Journal of Functional Analysis 276 (2019) 3067-3169

Contents lists available at ScienceDirect =
Journal of Functional Analysis
www.elsevier.com/locate/jfa
Log-gases on quadratic lattices via discrete loop n
equations and g-boxed plane partitions

Evgeni Dimitrov *, Alisa Knizel

Department of Mathematics, Columbia University, New York, NY, USA

ARTICLE INFO ABSTRACT
Article history: We study a general class of log-gas ensembles on (shifted)
Received 29 April 2018 quadratic lattices. We prove that the corresponding empirical

Accepted 17 December 2018
Available online 25 January 2019
Communicated by D. Stroock

measures satisfy a law of large numbers and that their
global fluctuations are Gaussian with a universal covariance.
We apply our general results to analyze the asymptotic
behavior of a g-boxed plane partition model introduced by

Keywords:
Log-gases Borodin, Gorin and Rains. In particular, we show that the
Loop equations global fluctuations of the height function on a fixed slice are
described by a one-dimensional section of a pullback of the
two-dimensional Gaussian free field.
Our approach is based on a g-analogue of the Schwinger—
Dyson (or loop) equations, which originate in the work of
Nekrasov and his collaborators, and extends the methods
developed by Borodin, Gorin and Guionnet to quadratic
lattices.
© 2019 Elsevier Inc. All rights reserved.
Contents
1. Introduction . .. ... . ... 3069
1.1, Preface . . .. 3069
111, LOg-8ases . . ..ttt 3070
1.1.2.  The g-Racah tilingmodel . ... ... ... .. ... ... ... ... ..., . 3071

* Corresponding author.
E-mail addresses: esd2138@Qcolumbia.edu (E. Dimitrov), knizel@math.columbia.edu (A. Knizel).

https://doi.org/10.1016/j.jfa.2018.12.008
0022-1236/© 2019 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jfa.2018.12.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
mailto:esd2138@columbia.edu
mailto:knizel@math.columbia.edu
https://doi.org/10.1016/j.jfa.2018.12.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2018.12.008&domain=pdf

3068

10.

E. Dimitrov, A. Knizel / Journal of Functional Analysis 276 (2019) 3067-3169

1.2, Main results . ... ... 3074
Outline . . . . . 3077
Acknowledgments . . . . ... 3078
General sSetUD . . . . .. 3078
2.1.  Definition of the system . ... ... . ... ... .. L 3078
2.2.  Scaling and regularity assumption . ........... .. ... .. 0 o L. 3081
Law of large numbers . . . . . .. ... 3084
3.1. Convergence of empirical measures . . .. ... ... ... ... 3084

3.1.1.  Variational problem . . ... ... ... ... 3085

3.1.2.  Proof of Theorem 3.1.1 . .. .. ... .. .. ... . .. .. 3086
3.2, Proof of Proposition 3.1.3 . . ... ... . ... 3088
Nekrasov’s equations . . . ... ... e 3098
4.1.  Formulation . . . . . ... .. 3098
4.2. Asymptotics of the Nekrasov’s equations . . . .. ........ . ... ......... 3102
Central limit theorem: Part T. ... . ... ... . . 3106
5.1.  Deformed measure . ... . ... ... ... ... 3107
5.2, Mainresult ... ... 3110
5.3. Application of Nekrasov’s equation . . .. ........ ... ... ... ... ... .... 3112
5.4. Concluding the proof of Theorem 5.2.1 . ... ... . ... ... ... ... ... ....... 3116
Central limit theorem: Part IT . . . .. ... ... 3119
6.1. Estimating the remainders. . ... .. ... ... . . ... 3119
6.2.  Self-improving estimates and the proof of Proposition 6.1.1 . . ... ........... 3121
g-Racah tiling models and ensembles . .. ... ... ... ... . ... . . 3126
7.1.  The g-Racah tiling model . ...... ... ... ... ... . .. ... 3126

7.1.1. Lozenge tilings. . . ... ... ... . . 3126

7.1.2.  Particle configurations . .. ........ ... . ... L o 3128
7.2.  Main results for the g-Racah tiling model . .. ... ... .. ... ... ... .. .... 3129

