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Decentralized wastewater treatment (WWT) can be an energy and resource efficient alternative to the traditional,
centralized WWT paradigm for water-stressed communities. However, to operate economically, decentralized
facilities do not typically have a WWT operator on-site full-time, so a real-time monitoring scheme is needed to
quickly detect system faults and isolate the features associated with or affected by faults to ensure adequate
treated water quality. Data collected from WWT facilities exhibit temporal dependence and experience natural
fluctuations in the mean due to environmental and operator-controlled factors, violating the assumptions of
many existing fault detection and isolation (FD&I) methods. To address this, we develop a complete data-driven
FD&I method tuned to handle the unique features of WWT data that can be run in real-time and illustrate how it
performs with data from a decentralized WWT facility in Golden, Colorado, USA. Enhanced visualization tech-
niques are designed to assist operators in identifying features associated with the fault. We present three case
studies with known faults and demonstrate how this method can aid operators in detecting and diagnosing the
cause of a fault more quickly.

1. Introduction

In the traditional water management paradigm, municipal and in-
dustrial wastewater is collected and conveyed to centralized wastewater
treatment (WWT) facilities for removal of contaminants before
discharge to the environment (e.g., rivers, lakes). However, the demand
for additional water resources in arid or water-stressed regions makes
decentralized WWT systems an attractive option. In decentralized WWT
systems, wastewater is treated close to the point of generation, which
allows the treated water to be reused locally. Treatment can even be
tailored to provide water of different qualities for various reuse appli-
cations such as toilet flushing or irrigation. Not only can this new
paradigm provide an additional water source for a community’s water
portfolio, but it is also more resource and energy efficient because it does
not require pumping wastewater over long distances for collection and
distribution [1-3].

The major drawback of decentralized WWT is that these smaller fa-
cilities have higher operating expenses. It is often not feasible for
decentralized facilities to have an operator on-site twenty-four hours a
day to monitor system operations. However, without operator oversight,
faults can quickly propagate through the system, which can have serious
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operational, financial, environmental, or public health implications.
Thus, a fault monitoring platform is needed that would allow one
operator to simultaneously monitor multiple facilities remotely. Fault
detection (FD) is the detection of abnormal system behavior, or behavior
that deviates from accepted, in control (IC) conditions. In a high-
dimensional setting like WWT in which dozens of process variables
are monitored, knowledge of the presence of out of control (OC) con-
ditions is not completely informative; it is also important to identify the
variables within the system that have shifted, known as fault isolation
(FD). Then, operators are well-equipped to begin diagnosing the fault and
correcting it.

Newhart et al. [4] summarize the existing monitoring paradigms
used in the majority of WWT facilities and emphasize the need for more
advanced data-driven monitoring strategies tailored for WWT. The most
common process control approach in WWT is to identify an acceptable
for each monitored variable and when the value exceeds a threshold, the
variable is identified as OC, and an alarm is triggered. However, static
univariate thresholds tend to detect faults slowly because they do not
account for the relationship among variables within the system [4].
Typically, after an alarm is triggered by one variable in the system,
operators attempt to identify other variables affected by the fault in
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order to diagnose the cause. This course of action includes visually
interpreting time series plots of the individual variables. Even for
highly-skilled operators who are familiar with the system, it is difficult
to visually identify the affected variables among many; especially for
faults that increase in magnitude and severity slowly over time. There-
fore, an advanced real-time monitoring strategy is required to detect
faults in a WWT system and identify the components associated with the
fault.

A wealth of statistical literature exists for FD and FI, collectively
referred to as multivariate statistical process monitoring (MSPM). Review
papers by Woodall and Montgomery [5] and Reis and Gins [6] provide a
good overview of the current methods and problems in the field. Control
charts such as the multivariate exponentially weighted moving average
(MEWMA) chart [7], Hotelling’s T? chart [8], and multivariate cumu-
lative sum (MCUSUM) chart [9] remain popular FD methods among
practitioners, and many variations and improvements have been pro-
posed (e.g., [10-15]). Common FI methods include contribution plots,
variable thinning methods, and post-signal diagnostic variable selection
methods. Contribution plots visualize the contribution of each variable
to the fault, but the contribution of one variable can propagate to other
variables, known as the “smearing effect,” which can lead to misdiag-
nosis [16]. An alternative to contribution plots that reduces the smear-
ing effect is reconstruction-based contribution (RBC) [17-19], but RBC
can still result in misdiagnosis in complex fault settings in which mul-
tiple variables are affected. Variable thinning methods focus on thinning
or reducing the number of variables prior to monitoring in order to have
more power in detecting the fault [20-25]. Alternatively, some methods
monitor all variables, and after a fault is detected, variable selection
approaches such as forward selection and lasso estimation are used to
identify the shifted variables [26-29].

