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1. Introduction

1.1. Preface

A β-ensemble (or continuous log-gas) is a probability distribution Pc
N on N -tuples of 

ordered real numbers x1 < x2 < · · · < xN with density proportional to

∏
1≤i<j≤N

(xj − xi)β ·
N∏
i=1

exp(−NV (xi)), (1.1)

where V (x) is a continuous function called potential. The study of continuous log-gases 
for general potentials is a rich subject that is of special interest to random matrix the-
ory, see e.g. [1,32,53,60]. For example, when V (x) = x2 and β = 1, 2, 4 distribution (1.1)
is the joint density of the eigenvalues of random matrices from the Gaussian Orthogo-
nal/Unitary/Symplectic ensembles [1].

Recently, [15] initiated a detailed study of a particular discrete version of (1.1) called 
discrete β-ensembles or discrete log-gases. These are probability distributions depending 
on a parameter θ = β/2 > 0 and a positive real-valued function w(x; N) of the form

P
d
N (λ1, . . . , λN ) ∝

∏
1≤i<j≤N

Hθ(λi, λj)
N∏
i=1

w(λi;N), with

Hθ(λi, λj) = Γ(λj − λi + 1)Γ(λj − λi + θ)
Γ(λj − λi)Γ(λj − λi + 1 − θ) ,

(1.2)

where λi = xi + θ(i − 1) and x1 ≤ x2 ≤ · · · ≤ xN are integers. The interest in these 
discrete models comes from integrable probability; specifically, due to their connection 
to uniform random tilings, (z, w)-measures, Jack measures, etc.

In the present paper we consider the following two-parameter generalization of discrete 
β-ensembles

PN (�1, . . . , �N ) ∝
∏

1≤i<j≤N

Hq,v
θ (�i, �j) ·

N∏
i=1

w(�i;N), with

Hq,v
θ (�i, �j)

= q−2θλj
Γq(λj − λi + 1)Γq(λj − λi + θ)
Γq(λj − λi)Γq(λj − λi + 1 − θ)

Γq(λj + λi + v + 1)Γq(λj + λi + v + θ)
Γq(λj + λi + v)Γq(λj + λi + v + 1 − θ) ,

(1.3)

where �i = q−λi +u ·qλi , u = qv and λi are as in the definition of the discrete β-ensembles, 
while q ∈ (0, 1) and v ∈ (1, ∞). The measures (1.2) are recovered from (1.3) by setting 
u → 0 and q → 1. We interpret the random vector (�1, . . . , �N ) as locations of N
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particles. If θ = 1 then all particles �i live on the same space Z := {q−x + u · qx : x ∈ Z}, 
and we refer to the set Z as a quadratic lattice in the spirit of [58] (note that in this 
case Hq,v

θ (�i, �j) = (�i − �j)2). For general θ we call the class of measures (1.3) discrete 
β-ensembles on shifted quadratic lattices.

Our study is motivated by random matrix theory on one side, and by integrable 
models on the other. We first investigate PN for a general choice of weights w in the 
multu-cut and fixed filling fractions regime. We prove that these systems obey a law of 
large numbers under a certain scaling as N goes to infinity and also show that their 
global fluctuations are asymptotically Gaussian with a universal covariance. The same 
phenomenon is present in the case of discrete and continuous log-gases. Subsequently, 
we apply our general results to a class of tiling models that was introduced in [16] and 
obtain explicit formulas for their limit shape and global fluctuations. The tiling model 
we investigate corresponds to a special case of (1.3) when θ = 1, and we remark that for 
general θ > 0 the interaction term Hq,v

θ (�i, �j) can be linked to Macdonald–Koorwinder 
polynomials [49] similarly to how Hθ(λi, λj) in (1.2) is linked to Jack symmetric polyno-
mials, see also Remark 2.1.2.

1.1.1. Log-gases
The probability measures from (1.1) and (1.2) have been extensively studied in the 

past, see [1,32,53,60] for Pc
N and [13,25,31,39,40] for Pd

N among many others.
Under weak assumptions on the potential V (x) or weight function w(x; N), continuous 

and discrete log-gases exhibit a law of large numbers as N → ∞. Specifically, if one forms 
the (random) empirical measures

μN = 1
N

N∑
i=1

δ (xi/N) , where (x1, . . . , xN ) is P
c,d
N -distributed,

then the measures μN converge weakly in probability to a deterministic measure μ, called 
the equilibrium measure. In the continuous case with V (x) = x2 this statement goes 
back to the work of Wigner [70], and is called Wigner’s semicircle law. The analogous 
statements for generic V (x) were proved much later, see [6,20,38]. In discrete settings 
similar law of large numbers type results were obtained in [31,39,40]. In both cases 
the equilibrium measure μ is the solution to a suitable variational problem and one 
establishes the convergence of μN to μ by proving large deviation estimates. In essence, 
μ maximizes the density (1.1) or (1.2) and the large deviation estimates show that μN

concentrate around that maximum.
The next order asymptotics asks about the fluctuations of μ − μN as N → ∞. One 

natural way to analyze this difference is to form the pairings with smooth test functions 
f and consider the asymptotic behavior of the random variables

N

⎛
⎝ˆ f(x)μN (x) −

ˆ
f(x)μ(x)

⎞
⎠ , as N → ∞. (1.4)
R R
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There is an efficient method, which establishes that the limits of (1.4) are Gaussian in 
a very general setup and its key ingredient is the so-called loop equations (also known 
as Schwinger–Dyson equations), see [17,18,38,50,64] and references therein. These are 
functional equations for certain observables of the log-gases (1.1) that are related to 
the Stieltjes transforms of the empirical measure μN and their cumulants. Since their 
introduction loop equations have become a powerful tool for studying not only global 
fluctuations but also local universality for random matrices [5,19].

In [15] the authors presented an analogue of the above method for discrete 
β-ensembles. They introduced discrete loop equations and used them to establish that 
the limits of (1.4) for the measures in 1.2) are Gaussian with a covariance that is the 
same as in the continuous case for a large class potentials. These discrete loop equa-
tions originate in the work of Nekrasov [57] and are also called Nekrasov’s equations. 
The central limit theorem for (1.2) had been previously known for various very specific 
integrable choices of the potential, see e.g. [13,21,62]. The main contribution of [15] is 
that it establishes general conditions on the potential V (x) that lead to the asymptotic 
Gaussianity of (1.4). Similarly to the continuous case, discrete loop equations have be-
come a valuable tool to study not only global fluctuations [15] but also edge universality 
for discrete β-ensembles [33].

In the present paper we establish the universality type results for the global fluctu-
ations of discrete β-ensembles on shifted quadratic lattices (1.3). To obtain the law of 
large numbers we use a similar combination of large deviation estimates and variational 
problems that proved to be successful for Pc/d

N . In order to study the next order fluctua-
tions we introduce a new version of discrete loop equations for a quadratic lattice, which 
we also call Nekrasov’s equations, and view the latter as one of the main contributions 
of this paper. We remark that it is hard to guess that there even exists an analogue of 
the Nekrasov’s equation in this setting, since it is a very subtle equation which reflects 
some specific algebraic structure of the system. Equipped with these new equations, we 
establish global central limit theorems for log-gases on a quadratic lattice for a multi-cut 
general potential by adapting the arguments in [15].

Our main motivation for considering the class of measures PN comes from an inter-
esting tiling model introduced in [16] which we describe next.

1.1.2. The q-Racah tiling model
Consider a hexagon drawn on a regular triangular lattice, whose side lengths are given 

by integers a, b, c ≥ 1, see Fig. 1. We are interested in random tilings of such a hexagon 
by rhombi, also called lozenges (these are obtained by gluing two neighboring triangles 
together). There are three types of rhombi that arise in such a way, and they are all 
colored differently in Fig. 1. This model also has a natural 3D interpretation as a boxed 
plane partition or, equivalently, a random stepped surface formed by a stack of boxes. 
One can assign to every lattice vertex (i, j) inside the hexagon an integer h(i, j), which 
reflects the height of the 3D stack at that point, see an example in Fig. 1. One typically 
calls h the height function and formulates results in terms of it.
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Fig. 1. Tiling of a hexagon and the corresponding height function.

Fig. 2. A simulation for a = 80, b = 80, c = 80. On the left picture the parameters are κ2 = −1, q = 0.8, 
and on the right picture the parameters are κ2 = −1, q = 0.98.

The probability measures on the set of tilings that we consider were introduced in 
[16] and form a 2-parameter generalization of the uniform distribution. Denoting the two 
parameters by q and κ, one defines the weight of a tiling as the product of simple factors 
(κqj−(c+1)/2 − q−j+(c+1)/2/κ) over all horizontal rhombi ♦ , where j is the coordinate 
of the topmost point of the rhombus. The dependence of the factors on the location of 
the lozenge makes the model inhomogeneous. Note that the uniform measure on tilings 
is recovered if one sends κ → 0 and q → 1. Other interesting cases include κ → 0, then 
the weight becomes proportional to q−V (here V refers to the number of boxes in the 
3D interpretation). In addition, the same way the Hahn orthogonal polynomial ensemble 
arises in the analysis of uniform lozenge tilings, our measures are related to the q-Racah 
orthogonal polynomials. In this sense, the model goes all the way up to the top of the 
Askey scheme [46], and we call it the q-Racah tiling model.

We believe that the q-Racah tiling model is a source of rich and interesting structures 
that are worth investigating. The presence of two parameters allows one to consider 
various limit regimes that lead to quite different behavior of the system as can be seen in 
Fig. 2. One of the central goals of this paper is to understand the asymptotic behavior 
of the height function of the q-Racah tiling model when the sides of the hexagon become 
large, and simultaneously q → 1, κ → κ0, where κ0 ∈ (0, 1) is fixed, see Fig. 3 for a 
sample tiling in this case.
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Fig. 3. A random tiling of a hexagon of side lengths a = 50, b = 60, c = 40 for κ2 = 0.05 and q = 0.99.

It turns out that one can relate one-dimensional sections of the q-Racah tiling model 
to measures from (1.3) with θ = 1. We will elaborate on this point later in Sections 7
and 9.2, but the identification goes as follows. One places a particle in the center of 
each horizontal lozenge 

♦ and takes a vertical section of the model; the resulting “holes” 
(positions, where there are no particles) form an N -point process. Under a suitable 
change of variables this point process has the same distribution as (1.3) for a set of 
parameters and weight w that depend on the location of the vertical slice. Using this 
identification, our general results for log-gases on (shifted) quadratic lattices imply a law 
of large numbers and central limit theorem for the height function h of the tiling model.

Informally, our law of large numbers states that there exists deterministic limit shape 
ĥ and the random height functions h concentrate near it with high probability as the 
parameters of the model scale to their critical values. An important feature of our model 
is that the limit shape develops frozen facets where the height function is linear. In 
addition, the frozen facets are interpolated by a connected disordered liquid region. In 
terms of the tiling a frozen facet corresponds to a region where asymptotically only one 
type of lozenge is present and in the liquid region one sees lozenges of all three types, 
see Fig. 3.

Similar concentration phenomena for the random height function in the case of the 
uniform measure and the measure proportional to q−V are well-understood. In particular, 
in these cases convergence of the random height function to a deterministic function for 
a large class of domains was established in [24,26,27,37,44,61]. The limit shape is given 
by the unique solution of a suitable variational problem. For the q-Racah tiling model we 
compute the limit shape explicitly introducing a method, which we believe to be novel. 
This method uses discrete Riemann–Hilbert problems.

The next order asymptotics we obtain show that the one-dimensional fluctuations 
of the height function around the limit shape are Gaussian with an explicit covariance 
kernel. An important additional contribution of our work is the introduction of a (rather 
nontrivial) complex structure Ω on the liquid region. The significance of this map is that 
the fluctuations of h on fixed vertical slices are asymptotically described by the one-
dimensional sections of the pullback of the Gaussian free field (GFF for short) on the 
upper half-plane H under the map Ω – see Theorem 7.2.4 for the precise statement. This 
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result admits a natural two-dimensional generalization, which we formulate as Conjec-
ture 8.4.1 in the main text. At this time our methods only provide access to the global 
fluctuations at fixed vertical sections of the model, and so we cannot establish the full 
2D result.

The GFF is believed to be a universal scaling limit for various models of random sur-
faces in R3. The appearance of the GFF in tiling models with no frozen zones dates back 
to [41,42] and the fluctuations of the liquid region for a random tiling model containing 
both frozen facets and a liquid region were first studied in [13]. In case of the uniform 
measure on domino and lozenge tilings the convergence to the GFF has been established 
for a wide class of domains in [22,23,62], but there are no results in this direction for more 
general measures. One possible reason that explains why the GFF was not recognized in 
the q-Racah tiling model is the rather non-trivial change of coordinates that makes the 
correct covariance structure appear (see Section 8), and already in the q−V (or κ = 0) 
case our result is new. We remark that there is a natural complex coordinate on the 
liquid region defined by the so-called complex slope, which in the uniform tiling case is 
known to be intimately related to the complex structure that gives rise to the GFF. For 
the q-Racah tiling model an expression for the complex slope was obtained in [16] and 
we connect it to our complex structure Ω through an explicit functional dependence, see 
Remark 8.2.2.

1.2. Main results

We present here our main results for the log-gas on a quadratic lattice and forego 
stating our results on the q-Racah tiling model until the main text – Section 7.2 – since 
it requires the introduction of more notation. Moreover, to simplify the discussion in the 
introduction we will formulate our results for the one-cut case and θ = 1. The general 
statement of the law of large numbers is given in Theorem 3.1.1 and the general statement 
of the central limit theorem is given in Theorem 5.2.7.

Let us first explain our regularity assumptions on the parameters and the weight 
function. We assume we are given parameters q ∈ (0, 1), M ≥ 1 and u ∈ [0, 1). In 
addition, let qN ∈ (0, 1), MN ∈ N and uN ∈ [0, 1) be sequences of parameters such that

MN ≥ N − 1 and max
(
N2
∣∣∣qN − q1/N

∣∣∣ , |MN −NM| , N |uN − u|
)
≤ A1,

for some A1 > 0. (1.5)

We assume that w(x; N) has the form

w(x;N) = exp (−NVN (x)) ,

for a function VN that is continuous in the intervals [1 + uN , q−MN

N + uNqMN

N ] and such 
that
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|VN (s) − V (s)| ≤ A2 ·N−1 log(N), where V is continuous and |V (s)| ≤ A3, (1.6)

for some positive constants A2, A3 > 0. We also require that V (s) is differentiable and 
for some A4 > 0 there is a bound

|V ′(s)| ≤ A4 ·
[
1 + |log |s− 1 − u|| + | log |s− q−M − uqM||

]
, for s ∈

[
1 + u, q−M + uqM

]
.

(1.7)

We let PN be as in (1.3) for q = qN , qv = u = uN , M = MN , N and weight function 
w(·) = w(·; N).

Our first result is the law of large numbers for the empirical measures μN , defined by

μN = 1
N

N∑
i=1

δ (�i) , where (�1, . . . , �N ) is PN -distributed.

Theorem 1.2.1. There is a deterministic, compactly supported and absolutely continu-
ous probability measure μ(x)dx1 such that μN concentrate (in probability) near μ. More 
precisely, for each Lipschitz function f(x) defined in a real neighborhood of the interval 
[1 + u, q−M + uqM] and each ε > 0 the random variables

N1/2−ε

∣∣∣∣∣∣
ˆ

R

f(x)μN (dx) −
ˆ

R

f(x)μ(x)dx

∣∣∣∣∣∣ (1.8)

converge to 0 in probability and in the sense of moments.

Remark 1.2.2. Theorem 1.2.1 is a special case of Theorem 3.1.1, where we extend the 
statement to the multi-cut regime with fixed filling fractions and for general θ > 0.

To obtain our central limit theorem we need to impose certain analyticity conditions 
on the weight w(x; N) that we now detail. We assume that we have an open set M ⊂
C \ {0, ±√

u}, such that for large N

([
q1
N , q−MN−1

N

]
∪
[
uNqMN+1

N , uNq−1
N

])
⊂ M.

In addition, we require that for all sufficiently large N there exist analytic functions 
Φ+

N , Φ−
N on M such that for z ∈ M and σN (z) = z + uNz−1 the following holds

w(σN (z);N)
w(σN (qNz);N) = qN (z2 − uN )Φ+

N (z)
(q2

Nz2 − uN )Φ−
N (z)

. (1.9)

Moreover, the functions Φ±
N satisfy the following vanishing conditions

1 Throughout the paper we denote the density of a measure μ by μ(x).
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Φ+
N

(
q−MN−1
N

)
= Φ−

N (1) = Φ+
N

(
uNq−1

N

)
= Φ−

N

(
uNqMN

N

)
= 0,

and asymptotic expansion

Φ−
N (z) = Φ−(z) + ϕ−

N (z) + O
(
N−2) and Φ+

N (z) = Φ+(z) + ϕ+
N (z) + O

(
N−2) ,

where ϕ±
N (z) = O(N−1) and the constants in the big O notation are uniform over z in 

compact subsets of M. All the aforementioned functions are holomorphic in M.
The assumptions in (1.9) are the analogues of Assumptions 3 and 5 in [15], and 

similarly to that paper their importance to the analysis comes from the following obser-
vation, which is the starting point for our results. We discuss the general β setup and 
the corresponding Nekrasov’s equation in Section 4.

Theorem 1.2.3 (Nekrasov’s equation). Suppose that (1.9) hold and define

RN (z) = Φ−
N (z) · EPN

[
N∏
i=1

σN (qNz) − �i
σN (z) − �i

]
+ Φ+

N (z) · EPN

[
N∏
i=1

σN (z) − �i
σN (qNz) − �i

]
. (1.10)

Then RN (z) is analytic in M. If Φ±
N (z) are polynomials of degree at most d, then so is 

RN (z).

Remark 1.2.4. If μ denotes the equilibrium measure from Theorem 1.2.1, and Gμ(z) =´
R

μ(x)dx
z−x is its Stieltjes transform then as explained in Section 4 one has

lim
N→∞

EPN

[
N∏
i=1

σN (qNz) − �i
σN (z) − �i

]
= exp (G(z)) with G(z) = log(q)·(z−uz−1)·Gμ(z+uz−1).

In this sense, the Nekrasov’s equation lead to a functional equation for G(z), and our 
central limit theorem is a consequence of a careful analysis of the lower order terms of the 
above limit. We remark that in [15] the expression that appears in the exponent above 
is directly the Stieltjes transform Gμ(z) and not a modified version of it as in our case, 
which increases the technical difficulty of our arguments. The appearance of G is a novel 
feature that comes from working on a quadratic lattice and we give some explanation of 
it in Remark 4.2.3.

Our central limit theorem requires that the equilibrium measure μ satisfies Assump-
tion 5 in Section 2.1, which roughly ensures that μ has a single band in [1 +u, q−M +uqM]. 
In our context, a band is a maximal interval (a, b) such that 0 < μ(x) < fq(σ−1

q (x))−1, 
where σq(x) = q−x + uqx and fq(x) = d

dxσq (q−x) (see also Section 4.2). The parameters 
α1, β1 that appear in the next Theorem 1.2.5 are then precisely the endpoints of this 
band.
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Theorem 1.2.5. Suppose that (1.5), (1.6), (1.7), (1.9) and that (technical) Assumption 5
from Section 2.2 hold. For m ≥ 1 let f1, . . . , fm be real analytic functions in a neighbor-
hood of [1 + u, q−M + uqM] and define

Lfi = N

ˆ

R

fj(x)μN (dx) −NEPN

⎡
⎣ˆ
R

fj(x)μN (dx)

⎤
⎦ for i = 1, . . . ,m.

Then the random variables Lfi converge jointly in the sense of moments to an 
m-dimensional centered Gaussian vector X = (X1, . . . , Xm) with covariance2

Cov(Xi, Xj) = 1
(2πi)2

˛

Γ

˛

Γ

fi(s)fj(t)C(s, t)dsdt, where

C(s, t) = − 1
2(s− t)2

(
1 − (s− α1)(t− β1) + (t− α1)(s− β1)

2
√

(s− α1)(s− β1)
√

(t− α1)(t− β1)

)
, (1.11)

where α1, β1 ∈ [1 +u, q−M +uqM] are given in Assumption 5 and Γ is a positively oriented 
contour that encloses the interval [1 + u, q−M + uqM].

We emphasize that the covariance in (1.11) depends only on α1, β1, and is not sensitive 
to other features of the equilibrium measure μ. Furthermore, the covariance is the same 
as for the continuous log-gases, cf. [38, Theorem 2.4] and [60, Chapter 3]. Thus, the 
discreteness of the model is invisible on the level of the central limit theorem, which is 
consistent with what was observed for the discrete β-ensembles in [15].

Remark 1.2.6. Theorem 1.2.5 is a special case of Theorem 5.2.7, where we extend the 
statement to the multi-cut regime with fixed filling fractions and general θ > 0.

Remark 1.2.7. Observe that the covariance C(s, t) has no singularity when s = t, since 
the RHS of (1.11) has a finite limit when s tends to t.

Outline

In Section 2 we describe the general framework of our study, the scaling regime we 
consider and the assumptions on the weight w. In Section 3 we establish a general law of 
large numbers as Theorem 3.1.1. Nekrasov’s equation is discussed in Section 4. Sections 5

2 Throughout the paper, given a, b ∈ R with a < b, we write f(z) =
√

(z − a)(z − b) to mean

f(z) =
{√

z − a
√
z − b when z ∈ C \ (−∞, b] ,

−
√
a − z

√
b − z when z ∈ (−∞, a) .

Observe that in this way f is holomorphic on C \ [a, b], cf. Theorem 2.5.5 in [68].
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and 6 contain the proof of Theorem 5.2.7 (our general central limit theorem). A detailed 
description of the q-Racah tiling model is given in Section 7 and we give the proof of our 
results about its random height function in Section 8. Section 9 provides the verification 
that the tiling model fits into the general framework of Section 2. Finally, Section 10
contains the asymptotic analysis of the Nekrasov’s equation for the tiling model using 
discrete Riemann–Hilbert problems.
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2. General setup

In this section we describe the general setting of a multi-cut, fixed filling fractions 
model that we consider and list the specific assumptions we make about it.

2.1. Definition of the system

We begin with some necessary notation. Let q ∈ (0, 1), M ∈ Z≥0, u ∈ [0, 1), θ > 0
and N ∈ N be such that M ≥ N − 1. For such parameters we set

XN = {(x1, . . . , xN ) : x1 ≤ x2 ≤ · · · ≤ xN , xi ∈ Z and 0 ≤ xi ≤ M −N + 1},
W

θ
N = {(λ1, . . . , λN ) : λi = xi + (i− 1) · θ, with (x1, . . . , xN ) ∈ XN},

Lθ
N = {(�1, . . . , �N ) : �i = q−λi + uqλi , with (λ1, . . . , λN ) ∈ W

θ
N}.

(2.1)

We interpret the elements (�1, . . . , �N ) in Lθ
N as locations of N particles. If θ = 1 then 

all particles �i live on the same space GCLTZ := {q−x + uqx : x ∈ Z}, and we refer to 
the set Z as a quadratic lattice in the spirit of [58]. On the other hand, for general θ > 0
the particle �k lives on an appropriately shifted quadratic lattice Zθ

k := {q−x−(k−1)θ +
uqx+(k−1)θ : x ∈ Z}. This is similar to the setup in [15]. Throughout the text we will 
frequently switch from �i’s to λi’s or xi’s without mention using

xi ∈ Z, λi = xi + (i− 1) · θ ∈ (i− 1) · θ + Z, �i = q−λi + uqλi ∈ Zθ
i . (2.2)

We typically choose the coordinate system that leads to the most transparent formulas 
or arguments.
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Our goal is to define probability measures on a subset of Lθ
N , where particles are split 

into k groups of prescribed sizes, living on k disjoint prescribed segments. We start by 
fixing k ∈ N, which denotes the number of segments (or groups). For each N ∈ N we 
take k integers n1(N), . . . , nk(N), set Nj =

∑j
i=1 ni(N) with the convention N0 = 0

and assume Nk = N . The numbers ni(N) indicate the number of particles in each 
segment (or group). In addition, we suppose that we have 2k integers ai(N), bi(N) such 
that 0 ≤ ai(N) ≤ bi(N) − 1 ≤ M − N + 1 for i = 1, . . . , k and bi(N) ≤ ai+1(N) for 
i = 1, . . . , k − 1. With the above data we define the state space of our N -point process 
as follows.

Definition 2.1.1. The state space Xθ
N consists of N -tuples � = (�1, . . . , �N ) ∈ Lθ

N such 
that aj(N) ≤ xi ≤ bj(N) − 1, see (2.2), whenever Nj−1 + 1 ≤ i ≤ Nj for i = 1, . . . , N
and j = 1, . . . , k. For future use we also denote αi(N) = q−ai(N)−Ni−1·θ +uqai(N)+Ni−1·θ, 
βi(N) = q−bi(N)−(Ni−1)·θ + uqbi(N)+(Ni−1)·θ and β−

i (N) the largest element in Zθ
Ni

less 
than βi(N) for i = 1, . . . , N .

Utilizing Definition 2.1.1 we define a probability measure PN on Xθ
N through

PN (�1, . . . , �N ) = 1
ZN

·
∏

1≤i<j≤N

H(�i, �j) ·
N∏
i=1

w(�i;N), where

H(�i, �j)

= q−2θλj
Γq(λj − λi + 1)Γq(λj − λi + θ)
Γq(λj − λi)Γq(λj − λi + 1 − θ)

Γq(λj + λi + v + 1)Γq(λj + λi + v + θ)
Γq(λj + λi + v)Γq(λj + λi + v + 1 − θ) .

(2.3)

Here ZN is a normalization constant (called the partition function), v is such that 
qv = u, and w(x; N) is a weight function, which is assumed to be positive for 
x ∈ ∪k

i=1[αi(N), β−
i (N)]. We recall

Γq(x) = (1 − q)1−x (q; q)∞
(qx; q)∞

where (a; q)∞ =
∞∏
k=0

(1 − aqk) and it satisfies

Γq(x + 1)
Γq(x) = 1 − qx

1 − q
. (2.4)

Let us remark on a couple of properties of PN . Firstly, the measure PN when u = 0
was considered in [15]. Specifically, our measure agrees with equation (82) of that paper 
with λi replaced with �i and w(�i; N) replaced with w(�i; N) · q−θ(N−1)�i . In addition, 
from [2, Theorem 10.2.4]

Γq(x + α) = (1 − q)−α (qx; q)∞
x+α

∼ (1 − q)−α(1 − y)α as q → 1− and qx → y ∈ [0, 1)
Γq(x) (q ; q)∞
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and setting q−λi = yi for i = 1, . . . , N we have

H(�i, �j) ∼ (1 − q)−4·θ · y−2θ
j (1 − yiy

−1
j )2θ(1 − uy−1

i y−1
j )2θ = (1 − q)−4·θ · (�j − �i)2θ,

(2.5)

which is why we view PN as a discretization of the general β = 2θ log-gas to a quadratic 
lattice. The latter is particularly obvious when θ = 1, since then we have

PN (�1, . . . , �N ) = (1 − q)−2·N(N−1)

ZN
·
∏

1≤i<j≤N

(�j − �i)2
N∏
i=1

w(�i;N).

The above connection to log-gases motivates our choice to work with the particles 
(�1, . . . , �N ) and not for example (λ1, . . . , λN ), although most results can be formulated 
in terms of the latter.

Remark 2.1.2. One way to understand the interaction H(�i, �j) in (2.3) is that it is an 
integrable extension of the interaction (�j−�i)2 to general θ > 0. This should be viewed as 
an analogue to how (1.2) is a general θ > 0 version of (λj −λi)2, and the integrability of 
that extension can be traced to discrete Selberg integrals and Jack symmetric polynomials, 
where analogous expressions appear, see [15, Section 1]. One source of motivation for why 
H(�i, �j) is the correct generalization of (�j − �i)2 in the setting of a quadratic lattice 
comes from a connection to Macdonald–Koorwinder polynomials [49] as we detail below.

Following the notation in [63] we let K(n)
μ (·; q, t; t0, t1, t2, t3) denote the BCn-symmetric 

Koorwinder polynomial in n variables. In addition, if μ ⊂ (m)n we define μ̃ ⊂ (n)m
through μ̃j = n − μ′

m−j+1. Taking the product of K(n)
μ and K(m)

μ̃ at the principal and 
dual principal specializations (such products appear in the dual Cauchy identity for 
Koorwinder polynomials [55]) gives

K(n)
μ (tn−it0; q, t; t0, t1, t2, t3) ·K(m)

μ̃ (qm−jt0; t, q; t0, t1, t2, t3) =

C(n,m, θ) ·
∏

1≤i<j≤n

H(�i, �j) ·
n∏

i=1
W (�i),

(2.6)

where H(�i, �j) is as in (2.3) with t = qθ, u = qv = t0t1t2t3/q and C(n, m, θ) is a 
μ-independent constant. As before we have �i = q−λi +uqλi and λi = μn−i+1 +(i −1) · θ
(notice that λ’s are indexed in increasing order, while μ’s are indexed in decreasing order 
as is typical for partitions). In addition, we have

W (�i) = (1 − q2λiu) (q1+λi , qm−λi+1+θ(n−1), qλi+m+1+θ(n−1)u; q)∞
(qλiu; q)∞

q(n−m−1/2)λi+λ2
i /2,

where (a1, . . . , ar; q)∞ =
∏r

k=1(ak; q)∞. The obvious parallel between (2.6) and (2.3)
is one of the main reasons we view H(�i, �j) as the correct integrable generalization to 
θ > 0.
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2.2. Scaling and regularity assumption

We are interested in obtaining asymptotic statements about PN as N → ∞. This 
requires that we scale our parameters θ, q, u, M in some way and also impose some 
regularity conditions for the interval endpoints αi(N), βi(N) and the weight functions 
w(x; N). We list these assumptions below.

Assumption 1. We assume that we are given parameters θ > 0, q ∈ (0, 1), M ≥ 1, and 
u ∈ [0, 1). For future reference we denote the set of parameters q, M, u that satisfy the 
latter conditions by P and view it as a subset of R3 with the subspace topology. In 
addition, we assume that we have a sequence of parameters qN ∈ (0, 1), MN ∈ N and 
uN ∈ [0, 1) such that

MN ≥ N − 1, max
(
N2 ·
∣∣∣qN − q1/N

∣∣∣ , |MN −NM| , N · |uN − u|
)
≤ A1,

for some A1 > 0. (2.7)

The measures PN will then be as in (2.3) for q = qN , u = uN , M = MN , θ and N .

Assumption 2. We require that for each i = 1, . . . , k as N → ∞ we have for some A2 > 0

|αi(N) − âi| ≤ A2 ·N−1 log(N), |βi(N) − b̂i| ≤ A2 ·N−1 log(N), where

1 + u ≤ â1 < b̂1 < â2 < · · · < âk < b̂k ≤ q−M−θ+1 + uqM+θ−1.