7.2.1.  Limit shape. . . . . .. 3129

7.2.2.  Central limit theorem . . . ... ... ... .. . . .. 3131
7.3. The g-Racah ensemble . .. ... ... .. . ... .. ... .. 3133
7.4.  Global asymptotics for g-Racah ensembles . . . .. ..... .. ... .. Lo L. 3135

7.4.1. Lawoflarge numbers . . .. ... ... ... . .. 3137

7.4.2.  Central limit theorem . . . ... ... ... .. . ... 3137
Global asymptotics for the g-Racah tiling model . ...... ... ... . ... ... ...... 3138
8.1.  Gaussian free field . ... .. ... .. 3138
8.2, Complex structure . ... ... ... ... 3141
8.3.  Proof of Theorems 7.2.2 and 7.2.4 . ... ... ... ... .. . . . ... . . 3144

8.3.1.  Proof of Theorem 7.2.2 . . . . . . ... .. ... 3144

8.3.2.  Proof of Theorem 7.2.4 . . . . . . . . . 3145
8.4. Conjectural 2d fluctuations . ... ... .. ... ... . .. . . L L 3149
Connection to log-gases on a quadratic lattice . .. ... ... ... . ... . ........ 3150
9.1. Asymptotics of the weight function . . . . ... ... ... ... ... ... ... ... ... 3150
9.2, Proof of Theorems 7.4.4 and 7.4.5 ... ... ... . .. ... .. . ... . 3155
Proof of Fact 9.2.1 . . . . .. e 3156
10.1. Discrete Riemann—Hilbert problems and orthogonal polynomials . ........... 3157

10.1.1. Discrete Riemann—Hilbert problems . . . ... ........ ... ........ 3157

10.1.2. g-Racah polynomials .. ... ... ... ... .. ... .. ... ... ... 3158
10.2.  The matrix An(2) - . o o oo 3161
10.3.  Asymptotics of An(2). . ... . 3166

References . . . .. .. . e 3167




E. Dimitrov, A. Knizel / Journal of Functional Analysis 276 (2019) 3067-3169 3069

1. Introduction
1.1. Preface

A p-ensemble (or continuous log-gas) is a probability distribution P, on N-tuples of
ordered real numbers r; < x9 < --- < xn with density proportional to

N
II @ —a) [Texp(=NV (), (1.1)

1<i<j<N i=1

where V() is a continuous function called potential. The study of continuous log-gases
for general potentials is a rich subject that is of special interest to random matrix the-
ory, see e.g. [1,32,53,60]. For example, when V(x) = 22 and 3 = 1,2, 4 distribution (1.1)
is the joint density of the eigenvalues of random matrices from the Gaussian Orthogo-
nal/Unitary/Symplectic ensembles [1].

Recently, [15] initiated a detailed study of a particular discrete version of (1.1) called
discrete B-ensembles or discrete log-gases. These are probability distributions depending
on a parameter = 3/2 > 0 and a positive real-valued function w(z; N) of the form

N
1<i<j<N i=1 (1.2)
F()\j -\ + l)F()\j -\ +0)
Ty — ATy — A+ 1—8)

Hy(Ni, Aj) =

where \; = z; +0(i — 1) and 27 < 29 < --- < zpy are integers. The interest in these
discrete models comes from integrable probability; specifically, due to their connection
to uniform random tilings, (z,w)-measures, Jack measures, etc.

In the present paper we consider the following two-parameter generalization of discrete
[-ensembles

N
PN(El,...,fN)O( H Hg’“(éi,ﬁj)-Hw(&;N), with
1<i<j<N i=1
H{" (4, 45)
oo, Lay = M+ DEG (A = A +0) Tg(Aj + Ai + v+ DT (A + Ai + v+ 6)
Py = X)TqN =X+ 1=0) TN + X +0)Tg(Aj+ X +v+1-6)]
(1.3)

where £; = g~ +u-¢™, u = ¢V and ); are as in the definition of the discrete S-ensembles,
while ¢ € (0,1) and v € (1,00). The measures (1.2) are recovered from (1.3) by setting
u — 0 and ¢ — 1. We interpret the random vector ({i,...,¢y) as locations of N
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particles. If § = 1 then all particles ¢; live on the same space 3 := {¢"" +u-¢" : € Z},
and we refer to the set 3 as a quadratic lattice in the spirit of [58] (note that in this
case H"(0;,¢;) = (¢; — £;)?). For general 6 we call the class of measures (1.3) discrete
B-ensembles on shifted quadratic lattices.

