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Abstract. There is a large literature of numerical methods for phase field models from
materials science. The prototype models are the Allen-Cahn and Cahn-Hilliard equa-
tions. We present four benchmark problems for these equations, with numerical re-
sults validated using several computational methods with different spatial and tem-
poral discretizations. Our goal is to provide the scientific community with a reliable
reference point for assessing the accuracy and reliability of future software for this
important class of problem.
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1 Introduction

Many material science problems require an understanding of the microstructure that de-
velops in a mixture of two of more materials or phases over time. One model of such
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phenomenon is the Cahn-Hilliard (CH) [10] equation that describes phase separation of
a binary alloy during annealing. The problem is described by a scalar function u of space
x and time f that takes values u =1 in one phase and u = —1 in the other.

ur=—e*Au+AW'(u)), (1.1)

where W(u) = (u?—1)? and A is the Laplacian operator. The parameter € in the model
is a length scale — the width of the layers between the regions of different phases. Such
regions form quickly and subsequently they evolve on longer time scales, generically
O(e%/€) for 1D Cahn-Hilliard [32]. In higher space dimensions formal analysis has shown
that the Cahn-Hilliard model forms phase separated regions that evolve according to a
Stefan problem on O(1) time scale and according to a Mullins-Sekerka flow on the longer
O(e!) time scales [31]. This analysis has been made rigorous for the Cahn-Hilliard equa-
tion with Neumann boundary conditions, [1], for periodic patterns, [2], and for patterns
attached to the boundary, [3]. The study of equilibrium of the Cahn-Hilliard equation,
equivalently the minimizers of the Cahn-Hilliard free energy

S(M)::/%€|Vu2]+e_1W(u)dx, (1.2)
0

has an even longer history. The key result, [30], established the € — 0 limit of the Cahn-
Hilliard free energy as the surface area of the interface. This result was generalized by
many authors, in particular [35], see the excellent review article [33].

The Cahn-Hilliard model is in a larger family of phase field models. A review of the
extensive use of such models in material science applications can be found in [11]. There
are several interesting generalizations of the Cahn-Hilliard equation. Fourth order phase
field models of increasing complexity are used to describe some aspects of cancerous tu-
mour growth [44]. Sixth order models also arise in the study of network formation in
functionalized polymers [20]. Because of the ubiquity and physical importance of these
models, many numerical approaches have been developed to solve them, with a small
sample given in the following references: [13,16-18,34,38,43]. Until now, there has been
no way to evaluate the raw accuracy or the relative performance (accuracy for similar
computational costs) of this array of numerical approaches. There is a set of benchmark
problems described in [27]. However, these problems lack concrete numerical targets
to assess accuracy. Another set of benchmark problems in [26] with radial symmetry is
posed in an infinite domain, not suitable for comparison with many approaches in the
literature. In this work, we propose four benchmark problems, three for Cahn-Hilliard
and one for the second order Allen-Cahn equation. The problems are posed in periodic
domains to allow the largest set of applicable techniques. We do not include any three
dimensional (3D) problems since there is no extra structure to the dynamics in higher
dimensions. The simplest form of the energy well (the canonical quartic) is considered,
again to allow the largest set of computational approaches. Several methods with differ-
ent spatial and temporal discretizations are applied to the benchmark problems to give
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confidence to the reported numerical results that can be used to assess the accuracy of
other schemes. While the focus of this work is to provide numerically accurate bench-
mark results, we record the number of time steps and the number of iterations (conjugate
gradient or multi-grid) for the different approaches and compare them in a brief discus-
sion. We provide all the codes [47] that were used to generate the results in this paper, for
the purposes of validation and reproducibility as well as to facilitate the development of
improved methods or methods for related application problems. This also provides max-
imum clarity over all the parameters (numerical and mathematical) that have been used.
Since the idea of quantitative computational benchmarks is relatively new to this research
community, we provide a brief overview of their utility in Section 1.1, drawing on some
examples from Computational Fluid Dynamics, where they have had an important role
for several decades.

Note that our benchmark problems focus on pure materials science applications rather
than the use of Cahn-Hilliard equations to track interfaces in so-called diffuse interface
methods [8,49] in which the CH dynamics are coupled to other physics.

In Section 2 we describe the four benchmark problems. In Sections 3 and 4 we describe
the methods and results of their application to the benchmark problems, with a summary
of the numerical results and our level of confidence in Section 5. We end with a short
discussion.

1.1 The utility of these computational benchmarks

Phase field computations have been used to model and predict morphological and mi-
crostructure evolution in materials [11]. Such computations have targets ranging from
time scales for coarsening behaviour [38] to studies of metallic alloy solidification in
which the objective is to obtain quantitative predictions of microstructures that are formed
during the solidification process [7]. In the former case only coarse accuracy is needed
while in the latter accurate quantitative predictions are required. It is typical that com-
putational benchmark results are provided to high accuracy and that is the case in this
study. A researcher using a phase field computational approach to answer an applica-
tion question can get insight into the range of computational parameters needed for the
required accuracy (high or low) using preliminary computations of the benchmark prob-
lems described in this work.