In addition, we assume that w(x; N) in the intervals [αi(N), β−
i (N)], i = 1, . . . , k has 

the form

w(x;N) = exp (−NVN (x)) ,

for a function VN that is continuous in the intervals [αi(N), β−
i (N)] and such that

|VN (s) − V (s)| ≤ A3 ·N−1 log(N), where V is continuous and |V (s)| ≤ A4, (2.8)

for some constants A3, A4 > 0. We also require that V (s) is differentiable and for some 
A5 > 0

|V ′(s)| ≤ A5 ·
[
1 +

k∑
i=1

|log |s− âi|| + | log |s− b̂i||
]
, for s ∈

[
1 + u, q−M−θ+1 + uqM+θ−1] .

(2.9)

Remark 2.2.1. We believe that one can take more general remainders in the above two 
assumptions, without significantly influencing the arguments in the later parts of the 
paper. However, we do not pursue this direction due to the lack of natural examples.
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Let us denote σq(x) = q−x + uqx and observe that the latter is a bijective diffeomor-
phism from [0, M + θ− 1] to [1 + u, q−M−θ+1 + uqM+θ−1]. Let fq(x) = d

dxσq (q−x) and note 
that fq is positive on the interval [0, M].

Assumption 3. Set n̂i(N) = ni(N)
N for i = 1, . . . , k. We will often suppress the dependence 

of n̂i on N and we assume that for sufficiently large N these sequences satisfy

A6 < n̂i < θ−1 ·
[
σ−1
q (b̂i) − σ−1

q (âi)
]
−A6,

where A6 is some positive constant. In our future results it will be important that the 
remainders are uniform over n̂i, satisfying the above conditions.

Remark 2.2.2. The above assumptions will be sufficient to obtain our law of large num-
bers for PN . We stated the one-cut θ = 1 case of this law in Theorem 1.2.1. In general, 
if one assumes that n̂i(N) = νi + O(N−1 log(N)) for some positive constants νi for 
i = 1, . . . , k, then the sequence of empirical measures μN := 1

N

∑N
i=1 δ(�i) converges to a 

deterministic measure μ, called the equilibrium measure. The precise statement detailing 
this convergence is given in Theorem 3.1.1, and the equilibrium measure turns out to be 
the maximizer of a certain variational problem – see Lemma 3.1.2. It depends on q, u, θ, 
the limiting potential V , the endpoints âi, ̂bi from Assumption 2 and the limiting filling 
fractions νi for i = 1, . . . , k.

We next isolate the assumptions we require for establishing our central limit theorem, 
starting with the analytic properties of the weight w(x; N).

Assumption 4. We assume that we have an open set M ⊂ C \ {0, ±√
u}, such that for 

large N

k⋃
i=1

([
q
1−ai(N)−Ni−1·θ
N , q

−bi(N)−(Ni−1)·θ
N

]

∪
[
uNq

bi(N)+(Ni−1)·θ
N , uNq

ai(N)−1+Ni−1·θ
N

])
⊂ M.

In addition, we require for all large N the existence of analytic functions Φ+
N , Φ−

N on M
such that

w(σN (z);N)
w(σN (qNz);N) = (q2

Nz2 − uNqθN )(z2 − uN )Φ+
N (z)

(qθNz2 − uN )(q2
Nz2 − uN )Φ−

N (z)
, (2.10)

whenever σN (z), σ(qNz) ∈ ∪k
i=1[αi(N), β−

i (N)] where σN (z) = z + uNz−1. Moreover,

Φ−
N (z) = Φ−(z) + ϕ−

N (z) + O
(
N−2) and Φ+

N (z) = Φ+(z) + ϕ+
N (z) + O

(
N−2) ,
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where ϕ±
N (z) = O(N−1) and the constants in the big O notation are uniform over z in 

compact subsets of M. All aforementioned functions are holomorphic in M.
The next assumption we require is about the equilibrium measure μ, which was dis-

cussed in Remark 2.2.2. A convenient way to encode μ is through its Stieltjes transform

Gμ(z) :=
ˆ

R

μ(x)dx
z − x

. (2.11)

The following two functions Rμ(z), Qμ(z) naturally arise from our discrete loop equations 
(see Section 4.2) and play an important role in our further analysis

Rμ(z) = Φ−(z) · eθ log(q)(z−uz−1)Gμ(z+uz−1) + Φ+(z) · e−θ log(q)(z−uz−1)Gμ(z+uz−1)

Qμ(z) = Φ−(z) · eθ log(q)(z−uz−1)Gμ(z+uz−1) − Φ+(z) · e−θ log(q)(z−uz−1)Gμ(z+uz−1)
(2.12)

In Section 4.2 we show that Rμ(z) is analytic, while Qμ(z) is a branch of a two-valued 
analytic function, given by the square root of a holomorphic function on M. Our as-
sumption on μ is expressed through Qμ as follows.

Assumption 5. For each N let μ̂N be the equilibrium measure μ discussed in Remark 2.2.2
for the parameters q, u, endpoints âi, ̂bi as in Assumptions 1–2 and filling fractions 
νi = n̂i = ni(N)/N , i = 1, . . . , k. Observe that μ̂N depends on N only through the 
filling fractions, in particular in the one-cut case it does not depend on N .

Let Qμ̂N
be as in (2.12) for the measure μ̂N . Then we require that for all large N

there exist real numbers ri(N), si(N) and functions HN (z) on M such that

• âi ≤ ri(N) < si(N) ≤ b̂i, and there are constants âi ≤ r̂i < ŝi ≤ b̂i such that 
ri(N) − r̂i = O(N−1 log(N)) = si(N) − ŝi for i = 1, . . . , k.

• Qμ̂N
(z) = HN (z) 

∏k
i=1
√

(z + uz−1 − ri(N))(z + uz−1 − si(N)), with HN (z) 
= 0
in M.

Remark 2.2.3. Assumption 5 is the analogue of Assumption 4 in [15, Section 3] for our 
setting and as discussed there it does not describe a general case. In particular, it implies 
that μ(x) has a single interval of support inside each interval [âi, ̂bi]. To the authors’ 
knowledge there are no simple conditions on the potential V that ensure that μ has this 
property.

We will further impose a vanishing condition for the functions Φ±
N . We believe that it 

can be relaxed, but introduce it to simplify our arguments in the text.

Assumption 6. If ai(N), bi(N), Ni are as in Section 2.1 then for all i = 1, . . . , k we have

Φ+
N

(
q
−bi−(Ni−1)θ
N

)
= Φ−

N

(
q
−ai−Ni−1·θ
N

)
= Φ+

N

(
uNq

ai−1+Ni−1·θ
N

)
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= Φ−
N

(
uNq

bi−1+(Ni−1)·θ
N

)
= 0.

Finally, we state an assumption, under which one can find an explicit formula for the 
density of μ in Remark 2.2.2 in terms of Rμ and Φ± as in (2.12) and Assumption 4, see 
Lemma 4.2.2.

Assumption 7. We assume that V (s) is real analytic in a real open neighborhood of 
∪k
i=1[âi, ̂bi] and Φ+(x), Φ−(x) ∈ R with Φ+(x) · Φ−(x) > 0 whenever x + ux−1 ∈

∪k
i=1(âi, ̂bi).

3. Law of large numbers

In this section we establish the law of large numbers for the empirical measures μN

associated to PN from Section 2. In Section 3.1 we provide a variational formulation of 
the equilibrium measure μ, which describes the limit of μN . The convergence of μN to 
μ is detailed in Theorem 3.1.1 and we reduce the proof of the latter to a concentration 
inequality – see Proposition 3.1.3. This inequality is established in Section 3.2 using 
arguments similar to [15], which in turn go back to [17] and [52].

3.1. Convergence of empirical measures

We continue with the same notation as in Section 2. With PN as in (2.3) we define 
the empirical measures μN as

μN = 1
N

N∑
i=1

δ (�i) where (�1, . . . , �N ) is PN -distributed.

The measures μN satisfy the following law of large numbers.

Theorem 3.1.1. Suppose that Assumptions 1, 2 and 3 from Section 2.2 hold. In addition, 
suppose that |n̂i−νi| ≤ A7·N−1 log(N) for some positive constants A7 and νi, i = 1, . . . , k
such that 

∑
i νi = 1. Then there is a deterministic probability measure μ(x)dx, depending 

on νi for 1 ≤ i ≤ k, such that μN concentrate (in probability) near μ. More precisely, 
for each Lipschitz function f(x) defined in a real neighborhood of the interval ∪k

i=1[âi, ̂bi]
and each ε > 0 the random variables

N1/2−ε

∣∣∣∣∣∣
ˆ

R

f(x)μN (dx) −
ˆ

R

f(x)μ(x)dx

∣∣∣∣∣∣ (3.1)

converge to 0 in probability and in the sense of moments.

The limiting measure μ is defined as the maximizer of a certain variational problem, 
described in the following section.
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3.1.1. Variational problem
Define the functional IV [ρ] of a measure ρ supported in ∪k

i=1[âi, ̂bi] via

IV [ρ] = θ ·
¨

x	=y

log |x− y| dρ(x)dρ(y) −
ˆ

R

V (x)dρ(x). (3.2)

Lemma 3.1.2. Let Θ denote the set of absolutely continuous probability measures ρ(x)dx
supported on ∪k

i=1[âi, ̂bi], whose denisty ρ(x) is between 0 and θ−1 · fq(σ−1
q (x))−1 and 

such that

b̂iˆ

âi

ρ(x)dx = ν̂i, with 1 ≤ i ≤ k,

where 0 < ν̂i < θ−1 ·
[
σ−1
q (b̂i) − σ−1

q (âi)
]
, i = 1, . . . , k are such that 

∑k
i=1 ν̂i = 1

(recall that σq and fq were defined in Section 2.2). Then the functional IV has a unique 
maximum μ̂ on Θ.

Proof. Observe that by our assumption on u and q we know that σq(y) is a strictly 
increasing function, whose derivative fq(y) on [0, M] lies between (− log q)(1 − u) and 
(− log q)q−M−θ+1.

Let Θ′ be the same as Θ, except that we restrict 0 ≤ ρ(x) ≤ 1
θ·(− log q)·(1−u) . From the 

above argument we conclude that Θ is a closed convex subset of Θ′. It follows from the 
proof of Lemma 5.1 in [15] that IV [ρ] is a continuous strictly concave functional on Θ′

and that the latter is compact. It follows that Θ is convex and compact, and hence IV [ρ]
attains a unique maximum there. �

We call the measure μ̂ from Lemma 3.1.2 the equilibrium measure. The significance of 
μ̂ is that it equals μ from Theorem 3.1.1, when ν̂i = νi for 1 ≤ i ≤ k. Proving this fact 
will be the focus of this and the subsequent sections.

For a measure ρ ∈ Θ as in Lemma 3.1.2 define the effective potential FV
ρ (x) through

FV
ρ (x) = 2θ ·

ˆ

R

log |x− t|ρ(t)dt− V (x).

Applying Theorem 2.1 in [28] to each interval [âi, ̂bi] we know that there exist real 
numbers fi for 1 ≤ i ≤ k such that

{
FV
μ̂ (x) − fi ≤ 0 for a.e. x ∈ Si = {âi ≤ x ≤ b̂i|0 ≤ μ̂(x) < θ−1 · fq(σ−1

q (x))−1},
FV
μ̂ (x) − fi ≥ 0 if x ∈ [âi, b̂i] ∩ supp(μ̂).

(3.3)
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3.1.2. Proof of Theorem 3.1.1
Our approach to proving Theorem 3.1.1 is to reconstruct in our setup the arguments of 

Section 5 in [15] and we begin by introducing some relevant notation. Take any two com-
pactly supported absolutely continuous probability measures with uniformly bounded 
densities ν(x)dx and ρ(x)dx and define D(ν(x), ρ(x)) through

D2(ν(x), ρ(x)) = −
ˆ

R

ˆ

R

log |x− y|(ν(x) − ρ(x))(ν(y) − ρ(y))dxdy. (3.4)

There is an alternative formula for D(ν(x), ρ(x)) in terms of Fourier transforms, cf. [6]:

D(ν(x), ρ(x)) =

√√√√√ ∞̂

0

dt

t

∣∣∣∣∣∣
ˆ

R

e−itx(ν(x) − ρ(x))dx

∣∣∣∣∣∣
2

. (3.5)

Fix a parameter p > 2 and let μ̃N denote the convolution of the empirical measure 
μN with the uniform measure on the interval [0, N−p]. With the above notation we can 
now state the main technical result we require for proving Theorem 3.1.1.

Proposition 3.1.3. Assume the same notation as in Theorem 3.1.1 and let μ̂ be as in 
Lemma 3.1.2 for ν̂i = νi for i = 1, . . . , k. There exists a constant C > 0 such that for all 
x > 0 and N ≥ 2

PN (D(μ̃N , μ̂) ≥ x) ≤ exp
(
CN log(N)2 − θ · x2N2) .

The constant C depends on the constants A1, . . . , A7 in Theorem 3.1.1 and Assump-
tions 1, 2, 3, as well as q, M, u, θ and is uniform as the latter vary over compact subsets 
of P.

The proof of Proposition 3.1.3 is the focus of Section 3.2 below. For now we assume 
its validity and conclude the proof of Theorem 3.1.1. We start by deducing the following 
corollary.

Corollary 3.1.4. Assume the same notation as in Proposition 3.1.3. For a compactly 
supported Lipschitz function g(x) define

‖g‖1/2 =

⎛
⎜⎝

∞̂

−∞

|s|

∣∣∣∣∣∣
∞̂

−∞

e−isxg(x)dx

∣∣∣∣∣∣
2

ds

⎞
⎟⎠

1/2

, ‖g‖Lip = sup
x	=y

∣∣∣∣g(x) − g(y)
x− y

∣∣∣∣ .

Fix any p > 2. Then for all a > 0, N ≥ 2 and g we have
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PN

⎛
⎝
∣∣∣∣∣∣
ˆ

R

g(x)μN (dx) −
ˆ

R

g(x)μ̂(dx)

∣∣∣∣∣∣ ≥ a‖g‖1/2 + ‖g‖Lip

Np

⎞
⎠

≤ exp
(
CN log(N)2 − 2θπ2a2N2) , (3.6)

where the constant C is as in Proposition 3.1.3.

Proof. From the triangle inequality we have

∣∣∣∣∣∣
ˆ

R

g(x)μN (dx) −
ˆ

R

g(x)μ(dx)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
ˆ

R

g(x)μN (dx) −
ˆ

R

g(x)μ̃N (dx)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
ˆ

R

g(x)[μ̃N (x) − μ(x)]dx

∣∣∣∣∣∣ .

The first term is bounded by ‖g‖Lip
Np and corresponds to such a term in (3.34). We will 

thus focus on estimating the second term.
We denote by F [φ](ξ) :=

´
R
e−ixξφ(x)dx the Fourier transform of a function φ. Note 

that g, μ̂(x), μ̃N (x) all belong to L2(R) ∩ L1(R) and so we can use Parseval’s formula 
(see e.g. Theorem 7.1.6, in [35]) and the Cauchy–Schwarz inequality to get

∣∣∣∣∣∣
ˆ

R

g(x)μ̃N (x)dx−
ˆ

R

g(x)μ(x)dx

∣∣∣∣∣∣ =

(2π)−1

∣∣∣∣∣∣
ˆ

R

(√
|ξ|F [g](ξ)

)
· F [μ̃N ](ξ) −F [μ̂](ξ)√

|ξ|
dξ

∣∣∣∣∣∣ ≤

(2π)−1‖g‖1/2 ·
√√√√ˆ

R

|F [μ̃N ](ξ) −F [μ̂](ξ)|2
|ξ| dξ = (2π)−1‖g‖1/2 ·

√
2D(μ̃N , μ).

In the last equality above we used (3.5). What remains is to use Proposition 3.1.3. �
Proof of Theorem 3.1.1. Suppose that f and ε are as in the statement of the theorem, 
μ = μ̂ from Proposition 3.1.3 and assume without loss of generality that ε ∈ (0, 1/2). Fix 
η > 0 and let h be a smooth function, whose support is contained in a η-neighborhood 
of ∪k

i=1[âi, ̂bi] and h(x) = 1 on a η/2-neighborhood of ∪k
i=1[âi, ̂bi]. If we set

XN := N1/2−ε

∣∣∣∣∣∣
ˆ

f(x) · h(x)μN (dx) −
ˆ

f(x) · h(x)μ(x)dx

∣∣∣∣∣∣ ,

R R
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then to prove the theorem we need to show that for each k ≥ 1 we have limN→∞ E 
[
Xk

N

]
= 0.

It follows from Corollary 3.1.4 that there exist positive constants c1, c2 and C such 
that for all a > 0 and N ≥ 2 we have

P

(
XN ≥ c1 · a ·N1/2−ε + c2 ·N−3

)
≤ exp(CN log(N)2 − 2θπ2a2N2).

Using the above inequality and setting aN = 2c2 ·N−ε we see that for any k ≥ 1 we have

E
[
Xk

N

]
=

∞̂

0

xk−1 · P(XN ≥ x)dx =
aNˆ

0

xk−1 · P(XN ≥ x)dx +
∞̂

aN

xk−1 · P(XN ≥ x)dx ≤

≤ aN · max(ak−1
N , 1) + exp(CN log(N)2) ·

∞̂

aN

xk−1 · exp
(
−θ · π

2x2N1+2ε

2c21

)
dx

The last inequality implies that limN→∞ E 
[
Xk

N

]
= 0. �

3.2. Proof of Proposition 3.1.3

We begin with a technical result about the asymptotics of the ratio of two q-Gamma 
functions.

Lemma 3.1. Suppose that θ > 0, q ∈ (0, 1) and qN ∈ (0, 1), αN > 0 are sequences such 
that |qNN − q| ≤ A ·N−1 and αN ≤ A for some A > 0. Then for any x ≥ 1 we have

ΓqN (x + αN + θ)
ΓqN (x + αN ) = (1 − qN )−θ · (1 − qxN )θ · exp

[
O

(
N−1

1 − qxN

)]
, (3.7)

where the constants in the big O notation depend on θ, A and q.

Proof. For convenience we drop the dependence on N from the notation. Recall from 
(2.4) that

Γq(x + α + θ)
Γq(x + α) = (1 − q)−θ · (qx+α; q)∞

(qx+α+θ; q)∞
, where we have (a; q)∞ =

∞∏
k=0

(1 − aqk).

The first term matches the corresponding one in (3.7) and we focus on the second term.
We first observe that if q, B ∈ (0, 1) and s ∈ [0, 1] then

(B; q)∞
(Bqs; q)∞

≤ (1 −B)s. (3.8)

The latter is equivalent to showing that
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f(s) := s log(1 −B) +
∞∑
k=0

log(1 −Bqs+k) −
∞∑
k=0

log(1 −Bqk) ≥ 0 on [0,1],

which is immediate from the observations: f(0) = f(1) = 0 and f ′′(s) < 0 for s ∈ (0, 1).
We next note that

(qx+α; q)∞
(qx+α+θ; q)∞

=
�θ�∏
i=1

(1 − qx+α+i−1) · (qx+α+�θ�; q)∞
(qx+α+θ; q)∞

=
�θ�+1∏
i=1

(1 − qx+α+i−1) · (qx+α+�θ�+1; q)∞
(qx+α+θ; q)∞

.

Combining the latter with (3.8) we conclude that

(1 − qx)θ ≤ (qx+α; q)∞
(qx+α+θ; q)∞

≤ (1 − qx+α+θ)θ ≤ (1 − qx)θ · exp
[
θ(1 − qα+θ)

1 − qx

]
,

where in the last inequality we used that qx ≤ 1 and the trivial inequality (1 +a)θ ≤ eaθ, 
for a > 0. The latter tower of inequalities implies our desired estimate. �

In the remainder of this section we present the proof of Proposition 3.1.3, using 
appropriately adapted arguments from [15]. For clarity we split it into several steps 
and we outline them here. In Step 1 we relate the formula for PN to the value of the 
functional IV from Section 3.1.1 at the empirical measure μN . In Steps 2, 3 and 4 we 
obtain a lower bound for the partition function ZN . In the fifth step we replace the 
empirical measure μN with its convolution with the uniform measure on [0, N−p] with 
p > 2, and reduce the statement of the proposition to establishing a certain upper 
bound on IV [μN ] − IV [μ̃N ]. In Steps 6,7 and 8 we establish the desired upper bound by 
employing the variational characterization of μ̂ from Section 3.1.1.

Step 1. We recall for the reader’s convenience equation (2.3) below

PN (�1, . . . , �N ) = 1
ZN

·
∏

1≤i<j≤N

H(�i, �j) ·
N∏
i=1

w(�i;N), where

H(�i, �j) =

q−2θλj
Γq(λj − λi + 1)Γq(λj − λi + θ)
Γq(λj − λi)Γq(λj − λi + 1 − θ)

Γq(λj + λi + v + 1)Γq(λj + λi + v + θ)
Γq(λj + λi + v)Γq(λj + λi + v + 1 − θ) ,

(3.9)

where we drop the dependence on N from the notation. The goal of this section is to 
show
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PN (�1, . . . , �N ) = Z−1
N · (1 − q)−2θN(N−1) · exp

(
N2IV [μN ] + O(N log(N))

)
. (3.10)

Notice that the definition of IV in (3.2) makes sense for discrete (atomic) measures – 
here it is important that we integrate over x 
= y as otherwise the integral would be 
infinite, and so the RHS of (3.10) is well-defined and finite.

From Assumption 2 in Section 2.2, we know that w(�i; N) = exp(−NV (�i) +
O(logN)), and to conclude the proof of (3.10) what remains is to show that

∏
1≤i<j≤N

H(�i, �j) = (1 − q)−2θN(N−1)
∏

1≤i<j≤N

(�j − �i)2θ · exp [O(N log(N))] . (3.11)

From Lemma 3.1 we know that

∏
1≤i<j≤N

H(�i, �j) = (1−q)−2θN(N−1)
∏

1≤i<j≤N

(�j−�i)2θ ·exp
[
O

(
N−1

1 − qθ(j−i)

)]
, (3.12)

where we used that λj − λi ≥ θ · (j − i) by assumption. On the other hand,

∑
1≤i<j≤N

N−1

1 − qθ(j−i) ≤ 1
1 − qθ

·
N∑
i=1

1 − qθ

1 − qiθ
≤ 1

1 − qθ
·

N∑
i=1

1
i · c0

≤ C ·N log(N), (3.13)

where c0 > 0 is a universal lower bound of qN . Equations (3.12) and (3.13) imply (3.11).

Step 2. The goal of this and the next two steps is to obtain the following lower bound

ZN ≥ (1 − q)−2θN(N−1) · exp
(
N2IV [μ̂] + O(N log(N)2)

)
. (3.14)

In this step we construct a particular element �̂ = (�̂1, . . . , �̂N ) ∈ Xθ
N that depends on μ̂, 

and then in view of (3.10) we have the immediate lower bound

ZN ≥ (1 − q)−2θN(N−1) · exp
(
N2IV

[
mes
[
�̂1, · · · , �̂N

]]
+ O(N log(N))

)
, (3.15)

where mes
[
�̂1, · · · , �̂N

]
= 1

N

∑N
i=1 δ(�̂i).

Let yi, i = 1, . . . , N be quantiles of σ−1
q ◦ μ̂ defined through

yiˆ

0

[
σ−1
q ◦ μ̂

]
(x)dx = i− 1/2

N
, 1 ≤ i ≤ N.

Since 
[
σ−1
q ◦ μ̂

]
(x) ≤ θ−1 we have θ(yi+1 − yi) ≥ N−1. Arguing as in the proof of [15, 

Proposition 5.6] we can find an element λ̂ = (λ̂1, . . . , ̂λN ) ∈ W
θ
N such that:

(1) if λ̂i = x̂i + (i − 1) · θ, then ai(N) ≤ x̂i ≤ bi(N);
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(2) there is a constant U (independent of N) such that |Nyi− λ̂i| ≤ U for all 1 ≤ i ≤ N

except for O(log(N)) ones.

We then define �̂ through �̂i = q−λ̂i +uqλ̂i and note that the first condition above ensures 
�̂ ∈ Xθ

N .

Step 3. The goal of this step is to show that

N2IV

[
mes
[
�̂1, · · · , �̂N

]]
= N2IV [μ̂] + O(N log(N)2). (3.16)

Clearly, (3.16) and (3.15) give (3.14).
Setting σN (x) = q−x +uqx we see that to show (3.16) it suffices to have the following 

equalities

∑
1≤i<j≤N

log
(
σN (λ̂j) − σN (λ̂i)

)
= N2

¨

s<t

log(t−s)μ̂(t)μ̂(s)dtds+O(N log(N)2), (3.17)

N

N∑
i=1

V (σN (λ̂i)) = N2
ˆ

R

V (t)μ̂(t)dt + O(N log(N)). (3.18)

We defer the proof of (3.17) to Step 4 and focus on showing (3.18).
Set zi = σq(yi) for i = 1, . . . , N and observe that 

´ zi+1
zi

μ̂(t)dt = N−1 for i = 1, . . . ,
N − 1. Then

N∑
i=1

V
(
σN (λ̂i)

)
= N

N−1∑
i=1

zi+1ˆ

zi

V
(
σN (λ̂i)

)
μ̂(t)dt + O(1). (3.19)

Let I be the set of indices such that σN (λ̂i), zi, zi+1 for i ∈ I are all inside ∪k
j=1[âj , ̂bj ]

and at least N−1 away from the complement of this set, and such that |Nyi − λ̂i| ≤ U

from Step 2 holds. From Assumption 2 on âj , ̂bj we conclude that N − |I| = O(logN). 
Note that for i ∈ I

• zi = σN (λ̂i) + O(N−1);
• V (zi) − V

(
σN (λ̂i)

)
= (zi − σN (λ̂i))V ′(s) = O

(
N−1 log(N)

)
, where we used the 

mean value theorem and V ′(s) = O(log(N)) from Assumption 2.

In view of the above (3.19) implies

N∑
i=1

V
(
σN (λ̂i)

)
= N

∑
i∈I

zi+1ˆ
V (zi)μ̂(t)dt + O(log(N)). (3.20)
zi
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A second application of the mean value theorem leads to

N∑
i=1

V
(
σN (λ̂i)

)
= N

∑
i∈I

zi+1ˆ

zi

[V (t) + (t− zi)V ′(κ(t))] μ̂(t)dt + O(log(N)),

where κ(t) is a point inside ∪k
j=1[âj , ̂bj ] at least N−1 from the complement of this set. 

Arguing as before that V ′(κ(t)) = O(log(N)), we see that

N∑
i=1

V
(
σN (λ̂i)

)
= N

∑
i∈I

zi+1ˆ

zi

[V (t) + (zi+1 − zi)O(log(N))] μ̂(t)dt + O(log(N)) =

N
∑
i∈I

zi+1ˆ

zi

V (t)μ̂(t)dt + N
O(log(N))

N

N−2∑
i=2

(zi+1 − zi) = N

ˆ

R

V (t)μ̂(t)dt + O(log(N)).

(3.21)

The second equality above follows from the definition of zi as quantiles of μ̂, and the 
last one follows from the fact that μ̂ (∪i∈I [zi, zi+1]) = |I|/N = 1 − O(N−1 log(N)) and 
V = O(1) on the support of μ̂. Clearly, (3.21) implies (3.18).

Step 4. In this step we prove (3.17) and start by showing that

∑
1≤i<j≤N

log
(
σN (λ̂j) − σN (λ̂i)

)
≤ N2

¨

s<t

log(t−s)μ̂(t)μ̂(s)dtds+O(N log(N)2). (3.22)

If I is as in Step 3 then we observe that

∑
1≤i<j≤N

log
(
σN (λ̂j) − σN (λ̂i)

)
=

∑
i<j;i,j∈I

log
(
σN (λ̂j) − σN (λ̂i)

)
+ O(N log(N)2). (3.23)

Indeed, the two sums differ by O(N log(N)) summands, each of order O(log(N)).
As discussed in Step 3 we have that σN (λ̂i) = zi + O(N−1) for i ∈ I. It follows, that 

we can find a positive constant C such that

∑
i<j;i,j∈I

log
(
σN (λ̂j) − σN (λ̂i)

)
≤
∑

i<j;i,j∈I

log
(
zj − zi + CN−1) ≤

N2
∑

i<j;i,j∈I

ziˆ zj+1ˆ
log
(
t− s + CN−1) μ̂(t)μ̂(s)dtds = (3.24)
zi−1 zj
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N2
¨

s<t

log
(
t− s + CN−1) μ̂(t)μ̂(s)dtds + O(N log(N)2).

In going from the first to the second line we used that zi are quantiles of μ̂ and the 
monotonicity of log. In going from the second to the third, we note that the set difference 
over which the two integrals are taken has μ̂×μ̂ measure O(N−1 logN) and the integrand 
is O(log(N)) there.

We see that to conclude (3.22) it suffices to show that

k∑
j=1

¨

âj≤v<w≤b̂j

log
(
w − v + CN−1

w − v

)
dwdv = O

(
log(N)

N

)
.

The above is now immediate from the observation that for c ≥ 0 we have

bˆ

a

bˆ

v

log (w − v + c) dwdv =
bˆ

a

[(b− v + c)(log(b− v + c) − 1) − c log(c) + c]dv =

c[1 − log(c)]r + c2[1 − 2 log(c)] + (r + c)2[2 log(r + c) − 1]
4 − br + r2/2 + cr,

where r = b − a. The above identities show (3.22) and the reverse inequality can be 
established in an analogous way, which proves (3.17).

Step 5. In this step we show that we can replace μN in (3.10) with its convolution 
with the uniform measure on [0, N−p] with p > 2, denoted by μ̃N . For that we extend 
V to ∪k

j=1[âj , ̂bj + N−p] by setting V (x + b̂j) = V (b̂j) for x ∈ [0, N−p] and take two 
independent random variables u, ̃u uniformly distributed on [0, N−p]. Then we have

IV [μ̃N ] = Eu,ũ

¨
log |x + u− y − ũ|μN (dx)μN (dy) − Eu

ˆ
V (x + u)μN (dx) =

IV [μN ] + 1
N

· Eu,ũ

ˆ
log |u− ũ|μN (dx) − Eu

ˆ
[V (x + u) − V (x)]μN (dx)

+ Eu,ũ

¨

x	=y

log
∣∣∣∣x + u− y − ũ

x− y

∣∣∣∣μN (dx)μN (dy) = IV [μN ] + O(N−1 log(N)),

(3.25)

where the last equality follows from the conditions on V from Assumption 2. The above 
shows that we can replace μN with μ̃N in (3.10) without affecting the statement. Com-
bining the latter with the lower bound of ZN from (3.14), we conclude that there exists 
a constant C ′ > 0 such that

PN (�1, . . . , �N ) ≤ exp
(
C ′N log(N)2

)
· exp

(
N2(IV (μ̃N ) − IV (μ̂))

)
. (3.26)
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We next claim that we have the following inequality

IV [μ̃N ] − IV [μ̂] ≤ −θ · D2(μ̃N , μ̂) + O(N−1 log(N)). (3.27)

We defer the proof of the above to the next step. In what follows we assume its validity 
and finish the proof of the proposition. It follows from (3.26) and (3.27) that for some 
C ′′ > 0 we have

PN (�1, . . . , �N ) ≤ exp(C ′′N log(N)2) exp
(
−θ ·N2D2(μ̃N , μ̂)

)
.

