on the expertise of operators and other subject matter 
experts. Occasional outliers are common due to electrical surges in one 
or more sensors, so to account for any such extreme values, we linearly 
interpolate any observations in which at least one of the values exceeds 
10 standard deviations of the median value in the training set. In the 
three case studies, zero observations were imputed for case study #1, 
two were imputed for case study #2, and one was imputed for case study 
#3. 

Prior to monitoring, we detrend the response variables using the 
predictor variables to account for any variability in the system from 
known sources such as system state, control settings, or other external 
factors that are not indicative of a fault. Multi-state methods such as 
Odom et al. [33] have also been proposed, but a detrending approach 
provides greater flexibility in the sources of variability that can be 
accounted for in the model. For the i-th response variable at time t, 
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which we denote x(i)
t , we fit a linear model 

E
[
x(i)

t

]
= β(i)

0 + wT
t β(i)

1 , t = 1, 2,…, τ, (1)  

using the training window of observations, where β(i)
0 and β(i)

1 are the 
intercept and regression coefficients, respectively, of the linear model 
for the i-th response variable. Using the fitted model, we can find the 

fitted value x̂(i)
t = β̂

(i)
0 + wT

t β̂
(i)
1 for the i-th response variable at time t, 

where β̂
(i)
0 and β̂

(i)
1 are the estimated intercept and regression co

efficients, respectively. The residuals for the i-th variable, r(i)
t = x(i)

t −

x̂(i)
t , contain information about the behavior of the process that is not 

accounted for by other factors. We can collect the residuals for all var
iables at time t into a single vector rt = vec(r(1)

t , r(2)
t ,…, r(p)

t ), which we 
monitor for faults using a method known as adaptive dynamic PCA (AD- 
PCA) described in Kazor et al. [30]. 

2.2. Detection 

PCA is a common technique used in MSPM to reduce the dimension 
of the data while retaining as much information as possible. Two mod
ifications, adaptive and dynamic, have been proposed to account for 
nonstationarity and autocorrelation, respectively. The adaptive exten
sion of PCA regularly updates the training window to account for non
stationarity in the data over time [50,51]. In this case, the adjustment 
allows us to account for nonstationarity due to long-term or seasonal 
trends that remain after the effects of the predictor variables have been 
removed. To use the dynamic extension of PCA, we augment rt with a 
lagged version of the residuals, which we denote r+

t [52]. For each var
iable, we use the lag with the highest partial autocorrelation function 
from the training window, so r+

t is of length 2p. When applied to non
linearly related variables, Kazor et al. [30] demonstrate through a 
simulation study of autocorrelated and nonstationary data that AD-PCA 
outperforms PCA in terms of the false alarm rate under IC conditions and 

detection speed under OC conditions. 
Applying PCA to the correlation matrix of the residuals from the 

training window, r+
1 , r+

2 , …, r+
τ , we obtain a 2p × k linear projection 

matrix P+
k with associated eigenvalues Λ+

k = diag(λ+
1 ,…,λ+

k ), where k is 
the number of PCs necessary to capture 80% of the variability. There
fore, an observation projected into the PC subspace is y+

t =
(
P+

k
)Tr+

t . For 
each observation in the training period, we calculate two monitoring 
statistics: Hotelling’s T2 and squared prediction error (SPE), which we 
denote as Q. Hotelling’s T2 is calculated as 

T2 =
(
y+

t

)T (
Λ+

k

)−1y+
t =

(
r+

t

)T P+
k

(
Λ+

k

)−1(
P+

k

)T r+
t ,

which measures the variability in the PC subspace. The squared pre
diction error (SPE) measures the variability in the residual subspace and 
is calculated as 

Q =

⃦
⃦
⃦

[
I −P+

k

(
P+

k

)T
]
r+

t

⃦
⃦
⃦

2
,

where I is the 2p × 2p identity matrix. Then, we can estimate the IC 
distribution and determine thresholds of T2 and Q based on a pre- 
specified false alarm rate, α. The use of parametric thresholds is popu
lar among practitioners [5], but they can be highly affected by de
viations from normality. Therefore, if the underlying process 
distribution is not known sufficiently to assume normality, nonpara
metric adjustments are recommended [53]. We identify the nonpara
metric thresholds using the (1 −α)% quantile of the kernel density 
estimate (KDE) of T2 and Q from the training period. 