Computational benchmark problems have a long history in Computational Fluid Dy-
namics (CFD). A benchmark for the viscous, incompressible flow driven cavity prob-
lem [21] first appeared in 1982. Although it was an artificial problem, not based on any
particular application, it had an important impact on the field, focussing attention on
the development of accurate and efficient methods for the basic equations. More spe-
cialized benchmarks followed, with examples from multi-phase flow [25], aeronautical
flows [19], and aero-acoustics [28]. In these later works, the benchmarks were for multi-
physics models.

The current work for phase field model benchmarks is in the spirit of the early bench-
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marks in CFD, considering only basic forms of the models in simple geometries. The
authors plan to use these benchmark problems to evaluate time stepping strategies and
spatial discretization (adaptive versus fixed grid and time step, high order versus low
order) with the goal to provide adequate accuracy for optimal computational cost. We
invite other researchers to participate. Spatial discretizations considered in this work
are Fourier pseudo-spectral (see also [13,29]) and second order finite difference (see
also [22,43]). Comparison to existing fourth order finite difference [12] and mixed finite
element methods [15, 46, 48] in the literature could be done. The temporal discretiza-
tions used in this work are not regularized, that is they do not guarantee energy decay
(see also [13,48]). It is an interesting question whether stabilized methods that do have
this guarantee [12,16,18,22,29, 34, 38,43, 46] will behave better or worse in practice. The
well-known first order energy stable scheme [18] suffers from inaccuracy [13,45] but the
relative behaviour of higher order schemes is not clear. Much of the insight gained from
such studies on these simple models should translate to models with more complicated
physics, since most phase field models for materials science share the traits of localized
spatial behaviour and meta-stable dynamics.

2 Benchmark problems

We propose four benchmarks problems, I-IV, described below. Problems I-III have spe-
cific numerical results reported here. The benchmark for Problem IV is available on-
line [47].

2.1 I:2D Allen Cahn

The first benchmark is for the Allen-Cahn equation [4]:
ur=e*Au—W'(u), (2.1)

where W(u) = 1 (u2—1)2 and A is the Laplacian operator. It describes the evolution of
crystal grains of the same material during annealing. It can also be called a Ginzberg-
Landau equation. It is simpler numerically than CH dynamics since it has lower order
as a partial differential equation. We choose a simple 2D problem in a doubly periodic
domain [0,277]? with initial conditions

Ve =P -2
eVv2 '

and compute with €=0.2, 0.1, and 0.05. The benchmark is the time T at which the value at
the domain centre (77,77) changes from negative to positive. Except for the exponentially
small (in €) derivative discontinuities at the periodic boundaries, the dynamics approxi-
mate the sharp interface limit of curvature motion of a circle in a time scale of € 2. The

u(x,y,0) =tanh
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Figure 1: Benchmark I: Allen Cahn dynamics with e=0.1.

expectation from asymptotic analysis of the sharp interface limit is that
T=2/e*+0(1).

This is confirmed by the numerical solutions below. Some snapshots of the dynamics are
shown in Fig. 1. A video of the dynamics is also available [40].

2.2 II: 2D Cahn Hilliard seven circles

The second benchmark is for the 2D Cahn Hilliard dynamics (1.1), again in the doubly
periodic domain [0,277]2. Initial conditions are seven circles with centres and radii given
in Table 1 dressed with a smooth profile:

7
u(xy,0) =1+ Y F(/ (x =12+ (y—yi)2—12),
i=1
with
0, otherwise.

f(s)_{ 2e-/5", if 5 <0,

Table 1: Centres (x;,;) and radii 7; of the initial conditions for benchmark I1.

X Yi 7
/2 /2 7w/5
/4 | 3n/4 | 2t/15
/2 | 5n/4 | 2t/15

T /4 | /10
3t/2 | /4 /10

T T /4
3t/2 | 3m/2 /4

N OGN P~

Computations are done with € =0.1, 0.05, and 0.025. Only at the smallest value of €
can the dynamics be considered to be of the asymptotic character of the Mullins Sekerka
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t=0 t=2.5

Figure 2: Benchmark II: Allen Cahn dynamics with € =0.05.

limit. The benchmarks are the times T; and T, at which the value at the points (77/2,7/2)
and (377/2,371/2) change from positive to negative. Some snapshots of the dynamics are
shown in Fig. 2. A video of the dynamics is also available [42].

2.3 III: 1D Cahn Hilliard

This problem was originally proposed in [13]. It is set in the periodic domain x € [0,27]
with € =0.18 and initial data

u(x,0)=cos(2x)+ L peosr1/10), (2.2)
100

Over a short time, the solution tends to two intervals each of values close to =1 with
interfaces of width € between them. The second term on the right is a small perturbation
so that these intervals are not symmetric. At very large times, the intervals will slowly
(exponentially slow in €) evolve and merge [31, 32] as shown in Fig. 3. A video of the
dynamics is also available [39]. The final state with two transition layers is steady. The
benchmark is the time T at which the midpoint value u(7,t) changes from positive to
negative. This ripening event happens at a very fast time scale after the long, slow tran-
sient. It is the wide range in time scales of the dynamics that makes this a challenging
computation.
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1D Cahn-Hilliard Ripening Event

02r tincreasing

u(x,t)

Figure 3: This figure corresponds to the solution of the 1D Cahn-Hilliard equation (1.1) with initial conditions
(2.2) for €=0.18 near the benchmark time.