Most fault detection and isolation (FD&I) methods require an
assumption that the data are independent and identically distributed;
many also require a distributional assumption such as multivariate
normality. Data collected from decentralized WWT facilities violate
these assumptions, making most MSPM methods inappropriate for direct
application. Influent is more highly variable in quality and quantity than
that of centralized facilities, resulting in a natural fluctuation in vari-
ables over the course of the day, week, and season, which causes non-
stationarity in the mean. Furthermore, changes in operational settings
such as flow rates or whether a valve is open or closed can impact
monitored variables, and these changes are not indicative of a fault.
Because the data are collected at a high frequency (e.g., seconds to
minutes), the data have a strong positive autocorrelation present. Finally,
the data often do not follow a normal distribution and may exhibit some
skewness. Because of the nonstationarity, autocorrelation, and non-
normality present in WWT facility data, it can be especially chal-
lenging to detect faults. Ignoring these characteristics can result in a
high false alarm rate, which can be costly in terms of time and money for
a decentralized WWT facility. Using data to then isolate the shifted
variables can be even more challenging.

FD in WWT settings with real data has been addressed in a few papers
(e.g., [30-35]), but it is much more common to use artificial simulated
data from models such as the Benchmark Simulation Model (e.g.,
[36-40]). When real data are used, often only a small subset of the
monitored variables (less than 10) are considered, which artificially
reduces the complexity and difficulty of monitoring in this setting [31,
32,34,35,41]. Kazor et al. [30] and Odom et al. [33] developed
advanced real-time FD methods that were able to effectively monitor
more than 25 variables. However, FI has never been applied to WWT
processes outside of Klanderman et al. [42], who proposed a retro-
spective FI method using fused lasso to identify shifted variables in a
period of historical data, so this is the first time wherein real-time FI has
been tested in a WWT setting.

In this paper, we present a fully integrated, real-time FD&I method
that accounts for nonstationarity, autocorrelation, and non-normality,
all of which are present in WWT data. First, we account for
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nonstationarity by removing any trends due to environmental or oper-
ational factors, which is a common approach among practitioners
[42-46]. Then, we apply an FD method based on principal component
analysis (PCA) proposed by Kazor et al. [30] to the detrended data,
which can account for temporal dependence, non-normality, and non-
stationarity caused by long-term or seasonal trends not captured in the
detrending process. For FI, we apply the post-signal diagnostic variable
selection method proposed by Ebrahimi et al. [28], which uses adaptive
lasso to recover the shifted variables from the principal components
(PCs).

Using three case studies from a demonstration-scale decentralized
WWT facility, we illustrate the method’s performance through an
enhanced visualization tool that we design to assist operators in the fault
diagnosis step. We compare the results of the method with the operators’
post-hoc analysis of the fault to see how quickly the method detects the
fault, which variables are identified as shifted, and if the analysis can
provide any additional insight into the fault. The major contributions of
our work are (1) the integration of FD and FI for a fully functional FD&I
methodology; (2) the development of an enhanced visualization tool to
assist with diagnosis; and (3) the illustration of the method with real and
complex cases. The approach that we develop is tailored to the unique
features of decentralized WWT data and is the first time that an FD&I
approach has been applied to such a complex system, but the method-
ology is flexible enough to be applied in other fields of application.
Section 2 introduces the real-time FD&I method; Section 3 presents
three case studies with known faults from a WWT facility in Golden,
Colorado, USA; and Section 4 discusses the capabilities and limitations
of the method when considering applying it to similar systems.

2. Methodology

The method is comprised of three primary components: training and
detrending, detection, and isolation. A flow chart summarizing the
method is shown in Fig. 1, which is described in the remainder of this
section.

2.1. Training and detrending

Prior to monitoring, we must identify the response variables, or the
variables in the system that we wish to monitor, and predictor variables,
which can explain some of the variability in the response variables. We
denote the p response variables and q predictor variables observed at
time t as column vectors x, and w;, respectively. The first 7 observations,
which are known to be IC, are used as an initial training window.
Numerous methods known as Phase I methods exist to identify an
appropriate IC data set for training, estimate parameters, and set
thresholds [47-49], and these are used in real-time monitoring schemes
known as Phase II methods. However, Phase I methods make many of the
same assumptions about the data as Phase II methods do and are
therefore not appropriate for WWT data. Instead, to identify an IC
period, we rely on the expertise of operators and other subject matter
experts. Occasional outliers are common due to electrical surges in one
or more sensors, so to account for any such extreme values, we linearly
interpolate any observations in which at least one of the values exceeds
10 standard deviations of the median value in the training set. In the
three case studies, zero observations were imputed for case study #1,
two were imputed for case study #2, and one was imputed for case study
#3.