Our study is motivated by random matrix theory on one side, and by integrable
models on the other. We first investigate Py for a general choice of weights w in the
multu-cut and fized filling fractions regime. We prove that these systems obey a law of
large numbers under a certain scaling as N goes to infinity and also show that their
global fluctuations are asymptotically Gaussian with a universal covariance. The same
phenomenon is present in the case of discrete and continuous log-gases. Subsequently,
we apply our general results to a class of tiling models that was introduced in [16] and
obtain explicit formulas for their limit shape and global fluctuations. The tiling model
we investigate corresponds to a special case of (1.3) when § = 1, and we remark that for
general 6 > 0 the interaction term Hg'"(¢;,¢;) can be linked to Macdonald-Koorwinder
polynomials [49] similarly to how Hg(A;, Aj) in (1.2) is linked to Jack symmetric polyno-
mials, see also Remark 2.1.2.

1.1.1. Log-gases

The probability measures from (1.1) and (1.2) have been extensively studied in the
past, see [1,32,53,60] for P% and [13,25,31,39,40] for P4, among many others.

Under weak assumptions on the potential V(x) or weight function w(z; N), continuous
and discrete log-gases exhibit a law of large numbers as N — oco. Specifically, if one forms
the (random) empirical measures

N
1
UN = ¥ E §(x;/N), where (z1,...,2N) 18 ]P’R’,d—distributed,
i=1

then the measures puy converge weakly in probability to a deterministic measure p, called
the equilibrium measure. In the continuous case with V(z) = 22 this statement goes
back to the work of Wigner [70], and is called Wigner’s semicircle law. The analogous
statements for generic V(z) were proved much later, see [6,20,38]. In discrete settings
similar law of large numbers type results were obtained in [31,39,40]. In both cases
the equilibrium measure p is the solution to a suitable variational problem and one
establishes the convergence of py to p by proving large deviation estimates. In essence,
1 maximizes the density (1.1) or (1.2) and the large deviation estimates show that py
concentrate around that maximum.

The next order asymptotics asks about the fluctuations of u — uy as N — oco. One
natural way to analyze this difference is to form the pairings with smooth test functions
f and consider the asymptotic behavior of the random variables

N [ @@ - [ fan) | as N o (1.4)
R R
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There is an efficient method, which establishes that the limits of (1.4) are Gaussian in
a very general setup and its key ingredient is the so-called loop equations (also known
as Schwinger-Dyson equations), see [17,18,38,50,64] and references therein. These are
functional equations for certain observables of the log-gases (1.1) that are related to
the Stieltjes transforms of the empirical measure py and their cumulants. Since their
introduction loop equations have become a powerful tool for studying not only global
fluctuations but also local universality for random matrices [5,19].

In [15] the authors presented an analogue of the above method for discrete
B-ensembles. They introduced discrete loop equations and used them to establish that
the limits of (1.4) for the measures in 1.2) are Gaussian with a covariance that is the
same as in the continuous case for a large class potentials. These discrete loop equa-
tions originate in the work of Nekrasov [57] and are also called Nekrasov’s equations.
The central limit theorem for (1.2) had been previously known for various very specific
integrable choices of the potential, see e.g. [13,21,62]. The main contribution of [15] is
that it establishes general conditions on the potential V' (z) that lead to the asymptotic
Gaussianity of (1.4). Similarly to the continuous case, discrete loop equations have be-
come a valuable tool to study not only global fluctuations [15] but also edge universality
for discrete S-ensembles [33].

In the present paper we establish the universality type results for the global fluctu-
ations of discrete S-ensembles on shifted quadratic lattices (1.3). To obtain the law of
large numbers we use a similar combination of large deviation estimates and variational
problems that proved to be successful for P%d. In order to study the next order fluctua-
tions we introduce a new version of discrete loop equations for a quadratic lattice, which
we also call Nekrasov’s equations, and view the latter as one of the main contributions
of this paper. We remark that it is hard to guess that there even exists an analogue of
the Nekrasov’s equation in this setting, since it is a very subtle equation which reflects
some specific algebraic structure of the system. Equipped with these new equations, we
establish global central limit theorems for log-gases on a quadratic lattice for a multi-cut
general potential by adapting the arguments in [15].