Notice that the number of N -tuples �1 < · · · < �N in Xθ
N is at most 

(
MN

N

)
. Since 

MN = O(N) we see that for some C > 0 and all x > 0 we have

PN (D(μ̃N , μ̂) ≥ x) ≤
(
MN

N

)
exp
(
C ′′N log(N)2 − θ ·N2x2)

≤ exp
(
CN log(N)2 − θ · x2N2) .

This is the desired estimate.

Step 6. In this and the next two steps we establish (3.27). By definition of D we have

IV [μ̃N ] − IV [μ̂] = −θ · D2(μ̃N , μ̂) +
ˆ

R

FV
μ̂ (x) (μ̃N (x) − μ̂(x)) dx =

− θ · D2(μ̃N , μ̂) +
k∑

j=1

b̂jˆ

âj

[FV
μ̂ (x) − fi] (μ̃N (x) − μ̂(x)) dx + O(N−1 log(N)),

(3.28)

where we recall that FV
μ̂ and fi were defined in Section 3.1.1. The extra O(N−1 log(N))

comes from two sources. Firstly, there is additional mass of μ̃N that lies outside of 
∪k
j=1[âj , ̂bj ] and we are excluding. The second source comes from the fact that the mass 

of μN and μ̂ on each [âj , ̂bj ] are not exactly the same (thus the integral over the constant 
fi is not zero). The first issue is resolved by Assumption 2 on the endpoints αi(N), βi(N), 
which estimates the missing weight as O(N−1 log(N)). The second issue is resolved by 
our assumption that |n̂i − νi| = O(N−1 log(N)).

We recall from Section 3.1.1 that Sj = {âj ≤ x ≤ b̂j |0 ≤ μ̂(x) < θ−1 · fq(σ−1
q (x))−1}

and also set S′
j = {âj ≤ x ≤ b̂j |μ̂(x) = 0} and S′′

j = {âj ≤ x ≤ b̂j |μ̂(x) = θ−1 ·
fq(σ−1

q (x))−1}. In view of (3.28) it suffices to show for each j = 1, . . . , k that

ˆ

S \S′

[FV
μ̂ (x) − fj ] (μ̃N (x) − μ̂(x)) dx = 0,

ˆ

S′

[FV
μ̂ (x) − fj ] (μ̃N (x) − μ̂(x)) dx ≤ 0,
j j j
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ˆ

S′′
j

[Fμ̂(x) − fj ] (μ̃N (x) − μ̂(x)) dx ≤ 0 + O(N−1 log(N)). (3.29)

In what follows we fix j ∈ {1, . . . , k} and show (3.29), dropping the dependence on 
j from all the notation. Let L be the subset of points [â, ̂b] for which the Lebesgue 
differentiation theorem for μ̂ holds. From (3.3) we know that a.e. on (S \ S′) ∩ L the 
function FV

μ̂ (x) − f vanishes, this proves the first equality in (3.29), since L is of full 
Lebesgue measure. We next observe that a.e. on S′ we have FV

μ̂ (x) −f ≤ 0 and μ̂(x) = 0
— this proves the second inequality in (3.29).

Let us denote by R = {x ∈ [â, ̂b] : FV
μ̂ (x) > f} and observe that

ˆ

S′′

[FV
μ̂ (x) − f ] (μ̃N (x) − μ̂(x)) dx =

ˆ

R∩S′′

[FV
μ̂ (x) − f ]

(
μ̃N (x) − θ−1 · fq(σ−1

q (x))−1) dx.
To see the latter we first observe that on S′′ we have μ̂(x) = θ−1 · fq(x)−1. In addition, 
we know that a.e. point in S′′ belongs to the support of μ̂, and so by (3.3) a.e. on S′′ we 
have that FV

μ̂ (x) − f ≥ 0. Finally, we can remove the points of equality as they do not 
contribute to the integral. Next,

ˆ

R∩S′′

[FV
μ̂ (x) − f ]

(
μ̃N (x) − θ−1 · fq(σ−1

q (x))−1) dx
=
ˆ

R

[FV
μ̂ (x) − f ]

(
μ̃N (x) − θ−1 · fq(σ−1

q (x))−1) dx.
The above follows from the fact that R ∩ (S′′)c has zero Lebesgue measure, which we 
know from (3.3). We have thus reduced the proof of the proposition to establishing

ˆ

R

[FV
μ̂ (x) − f ]

(
μ̃N (x) − θ−1 · fq(σ−1

q (x))−1) dx ≤ 0 + O(N−1 log(N)). (3.30)

Step 7. In this and the next step we establish (3.30). We start by noting that if κ = q−M−θ

then because μ̂(x) is bounded we have

sup
x,y∈R:|x−y|≤κN−1

∣∣FV
μ̂ (x) − FV

μ̂ (y)
∣∣ = O

(
N−1 log(N)

)
. (3.31)

In particular, the above implies that FV
μ̂ is continuous and so R is an open set. We denote 

σqNN
(y) = q−Ny

N + uNqNy
N and perform the change of variables x = σqNN

(y) to rewrite the 
LHS in (3.30) as

ˆ

σ−1
N (R)

[
FV
μ̂

(
σqNN

(y)
)
− f
](

μ̃N (σqNN
(y)) − θ−1 · fq

(
σ−1
q (σqNN

(y))
)−1
)
σ′
qNN

(y)dy.
qN
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We observe that by Assumption 1 we have

fq

(
σ−1
q (σqNN

(y))
)−1

· σ′
qNN

(y) = 1 + O(N−1).

If we set O = σ−1
qNN

(R) and ρ̃N (y) = μ̃N (σqNN
(y)) · σ′

qNN
(y) we may rewrite the LHS in 

(3.30) as

ˆ

O

[
FV
μ̂

(
σqNN

(y)
)
− f
] (

ρ̃N (y) − θ−1) dy + O(N−1).

Since σqNN
(y) is an invertible diffeomorphism we know that O is an open subset 

of 
[
σ−1
qNN

(â), σ−1
qNN

(b̂)
]
. In particular, we can find a collection of disjoint open inter-

vals (si, ti), i ∈ J with J countable such that O = ∪i∈J (si, ti), upto the endpoints 
σ−1
qNN

(â), σ−1
qNN

(b̂).
Since the sum of the lengths of these intervals is at most M −1 +θ we have finitely many 

such that ti−si > θ ·N−1. Let us further subdivide such segments into segments of length 
exactly θ ·N−1, which are contained in (ti, si) as well as edge segments (si, x], [y, ti) with 
length at most θ ·N−1. In this way we obtain a finite collection {Ki := [ri, ri+θ/N ]}i∈J1

and a countable collection {[ci, di]}i∈J2 of intervals such that

ˆ

O

[FV
μ̂

(
σqNN

(y)
)
− f ]
(
ρ̃N (y) − θ−1) dy =

∑
i∈J1

ˆ

Ki

[
FV
μ̂

(
σqNN

(y)
)
− f
] (

ρ̃N (y) − θ−1) dy + (3.32)

∑
i∈J2

diˆ

ci

[
FV
μ̂

(
σqNN

(y)
)
− f
] (

ρ̃N (y) − θ−1) dy

and also di − ci ≤ θ/N , and at least one of the points ci, di is a boundary point of O. 
Our goal for the remainder is to show that the sums over J1 and J2 are both dominated 
by 0 + O(N−1 log(N)). This would conclude the proof of (3.30).

Notice that by the continuity of FV
μ̂

(
σqNN

(y)
)

and the definition of O, we know that 

on boundary points of this set we have that FV
μ̂

(
σqNN

(y)
)

= f . In particular, for the sum 

over J2 in (3.32)

∣∣∣FV
μ̂

(
σqNN

(y)
)
− f
∣∣∣ ≤ sup

0≤x,y≤M+θ
|x−y|≤N−1

∣∣∣FV
μ̂

(
σqNN

(y)
)
− FV

μ̂

(
σqNN

(y)
)∣∣∣ .

Since σ′
N (x) ≤ 2κ on [0, M + θ] for large N , we conclude from (3.31) that
qN
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sup
0≤x,y≤M+θ
|x−y|≤N−1

∣∣∣FV
μ̂

(
σqNN

(x)
)
− FV

μ̂

(
σqNN

(y)
)∣∣∣

≤ sup
x,y∈R

|x−y|≤2κN−1

∣∣FV
μ̂ (x) − FV

μ̂ (y)
∣∣ = O(N−1 log(N)). (3.33)

We conclude that the sum over J2 in (3.32) is bounded in absolute value by

O(N−1 log(N)) ·
∑
i∈J2

diˆ

ci

(
ρ̃N (y) + θ−1) dy = O(N−1 log(N)).

We are left with estimating the sum over J1, which we do in the next step.

Step 8. To conclude the proof what remains is to show

∑
m∈J1

rm+θ/Nˆ

rm

[
FV
μ̂

(
σqNN

(y)
)
− f
] (

ρ̃N (y) − θ−1) dy ≤ 0 + O(N−1 log(N)). (3.34)

We first recall that by definition μ̃N (x) =
∑N

i=1 N
p−1 · 1[�i, �i + N−p](x), where 

� = (�1, . . . , �N ) ∈ Xθ
N and 1K stands for the indicator of the set K. In particular,

ρ̃N (y) =
N∑
i=1

Np−1 · 1Ai(y) · σ′
qNN

(y), where Ai =
[
λi/N, σ−1

qNN
(�i + N−p)

]

and λi are such that �i = q−λi

N + uNqλi

N .
Since λi+1 − λi ≥ θ, we know that each interval Km = [rm, rm + θ/N ] intersects at 

most two of the intervals Ai. If it intersects at most one we know that

ρ̃N (Km) ≤
ˆ

Ai

ρ̃N (y)dy = 1/N.

If it intersects two then they must be Ai and Ai+1 for some i such that λi+1 − λi = θ. 
Let us note that σ′

qNN
(y) = σ′

qNN
(λi/N) + O(N−1) whenever y ∈ [λi/N, (λi + 2θ)/N ]. In 

addition, we have

σ−1
qNN

(�i + N−p) = λi/N + N−p ·
[
d

dx
σ−1
qNN

]
(�i) + O(N−2p) and

σ−1
qNN

(�i+1 + N−p) = λi+1/N + N−p ·
[
d

dx
σ−1
qNN

]
(�i) + O(N−p−1).

Combining the above estimates, and setting γ = N−p ·
[

d σ−1
N

]
(�i), we see that
dx qN
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ˆ

ρ̃N (Km) =

Km

Np−1 [1Ai(y) + 1Ai+1(y)] · σ′
qNN

(y)dy =

ˆ

Km

Np−1 [1[λi/N, λi/N + γ](y) + 1[λi+1/N, λi+1/N + γ](y)] · σ′
qNN

(λi/N)dy + O(N−2).

(3.35)

The key observation is that the integral in the second line of (3.35) is precisely σ′
qNN

(λi/N) ·
Np−1 · γ = N−1. Consequently, we obtain the estimate

ρ̃N (Km) ≤ N−1 + O(N−2) for each m ∈ J1.

Combining the latter with the fact that FV
μ̂

(
σqNN

(rm)
)
≥ f we see that

ˆ

Km

[FV
μ̂

(
σqNN

(y)
)
− f ]
(
ρ̃N (y) − θ−1) dy ≤

ˆ

Km

[
FV
μ̂

(
σqNN

(y)
)
− FV

μ̂

(
σqNN

(rm)
)] (

ρ̃N (y) − θ−1) dy + O(N−2) ≤

sup
0≤x,y≤M+θ
|x−y|≤N−1

2N−1
∣∣∣FV

μ̂

(
σqNN

(x)
)
− FV

μ̂

(
σqNN

(y)
)∣∣∣+ O(N−2) =

O(N−2 log(N)),

where the last equality follows from (3.33). Combining the above estimates over m ∈ J1
we get

∑
m∈J1

ˆ

Km

[
FV
μ̂

(
σqNN

(y)
)
− f
] (

ρ̃N (y) − θ−1) dy ≤ 0 + O(N−2 log(N)) · |J1|.

The above implies (3.34) since (θ/N) · |J1| ≤ M + θ − 1.

4. Nekrasov’s equations

In this section we present the main algebraic component in our arguments, which we 
call the Nekrasov’s equations – Theorem 4.1.1. In Section 4.2 we study the asymptotics 
of this equation and explain how it gives rise to a functional equation for the equilibrium 
measure from Section 3.

4.1. Formulation

As explained earlier the measure PN in (2.3) can be understood as a discretization 
of the continuous β log-gas to shifted quadratic lattices. In [15] the authors consider 
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a different discretization (called discrete β-ensembles) where the particles occupy (ap-
propriately shifted) integer lattices. They manage to obtain results about the global 
fluctuations of these particle systems and their analysis is based on appropriate discrete 
versions of the Schwinger–Dyson equations, which they also call the Nekrasov’s equa-
tions. More recently, in [33] the same Nekrasov’s equations were used to prove rigidity 
and edge universality for the models in [15].

Motivated by the success of the Nekrasov’s equations for the discrete β-ensembles, 
we develop appropriate q-analogues that are applicable for the measures (2.3). The key 
result is given below and can be understood as a version of the Nekrasov’s equation for 
shifted quadratic lattices.

Theorem 4.1.1. Let PN be a probability distribution on Xθ
N as in (2.3). Let M ⊂ C be 

open and

k⋃
i=1

([
q1−ai−Ni−1·θ, q−bi−(Ni−1)·θ

]
∪
[
uqbi+(Ni−1)·θ, uqai−1+Ni−1·θ

])
⊂ M.

Suppose there exist two functions Φ+(z) and Φ−(z) that are analytic in M and such that

w(σ(z);N)
w(σ(qz);N) = (q2z2 − uqθ)(z2 − u)Φ+(z)

(qθz2 − u)(q2z2 − u)Φ−(z) , whenever σ(z), σ(qz) ∈ ∪k
i=1[αi, β

−
i ] ,

(4.1)

where σ(z) = z + uz−1. We also assume that Φ± satisfy for each i ∈ {1, . . . , k}

Φ+
(
q−bi−(Ni−1)θ

)
= Φ− (q−ai−Ni−1·θ) = Φ+ (uqai−1+Ni−1·θ)
= Φ−

(
uqbi−1+(Ni−1)·θ

)
= 0. (4.2)

If we define

R̃(z) = Φ−(z) · EPN

[
N∏
i=1

σ(qθz) − �i
σ(z) − �i

]
+ Φ+(z) · EPN

[
N∏
i=1

σ(q1−θz) − �i
σ(qz) − �i

]
(4.3)

then R̃(z) is analytic in the same complex neighborhood M. Moreover, if Φ±(z) are 
polynomials of degree at most d, then so is R̃(z).

Proof. As usual, see (2.2) we set q−λi + uqλi = �i for i = 1, . . . , N . Then we have

σ(qθz) − �i
σ(z) − �i

= 1
qθ(q−λi − uqλi) · (qθz − q−λi)(qθz − uqλi)

(
1

z − q−λi
− 1

z − uqλi

)

σ(q1−θz) − �i = (4.4)

σ(qz) − �i
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qθ

(q−λi − uqλi) · (q1−θz − q−λi)(q1−θz − uqλi)
(

1
qz − q−λi

− 1
qz − uqλi

)
.

From the above we see that the possible singularities of R̃(z) in M are simple poles at 
points q−m and uqm whenever λi = m in the first line of (4.4) and λi = m − 1 in the 
second line of (4.4).

We will separately compute the residue contribution coming from each i = 1, . . . , N , 
which we fix for the remainder. We also let j ∈ {1, . . . , k} be the unique index such that 
Nj−1 + 1 ≤ i ≤ Nj . By definition, we know that λi varies in the set {C, C + 1, . . . , D}, 
where C = (i − 1) · θ + aj and D = (i − 1) · θ + bj − 1. If m lies in {C, C + 1, . . . , D}, we 
see that the residue at q−m is given by

∑
�∈Xθ

N |λi=m

A(�, i,m) +
∑

�∈Xθ
N |λi=m−1

B(�, i,m), (4.5)

where

A(�, i,m) = Φ−(q−m)(qθq−m − q−m)(qθq−m − uqm)
qθ(q−m − uqm)

⎡
⎣PN (�)

∏
j 	=i

σ(qθ−m) − �j
σ(q−m) − �j

⎤
⎦

B(�, i,m) = Φ+(q−m)qθ−1(q1−θq−m − q−m+1)(q1−θq−m − uqm−1)
(q−m+1 − uqm−1)

·

⎡
⎣PN (�)

∏
j 	=i

σ(q1−θ−m) − �j
σ(q1−m) − �j

⎤
⎦ .

Let us fix �1, . . . , �i−1 and �i+1, . . . , �N and set �+ = (�1, . . . , �i−1, q−m+uqm, �i+1, . . . ,
�N ), �− = (�1, . . . , �i−1, q−m+1 + uqm−1, �i+1, . . . , �N ) – notice that �+, �− are not neces-
sarily in Xθ

N . We claim that A(�+, i, m) + B(�−, i, m) = 0, where we set A and B to be 
zero if the argument is not in Xθ

N . If true, we would obtain that the sum in (4.5) is zero 
and so R is analytic near q−m. The latter statement is clear if both �± /∈ Xθ

N , hence we 
assume at least one of them belongs to the state space.

If m = aj + (i − 1) · θ then B(�−, i, m) = 0 since λi = aj − 1 + (i − 1) · θ (and so 
�− /∈ Xθ

N ). In addition, A(�+, i, m) = 0, since either i = Nj−1 + 1 and then Φ−(q−m) =
Φ−(q−aj−Nj−1θ) = 0 or i ≥ Nj−1 + 2 and then λi−1 = aj + (i − 2) · θ so that the 
factor 

(
σ(qθ−m) − �i−1

)
vanishes. Similarly, we have B(�−, i, m) = 0 = A(�+, i, m) if 

m = bj+(i −1) ·θ. If λi−1 = m −θ, we know that B(�−, i, m) = 0, since �− /∈ Xθ
N , but also 

A(�+, i, m) = 0 as it has the factor 
(
σ(qθ−m) − �i−1

)
. Similarly, we have B(�−, i, m) =

0 = A(�+, i, m) if λi+1 = m +θ. We may thus assume that λi−1 ≤ m −1 −θ < m +1 +θ ≤
λi+1, aj + 1 ≤ m − (i − 1)θ ≤ bj − 1 and that �± ∈ Xθ

N .
We next observe that

(qθq−m − q−m)(qθq−m − uqm)
θ −m m

· (q−m+1 − uqm−1)
θ−1 1−θ −m −m+1 1−θ −m m−1 =
q (q − uq ) q (q q − q )(q q − uq )
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= − (qθz2 − u)(q2z2 − u)
(q2z2 − uqθ)(z2 − u)

∣∣∣
z=q−m

.

Therefore, from the definition of Φ+ and Φ− we get

A(�+, i,m)
B(�−, i,m) = −PN (�+)w(σ(q−m+1);N)

PN (�−)w(σ(q−m);N)
∏
j 	=i

[
σ(qθ−m) − �j
σ(q−m) − �j

· σ(q1−m) − �j
σ(q1−θ−m) − �j

]
. (4.6)

Our goal for the remainder is to show that the right side in (4.6) is equal to −1.
In view of (2.3) we have that PN (�+)w(σ(q−m+1);N)

PN (�−)w(σ(q−m);N) equals

∏
1≤l<i

q−2θmΓq(m− λl + 1)Γq(m− λl + θ)
Γq(m− λl)Γq(m− λl + 1 − θ) · q2θ(m−1) Γq(m− λl − 1)Γq(m− λl − θ)

Γq(m− λl)Γq(m− λl + θ − 1)×

∏
1≤l<i

Γq(m + λl + v + 1)Γq(m + λl + v + θ)
Γq(m + λl + v)Γq(m + λl + v + 1 − θ) · Γq(m + λl − 1 + v)Γq(m + λl + v − θ)

Γq(m + λl + v)Γq(m + λl + v + θ − 1)×

∏
i<j≤N

q−2θλj
Γq(λj −m + 1)Γq(λj −m + θ)
Γq(λj −m)Γq(λj −m + 1 − θ) · q2θλj

Γq(λj −m + 1)Γq(λj −m + 2 − θ)
Γq(λj −m + 2)Γq(λj −m + 1 + θ)

∏
i<j≤N

Γq(λj + m + v + 1)Γq(λj + m + v + θ)
Γq(λj + m + v)Γq(λj + m + v + 1 − θ) · Γq(λj + m− 1 + v)Γq(λj + m + v − θ)

Γq(λj + m + v)Γq(λj + m + v + θ − 1) .

(4.7)

Using (2.4) and that qv = u we can rewrite (4.7) as

∏
1≤l<i

q−2θ (1 − qm−λl)(1 − qm−λl+θ−1)
(1 − qm−λl−1)(1 − qm−λl−θ) × (1 − uqm+λl)(1 − uqm+λl+θ−1)

(1 − uqm+λl−1)(1 − uqm+λl−θ)

∏
i<j≤N

(1 − qλj−m)(1 − qλj−m+1−θ)
(1 − qλj−m+1)(1 − qλj−m+θ) × (1 − uqλj+m)(1 − uqλj+m+1−θ)

(1 − uqλj+m+1)(1 − uqλj+m+θ) .
(4.8)

We next observe that for l < i we have

q−2θ (1 − qm−λl)(1 − qm−λl+θ−1)
(1 − qm−λl−1)(1 − qm−λl−θ) × (1 − uqm+λl)(1 − uqm+λl+θ−1)

(1 − uqm+λl−1)(1 − uqm+λl−θ) =

(q−m − q−λl)(q1−m−θ − q−λl)
(q1−m − q−λl)(qθ−m − q−λl) × (1 − uqm+λl)(1 − uqm+λl+θ−1)

(1 − uqm+λl−1)(1 − uqm+λl−θ) =

[σ(q−m) − σ(q−λl)] · [σ(q1−θ−m) − σ(q−λl)]
[σ(q1−m) − σ(q−λl)] · [σ(qθ−m) − σ(q−λl)] ,

where we used that (z + uz−1 − t − ut−1) = (z − t)(1 − uz−1t−1).
One similarly establishes that for i < j we have

(1 − qλj−m)(1 − qλj−m+1−θ)
λj−m+1 λj−m+θ

× (1 − uqλj+m)(1 − uqλj+m+1−θ)
λj+m+1 λj+m+θ

=
(1 − q )(1 − q ) (1 − uq )(1 − uq )
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(q−λj − q−m)(q−λj − q−m+1−θ)
(q−λj − q−m+1)(q−λj − q−m+θ) × (1 − uqλj+m)(1 − uqλj+m+1−θ)

(1 − uqλj+m+1)(1 − uqλj+m+θ) =

[σ(q−λj ) − σ(q−m)] · [σ(q−λj ) − σ(q1−θ−m)]
[σ(q−λj ) − σ(q1−m)] · [σ(q−λj ) − σ(qθ−m)] .

The last two calculations together with (4.8) show the right side of (4.6) is equal to −1
as desired. This proves that R̃ is analytic near q−m. One can use analogous arguments 
to show that R is also analytic near the points uqm and so on all of M.

Notice that if Φ±(z) are polynomials of degree at most d then R̃(z) is entire from the 
first part of the theorem, which grows as O(|z|d) as |z| → ∞. By Liuoville’s theorem 
R̃(z) is a polynomial of degree at most d. �
Remark 4.1.2. Theorem 4.1.1 also holds if u = 0, where (4.1) is replaced with w(z;N)

w(qz;N) =

qθ · Φ+(z)
Φ−(z) and the second two equalities in (4.2) are removed. In this case (4.4) only 

produces possible poles at z = q−m. From here the proof proceeds in the same way and 
can be found as [15, Theorem 4.2].

4.2. Asymptotics of the Nekrasov’s equations

In this section we derive some properties of the equilibrium measure μ and Rμ, Qμ

from (2.12) using the asymptotics of the Nekrasov’s equation (4.3) as N → ∞ under 
Assumptions 1–4 and 6–7. We assume the same notation as in Section 2.2.

Lemma 4.2.1. Suppose that Assumptions 1–4 and 6 from Section 2.2 hold. Then the 
functions Rμ and Q2

μ from (2.12) are analytic on M. If Φ±
N are polynomials of degree 

at most d then so is Rμ and Q2
μ is a polynomial of degree at most 2d. If Assumption 7

also holds then Rμ and Q2
μ are real analytic on M ∩ R.

Proof. We observe that by Assumptions 4, and 6, the Nekrasov’s equation (4.3) holds 
and so

R̃N (z) := Φ−
N (z) · EPN

[
N∏
i=1

σN (qθNz) − �i
σN (z) − �i

]
+ Φ+

N (z) · EPN

[
N∏
i=1

σ(q1−θ
N z) − �i

σ(qNz) − �i

]
(4.9)

defines an analytic function on M. For μN as in Section 3.1 define

Gd
N (z) := N log qN · (z − uNz−1) ·

ˆ
μN (dx)

z + uNz−1 − x
.

R
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One readily observes that

N∏
i=1

σN (qθNz) − �i
σN (z) − �i

= exp
[
θGd

N (z) + O(N−1)
]
,

N∏
i=1

σN (q1−θ
N z) − �i

σN (qNz) − �i
= exp

[
−θGd

N (z) + O(N−1)
]
,

where the constants in the big O notation are uniform as z varies over compact subsets 
of M \

{
∪k
i=1[âi, b̂i]

}
. In addition, by Theorem 3.1.1 we know that Gd

N (z) converges in 

probability to Gμ(z + uz−1). An application of the Bounded convergence theorem and 
Assumption 4 implies that

lim
N→∞

R̃N (z) = Rμ(z), (4.10)

where the convergence is uniform over compact subsets of M \
{
∪k
i=1[âi, b̂i]

}
. Since 

R̃N (z) are analytic in M we conclude the same is true for Rμ(z). Next, since Q2
μ(z) =

R2
μ(z) − 4Φ+(z)Φ−(z), we conclude from Assumption 4 that Q2

μ(z) is also analytic in 
M. The real analyticity of Rμ and Q2

μ is a consequence of the one assumed for Φ± in 
Assumption 7.

If Φ±
N are polynomials of degree at most d then by Theorem 4.1.1 we know that so 

is R̃N (z). The uniform convergence of R̃N (z) over compact sets in M \
{
∪k
i=1[âi, b̂i]

}
is 

equivalent to the convergence of the coefficients of the polynomials, and so Rμ(z) is a 
polynomial of degree at most d. Finally, the same argument shows Φ±(z) are polynomials 
of degree at most d and Q2

μ(z) = R2
μ(z) − 4Φ+(z)Φ−(z) is a polynomial of degree at 

most 2d. �
Our next goal is to give a formula for the equilibrium measure μ in Theorem 3.1.1

in terms of the functions Rμ and Φ± but we first introduce some notation that will be 
useful. From Assumption 7 we know that V is real analytic in an open neighborhood of 
∪k
i=1[âi, ̂bi] and from [51] we conclude that μ has a continuous density on each interval 

[âi, ̂bi]. Borrowing terminology from [4], each of the intervals [âi, ̂bi] is split into three 
types of regions:

(1) Maximum (with respect to inclusion) closed intervals where μ(x) = 0 are called 
voids.

(2) Maximal open intervals where 0 < μ(x) < θ−1 ·fq(σ−1
q (x))−1 are called bands (recall 

fq was defined in Section 2.2).
(3) Maximal closed intervals where μ(x) = θ−1 · fq(σ−1

q (x))−1 are called saturated re-
gions.



3104 E. Dimitrov, A. Knizel / Journal of Functional Analysis 276 (2019) 3067–3169
Lemma 4.2.2. Suppose that Assumptions 1–4 and 6–7 from Section 2.2 hold. Then μ has 
density3

μ(y0 + uy−1
0 ) = 1

θ log(q)π(y0 − uy−1
0 )

· arccos
(

Rμ(y0)
2
√

Φ−(y0)Φ+(y0)

)
, (4.11)

for y0 ≥ 1 such that y0 + uy0 ∈ ∪k
i=1[âi, ̂bi] and 0 otherwise.

Proof. We will assume that u > 0, the case u = 0 is simpler and can be handled similarly. 
As discussed earlier, Assumption 7 implies μ(x) is continuous on each interval [âi, ̂bi]. 
By assumption there are unique d̂i > ĉi ≥ 1 such that σ(ĉi) = âi and σ(d̂i) = b̂i for 
i = 1, . . . , k where σ(z) = z + uz−1. Consequently, σ−1([âi, ̂bi]) = [ĉi, d̂i] ∪ [ud̂−1

i , uĉ−1
i ]

for i = 1, . . . , k and all 2k of the latter intervals are disjoint. Let

ψ(y) :=

⎧⎨
⎩μ(σ(y)) if y ∈ ∪k

i=1

{
[ĉi, d̂i] ∪ [ud̂−1

i , uĉ−1
i ]
}
,

0 else.

It follows from (2.11) that

(z − uz−1)Gμ(z + uz−1) =
k∑

i=1

d̂iˆ

ĉi

ψ(y)(1 − uy−2)
[

z

z − y
− uz−1

uz−1 − y

]
dy.

Using that

z

z − y
= y

z − y
+ 1, ψ(y) = ψ(uy−1) and

k∑
i=1

ud̂−1
iˆ

uĉ−1
i

ψ(y)(1 − uy−2)dy = 1 we get

θ log(q)(z − uz−1)Gμ(z + uz−1) = θ log(q) + F (z), where

F (z) :=
ˆ

R

θ log(q)ψ(y)|y − uy−1|
z − y

dy.

Using [34, Theorem 2.1] and [69, Chapter 5, Theorem 93] we conclude that F (x + iy)
defines a regular function for y > 0 and

lim
ε→0+

F (x + iε) = f(x) − ig(x) for a.e. x ∈ R, where f, g ∈ L2(R) are given by

g(x) = θ log(q)π · ψ(x)|x− ux−1| and f(x) = −P

ˆ

R

g(t)
t− x

dx,
(4.12)

3 Throughout the paper we denote by arccos(x) the function, which is π on (−∞, −1], 0 on [1, ∞), and 
the usual arccosine function on (−1, 1).
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and P means that we take the integral in the principal value sense. Since g is continu-
ous on ∪k

i=1[ĉi, d̂i], we can apply [56, Chapter 4] and conclude that f is continuous on 
∪k
i=1(ĉi, d̂i).
Let us take z = y0 + iε with y0 ∈ ∪k

i=1(ĉi, d̂i) and let ε converge to 0+ in (2.12). This 
gives

Rμ(y0) = Φ−(y0)eθ log(q) · exp (f(y0) − ig(y0))+Φ+(y0) · e−θ log(q) exp (−f(y0) + ig(y0)) .

The above defines a quadratic equation for exp (f(y0) − ig(y0)) and we conclude that

{exp (f(y0) ± ig(y0))} =

⎧⎨
⎩

Rμ(y0) ±
√
R2

μ(y0) − 4Φ−(y0)Φ+(y0)

2Φ−(y0)eθ log(q)

⎫⎬
⎭ , (4.13)

where the square root is with respect to the principal branch and assumed in H for 
negative values.