Prior to monitoring, we detrend the response variables using the
predictor variables to account for any variability in the system from
known sources such as system state, control settings, or other external
factors that are not indicative of a fault. Multi-state methods such as
Odom et al. [33] have also been proposed, but a detrending approach
provides greater flexibility in the sources of variability that can be
accounted for in the model. For the i-th response variable at time t,
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Fig. 1. Flow chart of the FD&I method used in the three case studies.

which we denote in), we fit a linear model

EO) =g +wip), 1=1.2,...1, m

using the training window of observations, where ﬁéi) and ﬁgi) are the
intercept and regression coefficients, respectively, of the linear model
for the i-th response variable. Using the fitted model, we can find the

fitted value J?ii) = /?E,’) +w’, ﬁﬁ" for the i-th response variable at time t,
where Ef)” and Eil) are the estimated intercept and regression co-
efficients, respectively. The residuals for the i-th variable, rﬂi) = x@ -

iﬁi), contain information about the behavior of the process that is not
accounted for by other factors. We can collect the residuals for all var-
iables at time t into a single vector r; = vec(rﬁ”,rﬁz), ...,rﬁp )), which we
monitor for faults using a method known as adaptive dynamic PCA (AD-

PCA) described in Kazor et al. [30].

2.2. Detection

PCA is a common technique used in MSPM to reduce the dimension
of the data while retaining as much information as possible. Two mod-
ifications, adaptive and dynamic, have been proposed to account for
nonstationarity and autocorrelation, respectively. The adaptive exten-
sion of PCA regularly updates the training window to account for non-
stationarity in the data over time [50,51]. In this case, the adjustment
allows us to account for nonstationarity due to long-term or seasonal
trends that remain after the effects of the predictor variables have been
removed. To use the dynamic extension of PCA, we augment r, with a
lagged version of the residuals, which we denote r;” [52]. For each var-
iable, we use the lag with the highest partial autocorrelation function
from the training window, so r;" is of length 2p. When applied to non-
linearly related variables, Kazor et al. [30] demonstrate through a
simulation study of autocorrelated and nonstationary data that AD-PCA
outperforms PCA in terms of the false alarm rate under IC conditions and

detection speed under OC conditions.

Applying PCA to the correlation matrix of the residuals from the
training window, r], rj, ..., 1, we obtain a 2p x k linear projection
matrix P} with associated eigenvalues A} = diag(4;,...,4.), where k is
the number of PCs necessary to capture 80% of the variability. There-

fore, an observation projected into the PC subspace is y,;- = (P,j)Trt+ . For
each observation in the training period, we calculate two monitoring
statistics: Hotelling’s T? and squared prediction error (SPE), which we
denote as Q. Hotelling’s T2 is calculated as

7= (y) () 'y = )P (B)

which measures the variability in the PC subspace. The squared pre-
diction error (SPE) measures the variability in the residual subspace and
is calculated as

2

o=|[r-pr) |

where I is the 2p x 2p identity matrix. Then, we can estimate the IC
distribution and determine thresholds of T? and Q based on a pre-
specified false alarm rate, a. The use of parametric thresholds is popu-
lar among practitioners [5], but they can be highly affected by de-
viations from normality. Therefore, if the underlying process
distribution is not known sufficiently to assume normality, nonpara-
metric adjustments are recommended [53]. We identify the nonpara-
metric thresholds using the (1 —a)% quantile of the kernel density
estimate (KDE) of T? and Q from the training period.

Given a new observation x; for t = 7+ 1, ..., we calculate the re-
siduals based on the IC fitted model from Eq. (1), incorporate lagged
values to produce r;, map r; into the lower-dimensional subspace y;’,
and compute T?> and Q. If either statistic exceeds the corresponding
threshold, we flag the observation as OC and perform FI. Otherwise, we
continue to monitor new observations. Using the adaptive version of
PCA, we retain the observations classified as IC by AD-PCA and update
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the training window when we obtain x new IC observations, removing
the oldest k observations from the training window. Each time we up-
date the training window, we (1) re-estimate p fitted models to calculate
the residuals for each variable; (2) re-estimate P,f and A,f; and (3) re-
calculate the nonparametric thresholds for the monitoring statistics T2
and Q.