2.4 1V:2D Cahn Hilliard Energy Decay

This is a modified version of the benchmark proposed in [27]. When scaled, their formu-
lation of Cahn Hilliard is equivalent to (1.1) in the [0,277]> domain with

s
=—+2/5~0.0199.
€=100 /5~0.0199
Their proposed initial conditions have discontinuities at the periodic boundary condi-
tions which implies infinite initial energy, and the early dynamics are dominated by the
smoothing of these discontinuities. We replace their initial conditions with smooth, pe-
riodic ones that give roughly the same energy decay that will be the target of the bench-
mark:

u(x,y,0) =0.05 (cos(3x) cos(4y) + (cos(4x) cos(3y) ) +cos(x —5y) cos(2x —y) ).

Some snapshots of the dynamics are shown in Fig. 4 and a video of the dynamics is avail-
able [41]. The plot of In€ versus Int, where £ is the energy (1.2) and natural logarithms
are used, is shown in Fig. 5. Itis the L error to this function that is the benchmark. Specif-
ically, the differences D; and D, between the exact &, (t) and computed &(t) is given by
the benchmarks

D= [ 75 In&. (6)—In&.(6)|d6, 2.3)

Dy= [ 25 InE,(8) —In&.(6)|d6, (2.4)
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Figure 4: Benchmark IV: Cahn Hilliard energy decay.

e Logarithmic energy decay with time, Benchmark IV

In(t)

Figure 5: This figure shows the energy decay profile for the benchmark IV: 2D Cahn Hilliard problem.

where 6 =Int. Pointwise values of an accurate approximation of &,(t) can be found
online [47]. For the accuracy reported in our computations, approximating the integrals
in Dj » with Trapezoidal rule and 1,000 equally spaced points in the interval, using linear
interpolation of the computed £ values, is sufficient.
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These are proposed because often in applications the exact details of the computa-
tional results are not important, but the trend of the evolution of length scales is a key
feature [5]. The difference D; measures the difference over the full dynamics, while D,
covers only the first part of the dynamics and omits the fine details of the final transi-
tion to steady state. See Fig. 9 to see how these details dominate the errors from under-
resolved computations.

3 Methods

3.1 A: Spectral implicit, preconditioned conjugate gradient solver, variable
time steps

A numerical framework that could handle a wide variety of energy gradient flows was
developed in [13]. Spatial discretization is pseudo spectral [9] on a regular N x N grid
with grid spacing h =27t/N. Implicit time stepping is used, of first, second and third
order accuracy. The details of the time stepping are given for a generic scalar autonomous
equation 1 = f(u) below:

BE: U"'=U"+kf(U"t?), (3.1)
DIRK2: U*=U"+akf(U*), (3.2a)
U =ur+k(1—a) f(U*)+akf(U"T), (3.2b)

DIRK3: U*=U"+kf(U*), (3.3a)
Ut=U"+k(1—)f(U*)/2+vkf(UT), (3.3b)

U =U"+k (B f (U)+Bof (UT)) +ykf (U, (3.3c)

where k is the time step, U" approximates u(nk), Backward Euler (BE) is first order accu-
rate, and DIRK2 and DIRKS3 are second and third order Diagonally Implicit Runge Kutta
methods, respectively. The DIRK variants chosen here have good stability properties for
stiff problems [23] (they are L- and A-stable). The parameters are a =1—1/ V2, v is the
middle root of 6% —18y2+9y—1=0, B1 = —37?/2+47—1/4,and B, =37?/2—57+5/4.

The implicit time stepping problems are solved using Newton iterations, with a Pre-
conditioned Conjugate Gradient (PCG) solver for the linear system at each iteration as
described in [13]. The implicit problems are convex and have unique solutions when
k<1 (AC) and k < €* (CH) for BE as shown in [45]. Note that in that reference the equa-
tions are scaled differently than in the current work.

Adaptive time stepping is used. Time accuracy is controlled by specifying a local
error tolerance ¢. The local error for BE is estimated using a Forward Euler predictor as
done in [13]. Time steps are then adjusted to maintain a local error smaller than ¢ for
each time step. For the DIRK schemes, a predictor with higher order local accuracy V at
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time level n4-1 is used. It is constructed using the computed solutions at time levels n
and n+1 as follows:

V= (U a2y ),

where U"1/2 is the cubic Hermite interpolant

1 k
grti/2— - <un+un+1) 4= <f(un) _f(un—i-l)) )
2 8
Benchmark transition time estimates are determined by linear interpolation between
the two computed values on either side of the transition event.

3.2 B: Finite difference explicit, fixed time steps

This approach represents the simplest possible schemes to implement, based upon sec-
ond order five point finite difference stencils for spatial discretization and explicit time
stepping. The spatial discretization has been implemented using the Uintah Computa-
tional Framework, which brings support for both cell- and vertex-based discretizations
as well as mesh adaptivity and parallel execution [14]. For the computation of the pro-
posed benchmarks, however, mesh adaptivity has not been adopted and regular grids
with spacing h =27/ N have been used. The approximation of the biharmonic operator
has been performed by introducing an auxiliary variable v = Au and splitting equation
(1.1) which leads to the following system:

ur=—e*Av+AW'(u)),
v=Au.