Our main motivation for considering the class of measures Py comes from an inter-
esting tiling model introduced in [16] which we describe next.

1.1.2. The g-Racah tiling model

Consider a hexagon drawn on a regular triangular lattice, whose side lengths are given
by integers a,b,c > 1, see Fig. 1. We are interested in random tilings of such a hexagon
by rhombi, also called lozenges (these are obtained by gluing two neighboring triangles
together). There are three types of rhombi that arise in such a way, and they are all
colored differently in Fig. 1. This model also has a natural 3D interpretation as a boxed
plane partition or, equivalently, a random stepped surface formed by a stack of boxes.
One can assign to every lattice vertex (i, 7) inside the hexagon an integer h(s, j), which
reflects the height of the 3D stack at that point, see an example in Fig. 1. One typically
calls h the height function and formulates results in terms of it.
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Fig. 1. Tiling of a hexagon and the corresponding height function.

Fig. 2. A simulation for a = 80, b = 80, ¢ = 80. On the left picture the parameters are k2 = —1, ¢ = 0.8,
and on the right picture the parameters are k2 = —1, ¢ = 0.98.

The probability measures on the set of tilings that we consider were introduced in
[16] and form a 2-parameter generalization of the uniform distribution. Denoting the two
parameters by ¢ and k, one defines the weight of a tiling as the product of simple factors
(kg?=(etD)/2 — g=i+(e+D/2 /) over all horizontal thombi <>, where j is the coordinate
of the topmost point of the rhombus. The dependence of the factors on the location of
the lozenge makes the model inhomogeneous. Note that the uniform measure on tilings
is recovered if one sends £ — 0 and ¢ — 1. Other interesting cases include x — 0, then
the weight becomes proportional to ¢~V (here V refers to the number of boxes in the
3D interpretation). In addition, the same way the Hahn orthogonal polynomial ensemble
arises in the analysis of uniform lozenge tilings, our measures are related to the g-Racah
orthogonal polynomials. In this sense, the model goes all the way up to the top of the
Askey scheme [46], and we call it the g-Racah tiling model.

We believe that the g-Racah tiling model is a source of rich and interesting structures
that are worth investigating. The presence of two parameters allows one to consider
various limit regimes that lead to quite different behavior of the system as can be seen in
Fig. 2. One of the central goals of this paper is to understand the asymptotic behavior
of the height function of the g-Racah tiling model when the sides of the hexagon become
large, and simultaneously ¢ — 1,k — kg, where kg € (0,1) is fixed, see Fig. 3 for a
sample tiling in this case.
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Fig. 3. A random tiling of a hexagon of side lengths a = 50, b = 60, ¢ = 40 for k2 = 0.05 and ¢ = 0.99.

It turns out that one can relate one-dimensional sections of the g-Racah tiling model
to measures from (1.3) with # = 1. We will elaborate on this point later in Sections 7
and 9.2, but the identification goes as follows. One places a particle in the center of
each horizontal lozenge <> and takes a vertical section of the model; the resulting “holes”
(positions, where there are no particles) form an N-point process. Under a suitable
change of variables this point process has the same distribution as (1.3) for a set of
parameters and weight w that depend on the location of the vertical slice. Using this
identification, our general results for log-gases on (shifted) quadratic lattices imply a law
of large numbers and central limit theorem for the height function % of the tiling model.

Informally, our law of large numbers states that there exists deterministic limit shape
h and the random height functions h concentrate near it with high probability as the
parameters of the model scale to their critical values. An important feature of our model
is that the limit shape develops frozen facets where the height function is linear. In
addition, the frozen facets are interpolated by a connected disordered liquid region. In
terms of the tiling a frozen facet corresponds to a region where asymptotically only one
type of lozenge is present and in the liquid region one sees lozenges of all three types,
see Fig. 3.

Similar concentration phenomena for the random height function in the case of the

uniform measure and the measure proportional to ¢~V

are well-understood. In particular,
in these cases convergence of the random height function to a deterministic function for
a large class of domains was established in [24,26,27,37,44,61]. The limit shape is given
by the unique solution of a suitable variational problem. For the g-Racah tiling model we
compute the limit shape explicitly introducing a method, which we believe to be novel.
This method uses discrete Riemann—Hilbert problems.