2.3. Isolation

When an observation is flagged as OC, we want to identify which of
the variables’ means have shifted. The residuals from the training win-
dow are of mean zero, so identifying the shifted variables is equivalent
to identifying the non-zero components of the mean of r;, which we
denote p,. The method proposed by Ebrahimi et al. [28] recovers u, from
the PCs. However, in order to isolate the non-zero components of the
mean of r; rather than r;, we re-estimate the PCs as a function of r;.
Given the entire linear projection matrix P, with associated eigenvalues
Ap = diag(A1,...,4p), the PC score is

Y = P,{r! = P:ﬂz +te,

where € is the error term with mean zero and covariance A,.

To avoid any issues of non-constant variance across the PCs, we
transform y, and P, as y; = A,"/?y, and P; =A,"/?P,. Then, an estimate
of the mean of the OC process is found using adaptive lasso, which en-
forces sparsity in ji, by putting a penalty on the components of i, and
driving small components to zero. An estimate of Ji, is given by

P
~ . * *\T 2
i, = argminlly; = (B) R+ 7w,

J=1

Journal of Water Process Engineering 38 (2020) 101556

wherey is a regularization parameter, and w = vec(wy,...,w,) === We

e
solve this using the R package glmnet [54], where the regularization

parameter y is chosen using cross-validation. All variables with non-zero
components of ji, are classified as shifted at time ¢; all variables with zero
components of i, are classified as unshifted at time t. We refer to this
FD&I method as adaptive dynamic sparse PCA, or ADS-PCA, because we
are enforcing sparsity in the components of j,.

3. Case studies

We demonstrate the performance of ADS-PCA by applying it to three
known faults from Mines Park Water Reclamation Test Site (Mines
Park), a demonstration-scale decentralized WWT facility in Golden,
Colorado, USA. The facility treats approximately 7000 gallons of
municipal wastewater daily from a university student apartment com-
plex on the campus of Colorado School of Mines (Mines). This facility
has been used as a case study to develop and study MSPM methods [30,
31,33,35,42].

3.1. Mines Park system description

The system at Mines Park is a sequencing-batch membrane biore-
actor (SB-MBR), which uses a combination of physical, chemical, and
biological processes to treat municipal wastewater. There are two major
subsystems, the two bioreactors (BRs) and two membrane bioreactors
(MBRs), which are connected by the return activated sludge (RAS) and
the MBR overflow. A diagram of the two subsystems is shown in Fig. 2.

Wastewater is diverted from the municipal sewer system to a holding
tank. Then, once an hour, a batch of raw wastewater is delivered to one

Sewage

Temperature,

level DO

Level

RAS pH

RAS TSS, flow

(a) BR subsystem

RAS pH Level

. RAS TSS, flow
Air flow
—{}

TSS

() ol
TMP, flow g Turbidity

Permeate
J Tank

(b) MBR subsystem

Fig. 2. Process diagram of the two subsystems in the SB-MBR system at Mines Park. The sensors used to collect data on the response variables in the system are
denoted throughout the diagram using colored rectangles. Note, TMP represents transmembrane pressure, and TSS represents total suspended solids.
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of two BRs using a submerged grinder pump and a 2 mm fine screen to
remove large, inert solids. The carbon and nutrient-rich wastewater is
digested by the dense microbial mass in the BRs, known as activated
sludge. To activate particular microorganisms to degrade specific con-
taminants, oxygen is provided via industrial air blowers. These air
blowers are timed strategically to efficiently transform organic and
inorganic nitrogen into nitrogen gas and phosphorus into microbial
biomass, thus removing the nutrients from the water. When the blowers
are on, dissolved oxygen (DO) sensors measure the concentration of
aqueous oxygen, and a proportional-integral controller increases or
decreases the air blower speed to maintain a DO concentration setpoint.

After an hour of alternating aeration conditions (i.e., aerobic,
anaerobic), a RAS pump circulates the activated sludge between one of
the BRs and the two MBRs operating in parallel. The activated sludge
flows from the bottom of the fully-mixed MBR tanks upward and over-
flows to a trough, where the activated sludge is returned to the original
BR. The MBR achieves solid-liquid separation of the activated sludge
using hollow-fiber membranes with a nominal pore size of 0.03 pm,
rejecting bacteria and some viruses. Aeration is provided to the MBRs to
mix the activated sludge and to scour the solids that may accumulate on
the membrane surface. A pump pulls water through the membrane,
known as permeate, to a holding tank where it will overflow to a second,
larger basin for subsequent reuse. The two BRs alternate between filling/
aeration and recirculating to provide a continuous flow of activated
sludge to the MBRs and, consequently, a continuous flow of permeate.