An explicit Forward Euler (FE) time discretization has been adopted with fixed time
step which, using the same notation used for the previous implicit schemes, is detailed
as follows:

FE: U""l'=u"+kf(u"). (3.4)

This method is first order accurate and conditionally stable; as a consequence, for
some of the benchmark problems reported in the following, the level of spatial accuracy
required resulted in a maximum stable time step that is too small to be able to perform
runs of sufficient simulation time with this method.

As for the previous implementation, benchmark transition time estimates are deter-
mined by linear interpolation between the two computed values on either side of the
transition event.
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3.3 C: Finite difference implicit multi-grid, fixed time steps

We describe our Multigrid (MG) solvers for BDF2 finite difference schemes for the Cahn-
Hilliard equation. The results of two different implementations of the same approach,
which we label as Ca [43] and Cb [48], are shown in this work. The differences in imple-
mentation are outlined in Section 3.3.1 below.

Spatially, the finite difference method decompose the continuous domain into number
of uniform grids, and the standard 5-points stencil is employed that guarantees the 2nd
order accuracy. Temporally, the second order accurate BDF2 is employed. In particular
the method can be illustrated as

4 1
%kA(y”H) = gu”—gun_l, (3.5)
_W/(un+l)+€2Aun+l+‘un+l:O/ (3.6)

un—i—l _

where we split the 4th order CH model into two 2nd order PDEs by introducing a chem-
ical potential u=—e*Au+W’'(u). Here we set u® =u ! =u;,;;; at the very first time step.
Moreover, we employ a fixed time step k for the simulations. The second-order scheme
is then equivalent to the following: find u,y € Cper (simultaneously) whose components
satisfy

2 4 n 1 n—1
Ujj— gk Appij= g”i,j— gui,]- , (3.7)
ij— U+t €Ay =0, (3.8)

where we have dropped the time superscripts 7+1 on the unknowns. Here Cper denotes
the sets of cell-centred grid variables with periodic boundary conditions, and A;, denotes
the discrete difference operator (4 is the uniform grid spacing). See [43,48] for more de-
tails. The AC equations are similar, and so we omit the implementation details for brevity.
We use a nonlinear FAS multigrid method to solve the system (3.7)-(3.8) efficiently. This
involves defining operator and source terms, which we do as follows. Let U= (u, y)T.
Define the nonlinear operator N = (N1, N?)T as

2
Nl(fjl) (U) =Ujj— gk Ahl’lz,]/ (39)

Nz-(j) (U) Zpli,j—u?,j—kui,j—kezAhui,j, (3.10)

and the source S=(5(1),5@NT as

4.1
S (U) = Zull— qui ! (3.11)

s ) =o. (3.12)
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We will describe a somewhat standard nonlinear FAS multigrid scheme for solving the
vector equation N(U"*1) =S (U",U""!). The action of this operator is represented as

U =Smooth(A,U,N,S), (3.13)

where U is an approximate solution prior to smoothing, U is the smoothed approxima-
tion, and A is the number of smoothing sweeps. For smoothing we use a nonlinear Gauss-
Seidel method with Red-Black ordering. In what follows, to simplify the discussion, we
give the details of the relaxation using the simpler lexicographic ordering. Let ¢ be the in-
dex for the lexicographic Gauss-Seidel. (Note that the smoothing index / in the following
should not be confused with the time step index n.)

The Gauss-Seidel smoothing is as follows: for every (i,j), stepping lexicographically
from (1,1) to (N,N), find u”1 and y“l that solve

ult1 o 8t 0+1

Hij TRzt
_c) 1), 2Ty 041 41
=5i; (UnfUn >+W(Vz‘+1,j+‘u1+1]+141]+1+#17 1), (3.14)
4¢?
<_(”z€j>2+1_ﬁ> E—&-l_'_yf—&-l
s (u")— 2( Ll +ue+1> (3.15)
h? Ui, j iy T i1 ij—1 .

Note that we have linearized the cubic term using a local Picard-type approximation

and lagged the non-convex term (to avoid solvability conditions), but otherwise this is a

standard vector application of block Gauss-Seidel. We then use Cramer’s Rule to obtain
E—H and “l/l€+1.

Th1s is then followed by a standard V-cycle structure, which involves the restriction
operator that transfers fine grid functions to the coarse grid, and prolongation operator
that transfers coarse grid functions to the fine grid. The operators communicate informa-
tion from coarse levels to fine levels, and vice versa. Moreover, the tolerance is L, norm
residual of all the variables, and is required to be less than 1071 for all the computations.
Here we refer to Trottenberg et al. [37, Sec. 5.3] and our paper [43] for complete details of
scheme Ca and to [6,48] for details of scheme Cb.

3.3.1 Differences in the implementations Ca and Cb

Coarsest grid correction:

Ca: Fixed at 2 iterations for all examples.

Cb: Fixed iterations with a choice of 15 for benchmark I, 40 for the other 2D exam-
ples and 100 for the 1D CH problem.

Iterative solver:
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Ca: Full Gauss Seidel (GS).

Cb: Jacobi on partition edges and GS otherwise.
Stopping tolerance of solver at each time step (both use value 10~ '°):

Ca: Average mean squared residual (L2) over variables u and .

Cb: Maximum mean squared residual (L2) over variables u and .