The next order asymptotics we obtain show that the one-dimensional fluctuations
of the height function around the limit shape are Gaussian with an explicit covariance
kernel. An important additional contribution of our work is the introduction of a (rather
nontrivial) complex structure 2 on the liquid region. The significance of this map is that
the fluctuations of h on fixed vertical slices are asymptotically described by the one-
dimensional sections of the pullback of the Gaussian free field (GFF for short) on the
upper half-plane H under the map €2 — see Theorem 7.2.4 for the precise statement. This
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result admits a natural two-dimensional generalization, which we formulate as Conjec-
ture 8.4.1 in the main text. At this time our methods only provide access to the global
fluctuations at fixed vertical sections of the model, and so we cannot establish the full
2D result.

The GFF is believed to be a universal scaling limit for various models of random sur-
faces in R?. The appearance of the GFF in tiling models with no frozen zones dates back
to [41,42] and the fluctuations of the liquid region for a random tiling model containing
both frozen facets and a liquid region were first studied in [13]. In case of the uniform
measure on domino and lozenge tilings the convergence to the GFF has been established
for a wide class of domains in [22,23,62], but there are no results in this direction for more
general measures. One possible reason that explains why the GFF was not recognized in
the ¢g-Racah tiling model is the rather non-trivial change of coordinates that makes the
correct covariance structure appear (see Section 8), and already in the ¢~V (or xk = 0)
case our result is new. We remark that there is a natural complex coordinate on the
liquid region defined by the so-called complex slope, which in the uniform tiling case is
known to be intimately related to the complex structure that gives rise to the GFF. For
the g-Racah tiling model an expression for the complex slope was obtained in [16] and
we connect it to our complex structure €2 through an explicit functional dependence, see
Remark 8.2.2.

1.2. Main results

We present here our main results for the log-gas on a quadratic lattice and forego
stating our results on the ¢g-Racah tiling model until the main text — Section 7.2 — since
it requires the introduction of more notation. Moreover, to simplify the discussion in the
introduction we will formulate our results for the one-cut case and 6 = 1. The general
statement of the law of large numbers is given in Theorem 3.1.1 and the general statement
of the central limit theorem is given in Theorem 5.2.7.

Let us first explain our regularity assumptions on the parameters and the weight
function. We assume we are given parameters q € (0,1), M > 1 and u € [0,1). In
addition, let g € (0,1), My € N and uy € [0,1) be sequences of parameters such that

My > N — 1 and max <N2 ‘qN — ql/N) ,|My — NM|, Nluy —u|) < Ay,
for some A; > 0. (1.5)
We assume that w(z; N) has the form
w(z; N) =exp (—NVy(z)),

for a function Vi that is continuous in the intervals [1 4 uy, g™ + ungn ~] and such
that
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[V (s) = V(s)] < Ay - Nt log(N), where V is continuous and |V (s)| < Az,  (1.6)

for some positive constants As, A3 > 0. We also require that V(s) is differentiable and
for some A4 > 0 there is a bound

[V'(s)] < Ay [1+ [log|s — 1 —u||+ |log|s —q ™ —uq"|[]], for s € [1+u,q7" +uq"].
(1.7)

We let Py be as in (1.3) for ¢ = gn,¢" = v = un, M = My, N and weight function

w(-) = w(;N).
Our first result is the law of large numbers for the empirical measures py, defined by

N
1 . .
pN = o gl §(¢;), where (¢1,...,4N) is Py-distributed.

Theorem 1.2.1. There is a deterministic, compactly supported and absolutely continu-
ous probability measure pu(z)dz* such that uy concentrate (in probability) near . More
precisely, for each Lipschitz function f(x) defined in a real neighborhood of the interval
[14+u,q " +uq"] and each ¢ > 0 the random variables

N1/ / F(@)un(de) — / f(@)u()da (18)

converge to 0 in probability and in the sense of moments.

Remark 1.2.2. Theorem 1.2.1 is a special case of Theorem 3.1.1, where we extend the
statement to the multi-cut regime with fixed filling fractions and for general 6§ > 0.

To obtain our central limit theorem we need to impose certain analyticity conditions
on the weight w(x; N) that we now detail. We assume that we have an open set M C
C\ {0, £+/u}, such that for large N

([q}wq]’vMN’l] U [uzvq%”“,uzvqfvl]) c M.