The faults observed at Mines Park derive from two primary sources:
operational or environmental. Faults due to operational failures, such as
a clog in a pipe or equipment malfunction, can propagate quickly
throughout the system, and evidence of these problems are associated
with changes in the behavior of variables such as flow rates and
equipment speed. Operational faults require immediate corrective ac-
tion and can result in system downtime in which either no water can
pass through the system or water passes through under-treated. How-
ever, operational faults are usually short-lived and can be addressed
with sufficient labor hours, tools, and equipment. Faults caused by
environmental changes can have more long-lasting and severe conse-
quences, but are slower to impact system variables because influent
water is heavily diluted by water already in the system. Regardless, the
microorganisms responsible for treating the wastewater are sensitive to
the environmental conditions of the BRs, so even slight changes in water
quality can threaten their survival. Diagnosing an environmental fault is
difficult because regulated water quality measurements are only taken a
few times a week, and once a change has been identified in these mea-
surements, the biological system has already been compromised and
requires supplemental chemical addition or drastic operational changes
to recover.

3.2. Data description and detrending

More than 30 variables are recorded every minute in the Mines Park
SB-MBR using sensors placed throughout the system, which are denoted
by colored rectangles in Fig. 2. First, we identify the set of response
variables that we wish to monitor and the corresponding predictor
variables needed to detrend the response variables. Information on the
system’s state and control settings known as control variables are recor-
ded every minute, and these can explain some variability in the behavior
of the response variables. For example, if a blower’s air flow rate in-
creases, it is expected that the DO concentration in the BR will increase
as well. Often, there is a delay in the effect of a control variable on a
response variable, so we account for this delay by using lagged versions
of the control variables in the fitted regression models given in Eq. (1).
Using the partial cross correlation function (PCCF) between the control
and response variable, we select the lag with the largest PCCF value.
Based on exploratory data analysis, we also identified an hourly, two-
hour, and daily trend in the observations, so we include cyclic variables
in the form of sine/cosine pairs with a corresponding period to account
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for these temporal frequencies. Together, the control variables, lagged
control variables, and cyclic variables make up the set of predictor
variables used for detrending.

The operation of the two subsystems (BR and MBR) at a given time
are semi-independent; over time, they become dependent if a fault goes
undetected and propagates throughout the entire system, but there is a
delay in the impact to the other subsystem. Therefore, we monitor the
response variables from the two subsystems separately and include the
RAS-related variables in both data sets. We monitor 11 variables in the
BR subsystem and 16 variables in the MBR subsystem. For some
response variables, we found that including control variables from both
subsystems substantially increased the predictive power of the model, so
we include the control variables from both subsystems to model all
response variables. A list of all response, control, and cyclic variables is
included in the supplementary materials.

For ADS-PCA, we use a training window of 7 = 7200 observations, or
five days of observations monitored every minute. We update the model
every k = 1440 observations, which is equivalent to one day of obser-
vations assuming every observation is classified as IC. We must also
specify the false alarm rate @, which determines the thresholds for the
monitoring statistics. A larger a will result in a smaller threshold, so
faults will be detected sooner, but there will also be more false alarms.
We set the false alarm rate to be @ = 0.005, which means that when the
process is IC, we can expect a false alarm every 200 observations on
average, which translates to one false alarm every 3 h and 20 min.

For each response variable, we fit a linear model using adaptive lasso
[55], which performs parameter estimation and variable selection
simultaneously to remove some of the unimportant predictor variables
from the model. Lasso regression methods are sensitive to differences in
scale among variables, so prior to model fitting, we standardize the
predictor and response variables from the training period. An example of
the fitted models using a heat map to show the estimated regression
coefficients is included in the supplementary materials.

Fig. 3 shows an example of the detrending process for sewage_level,
one of the shifted variables, from case study #3. A time series plot of
sewage_level is shown in Fig. 3(a) with the observed values in black and
fitted values in red, and the residuals are shown in black in Fig. 3(b). The
green vertical lines in both plots indicate when the model is updated,
where the first five days of observations are the initial training window.
A fluctuation in the mean of sewage_level is evident over time, even
throughout the training period. The fitted model is able to capture some
of the nonstationarity with an R? of 30% during the initial training
window, reducing the variability in the residuals. On January 29, there
is a dramatic decrease in sewage_level, which is not captured by the
fitted model, and is therefore preserved for detection by ADS-PCA.