Given a new observation xt for t = τ + 1, …, we calculate the re
siduals based on the IC fitted model from Eq. (1), incorporate lagged 
values to produce r+

t , map r+
t into the lower-dimensional subspace y+

t , 
and compute T2 and Q. If either statistic exceeds the corresponding 
threshold, we flag the observation as OC and perform FI. Otherwise, we 
continue to monitor new observations. Using the adaptive version of 
PCA, we retain the observations classified as IC by AD-PCA and update 

Fig. 1. Flow chart of the FD&I method used in the three case studies.  
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the training window when we obtain κ new IC observations, removing 
the oldest κ observations from the training window. Each time we up
date the training window, we (1) re-estimate p fitted models to calculate 
the residuals for each variable; (2) re-estimate P+

k and Λ+
k ; and (3) re- 

calculate the nonparametric thresholds for the monitoring statistics T2 

and Q. 

2.3. Isolation 

When an observation is flagged as OC, we want to identify which of 
the variables’ means have shifted. The residuals from the training win
dow are of mean zero, so identifying the shifted variables is equivalent 
to identifying the non-zero components of the mean of rt, which we 
denote μt . The method proposed by Ebrahimi et al. [28] recovers μt from 
the PCs. However, in order to isolate the non-zero components of the 
mean of rt rather than r+

t , we re-estimate the PCs as a function of rt. 
Given the entire linear projection matrix Pp with associated eigenvalues 
Λp = diag(λ1,…,λp), the PC score is 

yt = PT
p rt = PT

p μt + ϵ,

where ϵ is the error term with mean zero and covariance Λp. 
To avoid any issues of non-constant variance across the PCs, we 

transform yt and Pp as y∗
t = Λ−1/2

p yt and P∗
p = Λ−1/2

p Pp. Then, an estimate 
of the mean of the OC process is found using adaptive lasso, which en
forces sparsity in μ̂t by putting a penalty on the components of μ̂t and 
driving small components to zero. An estimate of μ̂t is given by 

μ̂t = argmin
μt

‖y∗
t −(P∗

p)
T μt‖

2
2 + γ

∑p

j=1
wj|μj|,

where γ is a regularization parameter, and w = vec(w1,…,wp) = 1
μ̂

OLS
t

. We 

solve this using the R package glmnet [54], where the regularization 
parameter γ is chosen using cross-validation. All variables with non-zero 
components of μ̂t are classified as shifted at time t; all variables with zero 
components of μ̂t are classified as unshifted at time t. We refer to this 
FD&I method as adaptive dynamic sparse PCA, or ADS-PCA, because we 
are enforcing sparsity in the components of μ̂t . 

3. Case studies 

We demonstrate the performance of ADS-PCA by applying it to three 
known faults from Mines Park Water Reclamation Test Site (Mines 
Park), a demonstration-scale decentralized WWT facility in Golden, 
Colorado, USA. The facility treats approximately 7000 gallons of 
municipal wastewater daily from a university student apartment com
plex on the campus of Colorado School of Mines (Mines). This facility 
has been used as a case study to develop and study MSPM methods [30, 
31,33,35,42]. 

3.1. Mines Park system description 

The system at Mines Park is a sequencing-batch membrane biore
actor (SB-MBR), which uses a combination of physical, chemical, and 
biological processes to treat municipal wastewater. There are two major 
subsystems, the two bioreactors (BRs) and two membrane bioreactors 
(MBRs), which are connected by the return activated sludge (RAS) and 
the MBR overflow. A diagram of the two subsystems is shown in Fig. 2. 

Wastewater is diverted from the municipal sewer system to a holding 
tank. Then, once an hour, a batch of raw wastewater is delivered to one 

Fig. 2. Process diagram of the two subsystems in the SB-MBR system at Mines Park. The sensors used to collect data on the response variables in the system are 
denoted throughout the diagram using colored rectangles. Note, TMP represents transmembrane pressure, and TSS represents total suspended solids. 
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of two BRs using a submerged grinder pump and a 2 mm fine screen to 
remove large, inert solids. The carbon and nutrient-rich wastewater is 
digested by the dense microbial mass in the BRs, known as activated 
sludge. To activate particular microorganisms to degrade specific con
taminants, oxygen is provided via industrial air blowers. These air 
blowers are timed strategically to efficiently transform organic and 
inorganic nitrogen into nitrogen gas and phosphorus into microbial 
biomass, thus removing the nutrients from the water. When the blowers 
are on, dissolved oxygen (DO) sensors measure the concentration of 
aqueous oxygen, and a proportional-integral controller increases or 
decreases the air blower speed to maintain a DO concentration setpoint. 