Suppose that y0 ∈ (ĉi, d̂i) and Rμ(y0)
2
√

Φ−(y0)Φ+(y0)
∈ (−1, 1). Then the numbers in (4.13)

are complex conjugates with non-zero imaginary part, and we have

exp (f(y0) + ig(y0)) =
Rμ(y0) + i

√
−R2

μ(y0) + 4Φ−(y0)Φ+(y0)

2Φ−(y0)eθ log(q) , since both lie in H.

Taking the argument on both sides of the above equation we see that

g(y0) = arccos
(

Rμ(y0)
2
√

Φ−(y0)Φ+(y0)

)
∈ (0, π). (4.14)

The above computation also shows that

y0 + uy−1
0 belongs to a band of μ in [âi, b̂i] if and only if Rμ(y0)

2
√

Φ−(y0)Φ+(y0)
∈ (−1, 1).

(4.15)

If y0 ∈ (ĉi, d̂i) and Rμ(y0)
2
√

Φ−(y0)Φ+(y0)
≥ 1 then the numbers in (4.13) are real and so 

g(y0) = 0 or π, i.e. y0 + uy−1
0 belongs to a void or saturated region in [âi, ̂bi] for the 

measure μ, which we denote by [s, t]. Notice that [s, t] 
= [âi, ̂bi] by our assumption on 
the filling fractions νi. This implies that there is a band of μ in [âi, ̂bi] either ending at 
s + us−1 or starting from t + ut−1. By continuity of g and (4.15) we see that g(s) = 0
or g(t) = 0, which implies that g(y0) = 0. A similar argument shows that g(y0) = π

if y0 ∈ (ĉi, d̂i) and Rμ(y0)
2
√

Φ−(y0)Φ+(y0)
≤ −1. Combining the above statements with the 

definition of g concludes the proof of the lemma. �
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We end the section by making a remark about the function Gd
N(z) from the proof of 

Lemma 4.2.1, whose exponent is the observable we obtain from the Nekrasov’s equation.

Remark 4.2.3. Let us assume for simplicity that k = 1 and set

ψN = 1
2N

N∑
i=1

(
δ(q−λi) + δ(uqλi)

)
,

where λi is such that q−λi + uqλi = �i and we have dropped the dependence of q and u
on N to ease notation. Then we have that

(z−uz−1)
ˆ

R

μN (dx)
z + uz−1 − x

=
ˆ

R

(z − uz−1)ψN (dy)
z + uz−1 − y − uy−1 =

ˆ

R

ψN (dy)
[

z

z − y
− uz−1

uz−1 − y

]
.

Using that z
z−y = y

z−y + 1 we get

ˆ

R

ψN (dy)
[

z

z − y
− uz−1

uz−1 − y

]
=
ˆ

R

ψN (dy)
[

y

z − y
− y

uz−1 − y

]
=

ˆ

R

ψN (dy)
[

y

z − y
− uy−1

uz−1 − uy−1

]
= 1 +

ˆ

R

2y · ψN (dy)
z − y

.

The above computation shows that, upto a constant and negligible error, the observ-
able Gd

N (z) we obtain from the Nekrasov’s equation is the Stieltjes transform of the 
(deformed) empirical measure

1
N

N∑
i=1

q−λi · δ(q−λi) + 1
N

N∑
i=1

uqλi · δ(uqλi).

In [15] the Nekrasov’s equation produced the exponent of the usual Stieltjes transform 
for the underlying particle system as an observable and the vanishing conditions on Φ±

the authors assumed, correspond to boundary conditions for that system. In our case, 
we see that in a sense we have two copies of particles sitting at q−λi and uqλi and the 
vanishing assumptions in Theorem 4.1.1 play the role of boundary conditions for each 
copy. The authors are not aware of such a phenomenon occurring in other systems and 
would like to have a better conceptual understanding for its appearance.

5. Central limit theorem: Part I

Our goal in this and the next section is to study using Nekrasov’s equation the fluc-
tuations of the empirical measures μN , for which we proved the law of large numbers in 
Section 3. In Section 5.1 we introduce a 2m-parameter deformation of the measures PN
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and describe a certain map Υv. In Section 5.2 we state the main technical result of the 
section – Theorem 5.2.1, and deduce some corollaries from it. In Section 5.3 we explain 
how to employ Nekrasov’s equation for the deformed measures. In Section 5.4 we give 
the proof of Theorem 5.2.1 modulo a certain asymptotic statement in equation (5.26), 
whose proof is the focus of Section 6.

5.1. Deformed measure

We adopt the same notation as in Section 2.2 and assume that Assumptions 1–6 hold. 
Introduce the usual random empirical measures μN on R through

μN = 1
N

N∑
i=1

δ (�i) , where (�1, . . . , �N ) is PN -distributed. (5.1)

We also define the (continuous, deterministic) probability measures

μ̂N as in Assumption 5. (5.2)

It follows from Corollary 3.1.4 that μN − μ̂N converges weakly in probability to 0. Our 
goal is to understand the fluctuations of μN − μ̂N .

Let us introduce the Stieltjes transforms of μN and μ̂N through

Gd
N (z) =

ˆ

R

μN (dx)
z − x

and Gc
N (z) =

ˆ

R

μ̂N (dx)
z − x

. (5.3)

Observe that the above formulas make sense whenever z does not lie in the support of 
the measures, and they define holomorphic functions there. Our study of μN − μ̂N goes 
through understanding Gd

N(z) − Gc
N (z) as N → ∞. For that we introduce a deformed 

version of PN following an approach that is similar to the one in [15].
Take 2m parameters t = (t1, . . . , tm), v = (v1, . . . , vm) such that va+ta−y 
= 0 for all 

a = 1, . . . , m and all y ∈ ∪k
j=1[âj , ̂bj ], and let the deformed distribution Pt,v

N be defined 
through

P
t,v
N (�1, . . . , �N ) = Z(t,v)−1

∏
1≤i<j≤N

(�i − �j)2
N∏
i=1

[
w(�i;N)

k∏
a=1

(
1 + ta

va − �i

)]
. (5.4)

If m = 0 we have Pt,v
N = PN is the undeformed measure. In general, Pt,v

N may be a 
complex-valued measure but we always choose the normalization constant Z(t, v) so 
that 

∑
�∈X

P
t,v
N (�) = 1. In addition, we require that the numbers ta are sufficiently close 

to zero so that Z(t, v) 
= 0.
Let us denote

ΔGN (z) = N(Gd
N (z) −Gc

N (z)), where (�1, . . . , �N ) is P
t,v
N -distributed. (5.5)
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Abusing notation we will suppress the dependence on t, v of μN , Gd
N and ΔGN when 

we replace PN with Pt,v
N in (5.1) and use the same letters. It will be clear from context, 

which formula we mean.
The definition of the deformed measure Pt,v is motivated by the following observation.

Lemma 5.1.1. Let ξ be a bounded random variable. For any m ≥ 1 the mth mixed deriva-
tive

∂m

∂t1 · · · ∂tm
E
P
t,v
N

[ξ]
∣∣∣∣
ta=0,1≤a≤m

(5.6)

is the joint cumulant of the m + 1 random variables ξ, NGd
N (v1), . . . , NGd

N (vm) with 
respect to PN .

Remark 5.1.2. The above result is analogous to Lemma 2.4 in [15], which in turn is based 
on earlier related work in random matrix theory [30,54]. We present a proof below for 
the sake of completeness.

Proof. One way to define the joint cumulant of m + 1 bounded random variables 
ξ0, . . . , ξm is through

∂m+1

∂t0∂t1 · · · ∂tm
log
(
E exp

(
m∑
i=0

tiξi

))∣∣∣∣∣
ti=0,0≤i≤m

.

Performing the differentiation with respect to t0 we can rewrite the above as

∂m

∂t1 · · · ∂tm
E [ξ0 exp (

∑m
i=1 tiξi)]

E [exp (
∑m

i=1 tiξi)]

∣∣∣∣∣
ti=0,1≤i≤m

.

Setting ξ0 = ξ and ξi = NGd
N (vi) for i = 1, . . . , m and observing that

exp
(
tNGd

N (z)
)

=
N∏
i=1

(
1 + t

z − �i

)
+ O(t2) as t → 0,

we obtain the desired statement. �
In the remainder of this section we introduce some notation from the theory of hy-

perelliptic integrals. We will require the latter to formulate our main result in the next 
section.

Fix k simple positively oriented contours γ1, . . . , γk such that each γj encloses the 
segment [âj , ̂bj ] (and thus also [rj, sj ] from Assumption 5) for j = 1, . . . , k. We assume 
that γj are pairwise disjoint and do not enclose each other.
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Let P (z) = p0 + p1z + · · · + pk−2z
k−2 be a polynomial of degree at most k − 2, and 

define

Ω : P (z) →

⎛
⎝ 1

2πi

˛

γ1

P (z)dz∏k
j=1
√

(z − rj)(z − sj)
, · · · , 1

2πi

˛

γk

P (z)dz∏k
j=1
√

(z − rj)(z − sj)

⎞
⎠ .

(5.7)

Notice that the sum of the integrals in (5.7) equals (minus) the residue of
P (z)dz∏k

j=1
√

(z−rj)(z−sj)
at infinity, which is zero. Therefore, Ω defines a linear map between 

(k − 1)-dimensional vector spaces. The map Ω is rather complicated, but it is known to 
be an isomorphism of vector spaces for k ≥ 2 (see [29, Section 2.1]).

Using Ω we can now define a different map Υz as follows. The map Υz is defined in 
terms of the k contours γj and the points rj , sj for j = 1, . . . , k. It is a linear map on 
the space of continuous functions f(z) on γ = ∪k

j=1γj , whose integral over γ is zero and 
is given by

Υz[f ] = f(z) + P (z)∏k
j=1
√

(z − rj)(z − sj)
, (5.8)

where P (z) is the unique polynomial of degree at most k−2 such that for each j = 1, . . . , k
we have

˛

γj

Υz[f ]dz = 0.

The polynomial P (z) can be evaluated in terms of the map Ω via

P = Ω−1

⎛
⎝− 1

2πi

˛

γ1

f(z)dz, · · · ,− 1
2πi

˛

γk

f(z)dz

⎞
⎠ . (5.9)

We emphasize that the map f → Υz[f ] does not depend on t, v.
We will require several properties of Υz, which can easily be deduced from the above 

definitions. We summarize them in the following proposition without proof.

Proposition 5.1. The function Υz satisfies the following properties:

(1) it is Lipschitz continuous in the uniform norm on the contours γj, j = 1, . . . , k;

(2) if P̃ (z) is a polynomial of degree at most k − 2 then Υz

[
P̃ (z)∏k

j=1
√

(z−rj)(z−sj)

]
= 0;

(3) if ΥN
z is defined in terms of rj(N), sj(N) and rj(N) − rj = O(N−1 log(N)) =

sj(N) −sj for j = 1, . . . , k then for any f we have ΥN
z [f ] −Υz[f ] = O(N−1 log(N)).
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5.2. Main result

At this time we isolate the main technical result we prove about ΔGN (z) and deduce 
a couple of easy corollaries from it. We continue with the notation from the previous 
section.

Theorem 5.2.1. Suppose Assumptions 1–6 in Section 2.2 hold. Let U := C \{∪k
j=1[âj , ̂bj ] ∪

{±2
√
u}} and Γ = ∪k

j=1γj ⊂ U , where each γj is a positively oriented contour that 
encloses the segment [âj , ̂bj ] for j = 1, . . . , k, γj are pairwise disjoint and do not enclose 
each other. We set Uu to be the single unbounded component of U \ Γ.

Fix m ∈ N and v0, . . . , vm ∈ Uu. For m ≥ 2 we have

∂m

∂t1 · · · ∂tm
E
P
t,v
N

[ΔGN (v0)]
∣∣∣∣
ta=0,1≤a≤m

= O(N−1 log(N)), (5.10)

while for m = 1

∂

∂t1
E
P
t,v
N

[ΔGN (v0)]
∣∣∣∣
t1=0

= O(N−1 log(N))+

Υv0

⎡
⎣ 1

4θπi ·
∏k

j=1
√

(v0 − r̂j) (v0 − ŝj)

˛

Γ

∏k
j=1
√

(z − r̂j) (z − ŝj)
(z − v1)2(z − v0)

dz.

⎤
⎦ (5.11)

In the above Υv0 is as in (5.8) for the contours γj and the points r̂j , ̂sj for j = 1, . . . , k as 
in Assumption 5. Finally, the constants in the big O notation are uniform as v0, v1, . . . , vk
vary over compact subsets of Uu.

Remark 5.2.2. We will prove Theorem 5.2.1 for the case u > 0. The case u = 0 can be 
handled with minor modifications of the argument.

Theorem 5.2.3. Assume the same notation as in Theorem 5.2.1. As N → ∞, the ran-
dom field N(Gd

N (z) − EPN

[
Gd

N (z)
]
), z ∈ U , converges (in the sense of joint moments, 

uniformly in z in compact subsets of U) to a centered complex Gaussian random field 
with second moment

lim
N→∞

N2 (
EPN

[
Gd

N (z1)Gd
N (z2)

]
− EPN

[
Gd

N (z1)
]
EPN

[
Gd

N (z2)
])

=: Cθ(z1, z2), where

(5.12)

Cθ(z1, z2) = θ−1 · Υz2

[
− 1

2(z1 − z2)2
+

k∏
j=1

√
(z1 − r̂j)(z1 − ŝj)√
(z2 − r̂j)(z2 − ŝj)

×

(
1

(z1 − z2)2
− 1

2(z1 − z2)

k∑
j=1

(
1

z1 − r̂j
+ 1

z1 − ŝj

))]
.

(5.13)
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Remark 5.2.4. Since GN (z) = GN (z), we can use (5.13) to completely characterize the 
asymptotic covariance of the (recentered) random field GN(z).

Remark 5.2.5. When m = 1 the covariance Cθ(z1, z2) can be written down explicitly as

Cθ(z1, z2) = − θ−1

2(z1 − z2)2

(
1 − (z1 − r̂1)(z2 − ŝ1) + (z2 − r̂1)(z1 − ŝ1)

2
√

(z1 − r̂1)(z1 − ŝ1)
√

(z2 − r̂1)(z2 − ŝ1)

)
.

When m = 2 one can also find an explicit form for Cθ(z1, z2), involving the values of 
complete elliptic integrals, but we do not pursue it here, cf. [7].

Remark 5.2.6. In the continuous log-gas setting the covariance has the same form as 
(5.13), cf. [17,39,64]. A similar result also holds for the discrete β-ensembles in [15].

Proof. Fix v0, . . . , vm ∈ U and Γ as in Theorem 5.2.1 so that v0, . . . , vm ∈ Uu. Setting 
ξ = ΔGN (v0) in Lemma 5.1.1 we know that the joint cumulant of ΔGN (v0), NGd

N (v1),
. . . , NGd

N (vm) is given by

∂m

∂t1∂t2 · · · ∂tm
E
P
t,v
N

[ΔGN (v0)]
∣∣∣∣
ta=0,1≤a≤m

.

Since cumulants remain unchanged under constant shifts, we see that the above formula 
is also the joint cumulant of N(Gd

N(vi) − EPN

[
Gd

N (vi)
]
) for i = 0, . . . , m. From Theo-

rem 5.2.1 we see that as N → ∞ all 3rd and higher order cumulants vanish, which proves 
the asymptotic Gaussianity of the field N(Gd

N (z) − EPN

[
Gd

N (z)
]
).

As N(Gd
N (z) − EPN

[
Gd

N (z)
]
) are centered for each N so is the limiting field. From 

(5.11) we also have the following formula for the limiting covariance (which is the sec-
ond joint cumulant) of N(Gd

N (z1) − EPN

[
Gd

N (z1)
]
) and N(Gd

N (z2) − EPN

[
Gd

N (z2)
]
) for 

z1, z2 ∈ Uu

Υz2

⎡
⎣ 1

4θπi ·
∏k

j=1
√

(z2 − r̂j) (z2 − ŝj)

˛

Γ

∏k
j=1
√

(z − r̂j) (z − ŝj)
(z − z1)2(z − z2)

dz

⎤
⎦ .

Evaluating and adding the (minus) residues at z = z1 and z = z2 we obtain (5.13). �
Theorem 5.2.7. Assume the same notation as in Theorem 5.2.1. For m ≥ 1 let f1, . . . , fm
be real analytic functions in U and define

Lfi = N

ˆ

R

fj(x)μN (dx) −NEPN

⎡
⎣ˆ
R

fj(x)μN (dx)

⎤
⎦ for i = 1, . . . ,m.

Then the random variables Lfi converge jointly in the sense of moments to an 
m-dimensional centered Gaussian vector X = (X1, . . . , Xm) with covariance
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Cov(Xi, Xj) = 1
(2πi)2

˛

Γ

˛

Γ

fi(s)fj(t)Cθ(s, t)dsdt with Cθ(s, t) as in (5.13).

Proof. Observe that when f is real analytic in U we have for all large N

Lf = N

2πi

˛

Γ

f(z)(GN (z) − EPN
[GN (z)])dz,

where Γ is as in Theorem 5.2.1. Therefore, for any joint moment of Lfi we have

EPN

[
Lfi1

· · · Lfik

]
=

1
(2πi)k

˛

Γ

· · ·
˛

Γ

EPN

[
k∏

m=1
N(GN (zm) − EPN

[GN (zm)])
]

k∏
m=1

fim(zm)dzm. (5.14)

Since cumulants of centered random variables are linear combinations of moments and 
vice versa, we conclude that all third and higher order cumulants of Lfi vanish as N → ∞
(here we used Theorem 5.2.3, which implies the third and higher order joint cumulants of 
N(GN (zi) − EPN

[GN (zi)]) vanish uniformly when zi ∈ Γ). This proves the Gaussianity 
of the limiting vector X. Since Lfi are centered for each N the same is true for X. To 
get Cov(Xi, Xj) we can set k = 2, i1 = i and i2 = j in (5.14) and send N → ∞. In view 
of (5.12) we conclude that

Cov(Xi, Xj) = 1
(2πi)2

˛

Γ

˛

Γ

fi(s)fj(t)Cθ(s, t)dsdt, where Cθ(s, t) is as in (5.13). �

5.3. Application of Nekrasov’s equation

In this section we begin the proof of Theorem 5.2.1 emphasizing the contribution of 
the Nekrasov’s equation. In what follows we use the same notation as in the previous 
section and Section 2.2, dropping the dependence on N from parameters.

The first key observation we make is that Pt,v
N satisfies Nekrasov’s equation with

Φ+,t,v
N (z) = Φ+

N (z)
m∏

a=1
[(va + ta − σN (z))(va − σN (qz))] ,

Φ−,t,v
N (z) = Φ−

N (z)
m∏

a=1
[(va + ta − σN (qz))(va − σN (z))] , where

(5.15)

Φ±
N are as in Assumption 4 and we recall that σN (z) = z + uz−1. Notice that Φ±,t,v

N (z)
are also analytic in M. Denoting the RHS of the Nekrasov’s equation for the measure 
P

t,v
N by Rt,v

N (z) we see from Theorem 4.1.1 that Rt,v
N (z) is analytic in M.
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Using q = q1/N +O(N−2) and u = u +O(N−1) we obtain asymptotic expansions for 
Φ±,t,v

N

Φ±,t,v
N (z) = [Φ±(z) + Ψ±

N (z)]
m∏

a=1
[(va + ta − σ(z))(va − σ(z))] + Rem±,t,v

1,N (z),

Ψ+
N (z) := ϕ+

N (z) − Φ+(z) ·
m∑

a=1

[
(log q/N)

(
z − uz−1)− (u− u)z−1

va − σ(z) − (u− u)z−1

va + ta − σ(z)

]
,

Ψ−
N (z) := ϕ−

N (z) − Φ−(z) ·
m∑

a=1

[
(log q/N)

(
z − uz−1)− (u− u)z−1

va + ta − σ(z) − (u− u)z−1

va − σ(z)

]
,

(5.16)

where σ(z) = z + uz−1 and Rem±,t,v
1,N (z) = O(N−2) uniformly over compact subsets 

of M.
The second important observation is that we have the following asymptotic expansion

N∏
i=1

σN (qθz) − �i
σN (z) − �i

= exp
[
θGc

N (z) + θΔGN (z) + W−
N (z) + Rem−

2,N (z)
]
,

N∏
i=1

σN (q1−θz) − �i
σN (qz) − �i

= exp
[
−θGc

N (z) − θΔGN (z) + W+
N (z) + Rem+

2,N (z)
]
,

(5.17)

where G
d/c
N (z) = N log q · (z − uz−1) ·Gd/c

N (z + uz−1),

ΔGN (z) = Gd
N (z) −Gc

N (z) with Gc
N and Gd

N as in (5.3);
(5.18)

W−
N (z) = θ log q

[
z(θ/2) · ∂zGd

N (z) + (u− u)N

·
[
∂zG

c
N (z + uz−1) − z−1Gc

N (z + uz−1)
]]
,

W+
N (z) = θ log q

[
z(θ/2 − 1)∂zGd

N (z)

− (u− u)N
[
∂zG

c
N (z + uz−1) − z−1Gc

N (z + uz−1)
]]
.

(5.19)

The remainders Rem±
2,N (z) = O(N−2) are uniform in z on compact subsets of O, 

which is the inverse image of U under the map z → z + uz−1. Explicitly, if ĉj , d̂j
are the points in [1, q−M] with ĉj + uĉ−1

j = âj and d̂j + ud̂−1
j = b̂j then O :=

C \
{
{0,√u,−√

u} ∪ ∪k
j=1[ĉj , d̂j ] ∪ ∪k

j=1[ud̂
−1
j , uĉ−1

j ]
}

.
The third observation we require comes from Assumption 5 and Lemma 4.2.1, which 

imply:
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If RN (z) := Φ−(z)eθG
c
N (z) + Φ+(z)e−θGc

N (z),

QN (z) := Φ−(z)eθG
c
N (z) − Φ+(z)e−θGc

N (z),

then RN is analytic in M and QN (z) = HN (z) ·
k∏

j=1

√
(σ(z) − rj) (σ(z) − sj),

(5.20)

where HN is analytic and non-vanishing in M.
We detail the consequence of the above three observation. Nekrasov’s equation for 

P
t,v
N reads

Rt,v
N (z) = Φ−,t,v

N (z) · E
P
t,v
N

[
N∏
i=1

σN (qθz) − �i
σN (z) − �i

]
+ Φ+,t,v

N (z) · E
P
t,v
N

[
N∏
i=1

σN (q1−θz) − �i
σN (qz) − �i

]
.

Combining the above with (5.16), (5.17) and (5.20) we conclude that

Rt,v
N (z) = Remt,v

N (z) +
m∏

a=1
[(va + ta − σ(z))(va − σ(z))] ×

[
E
P
t,v
N

[θΔGN (z)] ·QN (z)

+ Ψ−
N (z)eθG

c
N (z) + Ψ+

N (z)e−θGc
N (z) + W̃N (z) + RN (z)

]
, where (5.21)

W̃N (z) = Φ−(z)eθG
c
N (z)W̃−

N (z) + Φ+(z)e−θGc
N (z)W̃+

N (z), with

W̃−
N (z) = θ log q

[
z(θ/2)∂zGc

N (z) + (u− u)N ·
[
∂zG

c
N (z + uz−1) − z−1Gc

N (z + uz−1)
]]
,

W̃+
N (z) = θ log q

[
z(θ/2 − 1)∂zGc

N (z) −

(u− u)N
[
∂zG

c
N (z + uz−1) − z−1Gc

N (z + uz−1)
]]
,

Remt,v
N (z) = Rem+,t,v

1,N (z)E
P
t,v
N

[
N∏
i=1

σ(qθz) − �i
σ(z) − �i

]
+

Rem−,t,v
1,N (z)E

P
t,v
N

[
σN (q1−θz) − �i
σN (qz) − �i

]
+

m∏
a=1

[(va + ta − σ(z))(va − σ(z))] × [AN + BN + CN + DN ] and (5.22)

AN = Φ−(z) · E
P
t,v
N

[
N∏
i=1

σN (qθz) − �i
σN (z) − �i

− eθΔGN (z)+θGc
N (z) − eθG

d
N (z) · W̃−

N (z)
]

+

Φ+(z) · E
P
t,v
N

[
σN (q1−θz) − �i
σN (qz) − �i

− e−θΔGN (z)−θGc
N (z) − e−θGd

N (z) · W̃+
N (z)
]
,

BN = Φ−(z)W̃−
N (z) · E

P
t,v
N

[
eθG

d
N (z) − eθG

c
N (z)
]
Φ+(z)W̃+

N (z)

· E t,v

[
e−θGd

N (z) − e−θGc
N (z)
]
,

PN
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CN = Φ−(z) · eθGc

N (z) · E
P
t,v
N

eθΔGN (z) − θΔGN (z) − 1 +

Φ+(z) · e−θGc
N (z) · E

P
t,v
N

[
e−θΔGN (z) + θΔGN (z) − 1

]
,

DN = Ψ−
N (z) · E

P
t,v
N

[
σN (qθz) − �i
σN (z) − �i

− eθG
c
N (z)
]

+ Ψ+
N (z) · E

P
t,v
N

[
N∏
i=1

σN (q1−θz) − �i
σN (qz) − �i

− e−θGc
N (z)

]
.

Let γ1, . . . , γk be as in the statement of the theorem and v0, . . . , vm lie outside of 
Γ = ∪k

j=1γj . We let γ′
j , γ

′′
j for j = 1, . . . , k be a positively oriented contours such that for 

each j = 1, . . . , k

• γ′
j encloses the interval [ĉj , d̂j ] and excludes the points ±√

u and 0,
• σ(γ′

j) is contained in the bounded component of C \ γj ,
• γ′′

j := ω(γ′
j), where ω(z) = u

z ,
• {γ′

j , γ
′′
j }kj=1 are all disjoint and contained in M.

The existence of such contours is ensured by our assumptions on γj. Observe that by 
construction γ′′

j is a positively oriented contour that also excludes the points ±√
u and 

0, and encloses the interval [ud̂−1
j , uĉ−1

j ]. For convenience we let Γ1 = ∪k
j=1γ

′
j and Γ2 =

∪k
j=1γ

′′
j .

We divide both sides of (5.21) by

2πi · z · (v0 − σ(z)) ·
m∏

a=1
[(va + ta − σ(z))(va − σ(z))] ·HN (z)

and integrate over Γ′ := Γ1 ∪ Γ2. Note that Rt,v
N (z) and RN (z) are both holomorphic 

inside the contours Γ1, Γ2 and so the integrals of the corresponding terms vanish. From 
the rest we get

1
2πi

˛

Γ′

HN (z)−1z−1QN (z)
v0 − σ(z) E

P
t,v
N

[θΔGN (z)] dz =

−1
2πi

˛

Γ′

HN (z)−1z−1dz

v0 − σ(z)

[
Remt,v

N (z)∏m
a=1[(va + ta − σ(z))(va − σ(z))]

]

+ −1
2πi

˛

Γ′

HN (z)−1z−1dz

v0 − σ(z)

[
Ψ−

N (z)eθG
c
N (z) + Ψ+

N (z)e−θGc
N (z) + W̃N (z)

]
(5.23)

Equation (5.23) can be viewed as the main output of our application of the Nekrasov’s 
equation. In the following section we use it to deduce Theorem 5.2.1.



3116 E. Dimitrov, A. Knizel / Journal of Functional Analysis 276 (2019) 3067–3169
5.4. Concluding the proof of Theorem 5.2.1

In this section we present the remainder of the proof of Theorem 5.2.1. Our arguments 
below will require a certain asymptotic bound – see (5.26), which will be established in 
Section 6. For clarity we split the proof into several steps.

Step 1. Our goal in this step is to rewrite (5.23) into a form that is more useful for our 
analysis.

Using the formula for QN from (5.20) and that ΔGN (z) = log q ·(z−uz−1)ΔGN (σ(z))
from (5.18) we see that the RHS of (5.23) equals

log q
2πi

˛

Γ′

∏k
j=1
√

(σ(z) − rj) (σ(z) − sj)
v0 − σ(z) · (1 − uz−2) · E

P
t,v
N

[θΔGN (σ(z))] dz

We perform a change of variables σ(z) = w to rewrite the RHS of (5.23) as

2 · log q
2πi

˛

Γ

∏k
j=1
√

(w − rj) (w − sj)
v0 − w

· E
P
t,v
N

[θΔGN (w)] dw,

where we used that σ(γ′
j) = σ(γ′′

j ) are contained γj and we can deform the image to the 
latter without affecting the value of the integral by Cauchy’s theorem.

Note that E
P
t,v
N

[ΔGN (w)] is analytic outside of the contour of integration and decays 
like 1/w2 when |w| → ∞. Therefore, we can compute the integral as (minus) the residues 
at w = v0 and z = ∞. The residue at v0 is given by

−2 · log q ·
k∏

j=1

√
(v0 − rj) (v0 − sj) · EP

t,v
N

[θΔGN (v0)] ,

while the residue at ∞ is a polynomial P t,v
N (v0) of degree at most k − 2 in v0, whose 

coefficients are rational functions in t, v. Substituting the above in (5.23) we obtain the 
formula

E
P
t,v
N

[θΔGN (v0)] = NP t,v
N (v0)

DN (v0)
+ N

2πi

˛

Γ′

−DN (v0)−1dz

zHN (z)(v0 − σ(z))

[
Remt,v

N (z)
W t,v

m (z)

]
+

N

2πi

˛

Γ′

−DN (v0)−1dz

zHN (z)(v0 − σ(z))

[
Ψ−

N (z)eθG
c
N (z) + Ψ+

N (z)e−θGc
N (z) + W̃N (z)

]
,

(5.24)

where
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DN (v) = 2N log q
k∏

j=1

√
(v − rj) (v − sj) and

W t,v
m (z) =

m∏
a=1

[(va + ta − σ(z))(va − σ(z))].

(5.25)

Step 2. In this step we isolate an asymptotic estimate that we require to finish the proof.

Fact 5.4.1. For each m ≥ 0 we have

∂m

∂t1 · · · ∂tm
1

2πi

˛

Γ′

DN (v0)−1dz

zHN (z)(v0 − σ(z))

[
Remt,v

N (z)
W t,v

m (z)

] ∣∣∣∣∣
ta=0,1≤a≤m

= O(N−2), (5.26)

where the constant in the big O notation is uniform as v0, v1, . . . , vk vary over compacts 
in Uu.

The proof of Fact 5.4.1 will be presented in Section 6. In the remainder of the section 
we assume its validity and finish the proof of Theorem 5.2.1.

Step 3. Let us fix m ≥ 1, differentiate both sides of (5.24) with respect to t1, . . . , tm and 
set ta = 0 for a = 1, . . . , m. Using (5.26) we get

∂t1 · · · ∂tmE
P
t,v
N

[θΔGN (v0)]

∣∣∣∣∣
ta=0,1≤a≤m

=

∂t1 · · · ∂tm

[
NP t,v

N (v)
DN (v0)

+ 1
2πi

˛

Γ′

−DN (v0)−1dz

zHN (z)(v0 − σ(z))

×
[
NΨ−

N (z)eθG
c
N (z) + NΨ+

N (z)e−θGc
N (z) + W̃N (z)

] ]∣∣∣∣∣
ta=0,1≤a≤m

+ O(N−1).