For these case studies, we present an enhanced visualization tech-
nique called a checkerboard plot, which summarizes when faults are
detected, which response variables are shifted for each OC observation,
and in which direction the shift occurred for each variable simulta-
neously. This provides an easy and concise way to communicate the
health of the system to operators in real-time. Using this information,
operators can then refer to the individual time series plots to diagnose
and assess the severity of the fault.

Variations of checkerboard plots have been used to visualize FD&I
results [19,56], but to our knowledge, none have used color to indicate
the direction of the fault. Including the direction of the fault makes it
much easier for an operator to diagnose the fault. For example, a
downward shift in the concentration of total suspended solids (TSS)
could indicate an environmental fault in which the biomass is decaying
faster than it is growing. However, an upward shift in TSS could indicate
an operational fault such as a valve stuck in the closed position, causing
activated sludge to continuously accumulate in the system.

The checkerboard plots for the three case studies are shown in
Figs. 4, 5, and 7 . Each row represents a response variable over time, and
the shifted variables that were identified by the operators retrospectively
are highlighted in yellow. At each time point, a white box indicates that
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Fig. 3. Plot of (a) sewage_level in black with the fitted values in red, and (b) the residuals in black. The green vertical lines indicate when the model is updated,
where the first five days of observations are the initial training window. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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3.3. Case study #1

The first case study focuses on a fault at the end of December 2017 in
which the system suffered from an operational fault and an environ-
mental fault simultaneously that affected both the BR and MBR sub-
systems. The training window for case study #1 is December 17-21,
2017, followed by a monitoring period from December 22-25, 2017.
First, we focus on the fault in the BR subsystem. In mid-December 2017,
students at Mines finished taking final exams, and most left campus for
the holiday break, which is a common situation for decentralized WWT
facilities that serve seasonal communities. As a result, the hourly
wastewater flow to replenish the sewage tank declined, and over the
following week, the sewage_level began to drop, which is detected by
the method beginning on December 22 as seen in Fig. 4(a).

These low flow conditions were compounded by a change in water
quality. The wastewater was not only less concentrated, but the longer
retention times in the collection system most likely led to preemptive
carbon degradation. The carbon concentration of the raw wastewater is
directly related to the oxygen demand, which is how much oxygen is
required to fully treat the water of all oxidizeable material. At Mines
Park, IC water quality conditions usually require almost a full hour of the
air blowers at 100% speed to reach a DO concentration of 2mg/L.
However, during the monitoring period, when the blowers were turned
on every 10-20 min, the little remaining carbon was quickly oxidized,
and the DO concentration setpoint was easily achieved (and in some
cases exceeded). This increase relative to IC conditions is evident in the
intermittent upward shifts detected in bio_1_do and bio_2_do.

The shifts in bio_1_temp, bio_2_temp, and ras_temp are most likely
false alarms due to the nonstationarity of the temperature variables,
which is still present and not fully removed from the residuals. The
downward shifts in ras_ph are also likely false alarms because the sensor
for the pH concentration rounds the value to two significant digits,
resulting in only four unique values observed over the course of the five-
day training period. With so little variability in ras_ph, the FI method
tends to classify the variable as shifted when it deviates from the most
common observed value in the training period.

One day after the fault is detected by the method in the BRs, a fault is
also detected in the MBRs, which is shown in Fig. 4(b). Mid-day on
December 23, a clog developed in the inlet to MBR 1, causing a decrease
in the mbr_1_inf flow. Because the flow from the RAS pump splits into
the two MBRs, the clog to MBR 1 caused a corresponding increase in the
mbr_2_inf flow. The decreased flow to MBR 1 and increased flow to MBR
2 resulted in a concentration and dilution of solids in MBR 1 and 2,
respectively, which caused an increase in mbr_1_tss and decrease in
mbr_2_tss. A few hours later, the low mbr_1_inf flow caused a drop in the
mbr_1_level, so very little (if any) water was overflowing into the trough
that returns the activated sludge into the BRs. Therefore, the only acti-
vated sludge returned to the BRs was from MBR 2, which had been
diluted by the increased flow rate, resulting in a decrease in ras_tss as
well, which is detected in both subsystems before the end of the day on
December 23.

When the low MBR 1 influent flow rate alarmed (i.e., fell below an
operator-determined threshold), the operator artificially increased the
flow to MBR 1 by exercising the valve where the clog was most likely
located, restricting the flow to MBR 2, and increasing the pressure head
on the RAS pump by increasing BR levels. This dislodged the clog and
subsequently equalized the distribution of solids in the MBRs. As a
result, the TSS concentration of the MBRs and RAS returned to normal
operating conditions after temporary operational changes.