4 Benchmark results

41 1:2D Allen Cahn

We present full details of our numerical tests for this problem, so the reader can see how
we judge our accuracy conclusions to the benchmarks.

4.1.1 I-A:2D Allen Cahn, spectral implicit PCG

Details of the convergence study for e=0.2 are shown in Table 2. The results are computed
with spatial resolution N=128 for e=0.2 and 0.01, and N =256 for €=0.05 and the results
do not change in the digits shown when the spatial resolution is doubled. In terms of the
benchmark value, there is clear asymptotic convergence in ¢ for all three schemes and a
clear conclusion

T=48.17+0.01 for €=0.2

can be drawn from the computations. The methods have local truncation error O (kP*1!)
with p=1,2,3 for BE, DIRK2, and DIRK3 respectively. Thus, we expect to have a number
of time steps M that behaves like

M=0("V0r),

and since v/10=3.16, ¥/10~2.15, and v/10~1.78 this behaviour is clearly seen in the data,
validating the adaptive time stepping strategy. There is a large increase in computational

Table 2: I-A results for e=0.2, with o the local error tolerance, M the number of time steps (with the ratio to
the value above), CG the number of conjugate gradient iterations, and T the computed approximation of the
transition time.

BE DIRK2 DIRK3
o M (ratio) CG T M (ratio) CG T M (ratio) CG T
104 694 3,103 | 48.103 171 1,995 | 48.287 136 2,883 | 48.365

1075 || 2,132 (3.07) 7,515 | 48.143 || 331(1.94) | 2,929 | 48.217 230 (1.69) | 3,363 | 48.269
107 || 6,701 (3.14) | 18,723 | 48.155 || 680 (2.05) | 4,951 | 48.1864 | 408 (1.71) | 5,540 | 48.220
1077 || 21,164 (3.16) | 42,322 | 48.159 || 1,441 (2.12) | 8,232 | 48.173 734 (1.80) | 8,240 | 48.194
1078 || 70,098 (3.31) | 136,009 | 48.161 || 3,089 (2.14) | 17,243 | 48.167 || 1,330 (1.81) | 11,510 | 48.179




960 J. M. Church et al. / Commun. Comput. Phys., 26 (2019), pp. 947-972

- AC Benchmark ¢=0.1, time steps k i AC Benchmark ¢=0.1, Energy

2 1
x
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Figure 6: Time steps k (chosen adaptively with BE) and Energy E for the |I-A benchmark computation for e=0.1
and local error tolerance o =104

efficiency moving from BE to DIRK2, and a much less significant increase from DIRK2 to
DIRK3. This is also seen in the smaller € computations. It is also seen that the number
of CG iterations per time step goes down as ¢ (and so the time step k) decreases. This is
consistent with the estimates on the condition number of the preconditioner in [45].

The same careful computational study leads to

T=197.72+0.01 for e=0.1,
T=797.26+0.01 for e=0.05.

For completeness, graphs of the time step size k(¢) and the energy E(t) for the e =0.1,
0 =10"* calculation are shown in Fig. 6.

4.1.2 I-B: 2D Allen Cahn, finite difference explicit

The number N of mesh cells used to spatially discretize the computational domain has
been chosen to make the domain center coincide with a computational point: either a
cell center or a grid node, depending on the chosen representation (i.e. cell-centered or
vertex-based finite differences). For each choice of N, increasingly small time steps have
been considered and the corresponding benchmark time computed. From these values
it has also been possible to estimate the order of convergence in space and time of this
method. Results for € =0.2 are reported in Table 3.

It is possible to extrapolate the results in Table 3 in mesh size based upon the last two
grids. For example, the vertex-based scheme has a difference of 48.1973—48.1702=0.0271.
If this is quartered for each subsequent grid level it gives the sequence 0.0068, 0.0017,
0.0004, 0.0001 which yields the extrapolated value of 48.1612. A similar conclusion holds
for the cell-centered case.

The equivalent convergence study for smaller choices of € gives the following results:

T — 197.71 for €¢=0.1,
T — 79717 for e=0.05.
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Table 3: I-B results for e=0.2, with k the time step size N the number of grid cells, O(k) the estimated order of
convergence in time, O(1/N) the estimated order of convergence in space, and T, the computed approximation
of the transition time.

cell centered vertex based
k N T O(k) | O(1/N) || N T O(k) | O(1/N)

31072 || 63 | 48.8126 64 | 48.7928

91073 || 63 | 48.7867 64 | 48.7670

31073 || 63 | 487793 | 1.17 64 | 48.759 | 1.16

910~ || 63 | 48.7767 | 0.85 64 | 48.7570 | 0.86

3107% || 63 | 48.7760 | 1.17 64 | 48.7563 | 1.17

91075 || 63 | 48.7757 | 0.86 64 | 48.7560 | 0.86

9103 || 127 | 48.3194 128 | 48.3171

31073 || 127 | 48.3122 128 | 48.3098

9104 || 127 | 48.309 | 0.86 128 | 48.3073 | 0.86

31074 || 127 | 48.3089 | 1.16 128 | 48.3066 | 1.16

91075 || 127 | 48.3086 | 0.86 128 | 48.3063 | 0.86

3103 || 255 | 48.2011 2.09 256 | 48.2008 2.06
9104 || 255 | 48.1985 2.09 256 | 48.1982 2.06
31074 || 255 | 48.1978 | 1.17 2.09 256 | 48.1975 | 1.17 2.06
91075 || 255 | 48.1976 | 0.85 2.09 256 | 48.1973 | 0.86 2.06
9104 || 511 | 48.1712 2.03 512 | 48.1712 2.01
3104 || 511 | 48.1705 2.03 512 | 48.1705 2.01
91075 || 511 | 48.1702 | 0.86 2.03 512 | 48.1702 | 0.86 2.01