After an hour of alternating aeration conditions (i.e., aerobic, 
anaerobic), a RAS pump circulates the activated sludge between one of 
the BRs and the two MBRs operating in parallel. The activated sludge 
flows from the bottom of the fully-mixed MBR tanks upward and over
flows to a trough, where the activated sludge is returned to the original 
BR. The MBR achieves solid–liquid separation of the activated sludge 
using hollow-fiber membranes with a nominal pore size of 0.03 μm, 
rejecting bacteria and some viruses. Aeration is provided to the MBRs to 
mix the activated sludge and to scour the solids that may accumulate on 
the membrane surface. A pump pulls water through the membrane, 
known as permeate, to a holding tank where it will overflow to a second, 
larger basin for subsequent reuse. The two BRs alternate between filling/ 
aeration and recirculating to provide a continuous flow of activated 
sludge to the MBRs and, consequently, a continuous flow of permeate. 

The faults observed at Mines Park derive from two primary sources: 
operational or environmental. Faults due to operational failures, such as 
a clog in a pipe or equipment malfunction, can propagate quickly 
throughout the system, and evidence of these problems are associated 
with changes in the behavior of variables such as flow rates and 
equipment speed. Operational faults require immediate corrective ac
tion and can result in system downtime in which either no water can 
pass through the system or water passes through under-treated. How
ever, operational faults are usually short-lived and can be addressed 
with sufficient labor hours, tools, and equipment. Faults caused by 
environmental changes can have more long-lasting and severe conse
quences, but are slower to impact system variables because influent 
water is heavily diluted by water already in the system. Regardless, the 
microorganisms responsible for treating the wastewater are sensitive to 
the environmental conditions of the BRs, so even slight changes in water 
quality can threaten their survival. Diagnosing an environmental fault is 
difficult because regulated water quality measurements are only taken a 
few times a week, and once a change has been identified in these mea
surements, the biological system has already been compromised and 
requires supplemental chemical addition or drastic operational changes 
to recover. 

3.2. Data description and detrending 

More than 30 variables are recorded every minute in the Mines Park 
SB-MBR using sensors placed throughout the system, which are denoted 
by colored rectangles in Fig. 2. First, we identify the set of response 
variables that we wish to monitor and the corresponding predictor 
variables needed to detrend the response variables. Information on the 
system’s state and control settings known as control variables are recor
ded every minute, and these can explain some variability in the behavior 
of the response variables. For example, if a blower’s air flow rate in
creases, it is expected that the DO concentration in the BR will increase 
as well. Often, there is a delay in the effect of a control variable on a 
response variable, so we account for this delay by using lagged versions 
of the control variables in the fitted regression models given in Eq. (1). 
Using the partial cross correlation function (PCCF) between the control 
and response variable, we select the lag with the largest PCCF value. 
Based on exploratory data analysis, we also identified an hourly, two- 
hour, and daily trend in the observations, so we include cyclic variables 
in the form of sine/cosine pairs with a corresponding period to account 

for these temporal frequencies. Together, the control variables, lagged 
control variables, and cyclic variables make up the set of predictor 
variables used for detrending. 

The operation of the two subsystems (BR and MBR) at a given time 
are semi-independent; over time, they become dependent if a fault goes 
undetected and propagates throughout the entire system, but there is a 
delay in the impact to the other subsystem. Therefore, we monitor the 
response variables from the two subsystems separately and include the 
RAS-related variables in both data sets. We monitor 11 variables in the 
BR subsystem and 16 variables in the MBR subsystem. For some 
response variables, we found that including control variables from both 
subsystems substantially increased the predictive power of the model, so 
we include the control variables from both subsystems to model all 
response variables. A list of all response, control, and cyclic variables is 
included in the supplementary materials. 