(5.27)

The only functions in (5.27), which depend on t are P t,v
N (v), Ψ±

N (z), see (5.16). Since 
any mixed partial derivatives of Ψ±

N (z) vanish, we conclude that for m ≥ 2 we have

∂t1 · · · ∂tmE
P
t,v
N

[θΔGN (v0)]
∣∣∣∣
ta=0,1≤a≤m

= ∂t1 · · · ∂tm

[
NP t,v

N (v0)
DN (v0)

]∣∣∣∣∣
ta=0,1≤a≤m

+ O(N−1). (5.28)

We may now apply ΥN
v0

from (5.8) for the contours γ1, . . . , γk and the points rj , sj for 
j = 1, . . . , k to both sides of the above equation. Indeed, we notice that the integral of 
Gd

N around γi is deterministic and equals ni(N)/N . On the other hand, the integral of 
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Gc
N around γi equals the total mass of μ̂N (x) inside γi, which is ni(N)/N by assumption. 

We conclude that the integral of ΔGN (v) around each loop γi vanishes. The integral over 
the first term on the right side vanishes by Property (2) in Proposition 5.1. By linearity, 
we see that the integral over the term represented by O(N−1) over Γ must also vanish. 
Applying ΥN

v0
and using Property (1) in Proposition 5.1 we get

∂t1 · · · ∂tmE
P
t,v
N

[ΔGN (v0)]
∣∣∣∣
ta=0,1≤a≤m

= O(N−1),

which proves the case m ≥ 2.
If m = 1

∂t1EP
t,v
N

[θΔGN (v0)]

∣∣∣∣∣
t1=0

= O(N−1) + ∂t1
NP t,v

N (v0)
DN (v0)

∣∣∣∣∣
t1=0

+ −DN (v0)−1

2πi

˛

Γ′

f(z)dz,

where f(z) :=

Φ−(z)eθGc
N (z) [(1 − uz−2) log q− (u− u)z−2]− Φ+(z)e−θGc

N (z)(u− u)z−2

HN (z)(v0 − σ(z))(v1 − σ(z))2 .

(5.29)

Applying (5.20) we obtain

−DN (v0)−1

2πi

˛

Γ′

f(z)dz =

−DN (v0)−1

2πi

˛

Γ′

2−1 log q[RN (z) + QN (z)](1 − uz−2) − (u− u)z−2RN (z)
HN (z)(v0 − σ(z))(v1 − σ(z))2 dz.

Notice that the terms with RN (z) integrate to 0 by analyticity, and so we may remove 
them. Substituting QN (z) from (5.20) and DN (v0) from (5.25) we get

−DN (v0)−1

2πi

˛

Γ′

f(z)dz = −1
8πi ·

∏k
j=1
√

(v0 − rj) (v0 − sj)
×

˛

Γ′

∏k
j=1
√

(σ(z) − rj) (σ(z) − sj)
(v0 − σ(z))(v1 − σ(z))2 · (1 − uz−2)dz.

We perform the change of variables w = σ(z) and deform the resulting contours to Γ to 
obtain
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∂t1EP

t,v
N

[θΔGN (v0)]
∣∣∣∣
t1=0

= O(N−1) + 1
4πi ·

∏k
j=1
√

(v0 − rj) (v0 − sj)
×

˛

Γ

∏k
j=1
√

(w − rj) (w − sj)
(w − v0)(v1 − w)2 dw + ∂t1

NP t,v
N (v0)

DN (v0)

∣∣∣∣∣
t1=0

.

(5.30)

As before we can apply ΥN
v0

to both sides of the above equation. The only difference 
with respect to the m ≥ 2 case is the second term on the right side. Notice that it 
is analytic in the unbounded component of Γ and decays like |v0|−k−1 as |v0| → ∞. 
Consequently, there is no residue at infinity and the integral over Γ is zero. Arguing as 
in the case m ≥ 2 we get

∂t1EP
t,v
N

[θΔGN (v0)]

∣∣∣∣∣
t1=0

= O(N−1)+

ΥN
v0

⎡
⎣ 1

4πi ·
∏k

j=1
√

(v0 − rj) (v0 − sj)

˛

Γ

∏k
j=1
√

(w − rj) (w − sj)
(w − v0)(v1 − w)2 dw

⎤
⎦ .

Finally, we can replace rj , sj with r̂j , ̂sj and ΥN
v0

with Υv0 , which produces an error 
O(N−1 log(N)) by Assumption 5 and Property (3) in Proposition 5.1.

6. Central limit theorem: Part II

In this section we will prove (5.26), which is the missing ingredient necessary to com-
plete the proof of Theorem 5.2.1. In what follows we will continue to use the same 
notation as in Section 5. Before we go into the main argument we introduce a bit of ad-
ditional notation and isolate a basic result, which will be used several times throughout.

If X1, . . . , Xn are bounded random variables, we denote by Mc(X1, . . . , Xn) their joint 
cumulant. From Lemma 5.1.1 we know that for any bounded random variable ξ we have

∂n
E
P
t,v
N

[ξ]
∂t1 · · · ∂tn

∣∣∣∣∣
ta=0,1≤a≤n

= Mc(ξ,NGN (v1), . . . , NGN (vn))

= Mc(ξ,ΔGN (v1), . . . ,ΔGN (vn)), (6.1)

where the second equality follows from the fact that cumulants are unchanged under 
shifts. To ease notation later in the text we set for a subset A = {a1, . . . , ak} ⊂ {1, · · · , n}

MN (ξ|va, A) := Mc(ξ,ΔGN (va1), . . . ,ΔGN (vak
)).

6.1. Estimating the remainders

In this section we reduce (5.26) to the following statement, whose proof is given in 
Section 6.2.
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Proposition 6.1.1. Assume the notation from Theorem 5.2.1. If l ≥ 1 and v1, . . . , vl ∈ U

then

EPN

[
l∏

a=1
|ΔGN (va)|

]
= O(1), (6.2)

where the constant in the big O notation is uniform as v1, . . . , vl vary in compact subsets 
of U .

We assume the validity of Proposition 6.1.1 and proceed with the proof of (5.26). Our 
goal is to prove that for m ≥ 0 we have

∂m

∂t1 · · · ∂tm

[
N2 · Remt,v

N (z)
W t,v

m (z)

] ∣∣∣∣∣
ta=0,1≤a≤m

= O (1) (6.3)

uniformly as z and v1, . . . , vm vary over Γ′ and compacts in Uu respectively. This implies 
(5.26).

In view of (5.22) we have

N2 · Remt,v
N (z)

W t,v
m (z)

= E
P
t,v
N

[
ξN (z) · ΔGN (σ(z))2

]
+ E

P
t,v
N

[ξ′N (z) · ∂zΔGN (σ(z))] +

E
P
t,v
N

[cN (z; t,v)] + E
P
t,v
N

[c′N (z; t,v) · ΔGN (σ(z))] .
(6.4)

In (6.4) ξN (z), ξ′N (z) are random analytic functions in z, which do not depend on t, v
and that are O(1) uniformly over compacts in O∩M and N , recall that O is the inverse 
image of U under the map z → z + uz−1. In addition, cN (z; t, v), c′N (z; t, v) are linear 
combinations of random analytic function in z, independent of t, v, that are also O(1)
uniformly over compacts in O ∩ M. The coefficients of these linear combination are 
infinitely differentiable functions in ti, whose derivatives, evaluated at t1 = · · · = tm = 0, 
are all uniformly bounded as v1, . . . , vm vary over compacts in U , z varies over compacts 
in O ∩M and |σ(z) − vi| for i = 1, . . . , m are bounded away from 0.

We now fix m ≥ 1 and differentiate both sides of (6.4) with respect to t1, . . . , tm
and set t1 = · · · = tm = 0 (the case m = 0 will be treated separately). For the terms 
involving random variables we use (6.1) to rewrite the result as a cumulant. Observe that 
we need to apply Leibniz rule when we differentiate E

P
t,v
N

[cN (z; t,v)] or E
P
t,v
N

[c′N (z; t,v)]; 
therefore, we will obtain a sum depending on how many times we differentiated one of 
the coefficients in cN (z; t, v) or c′N (z; t, v) and how many times the expectations E

P
t,v
N

. 
We obtain the following result

∂m

∂t1 · · · ∂tm

[
N2 · Remt,v

N (z)
W t,v

m (z)

] ∣∣∣∣∣ = MN

(
ξN (z)ΔGN (σ(z))2|va, {1, . . . ,m}

)
+

ta=0,1≤a≤m
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MN (ξ′N (z)∂zΔGN (σ(z))|va, {1, . . . ,m}) +
∑

A⊂{1,...,m}

[
MN (∂AcN (z;0,v)|va, Ac) +

MN (∂Ac′N (z;0,v) · ΔGN (σ(z))|va, Ac)
]
. (6.5)

Using that cumulants are linear combinations of moments and Proposition 6.1.1, we 
conclude that each term in (6.5) is O (1) uniformly as v1, . . . , vm vary over compacts in 
U , z varies over compacts in O∩M, |σ(z) − vi| for i = 1, . . . , m are bounded away from 
0 and N → ∞. One might be cautious about the term involving ∂zΔGN (σ(z)); however, 
by Cauchy’s Theorem the uniform moment bound we have for ΔGN(σ(z)) implies one 
for its derivative.

Since Γ′ ⊂ O ∩M we conclude (6.3) for the case m ≥ 1. If m = 0, then (6.4) reads

N2 · RemN (z) = EPN

[
ξN (z) · ΔGN (σ(z))2

]
+ EPN

[ξ′N (z) · ∂zΔGN (σ(z))] +

EPN
[cN (z)] + EPN

[c′N (z)ΔGN (σ(z))] .
(6.6)

Combining that ξN (z), ξ′N (z), cN (z) and c′N (z) are uniformly bounded over compacts in 
O ∩ M with Proposition 6.1.1 we conclude that (6.6) is O(1) as N → ∞. This proves 
(6.3) for all m ≥ 0.

6.2. Self-improving estimates and the proof of Proposition 6.1.1

In this section we prove Proposition 6.1.1. For clarity we split the proof into several 
steps.

Step 1. In the first step we derive a weak a priori estimate on EPN
[
∏m

a=1 |ΔGN (va)|], 
which will be iteratively improved in the steps below until we reach the desired estimate 
of the proposition. More precisely, we show that for each n ∈ N, compact subset K ⊂ U

and v1, . . . , vn ∈ K we have

EPN

[
n∏

i=1
|ΔGN (vi)|

]
= O
(
Nn/2+1/2

)
, (6.7)

where the constant in the big O notation depends on K and n.
Recall from Section 5.1 that ΔGN (v) = N

(
Gd

N (v) −Gc
N (v)
)
, where

Gd
N (v) =

ˆ

R

μN (dx)
v − x

and Gc
N (v) =

ˆ

R

μ̂N (dx)
v − x

.

Using Hölder’s inequality, we can reduce (6.7) to showing that for all v ∈ K we have

EPN

[
Nn
∣∣Gd

N (v) −Gc
N (v)
∣∣n] = O

(
Nn/2+1/2

)
(6.8)
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Fix η > 0 small enough so that the η neighborhood of S = ∪k
j=1[âj , ̂bj ] is disjoint from 

K. Let h(x) be a smooth function, whose support is inside the η-neighborhood of S, 
and such that h(x) = 1 on an η/2-neighborhood of S. Note that for all N sufficiently 
large we have that μN and μ̂N are both supported in the η/2-neighborhood of S. Setting 
g(x) = (v − x)−1 we have

Gd
N (v) −Gc

N (v) =
ˆ

R

g(x)h(x)μN (dx) −
ˆ

R

g(x)h(x)μ(dx).

We can apply Corollary 3.1.4 for the function g · h with a = r · N1/2n−1/2, r > 0 and 
p = 3 to get

PN

(∣∣Gd
N (v) −Gc

N (v)
∣∣ ≥ c1rN

−1/2+1/2n + c2N
−3
)
≤

exp
(
CN log(N) − 2θπ2r2N1+1/n

)
,

which implies (6.8).

Step 2. In this step we reduce the proof of the proposition to the establishment of the 
following self-improvement estimate claim.

Claim: Suppose that for some n, M ∈ N we have that

EPN

[
m∏

a=1
|ΔGN (va)|

]
= O(1) + O

(
Nm/2+1−M/2

)
for m = 1, . . . , 4n + 4, (6.9)

where the constants in the big O notations are uniform as va vary over compact subsets 
of U for a = 1, . . . , 4n + 4. Then we have

EPN

[
m∏

a=1
|ΔGN (va)|

]
= O(1) + O

(
Nm/2+1−(M+1)/2

)
for m = 1, . . . , 4n. (6.10)

The proof of the above claim will be established in the following steps. For now we 
assume its validity and conclude the proof of the proposition.

Notice that (6.7) implies that (6.9) holds for the pair n = 2l and M = 1. The 
conclusion is that (6.9) holds for the pair n = 2l− 1 and M = 2. Iterating the argument 
an additional l times we conclude that (6.9) holds with n = l − 1 and M = l + 2, which 
implies the proposition.

Step 3. In this step we prove that

MN (ΔGN (v0)|va, {1, . . . ,m}) = O(1) + O
(
Nm/2+1−M/2

)
for m = 1, . . . , 4n + 2 and EPN

[ΔGN (v0)] = O(1) + O
(
N1−M/2

)
, where

(6.11)
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the constants in the big O notation are uniform over v0, . . . , vm in compact subsets of U .
We start by fixing a compact subsets V ⊂ U , which is invariant under conjugation 

and let Γ′ = Γ1 ∪ Γ2 be as in Section 5.3 with σ(Γ1) and the bounded components of 
U \ σ(Γ1) disjoint from V. For m = 1, . . . , 4n + 2, we differentiate both sides of (5.24)
with respect to t1, . . . , tm and set t1 = · · · = tm = 0. Combining (6.1), (5.28) and (5.30)
the result we obtain is

MN (ΔGN (v0)|va, {1, . . . ,m}) = NPm
N (v0)

DN (v0)
+

1{m=1}

4πi ·
∏k

j=1
√

(v0 − rj) (v0 − sj)
×

˛

σ(Γ1)

∏k
j=1
√

(w − rj) (w − sj)
(w − v0)(w − v1)2

dw + −DN (v0)−1

2πi

˛

Γ′

N · Remm
N (z)dz

zHN (z)(v0 − σ(z)) , where

(6.12)

Remm
N (z) = ∂m

∂t1 · · · ∂tm
Remt,v

N (z)
W t,v

m (z)

∣∣∣∣∣
ta=0,1≤a≤m

Pm
N (v0)

= ∂m

∂t1 · · · ∂tm
P t,v
N (v0)

∣∣∣∣∣
ta=0,1≤a≤m

. (6.13)

By the same arguments following (5.30) we may apply the map Υ̃N
v0

from (5.8) for the 
contours σ(γ′

1), . . . , σ(γ′
k) and the points rj , sj for j = 1, . . . , k to both sides of (6.12) to 

get

MN (ΔGN (v0)|va, {1, . . . ,m}) = Υ̃N
v0

⎡
⎣−DN (v0)−1

2πi

˛

Γ′

N · Remm
N (z)dz

zHN (z)(v0 − σN (z))

⎤
⎦+

Υ̃N
v0

⎡
⎢⎣ 1{m=1}

4πi ·
∏k

j=1
√

(v0 − rj) (v0 − sj)

˛

σ(Γ1)

∏k
j=1
√

(w − rj) (w − sj)
(w − v0)(v1 − w)2 dw

⎤
⎥⎦ .

(6.14)

Combining (6.14) and an application of Υ̃N
v0

to both sides of (5.24) we get

MN (ΔGN (v0)|va, {1, . . . ,m}) = O(1) + Υ̃N
v0

⎡
⎣−DN (v0)−1

2πi

˛

Γ′

N · Remm
N (z)dz

zHN (z)(v0 − σ(z))

⎤
⎦ ,

EPN
[ΔGN (v0)] = O(1) + Υ̃N

v0

⎡
⎣−DN (v0)−1

2πi

˛

Γ′

N · RemN (z)dz
zHN (z)(v0 − σ(z))

⎤
⎦ .

(6.15)

The constants in the big O notation are uniform over v0, v1, . . . , vm in compact subsets 
of V.



3124 E. Dimitrov, A. Knizel / Journal of Functional Analysis 276 (2019) 3067–3169
At this time we recall (6.5), which states that for m = 1, . . . , 4n + 2 we have

N2 · Remm
N (z) =

∑
A⊂{1,...,m}

[
MN (∂AcN (z;0,v)|va, Ac)

+ MN (∂Ac′N (z;0,v) · ΔGN (σ(z))|va, Ac)
]

+ MN

(
ξN (z)ΔGN (σ(z))2|va, {1, . . . ,m}

)
+ MN (ξ′N (z)∂zΔGN (σ(z))|va, {1, . . . ,m}) .

Recall that ξN (z), ξ′N (z), ∂AcN (z; 0, v) and ∂Ac′N (z; 0, v) are all O(1) if v1, . . . , vm ∈ V
and z ∈ Γ′. The latter and (6.9) imply

Remm
N (z) = O

(
N−2)+ O

(
Nm/2−M/2

)
, for m = 1, . . . , 4n + 2. (6.16)

By combining (6.6) and (6.9) we get that (6.16) holds for m = 0 as well. Finally, (6.15), 
(6.16) and Property (1) in Proposition 5.1 together imply (6.11).

Step 4. In this step we will establish the validity of (6.10) except for a single case, which 
will be handled separately in the next step.

Notice that by Hölders inequality we have

sup
v1,...,vm∈V

EPN

[
m∏

a=1
|ΔGN (va)|

]
≤ sup

v∈V
EPN

[|ΔGN (v)|m] ,

and so to finish the proof it suffices to show that for m = 1, . . . , 4n we have

EPN
[|ΔGN (v)|m] = O(1) + O

(
Nm/2+1/2−M/2

)
. (6.17)

Since centered moments are linear combinations of products of joint cumulants, we 
deduce from the first line in (6.11) that for m = 1, . . . , 4n + 2 we have

sup
v0,...,vm−1∈V

EPN

[
m−1∏
a=0

(ΔGN (va) − EPN
[ΔGN (va)])

]
= O(1) + O

(
N (m−1)/2+1−M/2

)
.

(6.18)

Combining the latter with the first and second lines of (6.11) we see that

sup
v0,...,vm−1∈V

EPN

[
m−1∏
a=0

ΔGN (va)
]

= O(1) + O
(
N (m−1)/2+1−M/2

)
. (6.19)

If m = 2m1 then we can set v0 = · · · vm1−1 = v and vm1 = · · · = v2m1−1 = v in (6.18), 
which yields
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sup
v∈V

EPN
[|ΔGN (v)|m] = O(1) +O

(
Nm/2+1/2−M/2

)
for m = 2, 4, 6, . . . , 4n + 2 . (6.20)

We next let m = 2m1 + 1 be odd and notice that by the Cauchy–Schwarz inequality 
and (6.20)

sup
v∈V

EPN

[
|ΔGN (v)|2m1+1

]
≤

sup
v∈V

[
EPN

[
|ΔGN (v)|2m1+2

]]1/2
·
[
EPN

[
|ΔGN (v)|2m1

]]1/2
=

O(1) + O
(
Nm1+1−M/2

)
+ O
(
Nm1/2+3/4−M/4

)
.

(6.21)

We note that the bottom line of (6.21) is O(1) + O
(
Nm1+1−M/2) except when M =

2m1 + 2, since

m1/2 + 3/4 −M/4 ≤
{
m1 + 1 −M/2 when M ≤ 2m1 + 1,
0 when M ≥ 2m1 + 3.

Consequently, (6.20) and (6.21) together imply (6.17) except when M = 2m1 + 2 and 
m = 2m1 + 1. We will handle this case in the next step.

Step 5. In this last step we will show that (6.17) holds even when M = 2m1 +
2 and 4n > m = 2m1 + 1. In the previous step we showed in (6.20) that 
supv∈V EPN

[
|ΔGN (v)|2m1+2

]
= O
(
N1/2), and below we will improve this estimate to

sup
v∈V

EPN

[
|ΔGN (v)|2m1+2

]
= O(1). (6.22)

The trivial inequality x2m1+2 + 1 ≥ |x|2m1+1 together with (6.22) implies

sup
v∈V

EPN

[
|ΔGN (v)|2m1+1

]
= O(1).

Consequently, we have reduced the proof of the claim to establishing (6.22).
Let us list the relevant estimates we will need

EPN

[2m1+4∏
a=1

|ΔGN (va)|
]

= O
(
N3/2

)
, EPN

[2m1+2∏
a=1

|ΔGN (va)|
]

= O
(
N1/2

)
,

EPN

[
j∏

a=1
|ΔGN (va)|

]
= O(1) for 0 ≤ j ≤ 2m1, EPN

[2m1+3∏
a=1

|ΔGN (va)|
]

= O (N) .

(6.23)
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The above identities follow from (6.20) and (6.21). All constants are uniform over va ∈ V. 
Below we feed the improved estimates of (6.23) into Steps 3 and 4, which would ultimately 
yield (6.22).

In Step 3, we note that we have the following version of (6.16)

Remm
N (z) = O

(
N−1) whenever 0 ≤ m ≤ 2m1 + 1. (6.24)

The latter statement follows from (6.5) for 2m1 + 1 ≥ m ≥ 1 and (6.6) for m = 0, 
combined with

EPN

[
m+2∏
a=1

|ΔGN (va)|
]

= O(N) for m = 0, . . . , 2m1 + 1,

the latter being a consequence of (6.23). Using (6.24) instead of (6.16) in Step 3, we 
obtain the following improvement over (6.11)

Mc(ΔGN (v), . . . ,ΔGN (vm)) = O(1), for m = 1, . . . , 2m1 + 1 and

EPN
[ΔGN (v)] = O(1).

(6.25)

We next repeat the arguments in Step 4, and note that by using (6.25) in place of 
(6.11) we obtain the following improvement over (6.19)

sup
v0,...,v2m1+1∈V

EPN

[2m1+1∏
a=0

ΔGN (va)
]

= O(1). (6.26)

Setting v0 = · · · vm1 = v and vm1+1 = · · · = v2m1+1 = v in (6.26) we get (6.22).

7. q-Racah tiling models and ensembles

As discussed in Section 1 our main motivation for studying discrete log-gases on shifted 
quadratic lattices comes from the q-Racah tiling model that was introduced in [16]. In 
Section 7.1 we give a formal definition of the model and in Section 7.2 we state the 
main results we prove about it in Theorems 7.2.2 and 7.2.4. In Section 7.3 we explain 
how the model is related to a certain random particle system that we call the q-Racah 
ensemble and state a law of large numbers and central limit theorem for the latter as 
Theorems 7.4.4 and 7.4.5 in Section 7.4.

7.1. The q-Racah tiling model

7.1.1. Lozenge tilings
Denote by Ωa×b×c the set of all tilings of a hexagon with side lengths a, b, c by rhombi 

(or alternatively boxed plane partitions), see Fig. 4. Denote the horizontal rhombi by 



E. Dimitrov, A. Knizel / Journal of Functional Analysis 276 (2019) 3067–3169 3127
Fig. 4. Tiling of a 3 × 3 × 3 hexagon.

♦ and introduce coordinate axes (i, j). Given two parameters q and κ we define the 
probability of an element T ∈ Ωa×b×c through

P(T ) = w(T )∑
S∈Ωa×b×c

w(S) , where w(T ) =
∏

♦

∈T

w( ♦ ), and

w( ♦ ) = κ2qj−(c+1)/2 − q−j+(c+1)/2.

(7.1)

In the above formula the product is over all horizontal lozenges ♦ that belong to T and 
j denotes the j-th coordinate of the topmost point of ♦ . We call the probability measure 
in (7.1) the q-Racah tiling model.

It was shown in [16] that the partition function (the sum of all weights w(T ) or 
the normalization term in (7.1)) has a nice product form, which generalizes the famous 
MacMahon formula for the number of boxed plane partitions [67]. Note that the number 
of horizontal rhombi in all tilings of a given hexagon is the same, hence P is invariant 
under multiplication of w( ♦ ) by a constant.

In order for (7.1) to define an honest probability measure, one requires that the weights 
w(T ) be non-negative. This imposes certain restrictions on the parameters q, κ and there 
are three possible cases that lead to positive weights:

(i) imaginary q-Racah case: q is a positive real number and κ is a purely imaginary 
number;

(ii) real q-Racah case: q is a positive real number and κ is a real number that cannot lie 
inside the interval 

[
q−a+1/2, q(b+c−1)/2] if q > 1 or the interval 

[
q(b+c−1)/2, q(a−1)/2]

if q < 1;
(iii) trigonometric q-Racah case: q and κ are complex numbers on the unit circle, i.e. 

q = eiα, κ = eiβ , where α, β must be such that −α(b +c −1)/2 +β and α(a −1/2) +β

must lie in the same interval of the form [πk, π(k + 1)], k ∈ Z.

The names of the above cases are related to those of the classical orthogonal polynomials 
that appear in the analysis. In this paper, we will only consider the real q-Racah case 
with q ∈ (0, 1) and κ ∈

[
0, q(b+c−1)/2) although most of our arguments can be extended 

to other cases.
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Fig. 5. Affine transformation of lozenges.

If we let κ → 0 then we get the q-Hahn case w( ♦ ) = q−j . In this case the probability 
of a plane partition is proportional to q−V , where V denotes the volume of the plane 
partition, i.e. the number of cubes that it contains. If we send κ → ∞ we get that the 
probability of a partition is proportional to qV . In this sense, one can view our model as 
an interpolation between the models qV and q−V . Finally, if one sends κ → 0 and q → 1, 
one recovers the uniform measure on boxed plane partitions.

7.1.2. Particle configurations
In what follows we describe an alternative formulation of our model that is more 

suitable for stating our results. We perform a simple affine transformation of the hexagon 
and lozenges, detailed in Fig. 5.

Let us introduce new parameters N, T, S that are related to a, b, c through N = a, 
T = b + c and S = c. Each tiling in Ωa×b×c naturally corresponds to a family of N
non-intersecting up-right paths as shown in Fig. 6. For each 0 ≤ t ≤ T we draw a vertical 
line through the point (t, 0) and denote by xt

1 < xt
2 < · · · < xt

N the intersection of the 
line with the N up-right paths. We interpret the intersection points as particles and will 
typically use the same letter to refer to a particle and its location. In this way, we can 
view a tiling as an N -point (or particle) configuration, which varies in time t = 0, . . . , T . 
Observe that when t = 0 the configuration consists of the points {0, 1, . . . , N − 1} and 
when t = T the configuration consists of the points {S, S + 1, . . . , S + N − 1}.

Given a random configuration {xt
k} we define the random height function

h : Z≥0 ×
(
Z + 1

2

)
→ Z≥0 as h(t, s) = |{k ∈ {1, . . . , N} : xk

t < s}|. (7.2)

In terms of the tiling in Fig. 6 the height function is defined at the vertices of rhombi, 
and it counts the number of particles below a given vertex. The latter definition is in 
agreement with the standard three-dimensional interpretation of the tiling as a stack of 
boxes [43].
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Fig. 6. Modified hexagon and up-right path configuration (in purple). The yellow dots are the particles at 
time t = 3 and we have xt

1 = 1, xt
2 = 3 and xt

3 = 4. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

7.2. Main results for the q-Racah tiling model

Our results are about the global fluctuations of a random lozenge tiling with distri-
bution (7.1) when the parameters q, κ and the sizes of the hexagon N, T, S scale in a 
particular fashion that we detail below.

Definition 7.2.1. We assume that we are given real numbers N, T, S, q and k such that

N, T, S, q > 0, k ≥ 0, q < 1, N < T, S < T, k2q−T < 1.

Given such a choice of parameters and ε ∈ (0, 1) we let Pε be the probability measure in 
(7.1) with

q = qε + O(ε2), N = Nε−1 + O(1), T = Tε−1 + O(1),

S = Sε−1 + O(1), κ = k + O(ε).

7.2.1. Limit shape
Our first result concerns the hydrodynamic limit of the height function h, with dis-

tribution Pε, under the parameter scaling in Definition 7.2.1 when ε converges to zero. 
On a macroscopic scale the random height function concentrates around a deterministic 
limit shape, i.e.

ε · h
(
�xε−1�, �yε−1� + 1/2

)
→ ĥ(x, y) as ε → 0+, (7.3)

where (x, y) are the new global continuous coordinates, ĥ(x, y) is the function whose 
graph is the limit shape and the convergence is in probability. The new coordinates 
(x, y) are assumed to belong to the limiting hexagon P, which is parametrized by N, S, T
the same way that our discrete hexagon was parametrized by N, S, T ; see the central 
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Fig. 7. The left part shows a simulation of a tiling. The middle part shows the hexagon P and the liquid 
region D is the region inside the gray curve. The right part denotes the image of P and D under the map 
(x, y) → (q−x, q−y + k2q−S−x+y).

part of Fig. 7. The limit shape can then be understood as a continuous function on P
and we describe it next.

With parameters as in Definition 7.2.1 we define φ as

φ(x, y) = arccos
(

(q−N − 1) (1 − q−N−T)
(
q−2x − k2q−y−S

)2 + A + B

2
√
AB

)
, where

A =
(
q−x − q−S−N) (q−x − k2q−T) (q−x − q−y−N) (q−x − k2q−y−S) ,

B = q−2N−T (q−x − 1
) (

q−x − k2q−t+N) (q−x − q−y−S+T) (q−x − k2q−S+N) .
If the expression inside the arccosine is greater than 1, then we set φ = 0 and if it less 
than −1, then we set φ = π. In terms of the above function φ we define the limit shape 
ĥ as

ĥ(x, y) = 1
π

yˆ

0

φ(x, u)du, for (x, y) ∈ P. (7.4)

With the above notation we can state our limit shape result.

Theorem 7.2.2. Suppose that N, T, S, q, k and Pε are as in Definition 7.2.1 and that h is 
distributed according to Pε. Then for any (x, y) ∈ P and η > 0 we have

lim
ε→0+

Pε

(∣∣∣|ε · h (�xε−1�, �yε−1� + 1/2
)
− ĥ(x, y)

∣∣∣ > η
)

= 0. (7.5)

Remark 7.2.3. The formula for φ(x, y) was derived in Theorem 8.1 in [16]. We remark 
that while an explicit formula for the limit shape was obtained in [16], it was not proved 
that the height function actually converges to it. Theorem 7.2.2 constitutes a proof of 
this fact.
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An important feature of our model is that the limit shape develops frozen facets where 
the function ĥ(x, y) is linear. In terms of the tiling a frozen facet corresponds to a region 
where asymptotically only one type of lozenge is present. In addition, there is a connected 
open liquid region D ⊂ P, which interpolates the facets. Explicitly, the liquid region D
is given by the set of points (x, y) ∈ P where the expression inside the arccosine in the 
definition of φ is in (−1, 1), i.e.