3.4. Case study #2

The training window for case study #2 begins shortly after the
conclusion of the monitoring period for case study #1 and covers the
period from December 30, 2017 to January 3, 2018, which is followed
by a four-day monitoring period. The fault of interest occurred
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exclusively in the MBR, but we present the results from ADS-PCA in the
BR as well to demonstrate the importance of the choice of the IC training
period on the results. The ADS-PCA results for case study #2 are shown
in Fig. 5.

The fault in the BR from case study #1 was not detected or corrected
by operators at the time, so it carries over into the training and moni-
toring period for case study #2. Fig. 6 illustrates this behavior for
bio_1_do, and both bio_2_do and sewage_level exhibit similar patterns. In
the training window for case study #1, which is represented by the left
green region, bio_1_do is truly IC but becomes OC towards the end of the
training period. When bio_1_do continues to increase during the moni-
toring period of case study #1, the left blue region, the observations are
flagged as OC by ADS-PCA. The fault was not detected by operators in
the BR, so we used our method with a training window that contained
OC data in case study #2, the right green region. As a result, Fig. 5(a)
shows that our method does not flag any observations as OC during the
monitoring period of case study #2, the right blue region, because the
OC behavior in these variables is now considered to be IC by the method.
This is to be expected given that the method is purely data-driven.

There is also OC behavior present in the training window for the
MBR that was initially overlooked by operators. Around January 4, the
beginning of the monitoring period, full-time operators returned to
campus from the holidays and identified a decrease in perm_turbidity
due to an equipment failure that had gone unrepaired over the break.
Following a manual adjustment, the perm_turbidity increased to normal
operating conditions. Because the method trains on OC data for
perm_turbidity, the method flags IC perm_turbidity data as OC as seen in
Fig. 5(b). Nevertheless, operators believe the OC behavior was isolated
to perm_turbidity, so the FI results for other variables are still reliable
and provide insight into the true cause of the fault.

In the MBR, a clog initially caused by hair, which is not completely
removed by the 2 mm fine screen and is not digested by microorganisms,
grew in the RAS pump, and this is detected by ADS-PCA late in the
evening on January 4. The clog caused a slow decrease in the MBR
influent flow, resulting in an initially intermittent shift and transitioning
to a persistent downward shift detected in mbr_1_inf flow and
mbr_2_inf flow. Additionally, the low strength of the wastewater due to
the absence of students over the holidays led to a decline in biomass,
which resulted in a decrease in mbr_1_tss, mbr_2_tss, and ras_tss. The
downward shift in perm_conductivity detected at the beginning of
January 5 was a result of a sensor fault.

The changes in the influent flow caused by the clog were very
gradual and occurred over the course of multiple days, so this fault was a
long, slow drift. As a result, the method only intermittently detects the
downward shift in influent flow on January 4 and 5, but by January 6,
the shift is consistently flagged. In comparison, in the absence of a real-
time FI method, the clog went undiagnosed by operators for almost three
weeks and was finally corrected on January 25. Therefore, this method
would have identified the fault in the influent flow almost three weeks
sooner than the operators did, which could have improved system per-
formance and stability. The detection of the downward shift in TSS
would have also pointed operators to a change in environmental pres-
sures, which would have allowed them to alter the operating conditions
to buffer against the decline.

3.5. Case study #3

The training window for case study #3 is January 23-27, 2018,
followed by a two and a half day monitoring window. The fault in the
MBR discussed in case study #2 was not corrected until January 25, so
the training window for the MBR is not truly IC. Therefore, we focus
solely on the BR, which is where the fault occurred for case study #3.