For ADS-PCA, we use a training window of τ = 7200 observations, or 
five days of observations monitored every minute. We update the model 
every κ = 1440 observations, which is equivalent to one day of obser
vations assuming every observation is classified as IC. We must also 
specify the false alarm rate α, which determines the thresholds for the 
monitoring statistics. A larger α will result in a smaller threshold, so 
faults will be detected sooner, but there will also be more false alarms. 
We set the false alarm rate to be α = 0.005, which means that when the 
process is IC, we can expect a false alarm every 200 observations on 
average, which translates to one false alarm every 3 h and 20 min. 

For each response variable, we fit a linear model using adaptive lasso 
[55], which performs parameter estimation and variable selection 
simultaneously to remove some of the unimportant predictor variables 
from the model. Lasso regression methods are sensitive to differences in 
scale among variables, so prior to model fitting, we standardize the 
predictor and response variables from the training period. An example of 
the fitted models using a heat map to show the estimated regression 
coefficients is included in the supplementary materials. 

Fig. 3 shows an example of the detrending process for sewage_level, 
one of the shifted variables, from case study #3. A time series plot of 
sewage_level is shown in Fig. 3(a) with the observed values in black and 
fitted values in red, and the residuals are shown in black in Fig. 3(b). The 
green vertical lines in both plots indicate when the model is updated, 
where the first five days of observations are the initial training window. 
A fluctuation in the mean of sewage_level is evident over time, even 
throughout the training period. The fitted model is able to capture some 
of the nonstationarity with an R2 of 30% during the initial training 
window, reducing the variability in the residuals. On January 29, there 
is a dramatic decrease in sewage_level, which is not captured by the 
fitted model, and is therefore preserved for detection by ADS-PCA. 

For these case studies, we present an enhanced visualization tech
nique called a checkerboard plot, which summarizes when faults are 
detected, which response variables are shifted for each OC observation, 
and in which direction the shift occurred for each variable simulta
neously. This provides an easy and concise way to communicate the 
health of the system to operators in real-time. Using this information, 
operators can then refer to the individual time series plots to diagnose 
and assess the severity of the fault. 

Variations of checkerboard plots have been used to visualize FD&I 
results [19,56], but to our knowledge, none have used color to indicate 
the direction of the fault. Including the direction of the fault makes it 
much easier for an operator to diagnose the fault. For example, a 
downward shift in the concentration of total suspended solids (TSS) 
could indicate an environmental fault in which the biomass is decaying 
faster than it is growing. However, an upward shift in TSS could indicate 
an operational fault such as a valve stuck in the closed position, causing 
activated sludge to continuously accumulate in the system. 

The checkerboard plots for the three case studies are shown in 
Figs. 4, 5, and 7 . Each row represents a response variable over time, and 
the shifted variables that were identified by the operators retrospectively 
are highlighted in yellow. At each time point, a white box indicates that 
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the variable is classified as unshifted; a red box indicates that the vari
able has an upward shift detected; and a blue box indicates that the 
variable has a downward shift detected. The color gets darker as the 
number of consecutive alarms increases using a gradient color scale. The 
lightest blue indicates only a single alarm, and the darkest blue indicates 

that at least five alarms in a row have occurred. Note that zooming into 
Figs. 4, 5, and 7 will provide greater resolution and detail in the plots. 
Case studies #1 and #2 have two checkerboard plots, one for each of the 
two subsystems; case study #3 only has one checkerboard plot for the BR 
subsystem, and we will elaborate further in Section 3.5. 

Fig. 3. Plot of (a) sewage_level in black with the fitted values in red, and (b) the residuals in black. The green vertical lines indicate when the model is updated, 
where the first five days of observations are the initial training window. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 4. Checkerboard plot of monitored variables over 
time for case study #1, where the rows represent the 
monitored variables; red boxes represent a variable 
with an upward shift detected; blue boxes represent a 
variable with a downward shift detected; white boxes 
represent a variable classified as unshifted; and truly 
shifted variables are highlighted in yellow. The color of 
the red and blue boxes gets darker as the number of 
consecutive alarms increases. (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the web version of this article.)   
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3.3. Case study #1 

The first case study focuses on a fault at the end of December 2017 in 
which the system suffered from an operational fault and an environ
mental fault simultaneously that affected both the BR and MBR sub
systems. The training window for case study #1 is December 17–21, 
2017, followed by a monitoring period from December 22–25, 2017. 
First, we focus on the fault in the BR subsystem. In mid-December 2017, 
students at Mines finished taking final exams, and most left campus for 
the holiday break, which is a common situation for decentralized WWT 
facilities that serve seasonal communities. As a result, the hourly 
wastewater flow to replenish the sewage tank declined, and over the 
following week, the sewage_level began to drop, which is detected by 
the method beginning on December 22 as seen in Fig. 4(a). 