D =
{

(x, y) ∈ P :
[(
q−N − 1

) (
1 − q−N−T) (q−2x − k2q−y−S)2 + A + B

]2
< 4AB

}
.

If (x, y) ∈ D then the limiting height function ĥ is curved near (x, y): asymptotically 
inside the liquid region one observes all three types of lozenges, see e.g. [25,43,44] for 
further discussion regarding frozen and liquid regions in related contexts. In addition, the 
local distribution of the tiling near (x, y) ∈ D is described asymptotically by a certain 
ergodic translation-invariant Gibbs measure on lozenge tilings of the whole plane. Such 
a measure is unique up to fixed proportions of lozenges of all three types [65], and these 
proportions depend on the slope of ĥ at the point (x, y). We refer the reader to [16] for a 
more detailed discussion of this fact for the model we consider, and also to [43,45,59,65]
for analogous results in general dimer models.

7.2.2. Central limit theorem
Before stating our central limit theorem for the measures Pε we introduce a transfor-

mation of our particle configuration from Section 7.1. This transformation is (in some 
sense) the natural way to view the particle system, and it allows us to identify its global 
asymptotic fluctuations with a 1D section of the two-dimensional Gaussian free field 
(GFF for short).

Given a point configuration {(t, xt
k)} we define a new point configuration {(U, V )}

through

U(t, k) = q−t and V (t, k) = q−xt
k + κ2qx

t
k−S−t for 0 ≤ t ≤ T and 1 ≤ k ≤ N . (7.6)

Similarly to before, we define a random height function for the new particle system

H :
{
q0, q−1, . . . , q−T

}
× R → Z≥0 as H(q−t, v) = |{k ∈ {1, . . . , N} : V (t, k) < v}|.

(7.7)

One can formulate an equivalent statement to Theorem 7.2.2 for the height function H. 
I.e. there will be asymptotically a deterministic limiting height function Ĥ, near which H
concentrates with high probability. Moreover, if we set σq(x, y) = (q−x, q−y+k2q−S−x+y)
then we have the explicit relationship ĥ(x, y) = Ĥ (σq(x, y)).

The function σq maps the liquid region D bijectively to a new region D′, parametrized 
through
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D′ =
{
(u, v) ∈ R

2 : Q̃(u, v) < 0
}
,

where Q̃(u, v) = Ãu2 + B̃v2 + C̃uv + D̃u + Ẽv + F̃ , and Ã, B̃, C̃, D̃, Ẽ, F̃ are explicitly 
computable constants that depend on q, S, T, N and k. Consequently, D′ is an ellipse, see 
the right of Fig. 7.

Our next goal is to define a complex structure on the limit shape surface — this is a 
bijective diffeomorphism Ω : D′ → H. The significance of this map is that the fluctuations 
of H will be asymptotically described by the pullback of the GFF on H under the map Ω. 
The function Ω(u, v) is algebraic and it satisfies the following quadratic equation

a2Ω2 + a1Ω + a0 = 0, where (7.8)

a2, a1, a0 are explicit linear functions of u and v and are such that a2
1 − 4a2a0 = q2N ·

Q̃(u, v) (see Section 8.2 for the details). Whenever (u, v) ∈ D′ the polynomial (7.8) has 
two complex conjugate roots and we define Ω(u, v) to be the one that lies in H.

We are now ready to state our main theorem for the q-Racah tiling model, giving the 
asymptotics of the global 1D fluctuations of Pε in terms of the two-dimensional Gaussian 
free field. In Section 8.1 we recall the definition and basic properties of the GFF.

Theorem 7.2.4. Suppose that N, T, S, q, k and Pε are as in Definition 7.2.1 and that H is 
as in (7.7) for the distribution Pε. Fix u ∈ (1, q−T) and let t(ε) be a sequence of integers 
such that q−t(ε) = u + O(ε). Then the centered random height function

√
π
(
H(q−t, v) − EPε

[
H(q−t, v)

])
converges to the 1d section of the pullback of the Gaussian free field with Dirichlet bound-
ary conditions on the upper half-plane H with respect to the map Ω in the following sense: 
For any set of polynomials fi ∈ R[x] for i = 1, . . . , m the joint distribution of

ˆ

R

√
π
(
H(q−t, v) − EPε

[
H(q−t, v)

])
fi(v)dv, i = 1, . . . ,m, (7.9)

converges to the joint distribution of the similar averages

b(u)ˆ

a(u)

F(Ω(u, y))fi(y)dy, i = 1, . . . ,m

of the pullback of the GFF. In the above formula a(u), b(u) are the v-coordinates of the 
two points where the vertical line through u intersects the ellipse Q̃(u, v) = 0.

Equivalently, the variables in (7.9) converge jointly to a Gaussian vector (X1, . . . , Xm)
with mean zero and covariance
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E[XiXj ] =
b(u)ˆ

a(u)

b(u)ˆ

a(u)

fi(x)fj(y)
(
− 1

2π log
∣∣∣∣Ω(u, x) − Ω(u, y)
Ω(u, x) − Ω(u, y)

∣∣∣∣
)
dxdy. (7.10)

As discussed in Section 1 the GFF is assumed to be a universal scaling limit in tiling 
models, which motivates its appearance in our setup. Another reason one might expect 
to see the GFF in our tiling model comes from its connection to the β-log gas with β = 2. 
We will elaborate this idea later in Section 9, but essentially there is a natural way to 
view the particle configuration on a fixed vertical slice as a discrete log-gas on a quadratic 
gases. Log-gases appear naturally in random matrix theory, and in that context there 
are several models that are known to converge to the GFF [10,11,14].

We end the section by remarking that Theorem 7.2.4 admits a natural two-dimensional 
generalization, which we formulate as Conjecture 8.4.1 in Section 8.4. At this time our 
methods only provide access to the global fluctuations at fixed vertical sections of the 
model, and so we cannot establish the full 2D result. Nevertheless, we provide some 
numerical simulations that give evidence for the validity of the conjecture.

7.3. The q-Racah ensemble

In this section we define the q-Racah ensemble.

Definition 7.3.1. Let q ∈ (0, 1), M ∈ Z≥0, α, β, δ ∈ R and γ = q−M−1. For x ∈
{0, 1, . . . , M} we introduce the following weight function

wqR(x) = (αq, βδq, γq, γδq; q)x
(q, α−1γδq, β−1γq, δq; q)x

(1 − γδq2x+1)
(αβq)x(1 − γδq) , (7.11)

where (y1, . . . , yi; q)k = (y1; q)k · · · (yi; q)k, and (y; q)k = (1 − y)(1 − yq) · · · (1 − yqk−1)
is the q-Pochhammer symbol.

Remark 7.3.2. The weight wqR is the weight function of the q-Racah orthogonal polyno-
mials, see e.g. [48, Section 3.2]. One can more generally have α = q−M−1 or βδ = q−M−1

instead of γ = q−M−1. Our choice is dictated by the fact that under the substitutions 
γ = q−M−1 and δ = 0 the q-Racah weight reduces to the q-Hahn weight.

With the above notation we can define the q-Racah ensemble as follows.

Definition 7.3.3. Fix N ∈ N and let α, β, γ, δ, q and M be as in Definition 7.3.1 with 
M ≥ N − 1. Denote by X the collection of N -tuples of integers

X = {(λ1, . . . , λN ) ∈ Z
N : 0 ≤ λ1 < λ2 < · · · < λN ≤ M}.

The q-Racah ensemble is a probability measure PqR on the set X, given by
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P
qR(λ1, . . . , λN ) = 1

Z(N,M,α, β, γ, δ, q)
∏

1≤i<j≤N

(
σ(q−λi) − σ(q−λj )

)2 · N∏
i=1

wqR(λi),

(7.12)

where σ(z) = z + γδqz−1 and Z is a normalization constant that makes the sum over X
equal to 1.

Observe that for general choice of parameters the expressions in (7.12) need not be 
non-negative. Consequently, we need to restrict the space of parameters so that PqR is 
an honest probability measure. We isolate one possible choice that accomplishes this in 
the following definition.

Definition 7.3.4. We assume that the parameters α, β, γ, δ, q ∈ R and M, N ∈ Z are such 
that

M ≥ N − 1 ≥ 0, 1 > q > 0, α, β > 0, δ ≥ 0, γ = q−M−1, 1 > βδ, β ≥ γ, α ≥ γ.

One readily verifies that the above choice of parameters makes (7.12) non-negative on 
all of X.

We end this section by detailing the connection between PqR and the measure on 
tilings from Section 7.1 in the following theorem.

Theorem 7.3.5. Fix a, b, c ≥ 1 and set N = a, T = b + c and S = c. Let P denote 
the probability distribution of (7.1) with parameters q ∈ (0, 1) and κ ∈

[
0, q(T−1)/2). 

Fix t ∈ {0, 1, . . . , T} and let (xt
1, . . . , x

t
N ) denote the random N -point configuration of 

Section 7.1.2. We have that

(1) if t < S and t < T−S then the distribution of (xt
1, . . . , x

t
N ) is PqR with M = t +N−1, 

α = q−S−N , β = qS−T−N , γ = q−t−N and δ = κ2q−S+N ;
(2) if S − 1 < t < T − S + 1 then the distribution of (xt

1, . . . , x
t
N ) is PqR with M =

S + N − 1, α = q−t−N , β = qt−T−N , γ = q−S−N and δ = κ2q−t+N ;
(3) if T − S + 1 < t < S then the distribution of (T − t − S + xt

1, . . . , T − t − S + xt
N )

is PqR with M = T − S + N − 1, α = q−T−N+t, β = q−t−N , γ = q−T−N+S and 
δ = κ2q−T+t+N ;

(4) if S−1 < t and T−S−1 < t then the distribution of (T−t −S+xt
1, . . . , T−t −S+xt

N )
is PqR with M = T − t + N − 1, α = q−T−N+S, β = q−S−N , γ = q−T−N+t and 
δ = κ2q−T+S+N .

In all cases the parameter q in the definition of PqR is the same as the one that is given.

Proof. This is essentially [16, Theorem 4.1] and we refer to the same paper for the 
details. �
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7.4. Global asymptotics for q-Racah ensembles

In this section we state a law of large numbers and a central limit theorem for the 
q-Racah ensembles — Theorems 7.4.4 and 7.4.5 below.

We begin by explaining how we are scaling the parameters in the q-Racah ensemble.

Definition 7.4.1. We assume that we have parameters a, b, c, d, q and M such that

1 > q > 0, a, b, M > 0, d ≥ 0, 1 > bd, c = q−M, b ≥ c, a ≥ c, cq > 1.

For future reference we denote the set of parameters a, b, c, d, q and M that satisfy the 
above conditions by P and view it as a subset of R6 with the subspace topology.

In addition, we assume that we have a sequence of parameters αN , βN , γN , δN , qN and 
MN that satisfy the conditions in Definition 7.3.4 and such that for some constant A > 0
we have

max
(
N
∣∣∣qN − q1/N

∣∣∣ , |αN − a| , |βN − b| , |γN − c| , |δN − d| ,
∣∣N−1MN − M

∣∣) ≤ AN−1.

We let PN be the measure from Definition 7.3.3 with parameters αN , βN , γN , δN , qN , MN

and N .

Definition 7.4.2. Suppose we are given parameters a, b, c, d and q such that

1 > q > 0, a, b, c > 0, d ≥ 0, 1 > bd, b ≥ c, a ≥ c, cq ≥ 1.

We define the following polynomials

Φ+(z) = (z − a)(z − bd)(z − c)(z − cd), Φ−(z) = (z − 1)(az − cd)(bz − c)(z − d)

R(z) = Φ+(z)+Φ−(z)−(abq−1)(q−1−1)(z2−cd)2, Q(z)2 = R(z)2−4Φ−(z)Φ+(z).

With the above data we define

μ(x) =

⎧⎨
⎩

1
π · arccos

(
R(q−x)

2
√

Φ−(q−x)Φ+(q−x)

)
when x ∈ (0,− logq(c)),

0 otherwise.
(7.13)

If the expression inside the arccosine is bigger than 1 we set μ = 0 and if it is less than 
−1 we set μ = 1. The square root is the usual one as on (0, − logq(c)) both Φ−(q−x) and 
Φ+(q−x) are positive.

We also isolate the following fact.

Lemma 7.4.3. The polynomial Q2 from Definition 7.4.2 factors completely over R. If we 
enumerate its roots in increasing order x1, . . . , x8 we get
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x1 = x2 = −
√
cd, d ≤ x3 ≤ x4 ≤ cd, x5 = x6 =

√
cd, 1 ≤ x7 ≤ x8 ≤ c.

(7.14)

Moreover, we have x3 = cd
x8

and x4 = cd
x7

.

Proof. One readily checks that

z−4q2Q(z)2 =
(
z − cdz−1)2 ·Q0

(
z + cdz−1) , where Q0(x) = a2x

2 + a1x + a0, with
(7.15)

• a2 = (abq2 − 1)2
• a1 = −2q(a2b2dq2 + ab2cdq2 + a2b2q2 + a2bcq2 + ab2dq2 + abcdq2 + a2bq2 − 2ab2dq−

2abcdq+ abcq2 − 2a2bq− 2abcq− 2abdq− 2bcdq+ abd − 2abq− 2acq+ bcd + ab + ac +
bd + cd + a + c),

• a0 = 4a2b2cdq3−4a2b2cdq4+4ab2cd2q3+a2b2d2q2+4a2b2dq3+4a2bcdq3−2ab2cd2q2+
4ab2cdq3+4abc2dq3+b2c2d2q2−2a2b2dq2−2a2bcdq2+4a2bcq3−2ab2cdq2−2ab2d2q2−
2abc2dq2 − 2abcd2q2 + 4abcdq3 − 2b2cd2q2 − 2bc2d2q2 + a2b2q2 − 2a2bcq2 − 2a2bdq2 +
a2c2q2−2ab2dq2−16abcdq2−2ac2dq2+b2d2q2−2bd2dq2−2bcd2q2+c2d2q2−2a2bq2−
2a2cq2 + 4abcdq − 2abcq2 − 2abcq2 − 2ac2q2 − 2acdq2 + 4bcd2q − 2bcdq2 − 2c2dq2 +
a2q2 + 4abdq + 4acdq − 2acq2 + 4bcdq + 4c2dq + c2q2 + 4acq + 4cdq − 4cd.

Consequently, what remains is to show that Q0 has two real roots y1 and y2 such that 
1 + cd ≤ y1 ≤ y2 ≤ c + d. Indeed, if the latter is true we would have that z + cdz−1 = y1
(resp. z + cdz−1 = y2) has two real roots x3, x8 (resp. x4, x7) and these satisfy the 
conditions of the lemma.

A direct calculation shows that the discriminant of Q0 equals

D = a2
1−4a0a2 = 16(q−1)(bq−1)(bdq−1)(cq−1)(aq−1)(aq−d)(abq−1)(abq− c) ≥ 0.

Thus Q0 indeed has two real roots and to show that they both lie in the interval [1 +
cd, c + d] it suffices to show that Q′

0(1 + cd) ≤ 0 and Q′
0(c + d) ≥ 0. We notice that

F1 = Q′
0(1 + cd) = 2a2(1 + cd) + a1(1 + cd) and F2 = Q′

0(c+ d) = 2a2(c+ d) + a1(c+ d)

are both linear functions of γ and by assumption q−1 ≤ c ≤ min(a, b). In particular, it 
suffices to check that F1 ≤ 0 when c = q−1 and c = b, while F2 ≥ 0 when c = q−1 and 
c = a.

When c = q−1 we have that

F1 = 2(1 − q−1)(bq − 1)(abq2 − 1)(aq − d) ≤ 0 and

F2 = 2(1 − q−1)(aq − 1)(abq2 − 1)(bdq − 1) ≥ 0.

When c = b we have
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F1 = 2(bq − 1)(aq − 1)G1 where G1 = ab2dq2 + abq2 − 2abq − 2bdq + bd + 1,

while when c = a we have

F2 = 2(bq − 1)(aq − 1)G2 where G2 = a2bq2 + abdq2 − 2abdq − 2aq + a + d.

What remains is to show that G1 ≤ 0 and G2 ≥ 0. Note that G1 and G2 are linear 
functions in d and d ∈ [0, b−1). Thus, it suffices to check that G1 ≤ 0 and G2 ≥ 0 when 
d = 0 and d = b−1.

When d = 0 we have G1 = abq(q − 1) + (1 − abq) ≤ 0 and G2 = aq(abq − 1) +
a(1 − q) ≥ 0. When d = b−1 we have G1 = 2(q − 1)(abq − 1) ≤ 0 and G2 =
b−1 ((abq − 1)2 + ab(q − 1)2

)
≥ 0. �

The formula for Q that we will use in the paper is

Q(x) = (abq − q−1) · (z2 − cd) ·
√

(z − x3)(z − x4) ·
√

(z − x7)(z − x8) (7.16)

7.4.1. Law of large numbers
In this section we state a law of large numbers theorem for the q-Racah ensembles as 

Theorem 7.4.4 below. Its proof will be established in Section 9.2. We assume we have 
the same parameters and measures PN as in Definition 7.4.1 and define the empirical 
measures μN

μN = 1
N

N∑
i=1

δ

(
λi

N

)
where (λ1, . . . , λN ) is PN -distributed. (7.17)

Theorem 7.4.4. Under the assumptions in this section, we have that the measures μN

concentrate (in probability) near μ(x)dx, where μ(x) is as in Definition 7.4.2 with pa-
rameters a = a, b = b, c = c, d = d and q = q. More precisely, for each Lipschitz function 
f(x) defined in a real neighborhood of the interval [0, M] and each ε > 0 the random 
variables

N1/2−ε

∣∣∣∣∣∣
ˆ

R

f(x)μN (dx) −
ˆ

R

f(x)μ(x)dx

∣∣∣∣∣∣
converge to 0 in probability and in the sense of moments.

7.4.2. Central limit theorem
In this section we state a central limit theorem for the q-Racah ensembles as The-

orem 7.4.5 below. Its proof will be established in Section 9.2. We assume the same 
parameters and measures PN as in Definition 7.4.1. It turns out that to better see the 
Gaussian structure of the q-Racah ensemble it is convenient to consider a transformed 
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particle system, given by (y1, . . . , yN ) with yi = σN (q−λi

N ) and σN (z) = z+γNδNqNz−1. 
Then the transformed empirical measure of the system is given by

ρN = 1
N

N∑
i=1

δ (yi) = 1
N

N∑
i=1

δ
(
σN (q−λi

N )
)

where (λ1, . . . , λN ) is PN -distributed.

(7.18)

Theorem 7.4.5. Take m ≥ 1 polynomials f1, . . . , fm ∈ R[x]. Let ρN be as in (7.18) and 
define

Lfi = N

ˆ

R

fj(x)ρN (dx) −NEPN

⎡
⎣ˆ
R

fj(x)ρN (dx)

⎤
⎦ for i = 1, . . . ,m.

Then the random variables Lfi converge jointly in the sense of moments to an 
m-dimensional centered Gaussian vector X = (X1, . . . , Xm) with covariance

Cov(Xi, Xj) = 1
(2πi)2

˛

Γ

˛

Γ

fi(s)fj(t)C(s, t)dsdt,

where Γ is a positively oriented contour, which encloses the interval [1 + cd, c + d]. The 
covariance kernel C(s, t) is given by

C(s, t) = − 1
2(s− t)2

(
1 − (s− a−)(t− a+) + (t− a−)(s− a+)

2
√

(s− a−)(s− a+)
√

(t− a−)(t− a+)

)
, (7.19)

where a− = x3 +x8, a+ = x4 +x7 and x1, . . . , x8 are the ordered roots of the polynomial 
Q(z)2 from Definition 7.4.2 with parameters a = a, b = b, c = c, d = d and q = q, cf. 
Lemma 7.4.3.

8. Global asymptotics for the q-Racah tiling model

As discussed in Section 7.2 the 1D global fluctuations of our model are asymptotically 
described by an appropriate pullback of the Gaussian free field in H. In Section 8.1 we 
provide some preliminaries on the two-dimensional Gaussian free field. In Section 8.2
we describe the complex structure Ω on the liquid region D′ of our tiling model and 
show that Ω defines a bijection between D′ and H. In Section 8.3 we give the proof of 
Theorems 7.4.4 and 7.4.5. Finally, in Section 8.4 we state our 2D conjecture.

8.1. Gaussian free field

In this section we briefly recall the formulation and some basic properties of the 
Gaussian free field (GFF). Our discussion will follow the exposition in [14, Section 4.5]
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and for a more thorough background on the subject we refer to [66], [29, Section 4], [36, 
Section 2], and the references therein.

Definition 8.1.1. The Gaussian free field with Dirichlet boundary conditions in the upper 
half-plane H is a (generalized) centered Gaussian field F on H with covariance given by

E [F(z)F(w)] = − 1
2π log

∣∣∣∣z − w

z − w

∣∣∣∣ , z, w ∈ H. (8.1)

We remark that F can be viewed as a probability Gaussian measure on a suitable 
class of generalized functions on H; however, one cannot define the value of F at a given 
point z ∈ H (this is related to the singularity of (8.1) at z = w).

Even though F does not have a pointwise value; one can define the (usual distribu-
tional) pairing F(φ), whenever φ is a smooth function of compact support, and the latter 
is a mean zero normal random variable. In general, one can characterize the distribution 
of F through pairings with test functions as follows. If {φk} is any sequence of compactly 
supported smooth functions on H then the pairings {F(φk)} form a sequence of centered 
normal variables with covariance

E [F(φk)F(φl)] =
ˆ

H2

φk(z)φl(w)
(
− 1

2π log
∣∣∣∣z − w

z − w

∣∣∣∣
)
|dz|2|dw|2.

An important property of F that will be useful for us is that it can be integrated 
against smooth functions on smooth curves γ ⊂ H. We isolate the statement in the 
following lemma.

Lemma 8.1.2. [14, Lemma 4.6] Let γ ⊂ H be a smooth curve and μ a measure on H, 
whose support is γ and whose density with respect to the natural (arc length) measure on 
γ is a given by a smooth function g(z) such that

¨

γ×γ

g(z)g(w)
(
− 1

2π log
∣∣∣∣z − w

z − w

∣∣∣∣
)
dzdw < ∞. (8.2)

Then
ˆ

H

Fdμ =
ˆ

γ

F(u)g(u)du

is a well-defined Gaussian centered random variable of variance given by (8.2). Moreover, 
if we have two such measures μ1 and μ2 (with two curves γ1 and γ2 and two densities g1

and g2), then X1 =
´
γ1

F(u)g1(u)du, X2 =
´
γ2

F(u)g2(u)du are jointly Gaussian with 
covariance
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E[X1X2] =
¨

γ1×γ2

g1(z)g2(w)
(
− 1

2π
log
∣∣∣∣z − w

z − w

∣∣∣∣
)
dzdw.

Another property of F that we require is that it behaves well under bijective maps, 
which leads to the notion of pullback.

Definition 8.1.3. Given a domain D and a bijection Ω : D → H, the pullback F ◦ Ω is a 
generalized centered Gaussian field on D with covariance

E [F(Ω(z))F(Ω(w))] = − 1
2π log

∣∣∣∣Ω(z) − Ω(w)
Ω(z) − Ω(w)

∣∣∣∣ , z, w ∈ D.

Integrals of F ◦ Ω with respect to measures can be computed through
ˆ

D

(F ◦ Ω)dμ =
ˆ

H

FdΩ(μ),

where dΩ(μ) stands for the pushforward of the measure μ.

The above definition immediately implies the following analogue of Lemma 8.1.2.

Lemma 8.1.4. [14, Lemma 4.8] In the notation of Definition 8.1.3, let μ be a measure 
on D whose support is a smooth curve γ and whose density with respect to the natural 
(length) measure on γ is given by a smooth function g(z) such that

¨

γ×γ

g1(z)g2(w)
(
− 1

2π log
∣∣∣∣Ω(z) − Ω(w)
Ω(z) − Ω(w)

∣∣∣∣
)
dzdw < ∞. (8.3)

Then
ˆ

D

(F ◦ Ω)dμ =
ˆ

γ

F(Ω(u))g(u)du

is a well-defined Gaussian centered random variable of variance given by (8.3). Moreover, 
if we have two such measures μ1 and μ2 (with two curves γ1 and γ2 and two densities g1
and g2), then X1 =

´
γ1

F(Ω(u))g1(u)du, X2 =
´
γ2

F(Ω(u))g2(u)du are jointly Gaussian 
with covariance

E[X1X2] =
¨

γ1×γ2

g1(z)g2(w)
(
− 1

2π log
∣∣∣∣Ω(z) − Ω(w)
Ω(z) − Ω(w)

∣∣∣∣
)
dzdw.

We end this section by remarking that the Gaussian free field is conformally invariant: 
if φ is an automorphism of H (i.e. φ(z) = az+b

cz+d with a, b, c, d ∈ R and ad − bc = 1) then 
the distributions of F and F ◦ φ are the same.
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8.2. Complex structure

In this section we adopt the same notation as in Section 7.2 and formulate the map 
Ω. We first observe that if (x, y) ∈ P then we have that φ(x, y) = π · μ (y/N), where μ
is as in Definition 7.4.2 for the parameters q = qN, a = q−S−N, b = qS−T−N, c = q−x−N

and d = k2q−S+N. If we have that R, Q, Φ± are as in Definition 7.4.2 with the same 
parameters then the liquid region D is given by

D =
{
(x, y) ∈ P : Q(q−y)2 < 0

}
=
{
x ∈ (0, T) and y ∈ (− logq(x7),− logq(x8))

}
, (8.4)

where x7, x8 stand for the two roots of Q2 in (1, c) — see Lemma 7.4.3. From (7.15) we 
know

z−4q2Q(z)2 =
(
z − cdz−1)2 ·Q0

(
z + cdz−1) ,

and if we set u = q−x and v = q−y + k2q−S−x+y then we see that

Q0
(
q−y + cdqy

)
= Q̃(u, v) = Ãu2 + B̃v2 + C̃uv + D̃u + Ẽv + F̃ ,

where Ã, B̃, C̃, D̃, Ẽ, F̃ are explicit constants that depend only on q, S, N, T and k2 and 
not on x, y. Combining the last two observations, we see that

D′ =
{
(u, v) : Q̃(u, v) < 0

}
=
{
(u, v) : u ∈ (1, q−T) and v ∈

(
x7 + cdx−1

7 , x8 + cdx−1
8
)}

,

(8.5)

where we recall from Section 7.2 that D′ is the image of D under the map σq(x, y) =
(q−x, q−y + k2q−S−x+y). In particular, we have that D′ is an ellipse.

We next consider the quadratic equation

P (w;u, v) := a2(u, v)w2 + a1(u, v)w + a0(u, v) = 0, where a2 = qN(v − 1 − k2q−Su),

a1 = vqN(q−T − 1) +
(
u(q−S − qN) − q−S+N − q−T + 2qN

)
+ uk2qN(q−T + q−S+N − 2q−S−T)

+ k2q−T+N(q−S − qN) and a0 = (u− 1)(q−T − qN)(q−S − 1)(1 − k2q−T+N).
(8.6)

For the above equation one calculates a2
1−4a2a0 = q2N · Q̃(u, v) and so for (u, v) ∈ D′ we 

have that the equation has two complex conjugate roots. We define the map Ω : D′ → H

as

Ω(u, v) = w(u, v) such that P (w(u, v);u, v) = 0 and w(u, v) ∈ H for (u, v) ∈ D′ (8.7)

and from our earlier discussion Ω is well-defined and algebraic.
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In the remainder of this section we show that Ω defines a bijective diffeomorphism be-
tween D′ and H satisfies an important property that is used in the proof of Theorem 7.2.4
in the next section.

For convenience we denote

λ3 = (1 − qN)(1 − k2qN)(q−S − q−T),

λ2 = k2qN
(
q−S−T − q−S+N + q−S − q−T)− q−S + qN,

λ1 = −(q−T − qN)(1 − k2q−T+N)(q−S − 1) and

λ0 = −(q−T − 1)(q−T − qN)(1 − k2q−T+N)(q−S − 1).

Also we define the map f : H → R
2 through f(r + is) = (f1(r, s), f2(r, s)) with

f1(r, s) = 1 + λ3(r2 + s2)
λ2(r2 + s2) + 2rλ1 + λ0

, f2(r, s) = 1 + k2q−T+

+ k2qN(q−S − 1)(q−T − q−S)(1 − k2q−T)
λ2

− λ1λ3(λ2 + k2q−S+N(q−T + 2r − 1))
qNλ2(λ2(r2 + s2) + 2rλ1 + λ0)

.

(8.8)

We observe that

Q̃(f1(r, s), f2(r, s)) = − 4 · q−2Nλ2
3λ

2
1s

2

(λ2(r2 + s2) + 2rλ1 + λ0)2
< 0,

and so f maps H in D′. One directly checks that f ◦ Ω and Ω ◦ f are the identities on 
D′ and H respectively, which shows that Ω has our desired properties.

Remark 8.2.1. Let us give some ideas about how the formula for Ω was discovered. 
Once the appropriate physical coordinates u, v for the system are found, which lead to 
the liquid region D′ being an ellipse, one suspects that the map Ω should be given by 
the solution in H of some quadratic equation a2w

2 + a1w + a0, whose discriminant D =
a2
1−4a0a2 is negative precisely on D′. In particular, we expect that a2

1−4a0a2 = λQ̃(u, v)
for some positive parameter λ.

In [62] the complex structure for the uniform tiling case (this is κ = 0 and q = 1
in our model) was given by a quadratic equation, whose coefficients are linear in the 
coordinates of the system. By analogy we guess that ai = a1

iu + a2
i v + a3

i for i = 1, 2, 3
in our case as well, where the new coefficients do not depend on u and v. This gives us 
a nine parameter system.

When searching for a map Ω one has a choice of which point of the boundary of D′

should be sent to infinity. In our case, we choose the boundary point at (u, 1 + uk2q−S)
with u = 1 +λ3 ·λ−1

2 to be sent to infinity, which gives us 2 equations for our 9 parameters. 
In addition, the relationship a2

1 − 4a0a2 = λQ̃(u, v) gives an additional 6 equations 
(comparing the coefficients in front of uivj) and an extra parameter λ. Overall we have 
a ten parameter system with eight equations.
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The resulting system has a 2-parameters set of solutions. The extra freedom comes 
from multiplying a2, a1, a0 by the same positive constant and also from multiplying 
a2 and dividing a0 by the same positive constant. Observe that the resulting complex 
structures are all equivalent modulo a multiplication by a positive constant, which is an 
automorphism of H. Our particular, choice for the parameters is dictated by the product 
form of the coefficient a0 in (8.6).