On January 29, a clog occurred in the raw wastewater diversion
feeding the holding tank (which feeds the SB-MBR), causing the sew-
age_level to drop. This exposed the submerged pump responsible for
feeding the SB-MBR, causing it to overheat and shut down. As a result,
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Fig. 5. Checkerboard plot of monitored variables over
time for case study #2, where the rows represent the
monitored variables; red boxes represent a variable
with an upward shift detected; blue boxes represent a
variable with a downward shift detected; white boxes
represent a variable classified as unshifted; and truly
shifted variables are highlighted in yellow. The color of
the red and blue boxes gets darker as the number of
consecutive alarms increases. (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 6. Time series plot of bio_1_do for case studies #1 and #2. The two green regions are the initial training windows, and the two blue regions are the monitoring
periods for case study #1 (left) and case study #2 (right). The white line is a one-day rolling average of bio_1_do. Each region is labeled as IC or OC based on whether
we believe the process to be truly IC or OC at the time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 7. Checkerboard plot of monitored variables over
time for case study #3 for the BR subsystem, where the
rows represent the monitored variables; red boxes
represent a variable with an upward shift detected;
blue boxes represent a variable with a downward shift
detected; white boxes represent a variable classified as
unshifted; and truly shifted variables are highlighted in
yellow. The color of the red and blue boxes gets darker
as the number of consecutive alarms increases. (For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of this
article.)
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raw wastewater was not delivered to the BRs, causing the BR levels to
decrease, which is evident in the downward shifts detected in bio_1_level
and bio_2_level (see Fig. 7 mid-day on January 29). Without additional
wastewater, there was no carbon or nutrients present to oxidize or
provide microbial growth. Consequently, similar to case study #1, the
DO concentrations immediately reached the setpoint without any
readily oxidizeable material to consume the DO provided by the air
blowers, which is consistent with a shift up in bio_1_do and bio_2_do
detected by ADS-PCA. Operators were alerted to the problem when
bio_1_level and bio_2_level dropped below their pre-specified threshold.
Had the fault been detected sooner, the pump may not have been
exposed, which would have prevented permanent equipment damage.
During the fault event, no wastewater could be treated. For a facility
with limited holding capacity, this would have been detrimental and
would have led to untreated water being discharged to the environment.
This fault could have easily been avoided with the installation of a more
stringent level or level decline rate alarm, but the sensor was not
accurately calibrated at the time of the fault, and the thresholds were not
trusted by operators. Given the design of the system at the time of the
fault, these results illustrate the power of a data-driven FD method to
inexpensively complement existing WWT control systems and prevent
severe consequences of simple faults.

4. Discussion

When incorporating a FD&I monitoring scheme into a WWT control
system, it is important to remember that MSPM methods are purely data-
driven. Even if the method performs as expected, it is possible for the
results to be misleading or inconsistent with an operator’s assessment of
the fault. For example, the temperature variables were frequently flag-
ged as shifted even when, upon further inspection by operators, the
shifts were not substantial or were of no consequence. These false alarms
were a result of a poor fit for the trend in Eq. (1) that resulted in non-
stationarity in the residuals, leading to a shift detected in the mean when
the temperatures increased or decreased. Secondly, ADS-PCA is very
sensitive to the choice of the training data set. As highlighted in case
study #2, if a data set with OC behavior is used to train the model, the
monitoring scheme may flag IC data as OC. Therefore, it is imperative
that operators and system experts thoroughly analyze the training data
set prior to monitoring. Additionally, it is advisable to reset the moni-
toring scheme after a fault is detected, diagnosed, and corrected to
ensure that the training window is not contaminated with observations
from the OC period that were incorrectly classified as IC, which is
especially common for long, slow drift faults.

In spite of some of the inherent limitations of ADS-PCA, it is able to
account for changes in operating conditions by removing the effect of
control settings, influent changes, and external factors on the monitored
variables via the adaptive lasso linear regression. The general frame-
work used for detrending makes this method very flexible for a variety of
system configurations. Because lasso regression performs variable se-
lection and parameter estimation simultaneously, it allows the user to
include a multitude of predictor variables in the model without exten-
sive model development or prior knowledge of the relationship between
each response and predictor variable. This method can also accommo-
date stationary data by simply monitoring the standardized response
variables rather than constructing a set of linear models and monitoring
the residuals.

ADS-PCA is the first fully functional FD&I approach that can be used
for WWT processes in real-time, and the approach can also be applied in
other complex settings where nonstationarity, temporal dependence,
and non-normality are present in the data. This method is particularly
important for facilities of communities with limited means that might
have outdated control systems. Instead of inspecting time series plots for
each individual variable, which can lead to missed detection and delays
in fault diagnosis, checkerboard plots allow operators to monitor all
variables in the system simultaneously. They can be a very useful tool for
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operators to gain insight into the particular variables that are shifted. We
demonstrate the utility of our approach in three complex fault settings at
a decentralized WWT facility by comparing the operators’ post-hoc
analysis of the faults (along with their response in real-time) with the
insight provided by ADS-PCA and the checkerboard plots, which con-
firms that our approach would have facilitated a more rapid detection
and diagnosis had it been implemented in real-time. Without our fully
integrated approach, operators are limited by the knowledge that a
single variable is outside of the operator-determined thresholds that
distinguish IC verses OC conditions. ADS-PCA and the checkerboard
plots are intended to complement the expertise of WWT operators by
synthesizing the wealth of data collected in WWT systems; narrowing
their focus to specific components of the system that require attention;
and facilitating more rapid fault diagnosis in a multivariate system.
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