In addition, we require that for all sufficiently large N there exist analytic functions
L, Py on M such that for z € M and on(2) = 2 + unyz~" the following holds

wlon(gnz);i N)  (q}22 —un)®y(2)
Moreover, the functions @ﬁ satisfy the following vanishing conditions

! Throughout the paper we denote the density of a measure p by u(z).
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o (a3 ") = o5 (1) = @ (unay') = @ (unalf™) =0,

and asymptotic expansion
By (2) = D7(2) + 9y (2) + O (N72) and @ () = &+ (2) + 9} (2) + O (N72),,

where % (2) = O(N~1) and the constants in the big O notation are uniform over z in
compact subsets of M. All the aforementioned functions are holomorphic in M.

The assumptions in (1.9) are the analogues of Assumptions 3 and 5 in [15], and
similarly to that paper their importance to the analysis comes from the following obser-
vation, which is the starting point for our results. We discuss the general § setup and
the corresponding Nekrasov’s equation in Section 4.

Theorem 1.2.3 (Nekrasov’s equation). Suppose that (1.9) hold and define

N on(gnz) — 6
H (gn2)

RN(Z) = (I)&(Z) ! IEPN O'N(Z) — Ei

N
+ 0% (2) - Eey lH o) b ] . (1.10)

i=1 i—1 on(anz) — L

Then Ry/(z) is analytic in M. If ®%(2) are polynomials of degree at most d, then so is
RN(Z)

Remark 1.2.4. If 1 denotes the equilibrium measure from Theorem 1.2.1, and G, (z) =
fR % is its Stieltjes transform then as explained in Section 4 one has

lim Ep
N—o0 N

H %] = exp (B(2)) with &(2) = log(q)-(z—uz™")-Gpu(z+uz ™).

In this sense, the Nekrasov’s equation lead to a functional equation for ®(z), and our
central limit theorem is a consequence of a careful analysis of the lower order terms of the
above limit. We remark that in [15] the expression that appears in the exponent above
is directly the Stieltjes transform G, (z) and not a modified version of it as in our case,
which increases the technical difficulty of our arguments. The appearance of & is a novel
feature that comes from working on a quadratic lattice and we give some explanation of
it in Remark 4.2.3.

Our central limit theorem requires that the equilibrium measure p satisfies Assump-
tion 5 in Section 2.1, which roughly ensures that x has a single band in [14u,q ™ +uq"].
In our context, a band is a maximal interval (a,b) such that 0 < p(z) < fo(og'(x))~",
where oq(z) = 7% +uq® and fq(z) = “Loq (q~7) (see also Section 4.2). The parameters
a1, f1 that appear in the next Theorem 1.2.5 are then precisely the endpoints of this
band.
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Theorem 1.2.5. Suppose that (1.5), (1.6), (1.7), (1.9) and that (technical) Assumption 5
from Section 2.2 hold. For m > 1 let f1,..., fm be real analytic functions in a neighbor-
hood of [1 +u,q™" +uq"] and define

Efi:N/fj(a:),uN(dm)—NEpN /fj(x)uN(dac) fori=1,...,m.
R R

Then the random wvariables Ly, converge jointly in the sense of moments to an

m-dimensional centered Gaussian vector X = (X1, ..., X,;,) with covariance’

Cov(X;,X;) = ﬁ %ygfi(s)fj(t)(f(s,t)dsdt, where
rr

sty = ! G @aﬂ&—ﬁo+@—a0@—&)>7 111)

205=107 " 2y/s—anG—A)VE—ani-5)

where ay, f1 € [1+1u,q ™ +uq"] are given in Assumption 5 and T is a positively oriented
contour that encloses the interval [1 +u,q™ + uq"].

We emphasize that the covariance in (1.11) depends only on a, 81, and is not sensitive
to other features of the equilibrium measure y. Furthermore, the covariance is the same
as for the continuous log-gases, cf. [38, Theorem 2.4] and [60, Chapter 3]. Thus, the
discreteness of the model is invisible on the level of the central limit theorem, which is
consistent with what was observed for the discrete S-ensembles in [15].

Remark 1.2.6. Theorem 1.2.5 is a special case of Theorem 5.2.7, where we extend the
statement to the multi-cut regime with fixed filling fractions and general 6 > 0.