Remark 8.2.2. As mentioned in Section 1.1.2 there is a natural complex coordinate one 
can define on the liquid region D, called complex slope. Let us explain how to construct 
it briefly – see [42,44] for more details. Suppose (x, y) ∈ D and set (p1, p2, p3) to be 
the normal vector to the limit shape ĥ at (x, y) such that p1 + p2 + p3 = 1. Then the 
complex slope z(x, y) is the unique point in H such that the triangle (0, 1, z) has angles 
(πp1, πp2, πp3). In the case of the uniform tilings of the hexagon (and more general 
domains) it is known that there is an algebraic relationship between z(x, y) and the 
complex structure Ω(x, y), whose pullback establishes the connection with the GFF on 
H, [44,62]. For the q-Racah tiling model an expression for z(x, y) was obtained in [16, 
Section 8.1] and it is related to Ω(x, y) from (8.7) as follows. If we set

U = U(x, y) = z(x, y)qx − k2q−S+2y

1 − z(x, y)k2q−S+2y−x
and Ω = Ω(x, y) then

U = Ω(q−S − qN) + (q−S − 1)(q−T − qN) − k2qN(Ω + q−T − qN)(Ωq−S + q−T−S − q−T)
(ΩqN + q−T − qN)(Ω + q−S − 1) − k2qN−T[(q−S − qN)Ω + (q−T − qN)(q−S − 1)] .

We end the section with the following result that will be required in the next section.

Lemma 8.2.3. Suppose that u, v1, v2 ∈ R are such that (u, v1), (u, v2) ∈ D′. Then we have

− log
∣∣∣∣Ω(u, v1) − Ω(u, v2)
Ω(u, v1) − Ω(u, v2)

∣∣∣∣ = log

∣∣∣∣∣
√

(v1 − a)(b− v2) +
√

(v2 − a)(b− v1)√
(v1 − a)(b− v2) −

√
(v2 − a)(b− v1)

∣∣∣∣∣ , (8.9)

where a < b denote the intersection points of the vertical line through u with the ellipse 
Q̃(u, v) = 0.

Proof. Note that if φ(z) is an automorphism of H, i.e. φ(z) = m·z+n
k·z+l with m, n, k, l ∈

R and ml− nk = 1, then the LHS of (8.9) is the same upon replacing Ω(u, vi) with 
φ(Ω(u, vi)) for i = 1, 2. Set

m = −a1 + viqN(q−T − 1)√
2a0(u, vi)

, n = −
√

2a0(u, vi), k = 1√
2a0(u, vi)

, l = 0, (8.10)

and observe that the above do not change if we take i = 1 or 2. Moreover, by 
our choice of parameters we know that m, n, k, l satisfy the earlier conditions and we 
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let φ denote the automorphism corresponding to this quadruple. Setting D(u, vi) =
a1(u, vi)2 − 4a0(u, vi)a2(u, vi) we see that

φ(Ω(u, vi)) =
(−a1 + viqN(q−T − 1))(−a1 +

√
D(u, vi)) − 4a0a1

−a1 +
√
D

= viqN(q−T − 1) −
√
D,

where in the second equality we multiplied the numerator and denominator by −a1−
√
D

and used that a2
1 − D = 4a0a2. Recalling that 

√
D(u, vi) = qN

√
Q̃(u, vi) = qN(q−T −

1)
√

(vi − a)(vi − b), where a, b are as in the statement of the lemma, we see that

Ω(u, v1) − Ω(u, v2)
Ω(u, v1) − Ω(u, v2)

=
(v1 − v2) +

√
(v1 − a)(v1 − b) −

√
(v2 − a)(v2 − b)

(v1 − v2) +
√

(v1 − a)(v1 − b) +
√

(v2 − a)(v2 − b)
.

Taking absolute value on both sides above and squaring we get
∣∣∣∣Ω(u, v1) − Ω(u, v2)
Ω(u, v1) − Ω(u, v2)

∣∣∣∣
2

=

(b− v1)(v2 − a) + (b− v2)(v1 − a) − 2
√

(v1 − a)(b− v1)(v2 − a)(b− v2)
(b− v1)(v2 − a) + (b− v2)(v1 − a) + 2

√
(v1 − a)(b− v1)(v2 − a)(b− v2)

.

If we take logarithms on both sides of the above and multiply the result by −1/2 we get 
(8.9). �
8.3. Proof of Theorems 7.2.2 and 7.2.4

8.3.1. Proof of Theorem 7.2.2
We suppose that we have a sequence εk, which converges to 0+ and also sequences 

q(εk), N(εk), T (εk), S(εk) and κ(εk) as in Definition 7.2.1. Let us define t(εk) = �xε−1
k �

and observe that in this notation we have for all large k that

εk · h
(
�xε−1

k �, �yε−1
k � + 1/2

)
= εk ·N ·

ˆ

R

1{
r<yε−1

k

}μt(dr), (8.11)

where μt = N−1∑N
i=1 δ (xt

i/N). By possibly passing to a subsequence we may assume 
that the parameters t, S, T fall into one of the four cases in Theorem 7.3.5. These cases 
need to be handled separately, but as the arguments are analogous we assume that we 
are in the case t < min(S, T − S).

It follows from Theorem 7.3.5, (8.11) and the definition of ĥ that for large k we have

p(εk) := Pεk

(∣∣∣εk · h
(
�xε−1

k �, �yε−1
k � + 1/2

)
− ĥ(x, y)

∣∣∣ > η
)

=

PN

⎛
⎝
∣∣∣∣∣∣εk ·N ·

ˆ
1{

r<yε−1
k N−1

}μN (dr) −
yˆ
μ (r/N) dr

∣∣∣∣∣∣ > η

⎞
⎠ ,

(8.12)
R 0
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where PN , μN are as in the statement of Theorem 7.4.4 for the parameters qN = q, 
MN = t + N − 1, αN = q−S−N

N , βN = qS−T−N
N , γN = q−t−N

N and δN = κ2q−S+N
N and 

μ is as in Definition 7.4.2 for the parameters q = qN, a = q−S−N, b = qS−T−N, c = q−x−N

and d = k2q−S+N.
For δ̃ > 0 we let fδ̃ be a smooth function, such that fδ̃ = 1 on [0, y/N], its support lies 

in (−δ̃, y/N + δ̃), fδ̃(x) ∈ [0, 1] for all x. Then choosing δ̃ sufficiently small we have for 
all large k that

p(εk) < PN

⎛
⎝
∣∣∣∣∣∣N ·

ˆ

R

fδ̃(r)μN (dr) − N ·
ˆ

R

fδ̃(r)μ(r)dr

∣∣∣∣∣∣ > η/2

⎞
⎠ ,

where we used that N = Nε−1
k + o(1), fδ̃(x), μ(x) are both in [0, 1] and we performed a 

change of variables for the integral involving μ. From Theorem 7.4.4 we know that the 
RHS above converges to 0 as k → ∞, which proves the theorem.

8.3.2. Proof of Theorem 7.2.4
We suppose that we have a sequence εk, which converges to 0+ and also sequences 

q(εk), N(εk), T (εk), S(εk) and κ(εk) as in Definition 7.2.1. In addition, we assume that 
Ri are real polynomials such that R′

i(x) = fi(x) for i = 1, . . . , m.
Observe that for all large k we have

ˆ

R

(
H(q−t, v) − EPεk

[
H(q−t, v)

])
fi(v)dv =

R̂

1

(
H(q−t, v) − EPεk

[
H(q−t, v)

])
fi(v)dv,

(8.13)

where R = q−S−N + k2q−S−T + 1. The latter truncation is allowed since a.s. all particles 
will have v-coordinate in [1, R], which makes the height function H deterministic outside 
this interval and the above integrand zero there. In addition, we observe that

R̂

1

H(q−t, v)fi(v)dv =
N∑
j=1

Vj+1ˆ

Vj

j · fi(v)dv = −
N∑
j=1

Ri(Vj) + NRi(R), (8.14)

where Vj = V (t, j) for j = 1, . . . , N (see (7.6)) and VN+1 = R. Combining (8.13) and 
(8.14) we conclude that for all large k we have

ˆ

R

(
H(q−t, v) − EPεk

[
H(q−t, v)

])
fi(v)dv =

−N

ˆ
Rj(x)ρt(dx) + NEPεk

⎡
⎣ˆ Rj(x)ρt(dx)

⎤
⎦ ,

(8.15)
R R
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where ρt = 1
N

∑N
j=1 δ (Vj). By possibly passing to a subsequence we may assume that 

the parameters t, S, T fall into one of the four cases in Theorem 7.3.5. These cases need 
to be handled separately, but as the arguments are analogous we will assume that we 
are in the first case t < min(S, T − S).

It follows from Theorem 7.3.5 that ρt under law Pεk has the same distribution as ρN
under law PN , where ρN is as in (7.18) and PN is as in Definition 7.4.1 for the parameters 
qN = q, MN = t +N−1, αN = q−S−N

N , βN = qS−T−N
N , γN = q−t−N

N and δN = κ2q−S+N
N . 

If we denote by Xεk
i the RHS of (8.15) for i = 1, . . . , m we conclude from Theorem 7.4.5

that Xεk
i converge as k → ∞ to a Gaussian vector (X1, . . . , Xm) which has zero mean 

and covariance

E [XiXj ] =

1
(2πi)2

˛

γ

˛

γ

Ri(v1)Rj(v2)
2(v1 − v2)2

(
−1 + (v1 − a)(v2 − b) + (v2 − a)(v1 − b)

2
√
v1 − a

√
v1 − b

√
v2 − a

√
v2 − b

)
dv1dv2,

where γ is a positively oriented contour, which encloses the interval [1 + uk2q−S, uq−N +
k2q−S+N] and the square roots are defined with respect to the principal branch of the 
logarithm. In deriving the above we implicitly used Lemma 7.4.3 and (8.5). To complete 
the proof it suffices to show

π

(2πi)2

˛

γ

˛

γ

Ri(v1)Rj(v2)
2(v1 − v2)2

(
−1 + (v1 − a)(v2 − b) + (v2 − a)(v1 − b)

2
√
v1 − a

√
v1 − b

√
v2 − a

√
v2 − b

)
dv1dv2 =

bˆ

a

bˆ

a

R′
i(x)R′

j(y)
(
− 1

2π log
∣∣∣∣Ω(u, x) − Ω(u, y)
Ω(u, x) − Ω(u, y)

∣∣∣∣
)
dxdy,where Ω is as in (8.7).

(8.16)

We start with the LHS of (8.16) and deform the v2 contour so that it traverses the 
segment [a, b] once in the positive and once in the negative direction. Observe the square 
roots are purely imaginary and come with opposite sign when we approach [a, b] from 
the upper and lower half-planes. On the other hand, the term 1

2(v1−v2)2 cancels when we 
integrate over [a, b] in the positive and negative direction. By Cauchy’s theorem we do 
not change the value of the integral during the deformation and so from the Bounded 
convergence theorem we see that the LHS of (8.16) equals

πi

(2πi)2

˛

γ

bˆ

a

Ri(v1)Rj(v2)
(v1 − v2)2

· (v1 − a)(v2 − b) + (v2 − a)(v1 − b)
2
√
v1 − a

√
v1 − b

√
v2 − a

√
b− v2

dv2dv1.

We integrate by parts in the v2 variable and change the order of the integrals, which 
leads to the following expression for the LHS in (8.16)
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πi

(2πi)2

bˆ

a

˛

γ

Ri(v1)R′
j(v2)

(v1 − v2)
·
√
v2 − a

√
b− v2√

v1 − a
√
v1 − b

dv1dv2. (8.17)

At this time we claim that for each v2 ∈ (a, b) we have

˛

γ

Ri(v1)
(v1 − v2)

·
√
v2 − a

√
b− v2√

v1 − a
√
v1 − b

dv1 = 2i
bˆ

a

R′
i(v1)×

[
2 log

(√
(v1 − a)(b− v2) +

√
(v2 − a)(b− v1)

)
− log |v1 − v2| − log(b− a)

]
dv1.

(8.18)

We will prove (8.18) below. For now we assume its validity and finish the proof of (8.16).
From (8.17) and (8.18) we see that to show (8.16) it suffices to have

− log
∣∣∣∣Ω(u, v1) − Ω(u, v2)
Ω(u, v1) − Ω(u, v2)

∣∣∣∣ =2 log
(√

(v1 − a)(b− v2) +
√

(v2 − a)(b− v1)
)
−

− log |v1 − v2| − log(b− a).
(8.19)

From (8.9) we know that

− log
∣∣∣∣Ω(u, v1) − Ω(u, v2)
Ω(u, v1) − Ω(u, v2)

∣∣∣∣ = log

∣∣∣∣∣
√

(v2 − a)(b− v1) +
√

(v1 − a)(b− v2)√
(v2 − a)(b− v1) −

√
(v1 − a)(b− v2)

∣∣∣∣∣ .
In addition, one readily checks that log |v1 − v2| + log(b − a) is equal to

log
∣∣∣√(v2 − a)(b− v1) +

√
(v1 − a)(b− v2)

∣∣∣+
log
∣∣∣√(v2 − a)(b− v1) −

√
(v1 − a)(b− v2)

∣∣∣ .
The last two statements imply (8.19), which concludes the proof of (8.16).

In the remainder of the section we establish (8.18). Fix v2 ∈ (a, b) and let ε > 0 be 
such that (v2 − ε, v2 + ε) ⊂ [a, b]. For δ ∈ (0, ε) we define the contour Γδ,ε as follows. 
Γδ,ε starts from the point b − iδ and follows the circle centered at b with radius δ
counterclockwise until the point b + iδ, afterwards it goes to the left along the segment 
connecting the points b + iδ and v2 + ε + iδ; it follows the circle centered at v2 + iδ

and radius ε counterclockwise until the point v2 − ε + iδ and goes to the left along the 
segment connecting v2 − ε + iδ and a + iδ; it then follows the circle centered at a with 
radius δ counterclockwise until the point a − iδ and then goes to the right along the 
segment connecting a − iδ and v2 − ε − iδ; finally, it follows the circle centered at v2 − iδ

and radius ε counterclockwise until the point v2 − ε − iδ and goes to the right along the 
segment connecting v2 − ε − iδ and b − iδ, see Fig. 8.
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Fig. 8. The contour Γδ,ε.

By Cauchy’s theorem we see that

˛

γ

Ri(v1)
(v1 − v2)

·
√
v2 − a

√
b− v2√

v1 − a
√
v1 − b

dv1 =
˛

Γδ,ε

Ri(v1)
(v1 − v2)

·
√
v2 − a

√
b− v2√

v1 − a
√
v1 − b

dv1 (8.20)

We next let δ go to 0+ and see that

lim
δ→0+

˛

Γδ,ε

Ri(v1)
(v1 − v2)

·
√
v2 − a

√
b− v2√

v1 − a
√
v1 − b

dv1 = T1(ε) + T2(ε) + T3(ε), where

T1(ε) = 2i
v2−εˆ

a

Ri(v1)
(v1 − v2)

·
√
v2 − a

√
b− v2√

v1 − a
√
b− v1

dv1,

T2(ε) = 2i
bˆ

v2+ε

Ri(v1)
(v1 − v2)

·
√
v2 − a

√
b− v2√

v1 − a
√
b− v1

dv1,

T3(ε) =
ˆ

C+
ε (v2)

Ri(v1)
(v1 − v2)

·
√
v2 − a

√
b− v2√

v1 − a
√
v1 − b

dv1 +
ˆ

C−
ε (v2)

Ri(v1)
(v1 − v2)

·
√
v2 − a

√
b− v2√

v1 − a
√
v1 − b

dv1

(8.21)

with C+
ε (v2), C−

ε (v2) being positively oriented half-circles of radius ε around v2 in the 
upper and lower half-planes respectively. In deriving the above expression we used the 
Bounded convergence theorem and the fact that the square roots are purely imaginary 
and come with opposite sign when we approach [a, b] from the upper and lower half-
planes.

We next integrate by parts the integrals in T1(ε) and T2(ε) to get

T1(ε) = −2i
v2−εˆ

a

R′
i(u)Gv(v1)dv1 + 2i · [Ri(v2 − ε)Gv2(v2 − ε) −Ri(a)Gv2(a)],

T2(ε) = −2i
bˆ

R′
i(v1)Gv2(v1)dv1 + 2i · [Ri(b)Gv2(b) −Ri(v2 + ε)Gv2(v2 + ε)], where
v2+ε
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Gv2(v1) = −2 log
(√

(v1 − a)(b− v2) +
√

(v2 − a)(b− v1)
)

+ log |v1 − v2|. (8.22)

We observe that Gv2(a) = − log(b − a) = Gv2(b) and Ri(v2 − ε)Gv2(v2 − ε) − Ri(v2 +
ε)Gv2(v2 + ε) = O

(
ε log ε−1). The latter statements together with the Dominated con-

vergence theorem imply that

lim
ε→0+

T1(ε) + T2(ε) = −2i
bˆ

a

R′
i(v1)Gv2(v1)dv1 − 2i log(b− a) · [R(b) −R(a)]. (8.23)

We next turn to T3(ε) and parametrize C+
ε (v) through v1 = v2 + εeiθ with θ ∈ (0, π)

and C−
ε (v) through v1 = v2 + εeiθ with θ ∈ (−π, 0). This leads to

T3(ε) = i
√
v2 − a

√
b− v2 ·

[ π̂

0

Ri(v2 + εeiθ)dθ√
εeiθ + v2 − a

√
εeiθ + v2 − b

+
0ˆ

−π

Ri(v2 + εeiθ)dθ√
εeiθ + v2 − a

√
εeiθ + v2 − b

]
.

We can let ε converge to 0+ above, which by the Bounded convergence theorem implies

lim
ε→0+

T3(ε) =
√
v2 − a

√
b− v2 ·

⎡
⎣ π̂

0

Ri(v2)dθ√
v2 − a

√
b− v2

−
0ˆ

−π

Ri(v2)dθ√
v2 − a

√
b− v2

⎤
⎦ = 0,

(8.24)

where the sign change came from the fact that we are approaching the real line from the 
upper and lower half-planes in the two cases. Combining (8.20), (8.21), (8.23), (8.24) we 
conclude that

˛

γ

Ri(v1)
(v1 − v2)

·
√
v2 − a

√
b− v2√

v1 − a
√
v1 − b

dv1 = −2i
bˆ

a

R′
i(v1)Gv2(v1)dv1−2i log(b−a)·[R(b)−R(a)].

The latter is equivalent to (8.18) once we use that R(b) −R(a) =
´ b

a
R′(v1)dv1.

8.4. Conjectural 2d fluctuations

In this section we isolate the following two-dimensional (conjectural) extension to 
Theorem 7.2.4.

Conjecture 8.4.1. Assume the same notation as in Theorem 7.2.4. Then the centered 
random height function
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√
π
(
H(q−t, v) − EPε

[
H(q−t, v)

])
converges to the pullback of the Gaussian free field with Dirichlet boundary conditions 
on the upper half-plane H with respect to the map Ω in the following sense: For any set 
of polynomials fi ∈ R[x], numbers ui ∈ (1, q−T) and sequences ti(ε) such that q−ti(ε) =
ui + O(ε) for i = 1, . . . , m the joint distribution of

ˆ

R

√
π
(
H(q−ti , v) − EPε

[
H(q−ti , v)

])
fi(v)dv, i = 1, . . . ,m, (8.25)

converges to the joint distribution of the similar averages

b(ui)ˆ

a(ui)

F(Ω(u, y))fi(y)dy, i = 1, . . . ,m

of the pullback of the GFF. In the above formula a(u), b(u) are the v-coordinates of the 
two points where the vertical line through u intersects the ellipse Q̃(u, v) = 0.

Equivalently, the variables in (8.25) converge jointly to a Gaussian vector (X1, . . . ,
Xm) with mean zero and covariance

E[XiXj ] =
b(ui)ˆ

a(ui)

b(uj)ˆ

a(uj)

fi(x)fj(y)
(
− 1

2π log
∣∣∣∣Ω(ui, x) − Ω(uj , y)
Ω(ui, x) − Ω(uj , y)

∣∣∣∣
)
dxdy. (8.26)

Remark 8.4.2. We emphasize that our methods only allow us to study the global fluc-
tuations of the tiling model for a single vertical section, and in order to establish the 
above statement one needs to be able to study the joint distribution of the particles on 
several vertical slices.

9. Connection to log-gases on a quadratic lattice

In this section we explain how our model fits into the framework of a discrete log-gas 
on a quadratic lattice as in Section 2. The latter will allow us to deduce Theorems 7.4.4
and 7.4.5 as consequences of Theorems 3.1.1 and 5.2.7 respectively.

9.1. Asymptotics of the weight function

We first consider with the weight function wqR(x) of the q-Racah ensemble defined 
by (7.11). We are interested in understanding the asymptotic behavior of wqR(x) when 
the parameters α, β, γ, δ, q scale as in Definition 7.4.1. In order to do this we will need 
the following technical lemma.
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Lemma 9.1.1. Let a, b ∈ (0, 1) and q ∈ [a, b] be given. Suppose that xN , qN for N ∈ N

are sequences such that 
∣∣qN − q1/N

∣∣ ≤ AN−2 and xN ∈ [0, qN ], where A is a positive 
constant. Then we have

(xN ; qN )∞ = exp
(
N · Li(xN )

log(q) + O (log(N))
)
, (9.1)

where Li(x) =
∑∞

k=1
xk

k2 is the dilogarithm function and the constant in the big O notation 
depends on a, b and A.

Proof. Taking logarithm of 
∏∞

i=1(1 − xNqi−1
N ) and power expanding log(1 − y) for 0 <

y < 1 gives

log [(xN ; qN )∞] = −
∞∑
r=1

∞∑
k=1

xk
N

k
· qk(r−1)

N .

We change the order of the sums and use the geometric series formula to get

log [(xN ; qN )∞] = −
∞∑
k=1

xk
N

k
· 1
1 − qkN

= − 1
1 − qN

∞∑
k=1

xk
N

k
· 1 − qN
1 − qkN

= AN + BN + CN ,

where

AN = − 1
1 − qN

∞∑
k=1

xk
N

k

[
1 − qN
1 − qkN

− 1
k

]
, BN = − 1

1 − qN

∞∑
k=1

xk
N

k2 −N
Li(xN )
log(q) ,

CN = N
Li(xN )
log(q) .

What we need to show is that AN and BN are both O (log(N)).
Notice that

|BN | = Li(xN )
∣∣∣∣− 1

1 − qN
− N

− log(q)

∣∣∣∣ ≤ Li(1) + O(1),

where we used that xN ∈ [0, 1] and 1 − qN = − log(q)/N + O(N−2). This proves that 
BN = O(1) and we focus on AN for the remainder.

Combining 1−qN
1−qkN

− 1
k ≥ 0 with xN ∈ [0, qN ] we conclude

− 1
1 − qN

∞∑
k=1

qkN
k

[
1 − qN
1 − qkN

− 1
k

]
≥ AN ≥ 0.

Since 1 − qN = − log(q)/N + O(N−2), we see that what remains to be shown is that
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∞∑
k=1

qkN
k

[
1 − qN
1 − qkN

− 1
k

]
= O

(
log(N)

N

)
. (9.2)

Suppose that − 1
4 log(q) ≥ ε0 > 0 is sufficiently small so that when ε ∈ [0,− log(q)ε0] we 

have 1 −e−ε ≥ ε −2ε2 ≥ ε/2. Using the latter together with the inequality 
1 − qN
1 − qkN

− 1
k
≥ 0

we see that

∑
k≤ε0N

qkN
k

[
1 − qN

−(k/N) log(q) − 2 log(q)2(k/N)2 − 1
k

]
≥
∑

k≤ε0N

qkN
k

[
1 − qN
1 − qkN

− 1
k

]
≥ 0.

As 1 −qN = − log(q)/N +O(N−2) the above statement implies that for sufficiently large 
C we have

C

N

∑
k≤ε0N

qkN
k

+
∑

k≤ε0N

qkN
k

[
− log(q)

−k log(q) − 2 log(q)2k2N−1 − 1
k

]
≥

∑
k≤ε0N

qkN
k

[
1 − qN
1 − qkN

− 1
k

]
≥ 0.

Notice that

− log(q)
k log(q) + 2 log(q)2k2N−1 − 1

k
= 1

k + 2 log(q)k2N−1 − 1
k

= − 2 log(q)N−1

1 + 2 log(q)kN−1 ≤ −4 log(q)N−1,

where the last inequality holds since kN−1 ≤ ε0 ≤ − 1
4 log(q) . The latter estimates show 

that for some (possibly different than before) constant C > 0 we have

C

N

∑
k≤ε0N

qkN
k

≥
∑

k≤ε0N

qkN
k

[
1 − qN
1 − qkN

− 1
k

]
≥ 0.

Since 
∑

k≤ε0N
qkN
k ≤ − log(1 − qN ) = O(log(N)) we conclude that

∑
k≤ε0N

qkN
k

[
1 − qN
1 − qkN

− 1
k

]
= O

(
log(N)

N

)
. (9.3)

We next have that

1 − qN
1 − qε0

∑
k≥ε0N

qkN
k

≥
∑

k≥ε0N

qkN
k

· 1 − qN
1 − qkN

≥
∑

k≥ε0N

qkN
k

[
1 − qN
1 − qkN

− 1
k

]
≥ 0.

Since 1 − qN = O(N−1) and 
∑

k≥ε N
qkN ≤ − log(1 − qN ) = O(log(N)) we conclude that
0 k
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∞∑
k≥ε0N

qkN
k

[
1 − qN
1 − qkN

− 1
k

]
= O

(
log(N)

N

)
. (9.4)

Combining (9.3) and (9.4) we conclude (9.2), which proves the lemma. �
In addition, we require the following alternative formula for the weight wqR(x).

Lemma 9.1.2. Suppose that we have parameters α, β, γ, δ, q and M as in Definition 7.3.4. 
Then we have

wqR(x) = (βδq, γδq; q)∞
(q, α−1γδq, β−1γq, δq, α−1, γ−1; q)∞

w̃qR(x), where

w̃qR(x) =

(γ/β)xqx
2 1 − γδq2x+1

1 − γδq

(qx+1, α−1γδqx+1, β−1γqx+1, δqx+1, α−1q−x, γ−1q−x; q)∞
(βδqx+1, γδqx+1; q)∞

.

(9.5)

Proof. We recall the definition of wqR(x) from Definition 7.3.1 for the reader’s conve-
nience.

wqR(x) = (αq, βδq, γq, γδq; q)x
(q, α−1γδq, β−1γq, δq; q)x

· (1 − γδq2x+1)
(αβq)x(1 − γδq) .

Observe that

(αq; q)x =
x∏

i=1
(1 − αqi) = qx(x+1)/2αx(−1)x ·

x∏
i=1

(1 − α−1q−i)

= qx(x+1)/2αx(−1)x · (α−1q−x; q)x.

Similarly, we have (γq; q)x = qx(x+1)/2γx(−1)x · (γ−1q−x; q)x. Substituting the latter 
identities and performing a bit of cancellation we arrive at

wqR(x) = (α−1q−x, βδq, γ−1q−x, γδq; q)x
(q, α−1γδq, β−1γq, δq; q)x

(1 − γδq2x+1)
(1 − γδq) · (γ/β)xqx

2
.

Observe that for a ∈ [0, 1) we have (a; q)x = (a;q)∞
(aqx;q)∞ . Substituting the latter identity 

in the above expression we see that wqR(x) equals

(α−1q−x, βδq, γ−1q−x, γδq; q)∞
(q, α−1γδq, β−1γq, δq; q)∞

(qx+1, α−1γδqx+1, β−1γqx+1, δqx+1; q)∞
(α−1, βδqx+1, γ−1, γδqx+1; q)∞

× (1 − γδq2x+1)
(1 − γδq) · (γ/β)xqx

2
.

From here (9.5) is immediate. �
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The main statement of this section is the following.

Lemma 9.1.3. Assume that we have the same notation as in Definition 7.4.1 and let 
w̃qR

N (x) be as in (9.5) with parameters αN , βN , γN , δN , qN . Then, for x ∈ {0, . . . , MN}
we have the following asymptotic expansion of w̃qR

N (x)

w̃qR
N (x) = exp

(
−NV

( x
N

; a, b, c, d
)

+ O (log(N))
)
, where

V (s; a, b, c, d) = 1
− log q

[
Li(qs) + Li(a−1cdqs) + Li(b−1cqs) + Li(dqs)+

+ Li(a−1q−s) + Li(c−1q−s) − Li(bdqs) − Li(cdqs) + log(q)2s2 + s log(q) log(c/b)
]

(9.6)

and the constant in the big O notation depends on the parameters A and a, b, c, d, q, M
and is uniform as the latter vary over compact subsets of P (recall that A and P were 
given in Definition 7.4.1).

Proof. Using Lemma 9.1.1 we have that

w̃qR(x) = (γ/β)xqx
2 1 − γδq2x+1

1 − γδq
· exp

( N

log q

[
Li(qx+1) + Li(α−1γδqx+1) +

+ Li(β−1γqx+1) + Li(δqx+1) + Li(α−1q−x) + Li(γ−1q−x) − Li(βδqx+1) −

− Li(γδqx+1)
]

+ O(log(N))
)
,

where for brevity we suppressed the dependence of the parameters on N . Since c/b =
γ/β + O(N−1), q = q1/N + O(N−2) and γδq is bounded away from 1 we see that

(γ/β)xqx
2 1 − γδq2x+1

1 − γδq
= exp

(
N · x

N
· log(c/b) + N · x2

N2 · log(q) + O(1)
)
.

This handles the first factor in w̃qR(x) and we only need to match the dilogarithms with 
(9.6).

We claim that if x, y ∈ [0, 1] and C > 0 are such that |x − y| ≤ CN−1 then

|Li(x) − Li(y)| ≤ C · log(N) + 1
N

+ 1
N

. (9.7)

It is clear that applying (9.7) to each of the dilogarithms in w̃qR(x) we can match the 
corresponding ones in (9.6) upto an error of order log(N). Thus, to prove the lemma it 
suffices to show (9.7).

Without loss of generality suppose that x ≤ y and set ε = y − x. Then we have

0 ≤ Li(y) − Li(x) =
∞∑ yk − (y − ε)k

k2 ≤
∞∑ 1 − (1 − ε)k

k2 ,

k=1 k=1



E. Dimitrov, A. Knizel / Journal of Functional Analysis 276 (2019) 3067–3169 3155
where we used that the functions yk − (y − ε)k are increasing on [ε, 1] for k ≥ 1. In 
addition,

N∑
k=1

1 − (1 − ε)k

k2 ≤
N∑

k=1

kε

k2 ≤ C · log(N) + 1
N

and
∞∑

k=N+1

1 − (1 − ε)k

k2

≤
∞∑

k=N+1

1
k2 ≤

∞̂

N

dz

z2 = 1
N

.