4.1.3 I-C:2D Allen Cahn, finite difference implicit MG
Implementation Ca

We compute the proposed Allen-Cahn system with different values of € (=0.2,0.1,0.05).
For each €, we start from a relatively coarse uniform grid, for example 128 x 128, and a
large time step, k=10"2. For each grid, we take 1/10 of the time step k up to 10~#, until
we can obtain a convergent result of T;. Then we move to the next refined gird to obtain
the corresponding convergent T;. Here we show our results in Table 4.

Table 4: Convergence results for AC model with different €.

Grid €=02 €=0.1 €=0.05
128 x 128 || 48.3100 | 200.1336 | 843.2275
256 x 256 || 48.2005 | 198.3112 | 806.6749
512x512 || 48.1710 | 197.8559 | 799.6715

From the results presented in Table 4, we observe the overall 2nd order convergence
rate. Therefore we deduce the asymptotic convergence of the specified stopping criteria
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T; is towards

T, =48.161 for €=0.2,
T,=197.710 for e=0.1,
T,=797.171 for e€=0.05.

Implementation Cb

We solve the proposed Allen-Cahn model with three different €, namely 0.2, 0.1 and 0.05
respectively. For each value of €, we start with a grid of 64 x 64 and a time step size k=0.1
if possible. We halve k each time towards 0.003125 (if needed) to see the convergence
in T. Then we refine the grid towards 512 x 512 and halving k on every different grid to
obtain the convergence results. We illustrate these computational results in Table 5.

Table 5: Convergence results for the Allen-Cahn model, we report the converged T for each grid after repeatedly
halving the time step k.

Grid €=021| €=0.1 | €=0.05
64x64 | 48.725 | 208.838 -
128 x128 | 48.3 | 200.138 | 843.231
256 x256 | 48.2 198.3 | 807.163
512x 512 | 48.175 | 197.856 | 799.675

From the computational results presented in Table 5, we can confirm the asymptotic
convergence to the specified stopping criteria (i.e. T) with € =0.2 is 48.17. Our com-
putational results for € =0.1 and € = 0.05 may be extrapolated based on the observed
second-order convergence (via using second-order schemes in both spatial and temporal
domains), to deduce the convergence of T when e =0.1 towards 197.71 and when € =0.05
towards 797.18.

4.2 1II: 2D Cahn Hilliard seven circles
4.2.1 II-A: 2D Cahn Hilliard seven circles, spectral implicit PCG

Following the same strategy of refinement in temporal and spatial approximation with
the adaptive time stepping as done in Section 4.1.1, the benchmark estimates are shown in
Table 6. Because of the limited increase in accuracy going from DIRK2 to DIRK3 observed
in Section 4.1.1, only BE and DIRK2 time stepping were used for this benchmark.

Table 6: Estimates for benchmark 11 (CH seven circles) using the time adaptive spectral method.

€ T1 T

0.1 6.34 £0.01 | 26.01 £0.01
0.05 | 38.13+£0.01 | 94.98 4 0.01
0.025 | 107.4 = 0.01 | 233.20 + 0.01
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Figure 7: Time steps (chosen adaptively for BE) and energy for the II-A benchmark computation for € =0.05
and local error tolerance o=10"%.

For completeness, graphs of the time step size k(t) and the energy E(t) for the e=0.05,
0 =10"* calculation are shown in Fig. 7. The number of time steps and CG iterations for
o =10"* are listed in Table 7. Note that for this modest accuracy requirement, DIRK2
becomes less efficient than BE as e — 0. For this reason, we only use BE for the benchmark
IV-A computation in Section 4.4.1. This unexpected behaviour in higher order methods
will be investigated by the authors in future work.

Table 7: I-A computational details for 0 =10"%, with M the number of time steps and CG the number of
conjugate gradient iterations.

BE DIRK2
€ M CG M CG
0.1 2,040 | 45,496 850 28,227
0.05 || 4,835 | 145,959 || 3,722 | 133,828
0.025 || 9,354 | 403,445 || 12,985 | 522,096

4.2.2 II-B: 2D Cahn Hilliard seven circles, finite difference explicit

The same criterion for choosing both spatial and temporal discretization steps has been
used. For this application, however, the stability constraint associated with the explicit
time step becomes a practical barrier as N increases, which means that even for e =0.1
we have only just started to approach the asymptotic regime that allows us to extrapolate
values for T; and T, in the limit as N — co. Smaller values of € require finer spatial
discretization steps which correspond to even more restrictive choices of timestep and
are therefore not reported.