These low flow conditions were compounded by a change in water 
quality. The wastewater was not only less concentrated, but the longer 
retention times in the collection system most likely led to preemptive 
carbon degradation. The carbon concentration of the raw wastewater is 
directly related to the oxygen demand, which is how much oxygen is 
required to fully treat the water of all oxidizeable material. At Mines 
Park, IC water quality conditions usually require almost a full hour of the 
air blowers at 100% speed to reach a DO concentration of 2 mg/L. 
However, during the monitoring period, when the blowers were turned 
on every 10-20 min, the little remaining carbon was quickly oxidized, 
and the DO concentration setpoint was easily achieved (and in some 
cases exceeded). This increase relative to IC conditions is evident in the 
intermittent upward shifts detected in bio_1_do and bio_2_do. 

The shifts in bio_1_temp, bio_2_temp, and ras_temp are most likely 
false alarms due to the nonstationarity of the temperature variables, 
which is still present and not fully removed from the residuals. The 
downward shifts in ras_ph are also likely false alarms because the sensor 
for the pH concentration rounds the value to two significant digits, 
resulting in only four unique values observed over the course of the five- 
day training period. With so little variability in ras_ph, the FI method 
tends to classify the variable as shifted when it deviates from the most 
common observed value in the training period. 

One day after the fault is detected by the method in the BRs, a fault is 
also detected in the MBRs, which is shown in Fig. 4(b). Mid-day on 
December 23, a clog developed in the inlet to MBR 1, causing a decrease 
in the mbr_1_inf_flow. Because the flow from the RAS pump splits into 
the two MBRs, the clog to MBR 1 caused a corresponding increase in the 
mbr_2_inf_flow. The decreased flow to MBR 1 and increased flow to MBR 
2 resulted in a concentration and dilution of solids in MBR 1 and 2, 
respectively, which caused an increase in mbr_1_tss and decrease in 
mbr_2_tss. A few hours later, the low mbr_1_inf_flow caused a drop in the 
mbr_1_level, so very little (if any) water was overflowing into the trough 
that returns the activated sludge into the BRs. Therefore, the only acti
vated sludge returned to the BRs was from MBR 2, which had been 
diluted by the increased flow rate, resulting in a decrease in ras_tss as 
well, which is detected in both subsystems before the end of the day on 
December 23. 

When the low MBR 1 influent flow rate alarmed (i.e., fell below an 
operator-determined threshold), the operator artificially increased the 
flow to MBR 1 by exercising the valve where the clog was most likely 
located, restricting the flow to MBR 2, and increasing the pressure head 
on the RAS pump by increasing BR levels. This dislodged the clog and 
subsequently equalized the distribution of solids in the MBRs. As a 
result, the TSS concentration of the MBRs and RAS returned to normal 
operating conditions after temporary operational changes. 

3.4. Case study #2 

The training window for case study #2 begins shortly after the 
conclusion of the monitoring period for case study #1 and covers the 
period from December 30, 2017 to January 3, 2018, which is followed 
by a four-day monitoring period. The fault of interest occurred 

exclusively in the MBR, but we present the results from ADS-PCA in the 
BR as well to demonstrate the importance of the choice of the IC training 
period on the results. The ADS-PCA results for case study #2 are shown 
in Fig. 5. 

The fault in the BR from case study #1 was not detected or corrected 
by operators at the time, so it carries over into the training and moni
toring period for case study #2. Fig. 6 illustrates this behavior for 
bio_1_do, and both bio_2_do and sewage_level exhibit similar patterns. In 
the training window for case study #1, which is represented by the left 
green region, bio_1_do is truly IC but becomes OC towards the end of the 
training period. When bio_1_do continues to increase during the moni
toring period of case study #1, the left blue region, the observations are 
flagged as OC by ADS-PCA. The fault was not detected by operators in 
the BR, so we used our method with a training window that contained 
OC data in case study #2, the right green region. As a result, Fig. 5(a) 
shows that our method does not flag any observations as OC during the 
monitoring period of case study #2, the right blue region, because the 
OC behavior in these variables is now considered to be IC by the method. 
This is to be expected given that the method is purely data-driven. 