Combining the above inequalities we conclude (9.7) and hence the lemma. �
9.2. Proof of Theorems 7.4.4 and 7.4.5

Our first task is to verify that PN(λ1, . . . , λN ) from Definition 7.4.1 satisfy Assump-
tions 1–4 and 6–7 in Section 2.2. In view of (9.5) we have the following alternative 
representation for PN (λ1, . . . , λN )

PN (λ1, . . . , λN ) =

1(0≤λ1<λ2<···<λN≤MN )

Z̃(N,MN , αN , βN , γN , δN )

∏
1≤i<j≤N

(
σN (q−λi

N ) − σN (q−λj

N )
)2 N∏

i=1
w̃qR

N (λi), (9.8)

where Z̃ is a new normalization constant, σN (z) = z + uNz−1 with uN = γNδNqN and 
w̃qR

N is as in (9.5) for the parameters αN , βN , γN , δN , qN and MN .
If we set �i = q−λi

N + uNqλi

N for i = 1, . . . , N then we see that the induced law on 
particles �i for i = 1, . . . , N from (9.8) agrees with (2.3) for θ = 1. Specifically, we are in 
the single-cut case with a1(N) = 0, b1(N) = MN−N+2 and setting w(�i; N) := w̃qR

N (λi)
we have

PN (�1, . . . , �N ) = Z−1
N · 1{(�1,...,�N )∈X1

N} ·
∏

1≤i<j≤N

(�i − �j)2
N∏
i=1

w(�i;N). (9.9)

It is clear that Assumptions 1 and 3 in Section 2.2 are satisfied in this case. In 
addition, in view of Lemma 9.1.3, we know that Assumption 2 holds for the function 
V (x) = V (σ−1

q (x); a, b, c, d), where V (·; a, b, c, d) is as in (9.6) and σq(x) = q−x + uqx

with u = cd.
Let Φ+

N , Φ−
N be as in Definition 7.4.2 with parameters a = αN , b = βN , c = γN , d = δN

and q = qNN . Observe that Φ±
N satisfy Assumptions 4 and 6 in Section 2.2. In particular, 

we have that Φ±
N converge to Φ±

∞, where the latter are as in Definition 7.4.2 for the 
parameters a = a, b = b, c = c, d = d and q = qN. With the same choice of parameters 
we also define R∞ and Q∞ as in that definition and (7.16). Finally, one checks that 
Assumption 7 holds from the definition of V and Φ±

∞.
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Since Assumptions 1–4 and 6 hold we can apply Theorem 4.1.1 and obtain that the 
function R̃N on the right side of (4.3) is a degree 4 polynomial. We isolate the following 
asymptotic statement about R̃N , which will be used here and whose proof is the focus 
of Section 10.

Fact 9.2.1. (see (10.30)) If R∞ and R̃N are as above then for all z ∈ C

lim
N→∞

R∞(z) − R̃N (z) = 0. (9.10)

Proof. (Theorem 7.4.4) As discussed earlier we know that PN(�1, . . . , �N ) in (9.9) satisfies 
Assumptions 1–4 and 6–7 in Section 2.2. We conclude from Theorem 3.1.1 that the 
empirical measures

ρN = 1
N

N∑
i=1

δ
(
σN (q−λi

N )
)

converge to a limiting measure ρ, which by Lemma 4.2.2 has density

ρ(y0+uy−1
0 ) = 1

log(q)π(y0 − uy−1
0 )

·arccos

⎛
⎝ Rρ(y0)

2
√

Φ−
∞(y0)Φ+

∞(y0)

⎞
⎠ for y0 ∈ [1, c]. (9.11)

Combining (4.10) and (9.10) we conclude that Rρ = R∞. The latter implies that the 
measures μN in Theorem 7.4.4 satisfy the conditions in that theorem for the measure 
μ := ρ ◦ σ−1

q , which in view of (9.11) agrees with Definition 7.4.2. �
Proof. (Theorem 7.4.5) From the proof of Theorem 7.4.4 we know that Rρ = R∞, and 
so Q2

ρ = R2
ρ − 4Φ+

∞Φ−
∞ = Q2

∞. The formula for Q∞ in (7.16) implies that Qρ satisfies 
Assumption 5 for r1 = a−, s1 = a+ and H(z) = z(z2 − cd)(abqN − q−N). Overall, the 
measures (9.9) satisfy Assumptions 1–6 in Section 2.2 and so Theorem 7.4.5 follows from 
Theorem 5.2.7 and Remark 5.2.5. �
10. Proof of Fact 9.2.1

The goal of this section is to prove Fact 9.2.1, which is the missing ingredient necessary 
to complete the proofs of Theorems 7.4.4 and 7.4.5. We summarize some basic facts about 
discrete Riemann–Hilbert problems and q-Racah orthogonal polynomials in Section 10.1. 
In Section 10.2 we introduce a matrix-valued function AN (z) and derive some of its 
properties. Section 10.3 contains some asymptotic results about AN(z), which suffice to 
show Fact 9.2.1.
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10.1. Discrete Riemann–Hilbert problems and orthogonal polynomials

10.1.1. Discrete Riemann–Hilbert problems
In this section we relate solutions of discrete Riemann–Hilbert problems (DRHP) for 

jump matrices of a special type to orthogonal polynomials. Our exposition closely follows 
that in [12, Section 2], which in turn dates back to [8,9].

Let X be a finite subset of C such that card(X) = M +1 < ∞ and w : X → Mat(2, C)
be any function. We say that an analytic function

m : C \ X → Mat(2,C)

solves the DRHP(X, w) if m has simple poles at the points of X and its residues at these 
points are given by the jump (or residue) condition

Res
ζ=x

m(ζ) = lim
ζ→x

m(ζ)w(ζ), x ∈ X. (10.1)

We will assume that the matrix w(x) depends on a function ω : X → C and has the form

w(x) =
[

0 ω(x)
0 0

]
. (10.2)

Recall that a collection {Pn(ζ)}Nn=0 of complex polynomials is called the collection of 
orthogonal polynomials associated to the weight function ω if

• Pn is a polynomial of degree n for all n = 1, . . . , M and P0 ≡ const;
• if m 
= n then 

∑
x∈X

Pm(x)Pn(x)ω(x) = 0.

We will always take Pn to be monic, i.e. Pn(x) = xn+ lower terms.
We consider the following inner product on the space C[ζ] of all complex polynomials:

(f(ζ), g(ζ))ω =
∑
x∈X

f(x)g(x)ω(x).

It is clear that there exists a collection of orthogonal polynomials {Pn(ζ)}Mn=0 associated 
to ω such that (Pn, Pn)ω 
= 0 for all n = 0, . . . , M if and only if the restriction of 
(·, ·)ω to the space C[ζ]≤d of polynomials of degree at most d is non-degenerate for all 
d = 0, . . . , M . If this condition holds we say that the function ω is nondegenerate, and 
then it is clear that the collection {Pn(ζ)}Mn=0 is unique. For convenience we isolate the 
following notation

cn := (Pn, Pn)ω , Hn(ζ) :=
∑ Pn(x)ω(x)

ζ − x
, n = 0, . . . ,M. (10.3)
x∈X
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The connection between the orthogonal polynomials {Pn(ζ)}Mn=0 and solutions to 
DRHP(X, w) is detailed in the following statement.

Theorem 10.1. [12, Lemma 2.1 and Theorem 2.4] Let X be a finite subset of C such that 
card(X) = M + 1 < ∞ and w be as in (10.2) with ω : X → C a nondegenerate weight 
function. Then for any k = 1, 2, . . . , M the DRHP(X, w) has a unique solution mX(ζ), 
satisfying an asymptotic condition

mX(ζ) ·
[
ζ−k 0
0 ζk

]
= I + O

(
ζ−1) as ζ → ∞, (10.4)

where I is the identity matrix. This solution is explicitly given by

mX(ζ) =
[

Pk(ζ) Hk(ζ)
c−1
k−1Pk−1(ζ) c−1

k−1Hk−1(ζ)

]
, with cn, Hn as in (10.3)

and satisfies detmX(ζ) ≡ 1.

10.1.2. q-Racah polynomials
In this section we recall and establish some basic properties of the q-Racah orthogonal 

polynomials, cf. [47, Section 3.2]. Recall from Definition 7.3.1 that the q-Racah weight 
function is defined on X = {q−x + γδqx+1 : x = 0, . . . , M} as

ωqR(q−x + γδqx+1) = (αq, βδq, γq, γδq; q)x
(q, α−1γδq, β−1γq, δq; q)x

(1 − γδq2x+1)
(αβq)x(1 − γδq) . (10.5)

We assume the parameters are as in Definition 7.3.4. It is well known that ωqR is a 
nondegenerate weight function and the orthogonal polynomials {Pn(ζ)}Mn=0 associated 
to it are the q-Racah orthogonal polynomials. Explicitly, they are given by

Pn(q−x + γδqx+1) = 4φ̃3

(
q−n, αβqn+1, q−x, γδqx+1

αq, βδq, γq

∣∣∣q; q) , where

4φ̃3

(
a1, a2, a3, a4
b1, b2, b3

∣∣∣q; z) =
M∑
n=0

(a1, a2, a3, a4; q)k
(b1, b2, b3; q)k

zk

(q; q)k
.

(10.6)

The q-Racah polynomials Pn satisfy the following orthogonality relation.

M∑
x=0

ωqR(q−x + γδqx+1)Pm(q−x + γδqx+1)Pn(q−x + γδqx+1) = cn · δmn, where

cn = (γδq2, α−1β−1γ, α−1δ, β−1; q)∞
(α−1γδq, β−1γq, δq, α−1β−1q−1; q)∞

(1 − αβq)(γδq)n

(1 − αβq2n+1)
(q, βq, αδ−1q, αβγ−1q; q)n

(αβq, αq, βδq, γq; q)n
.

(10.7)
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In addition, setting y(x) = Pn(q−x+γδqx+1) we have the following q-Difference equations

q−n(1 − qn)(1 − αβqn+1)y(x) =

B̂(x)y(x + 1) − [B̂(x) + D̂(x)]y(x) + D̂(x)y(x− 1) where

B̂(x) = (1 − αqx+1)(1 − βδqx+1)(1 − γqx+1)(1 − γδqx+1)
(1 − γδq2x+1)(1 − γδq2x+2) , and

D̂(x) = q(1 − qx)(1 − δqx)(β − γqx)(α− γδqx)
(1 − γδq2x)(1 − γδq2x+1) . (10.8)

We next prove a couple of easy facts about the q-Racah polynomials. For convenience 
we set σ(z) = z + uz−1 with u = γδq.

Proposition 10.2. Each Pn(ζ) with M ≥ n ≥ 0 has n roots in the interval (1 + u, q−M +
uqM ).

Proof. Let m be the number of roots of Pn(ζ) in the interval [1 +u, q−M +uqM ] counted 
with multiplicities. Since deg(Pn) = n, we know that m ≤ n. If m < n let x1, . . . , xm be 
an enumeration of these roots in some order. By (10.7) we know that

M∑
x=0

Pn(q−x + uqx)ωqR(q−x + uqx) ·
m∏
i=1

(q−x + uqx − xi) = 0. (10.9)

Note that the polynomial Pn(ζ) ·
∏m

i=1(ζ −xi) does not change its sign on [1 +u, q−M +
uqM ] and so all of the above summands must be zero. But then Pn(q−x + uqx) = 0 for 
x = 0, . . . , M and so M + 1 ≤ m < n, contradicting M ≥ n. We conclude that m = n.

Let x1, . . . , xm be the roots of Pn(ζ) that are not equal to 1 + u. By our work above 
we know that xi ∈ (1 + u, q−M + uqM ] for i = 1, . . . , m. If again we suppose that m < n

then Pn(ζ) ·
∏m

i=1(ζ − xi) does not change its sign on [1 + u, q−M + uqM ] and so all 
the terms in the analogous sum (10.9) must be zero, implying Pn(q−x + uqx) = 0 for 
x = 0, . . . , M . We conclude that Pn has roots at q−x + uqx for x = 0, . . . , M . But this 
is impossible, since M ≥ n leading to too many roots of Pn. We reach a contradiction, 
which arose from our assumption that 1 +u is a root of Pn(ζ). A similar argument shows 
q−M + uqM is also not a root of Pn(ζ). �
Lemma 10.3. Let M ≥ n ≥ 1 be given. If t > 1 is such that Pn(σ(t)) = 0 then 
Pn(σ(q−1t)) 
= 0.

Proof. Suppose that α1, . . . , αn are the roots of Pn(z). Then (10.8) can be written as

[A(z) + B(z) + Cn(z)]Qn(z) = qnA(z)Qn(q−1z) + q−nB(z)Qn(qz), where

Qn(z) =
n∏

(z2 − αiz + u), A(z) = (z − αq)(z − βδq)(z − γq)(z − γδq)(z2 − γδ),

i=1
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B(z) = q(z − 1)(z − δ)(zβ − γ)(zα− γδ)(z2 − γδq2),

Cn(z) = (z2 − γδ)(z2 − γδq)(z2 − γδq2)(q−n − 1)(1 − αβqn+1). (10.10)

From Proposition 10.2 we know that αi ∈ (1 + u, q−M + uqM ) for i = 1, . . . , n. Conse-
quently, z2 − αiz + u has two real roots q−M > βi > 1 and 1 > uβ−1

i > 0.
Suppose that Pn(σ(t)) = 0 for some t > 1. Let k ≥ 1 be the maximal integer such 

that Pn(σ(tq−i)) = 0 for i = 0, . . . , k − 1 and assume for the sake of contradiction that 
k ≥ 2. Then we know that tq−k+1 is a root of Qn(z) and Qn(qz). From the top line 
in (10.10) we conclude that A(tq−k+1)Qn(tq−k) = 0. By the maximality of k we must 
have A(tq−k+1) = 0. Since tq−k+1 > 1 we conclude that tq−k+1 = αq and then as 
tq−k+1 = βj for some n ≥ j ≥ 1 we conclude that q−M > αq or γ > α. This contradicts 
Definition 7.3.4 and so k = 1 as desired. �

We end this section with a lemma, which classifies the bounded degree polynomials 
A(z), B(z), C(z) that satisfy the q-Difference equation (10.10).

Lemma 10.4. Fix M ≥ n > 7 and suppose that Ã(z), B̃(z), C̃(z) are polynomials, each of 
degree at most n − 7 or zero and such that

[
Ã(z) + B̃(z) + C̃(z)

]
Pn(σ(z)) = Ã(z)Pn(σ(q−1z)) + B̃(z)Pn(σ(qz)). (10.11)

Then

B̃(z)A(z) = B(z)Ã(z) and B̃(z)Cn(z) = B(z)C̃(z), (10.12)

where A(z), B(z), Cn(z) are as in (10.10).

Proof. Using the notation from the proof of Lemma 10.3 we can alternatively rewrite 
(10.11) as

[
Ã(z) + B̃(z) + C̃(z)

]
Qn(z) = qnÃ(z)Qn(q−1z) + q−nB̃(z)Qn(qz).

We multiply the above by B(z) and subtract it from the top line of (10.10) multiplied 
by B̃(z)

[
B̃(z)(A(z) + Cn(z)) −B(z)(Ã(z) + C̃(z))

]
Qn(z) = qn[B̃(z)A(z)−B(z)Ã(z)]Qn(q−1z).

As discussed in the proof of Lemma 10.3 we know that Qn(z) has n roots β1, . . . , βn > 1
and neither is a root of Qn(q−1z). This implies that 

∏n
i=1(z − βi) divides B̃(z)A(z) −

B(z)Ã(z) and as the latter is of degree at most n − 1 or zero, we conclude that it must 
be zero. This suffices for the proof. �
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10.2. The matrix AN (z)

We go back to the notation of Section 10.1.1. Let w be as in (10.2) with ω ≡ ωqR as 
in (10.5). From Theorem 10.1 we know DRHP(X, w) has a unique solution mN (ζ) with

mN (ζ) ·
[
ζ−N 0

0 ζN

]
= I + O

(
ζ−1) as ζ → ∞.

For the sequel we let σ(z) = z + uz−1 with u = γδq and define the following matrix-
valued function that will play a central role in the arguments that follow

AN (z) := mN (σ(qz)) ·D(z) ·m−1
N (σ(z)) , where D(z) =

[
Φ−(z) 0

0 Φ+(z)

]
, where

(10.13)

Φ+(z) = (z − α)(z − βδ)(z − γ)(z − γδ) and Φ−(z) = (z − 1)(αz − γδ)(βz − γ)(z − δ).

(10.14)

The significance of the functions Φ± is as follows. If PN denotes the measure PqR as 
in Definition 7.3.3 then PN satisfies the Nekrasov’s equation, Theorem 4.1.1, for the 
functions Φ±, θ = 1, k = 1 and a1 = 0, b1 = M −N + 2. In particular, if R̃ is given by

R̃(z) = Φ−(z) · EPN

[
N∏
i=1

σ(qz) − �i
σ(z) − �i

]
+ Φ+(z) · EPN

[
N∏
i=1

σ(z) − �i
σ(qz) − �i

]
, (10.15)

then R̃ is a degree four polynomial. Fact 9.2.1 concerns the asymptotic behavior of R̃
when the parameters α, β, γ, δ, q and M scale as in Definition 7.4.1 and we can relate it 
to the matrix AN through the following result.

Lemma 10.5. If AN (z) and R̃(z) are as in (10.13) and (10.15) respectively then

Tr(AN (z)) = R̃(z). (10.16)

Proof. We first recall from [3, Theorem 2.13] that

EPN

[
N∏
i=1

x− �i
y − �i

]
= c−1

N−1det
[
HN−1(y) HN (y)
PN−1(x) PN (x)

]
,

with cn, Hn, Pn as in (10.3), (10.6) and (10.7).

Combining the above with (10.15) we obtain
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R̃(z) =c−1
N−1 · Φ−(z) · [HN−1(σ(z))PN (σ(qz)) −HN (σ(z))PN−1(σ(qz))] +

c−1
N−1 · Φ+(z) · [HN−1(σ(qz))PN (σ(z)) −HN (σ(qz))PN−1(σ(z))] .

(10.17)

On the other hand, from (10.13) and Theorem 10.1 we know

AN (z) =
[

PN (σ(qz)) HN (σ(qz))
c−1
N−1PN−1(σ(qz)) c−1

N−1HN−1(σ(qz))

]
·
[

Φ−(z) 0
0 Φ+(z)

]
·

[
c−1
N−1HN−1(σ(z)) −HN (σ(z))

−c−1
N−1PN−1(σ(z)) PN (σ(z))

]
,

(10.18)

where we also used that det mN (ζ) ≡ 1. The trace in (10.18) matches the rights side in 
(10.17). �

In the remainder of this section we establish several properties about the matrix AN .

Proposition 10.6. The matrix AN (z) is entire.

Proof. The result and its proof are analogous to [12, Proposition 3.3]. Appealing to 
(10.18) it is clear that the only possible singularities of AN(z) are simple poles at z = q−x

for x = 0, 1, . . . , M + 1 and z = uqy for y = −1, 0, . . . , M .
From (10.1) we have for z near q−x and x = 1, . . . , M + 1

mN (σ(qz)) = F1(z)
(
I + q−x

(q−(x−1) − uq(x−1))(z − q−x)
w
(
q−x+1 + uqx−1)) , (10.19)

where F1(z) is an analytic, invertible matrix-valued function defined in a neighborhood 
of q−x. By definition of w we have w(q1 + uq−1) = 0 and so (10.19) holds near z = 1 as 
well.

For z near q−x and x = 0, . . . , M we can similarly write

m−1
N (σ(z)) =

(
I − q−x

(q−x − uqx)(z − q−x)w(q−x + uqx)
)
F2(z), (10.20)

where F2(z) is an analytic, invertible matrix-valued function defined in a neighborhood 
of q−x. By definition of w we have w(q−M−1 + uqM+1) = 0 and so (10.20) holds near 
z = q−M−1 as well.

Overall, to show that the matrix AN (z) is analytic at q−x for x = 0, 1, . . . , M + 1 it 
suffices for

X(z) :=
(
I + q−x

(q−(x−1) − uq(x−1))(z − q−x)
w(σ(qx))

)

×D(x)
(
I − q−x

(q−x − uqx)(z − q−x)w(x)
)
,
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to be analytic near those points. Since

X(z) =
[

Φ−(x)
1

(z − q−x)

(
Φ+(x) · q−x

(q−(x−1) − uq(x−1))
ωqR(σ(qx)) − q−x

(q−x − uqx)
ωqR(σ(x))Φ−(x)

)
0 Φ+(x)

]

and Φ−(x)
Φ+(x) = (q−x − uqx)ωqR(σ(qx))

ωqR(σ(x))(q−(x−1) − uq(x−1))
,

we conclude that X(z) is indeed analytic near q−x for x = 0, 1, . . . , M .
One verifies the analyticity of AN (z) at the points uqy for y = −1, 0, . . . , M analo-

gously. �
Proposition 10.7. Let Aij

N (z) denote the entry of AN (z) at the i-th row and j-th column. 
Then A11

N (z), A22
N (z) are degree four polynomials and A12

N (z), A21
N (z) are degree three poly-

nomials. If Aij
N (z) =

∑
k a

ij
N,kz

k then

a11
N,4 = αβqN , a22

N,4 = αβq−N , a12
N,3 = c−1

N−1cN [−qNαβ + q−N ], a21
N,3 = [q−N+1αβ − qN−1]

(10.21)

Proof. From equation (10.18) we have

A11
N (z) =c−1

N−1
[
PN (σ(qz))HN−1(σ(z))Φ−(z) −HN (σ(qz))PN−1(σ(z))Φ+(z)

]
,

A22
N (z) =c−1

N−1
[
−PN−1(σ(qz))HN (σ(z))Φ−(z) + HN−1(σ(qz))PN (σ(z))Φ+(z)

]
,

A12
N (z) =c−1

N−1
[
−PN (σ(qz))HN (σ(z))Φ−(z) + HN (σ(qz))PN (σ(z))Φ+(z)

]
,

A21
N (z) =c−1

N−1
[
PN−1(σ(qz))HN−1(σ(z))Φ−(z) −HN−1(σ(qz))PN−1(σ(z))Φ+(z)

]
.

(10.22)

We know from Proposition 10.6 that Aij
N (z) are all entire functions. In addition, by 

Theorem 10.1 we know that c−1
N−1PN (σ(qz))HN−1(σ(z)) =

[
(σ(qz))−NPN (σ(qz))

]
·[

(σ(z))Nc−1
N−1HN−1(σ(z))

]
·
[
(σ(z))−N (σ(qz))N

]
∼ qN as |z| → ∞. Analogous argu-

ments show that

c−1
N−1HN−1(σ(qz))PN (σ(z)) ∼ q−N ,

HN (σ(qz))PN−1(σ(z)) = O
(
|z|−2) = PN−1(σ(qz))HN (σ(z)).

The above show that A11
N (z) = O(|z|4) = A22

N (z) and by Liouville’s theorem we conclude 
that they are at most degree 4 polynomials. Our work above also shows that as |z| → ∞
we have

A11
N (z) ∼ αβqNz4 and A22

N (z) ∼ αβq−Nz4,

which establishes the first two equations in (10.21).
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Also as a consequence of Theorem 10.1 we have that A12
N (z) = O(|z|3) = A21

N (z), 
which by Liouville’s theorem implies that they are at most degree three polynomials. 
What remains is to show that their leading coefficients are as in (10.21).

We first note by definition

ζNHN (ζ) = ζN
M∑
x=0

PN (q−x + uqx)ωqR(q−x + uqx)
ζ − q−x − uqx

=

= ζN
M∑
x=0

PN (q−x + uqx)ωqR(q−x + uqx)

·
[
1
ζ

+ [q−x + uqx]
ζ2 + · · · + [q−x + uqx]N

ζN+1 + O(ζ−N−2)
]
.

Using (10.7) we get

M∑
x=0

PN (q−x + uqx)wqR(q−x + uqx)[q−x + uqx]i = 0 for i = 0, . . . , N − 1 and

M∑
x=0

PN (q−x + uqx)wqR(q−x + uqx)[q−x + uqx]N =

N∑
x=0

PN (q−x + uqx)2wqR(q−x + uqx) = cN .

The above implies that as |z| → ∞ we have

PN (σ(qz))HN (σ(z)) =
[
(σ(qz))−NPN (σ(qz))

]
·
[
(σ(z))NHN (σ(z))

]
·
[
(σ(z))−N (σ(qz))N

]
∼ z−1cNqN .

Analogously, HN (σ(qz))PN (σ(z)) ∼ z−1cNq−N , PN−1(σ(qz))HN−1(σ(z)) ∼ z−1cN−1 ×
q−N+1, HN−1(σ(qz))PN−1(σ(z)) ∼ z−1cN−1q

N−1. The latter identities and (10.22)
imply

a12
N,3 = c−1

N−1[−cNqNαβ + cNq−N ] and a21
N,3 = c−1

N−1[cN−1q
−N+1αβ − cN−1q

N−1],

which establishes the last two equations in (10.21). �
We end this section by relating AN (z) and the polynomials A(z), B(z), Cn(z) in 

the q-Difference equation (10.10). From (10.13) we know that AN (z) · mN (σ(z)) =
mN (σ(qz)) · D(z), and identifying the left two entries of the 2 × 2 matrices on both 
sides we arrive at
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A11
N (z)PN (σ(z)) + c−1

N−1A
12
N (z)PN−1(σ(z)) = Φ−(z)PN (σ(qz)),

A21
N (z)PN (σ(z)) + c−1

N−1A
22
N (z)PN−1(σ(z)) = c−1

N−1Φ
−(z)PN−1(σ(qz)).

(10.23)

Expressing c−1
N−1PN−1(·) from the first equation and substituting it in the second we 

obtain

A21
N (z)PN (σ(z)) + A22

N (z)
[
Φ−(z)PN (σ(qz)) −A11

N (z)PN (σ(z))
A12

N (z)

]
=

Φ−(z) ·
[
Φ−(qz)PN (σ(q2z)) −A11

N (qz)PN (σ(qz))
A12

N (qz)

]
.

(10.24)

Replacing z with q−1z, and reorganizing terms we obtain

PN (σ(z))
[
Φ−(q−1z)A22

N (q−1z)
A12

N (q−1z) + Φ−(q−1z)A11
N (z)

A12
N (z)

]
=

PN (σ(q−1z))
[
A22

N (q−1z)A11
N (q−1z) −A12

N (q−1z)A21
N (q−1z)

A12
N (q−1z)

]
+

PN (σ(qz))
[
Φ−(q−1z)Φ−(z)

A12
N (z)

]
.

Note that the first numerator of the second line above is detAN (q−1z), which we know 
to equal Φ+(q−1z)Φ−(q−1z) (recall that detmN = 1 by Theorem 10.1). Making the 
substitution, and multiplying both sides by A12

N (z)A12
N (q−1z) · Φ−(q−1z)−1 we arrive at

PN (σ(z))
[
A22

N (q−1z)A12
N (z) + A12

N (q−1z)A11
N (z)

]
=

PN (σ(q−1z))A12
N (z)Φ+(q−1z) + PN (σ(qz))A12

N (q−1z)Φ−(z).
(10.25)

If we alternatively express c−1
N−1PN (·) from the second equation in (10.23), substitute 

it into the first and perform the same steps we will arrive at

PN−1(σ(z))
[
A22

N (z)A21
N (q−1z) + A21

N (z)A11
N (q−1z)

]
=

PN−1(σ(q−1z))A21
N (z)Φ+(q−1z) + PN−1(σ(qz))A21

N (q−1z)Φ−(z).
(10.26)

In the remainder we assume that N ≥ 14. Then applying Lemma 10.4 to (10.25) we 
conclude

q(z − 1)(z − δ)(zβ − γ)(zα− γδ)(z2 − γδq2) ·A12
N (z)Φ+(q−1z) =

(z − αq)(z − βδq)(z − γq)(z − γδq)(z2 − γδ) ·A12
N (q−1z)Φ−(z).

Replacing the formulas for Φ± from (10.14) and canceling common terms we arrive at

q−3(z2 − γδq2) ·A12
N (z) = (z2 − γδ) ·A12

N (q−1z).
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The above and Proposition 10.7 imply

A12
N (z) = c−1

N−1cN [−qNαβ + q−N ] · z(z2 − γδ). (10.27)

If we alternatively apply Lemma 10.4 to (10.26) and repeat the same argument we arrive 
at

A21
N (z) = [q−N+1αβ − qN−1] · z(z2 − γδ). (10.28)

10.3. Asymptotics of AN (z)

We now assume that α, β, γ, δ, q and M all depend on N and scale as in Defini-
tion 7.4.1. For this choice of parameters we denote R̃ in (10.15) by R̃N and Φ± by 
Φ±

N .
Our first goal is to show that under the above parameter scaling AN(z) converges, to 

a fixed matrix-valued function as N → ∞. Let us first consider the off-diagonal entries 
A12

N (z), A21
N (z). In view of (10.27) and (10.28) we know that

A12
N (z) = c−1

N−1cN [−qNNαNβN + q−N
N ] · z(z2 − γNδN ) and

A21
N (z) = [q−N+1

N αNβN − qN−1
N ] · z(z2 − γNδN )

Using (10.7) we have

cNc−1
N−1 = q−M (1 − αNβNq2N−1

N )
1 − αNβNq2N+1

N

· (1 − qNN )(1 − βNqNN )(δN − αNqNN )(1 − αNβNqM+N+1)
(1 − αNβNqNN )(1 − αNqNN )(1 − βNδNqNN )(1 − q−MN+N

N )
.

Consequently, we see that

lim
N→∞

cNc−1
N−1 = c(1 − q)(1 − bq)(d− aq)(1 − abqc−1)

(1 − abq)(1 − aq)(1 − bdq)(1 − cq) =: λ. (10.29)

From the above work we conclude that

lim
N→∞

A12
N (z) = λ[q−1 − qab] · z(z2 − cd) and lim

N→∞
A21

N (z) = [q−1ab− q] · z(z2 − cd).

Next, we know that detAN (z) = Φ+
N (z)Φ−

N (z) converges to (z − a)(z − bd)(z − c)(z −
cd)(z−1)(az−cd)(bz−c)(z−d) as N → ∞, while from (10.16) and (4.10) we know that 
TrAN (z) converges to some degree four polynomial R̃∞(z). This implies that A11

N (z) and 
A22

N (z) converge to some degree four polynomials A11
∞(z) and A22

∞(z).
We end this section by proving Fact 9.2.1. From Lemma 10.4 applied to (10.25) we 

have that
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B(z)·
[
A22

N (q−1
N z)A12

N (z) + A12
N (q−1

N z)A11
N (z)

]
= A12

N (q−1
N z)Φ−(z)·[A(z) + B(z) + CN (z)] .

Taking the limit as N → ∞ on both sides we get

(z − 1)(z − d)(zb− c)(za− cd)(z2 − cd)λ[q−1 − qab] · z(z2 − cd) ·
[
A22

∞(z) + A11
∞(z)

]
=

λ[q−1 − qab]z(z2 − cd) · (z − 1)(az − cd)(bz − c)(z − d) ×

[(z − a)(z − bd)(z − c)(z − cd)(z2 − cd) + (z − 1)(z − d)(zb− c)(za− cd)(z2 − cd) +

(z2 − cd)3(q−1 − 1)(1 − abq)].

Canceling common factors and utilizing (10.16) we see that

lim
N→∞

R̃N (z) = lim
N→∞

TrAN (z) = A22
∞(z) + A11

∞(z) = (z − a)(z − bd)(z − c)(z − cd) +

(z − 1)(z − d)(zb− c)(za− cd) + (z2 − cd)2(q−1 − 1)(1 − abq), (10.30)

which concludes the proof of Fact 9.2.1.

Remark 10.3.1. We presented the computation in the q-Racah case but the same ideas 
would work for other families of classical orthogonal polynomials.
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