Results are shown in Table 8 for e =0.1. Extrapolation based on second order conver-
gence yields improved estimates of T; ~6.34 and T>~26.01 (for the vertex based scheme).
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Table 8: 1I-B. Computed approximations of the transition times Ty, T, for e=0.1.

cell centered vertex based

k N[ »n | D N| »n | D
104 62 || 6.6699 | 25.6796 64 || 6.6428 | 26.6155
10-° 62 || 6.6697 | 26.6794 64 || 6.6427 | 26.6153
10-° 62 || 6.6697 | 26.6794 64 || 6.6427 | 26.6153
10-° 126 || 6.3957 | 26.2164 ||| 128 || 6.3964 | 26.1783
10 126 || 6.3957 | 26.2164 ||| 128 || 6.3964 | 26.1782

| 107° ||| 254 || 63509 | 26.0519 || 256 || 6.3508 | 26.0509 ||

4.2.3 II-C: 2D Cahn Hilliard seven circles, finite difference implicit MG
Implementation Ca

We employ the same strategy to solve this 2D Cahn Hilliard model with an initial condi-
tion that consists of seven circles. Three values of € are used here, namely 0.1, 0.05 and
0.025. The spatial refinement starts from a grid of 128 x 128 and a time step size k = 0.0016,
if possible. We halve k each time towards 0.0001 and refine the grid towards 512x512.
We illustrate our convergence results in Table 9.

Table 9: Convergence results for the 2D Cahn Hilliard Seven Circles model, we report the converged T1 and
T2 for each grid after repeatedly halving the time step k.

Grid €e=0.1 €=0.05 €=0.025

T1 T2 T1 T2 T1 T2
128 x128 || 6.3829 | 26.1766 | 39.1786 | 96.4759 - -
256 x256 || 6.3502 | 26.0503 | 38.2832 | 95.3785 | 111.763 | 251.3453
512x512 || 6.3412 | 26.0194 | 38.1630 | 95.0755 | 107.8016 | 233.4128

Implementation Cb

We employ the same strategy to solve this 2D Cahn Hilliard model with an initial con-
dition that consists of seven circles. There are three choices of €, namely 0.1, 0.05 and
0.025. The spatial refinement starts from a grid of 64 x 64 and a time step size k=10.01, if
possible. We halve k each time towards 0.000625 and refine the grid towards 512 x512.
We illustrate our convergence results in Table 10.

4.3 III: 1D Cahn-Hilliard
4.3.1 III-A: 1D Cahn-Hilliard, spectral implicit PCG

For this problem, adaptive time stepping allows the solver to follow the dynamics, as
shown in Fig. 8. DIRK2 and DIRK3 provide a considerable accuracy benefit.
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Table 10: Convergence results for the 2D Cahn Hilliard Seven Circles model, we report the converged Ty and

T, for each grid after repeatedly halving the time step k.

€e=0.1 €=0.05 €=0.025

Grid Tl Tz Tl T2 Tl Tz

64 x 64 6.43 | 27.02 - - - -

128 %128 | 6.39 | 26.21 | 39.18 | 96.73 - -

256 %256 | 6.35 | 26.07 | 38.29 | 95.51 | 111.764 | 251.666

512x512 | 6.34 | 26.03 | 38.16 | 95.14 | 107.802 | 233.920

- CH Benchmark lll, ¢=0.18, Time steps k it CH Benchmark I, ¢=0.18, Energy
0.12
150 0.1
0.1
~00 0.09
0.08
50 0.07
0.06

0 0.05 :

0 2000 4000Time {3000 8000 10000 0 2000 400%_ime 16000 8000 10000

Figure 8: Time steps (chosen adaptively) and energy for the IlI-A benchmark computation for € =0.18 using
the Spectral Solver with Backward Euler time stepping, local error tolerance c=10"*%.

Estimates for the benchmark time from this computational method are T =8318.6+
0.1. We include computed transition times for smaller € values, although these are not
verified by the other computational methods:

€=0.16: T=34317.7£0.1,
€=0.15: T=82217.4+£0.1.

These results are obtained with DIRK3 time stepping. The exponentially slow nature of
the dynamics can be seen from these results.

4.3.2 III-B: 1D Cahn Hilliard, finite difference explicit

For this application the spatial resolution required to describe accurately the evolution of
the field u imposes a time step stability constraint that is simply too restrictive to perform
accurate simulation using this explicit scheme. Only simulation with N =63 and N =64
could be performed with the cell-centered and vertex-based schemes respectively and
their results are reported in Table 11.
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Table 11: 11I-B. Computed approximations of the transition time Tj.

k cell centered (N =63) | vertex based (N =64)
31074 7347.3036 7282.6372
910> 7347.2837 7282.6174
3107° 7347.2779 7282.6117

4.3.3 III-C: 1D Cahn-Hilliard, finite difference implicit MG
Implementation Ca

For this problem, we start with a grid of 128 and a time step size k =0.01. We refine
both towards 8192 and k=0.0001, respectively. We report our computational results from
setting € =0.18 in Table 12. Note that extrapolation based on second order convergence
gives T ~8320.48.

Table 12: Convergence results for the 1D Cahn Hilliard, we report the converged T for each grid after repeatedly
halving the time step k.