There is also OC behavior present in the training window for the 
MBR that was initially overlooked by operators. Around January 4, the 
beginning of the monitoring period, full-time operators returned to 
campus from the holidays and identified a decrease in perm_turbidity 
due to an equipment failure that had gone unrepaired over the break. 
Following a manual adjustment, the perm_turbidity increased to normal 
operating conditions. Because the method trains on OC data for 
perm_turbidity, the method flags IC perm_turbidity data as OC as seen in 
Fig. 5(b). Nevertheless, operators believe the OC behavior was isolated 
to perm_turbidity, so the FI results for other variables are still reliable 
and provide insight into the true cause of the fault. 

In the MBR, a clog initially caused by hair, which is not completely 
removed by the 2 mm fine screen and is not digested by microorganisms, 
grew in the RAS pump, and this is detected by ADS-PCA late in the 
evening on January 4. The clog caused a slow decrease in the MBR 
influent flow, resulting in an initially intermittent shift and transitioning 
to a persistent downward shift detected in mbr_1_inf_flow and 
mbr_2_inf_flow. Additionally, the low strength of the wastewater due to 
the absence of students over the holidays led to a decline in biomass, 
which resulted in a decrease in mbr_1_tss, mbr_2_tss, and ras_tss. The 
downward shift in perm_conductivity detected at the beginning of 
January 5 was a result of a sensor fault. 

The changes in the influent flow caused by the clog were very 
gradual and occurred over the course of multiple days, so this fault was a 
long, slow drift. As a result, the method only intermittently detects the 
downward shift in influent flow on January 4 and 5, but by January 6, 
the shift is consistently flagged. In comparison, in the absence of a real- 
time FI method, the clog went undiagnosed by operators for almost three 
weeks and was finally corrected on January 25. Therefore, this method 
would have identified the fault in the influent flow almost three weeks 
sooner than the operators did, which could have improved system per
formance and stability. The detection of the downward shift in TSS 
would have also pointed operators to a change in environmental pres
sures, which would have allowed them to alter the operating conditions 
to buffer against the decline. 

3.5. Case study #3 

The training window for case study #3 is January 23–27, 2018, 
followed by a two and a half day monitoring window. The fault in the 
MBR discussed in case study #2 was not corrected until January 25, so 
the training window for the MBR is not truly IC. Therefore, we focus 
solely on the BR, which is where the fault occurred for case study #3. 

On January 29, a clog occurred in the raw wastewater diversion 
feeding the holding tank (which feeds the SB-MBR), causing the sew
age_level to drop. This exposed the submerged pump responsible for 
feeding the SB-MBR, causing it to overheat and shut down. As a result, 
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Fig. 5. Checkerboard plot of monitored variables over 
time for case study #2, where the rows represent the 
monitored variables; red boxes represent a variable 
with an upward shift detected; blue boxes represent a 
variable with a downward shift detected; white boxes 
represent a variable classified as unshifted; and truly 
shifted variables are highlighted in yellow. The color of 
the red and blue boxes gets darker as the number of 
consecutive alarms increases. (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the web version of this article.)   