Grid T
128 | 8067.9822
256 | 8254.7649
512 | 8302.8837
1024 | 8315.0039
2048 | 8319.0439
4096 | 8320.1439
8192 | 8320.3964

Implementation Cb

For this problem, we start with a grid of 256 and a time step size k=0.1. We refine both
towards 4096 and k=0.0015625, respectively. We report our computational results from
setting € =0.18 in Table 13. Note that extrapolation based on second order convergence
gives T ~8320.47.

Table 13: Convergence results for the 1D Cahn Hilliard, we report the converged T for each grid after repeatedly
halving the time step k.

Grid T
256 | 8254.2
512 | 8302.3

1025 | 8314.42
2048 | 8317.46
4096 | 8318.22
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4.4 1V:2D Cahn-Hilliard energy decay

4.4.1 IV-A:2D Cahn-Hilliard energy decay, spectral implicit PCG

It was found that N =384 was sufficient to give values of the logarithmic energy integrals
that define D , (2.3) and (2.4) with spatial errors less than 10~* for a range of local error
tolerance values ¢. The convergence in the energy profile as the local time step tolerance o
is refined is shown in Table 14 and Fig. 9. The most refined energy profile for r=2.5x10"°
is the profile submitted as the most accurate benchmark at [47]. From the convergence
analysis shown in Table 14 there is evidence that the submitted profile is accurate with
D1,2 <4. 1073.

Table 14: Convergence of the logarithmic energy profile for benchmark IV in Dy defined in (2.3) with local time
step error tolerance ¢ for the spectral solver. The values of D; shown are to the computation with ¢ from the
line above.

g D]
1074
5.107° 0.44
2-107° 1.5
107> 0.61
5.107¢ | 0.023
2.5-107¢ | 0.0039

- Convergence of Energy Decay, Benchmark IV-A

—oc=1e-4
—= 505

o=2e5
— = 1e-5

In E(t)

Figure 9: The numerical convergence of the energy decay profile for the benchmark IV: 2D Cahn Hilliard
problem, with the spectral solver with local time step error tolerance . Smaller values of ¢ give profiles that
are not visually different.
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4.4.2 1V-B: 2D Cahn Hilliard energy decay, finite difference explicit

For this application simulations have been performed for N =96, 192, 384 using cell-
centered spatial discretizations. One choice of timestep k to ensure numerically stability
has been used for each grid size. It was found that only N =384 yielded spatial accuracy
to ensure that the solution evolves to a reasonable approximation of the correct energy
profile. The convergence in the Energy profile as the grid and time step are refined is
shown in Table 15.

Table 15: Convergence of the logarithmic Energy profile for benchmark IV-B in Dy (2.3) and D, (2.4) for the
finite difference solver.

k N Ds D,
42-107% | 96 | 1.2-10' | 2.7-10°
54-107° ] 192 | 1.1-10° | 5.1-.10°!
48-107° | 384 | 6.0-1071 | 3.2.107!

4.4.3 IV-C:2D Cahn-Hilliard energy decay, finite difference implicit MG
Implementation Ca

The differences between our numerical results &, obtained on different meshes (128 x 128,
256 x 256 and 512 x 512) and the benchmark energy profile, £, are shown in Table 16.

Table 16: Convergence results for the energy decay of 2D Cahn Hilliard problem, we report the converged energy
profile for each grid after repeatedly halving the time step k.

Grid Dy D,

128 | 1.0221x10' | 1.7910x10°
256 | 9.1202x10~! | 1.4479x 1071
512 | 8.5579x10~! | 1.3803 x 10!

5 Summary of benchmark results

Our benchmark numerical results are summarized in Table 17, with confidence on the
values based on the agreement we achieved between the four schemes.

6 Discussion

We have provided computational benchmarks for Allen-Cahn and Cahn-Hilliard dynam-
ics in periodic geometries, carefully validated using different spatial and temporal dis-
cretizations. We believe these benchmarks, and also the implementations we used for the
results that are available online [47], will be useful in the evaluation of current methods
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Table 17: Summary of benchmark results. The “all” column lists the result on which all four schemes agree up
to the indicated tolerance and “two” on which at least two schemes agree.

Benchmark | value all two
I,e=02 T 48.16 +£0.01 | 48.16 £ 0.01
I,e=0.1 T 197.71 £ 0.01 | 197.71 £ 0.01
I,e=0.05 T 797.24+0.1 | 797.17 +£0.01
Te=0.1 Ty 6.34 + 0.01 6.34 + 0.01
IIe=0.1 T 26.02 £ 0.01 | 26.02 £ 0.01
IIe=0.05 Ty 38.15 4 0.02
IIe=0.05 T, 95.1+0.2

IIe=0.025 Ty 107 + 1

II€=0.025 T 233+ 1

111 T 8000 =+ 1000 8319 £2
v Dy +0.9 + 0.6
v Dy +0.32 +0.14

and the development of new ones. Future benchmarks in the field could include higher
order equations [20,24,36] and more complicated energy wells such as Flory-Huggins.

The accurate benchmark values can be used to investigate the properties of other time
stepping schemes. They can also play a role in the investigation of the computational ad-
vantages of adaptive time stepping and adaptive spatial grids. There is a large applica-
tion community that uses these models, or variants, in their computational studies, and
a large community of theoreticians interested in designing and proving convergence of
new methods. Having the fixed target presented in the current work will help direct the
research towards more efficient schemes.
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