Fig. 6. Time series plot of bio_1_do for case studies #1 and #2. The two green regions are the initial training windows, and the two blue regions are the monitoring 
periods for case study #1 (left) and case study #2 (right). The white line is a one-day rolling average of bio_1_do. Each region is labeled as IC or OC based on whether 
we believe the process to be truly IC or OC at the time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. Checkerboard plot of monitored variables over 
time for case study #3 for the BR subsystem, where the 
rows represent the monitored variables; red boxes 
represent a variable with an upward shift detected; 
blue boxes represent a variable with a downward shift 
detected; white boxes represent a variable classified as 
unshifted; and truly shifted variables are highlighted in 
yellow. The color of the red and blue boxes gets darker 
as the number of consecutive alarms increases. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this 
article.)   
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raw wastewater was not delivered to the BRs, causing the BR levels to 
decrease, which is evident in the downward shifts detected in bio_1_level 
and bio_2_level (see Fig. 7 mid-day on January 29). Without additional 
wastewater, there was no carbon or nutrients present to oxidize or 
provide microbial growth. Consequently, similar to case study #1, the 
DO concentrations immediately reached the setpoint without any 
readily oxidizeable material to consume the DO provided by the air 
blowers, which is consistent with a shift up in bio_1_do and bio_2_do 
detected by ADS-PCA. Operators were alerted to the problem when 
bio_1_level and bio_2_level dropped below their pre-specified threshold. 
Had the fault been detected sooner, the pump may not have been 
exposed, which would have prevented permanent equipment damage. 
During the fault event, no wastewater could be treated. For a facility 
with limited holding capacity, this would have been detrimental and 
would have led to untreated water being discharged to the environment. 
This fault could have easily been avoided with the installation of a more 
stringent level or level decline rate alarm, but the sensor was not 
accurately calibrated at the time of the fault, and the thresholds were not 
trusted by operators. Given the design of the system at the time of the 
fault, these results illustrate the power of a data-driven FD method to 
inexpensively complement existing WWT control systems and prevent 
severe consequences of simple faults. 

4. Discussion 

When incorporating a FD&I monitoring scheme into a WWT control 
system, it is important to remember that MSPM methods are purely data- 
driven. Even if the method performs as expected, it is possible for the 
results to be misleading or inconsistent with an operator’s assessment of 
the fault. For example, the temperature variables were frequently flag
ged as shifted even when, upon further inspection by operators, the 
shifts were not substantial or were of no consequence. These false alarms 
were a result of a poor fit for the trend in Eq. (1) that resulted in non
stationarity in the residuals, leading to a shift detected in the mean when 
the temperatures increased or decreased. Secondly, ADS-PCA is very 
sensitive to the choice of the training data set. As highlighted in case 
study #2, if a data set with OC behavior is used to train the model, the 
monitoring scheme may flag IC data as OC. Therefore, it is imperative 
that operators and system experts thoroughly analyze the training data 
set prior to monitoring. Additionally, it is advisable to reset the moni
toring scheme after a fault is detected, diagnosed, and corrected to 
ensure that the training window is not contaminated with observations 
from the OC period that were incorrectly classified as IC, which is 
especially common for long, slow drift faults. 

In spite of some of the inherent limitations of ADS-PCA, it is able to 
account for changes in operating conditions by removing the effect of 
control settings, influent changes, and external factors on the monitored 
variables via the adaptive lasso linear regression. The general frame
work used for detrending makes this method very flexible for a variety of 
system configurations. Because lasso regression performs variable se
lection and parameter estimation simultaneously, it allows the user to 
include a multitude of predictor variables in the model without exten
sive model development or prior knowledge of the relationship between 
each response and predictor variable. This method can also accommo
date stationary data by simply monitoring the standardized response 
variables rather than constructing a set of linear models and monitoring 
the residuals. 

ADS-PCA is the first fully functional FD&I approach that can be used 
for WWT processes in real-time, and the approach can also be applied in 
other complex settings where nonstationarity, temporal dependence, 
and non-normality are present in the data. This method is particularly 
important for facilities of communities with limited means that might 
have outdated control systems. Instead of inspecting time series plots for 
each individual variable, which can lead to missed detection and delays 
in fault diagnosis, checkerboard plots allow operators to monitor all 
variables in the system simultaneously. They can be a very useful tool for 

operators to gain insight into the particular variables that are shifted. We 
demonstrate the utility of our approach in three complex fault settings at 
a decentralized WWT facility by comparing the operators’ post-hoc 
analysis of the faults (along with their response in real-time) with the 
insight provided by ADS-PCA and the checkerboard plots, which con
firms that our approach would have facilitated a more rapid detection 
and diagnosis had it been implemented in real-time. Without our fully 
integrated approach, operators are limited by the knowledge that a 
single variable is outside of the operator-determined thresholds that 
distinguish IC verses OC conditions. ADS-PCA and the checkerboard 
plots are intended to complement the expertise of WWT operators by 
synthesizing the wealth of data collected in WWT systems; narrowing 
their focus to specific components of the system that require attention; 
and facilitating more rapid fault diagnosis in a multivariate system. 
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