Remark 1.2.7. Observe that the covariance C(s,t) has no singularity when s = ¢, since
the RHS of (1.11) has a finite limit when s tends to ¢.

Outline
In Section 2 we describe the general framework of our study, the scaling regime we

consider and the assumptions on the weight w. In Section 3 we establish a general law of
large numbers as Theorem 3.1.1. Nekrasov’s equation is discussed in Section 4. Sections 5

2 Throughout the paper, given a,b € R with a < b, we write f(z) = \/(z — a)(z — b) to mean

_JVz—aVz—b when z € C\ (—o0,b] ,
1) = —Va—=2zvb—2z when z € (—o0,a) .

Observe that in this way f is holomorphic on C \ [a,b], cf. Theorem 2.5.5 in [68].
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and 6 contain the proof of Theorem 5.2.7 (our general central limit theorem). A detailed
description of the g-Racah tiling model is given in Section 7 and we give the proof of our
results about its random height function in Section 8. Section 9 provides the verification
that the tiling model fits into the general framework of Section 2. Finally, Section 10
contains the asymptotic analysis of the Nekrasov’s equation for the tiling model using
discrete Riemann-Hilbert problems.
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2. General setup

In this section we describe the general setting of a multi-cut, fixed filling fractions
model that we consider and list the specific assumptions we make about it.

2.1. Definition of the system

We begin with some necessary notation. Let ¢ € (0,1), M € Z>q, u € [0,1), 0 > 0
and N € N be such that M > N — 1. For such parameters we set

Xy ={(z1,...;zn) 21 <z < - <zay,z; €Zand 0 < x; <M — N + 1},
WE = {(\1,.. ., An) : N\ = x4+ (i — 1) - 0, with (21,...,2x5) € XN}, (2.1)
LY ={(t1,... In) : l; = q N +ug, with (\,...,\y) € W, .

We interpret the elements (¢4, ...,¢y) in £ as locations of N particles. If § = 1 then
all particles ¢; live on the same space GCLTZ := {q¢~" + uq® : ¢ € Z}, and we refer to
the set 3 as a quadratic lattice in the spirit of [58]. On the other hand, for general § > 0
the particle ¢; lives on an appropriately shifted quadratic lattice Sz = {qmo (=10 4

k—1)0

ug®H( : & € Z}. This is similar to the setup in [15]. Throughout the text we will

frequently switch from ¢;’s to \;’s or z;’s without mention using
T €0, Ni=xi+(i—1)-0€(i—1)-04+7, £;=q ™ +ug € 37, (2.2)

We typically choose the coordinate system that leads to the most transparent formulas
or arguments.
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Our goal is to define probability measures on a subset of £%;, where particles are split
into k groups of prescribed sizes, living on k disjoint prescribed segments. We start by
fixing k € N, which denotes the number of segments (or groups). For each N € N we
take k integers ni(IN),...,ng(N), set N; = Zle n;(IN) with the convention Ny = 0
and assume Nj = N. The numbers n;(N) indicate the number of particles in each
segment (or group). In addition, we suppose that we have 2k integers a;(N), b;(N) such
that 0 < a;(N) < b;(N)—1< M- N+1fori=1,...,k and b;(N) < a;4+1(N) for
i=1,...,k — 1. With the above data we define the state space of our N-point process
as follows.

Definition 2.1.1. The state space X% consists of N-tuples £ = ({1,...,¢n) € L% such
that a;(N) < z; < b;(N) —1, see (2.2), whenever N;_1 +1< i< N;fori=1,...,N
and j = 1,..., k. For future use we also denote a;(N) = ¢~ % NV)=Ni=10 4 3,q0i(N)+Ni-1-0
Bi(N) = q bW =(Nim D)0 gy gbi(N)F(N:i=1)-0 and 57 (N) the largest element in 3%, less
than B;(N) fori=1,...,N.

Utilizing Definition 2.1.1 we define a probability measure Py on .’{?\, through

N
1
Py(l1,....¢N) = 7o H H(l;,¢45) - Hw(éi;N), where
N 1<i<i<nN i=1
H(¢;,45)
oo, Lay = M+ DEG (A = A £ 0) Tg(Aj + A + 0+ DG (A + Ai + v+ 6)
Pq()\j — )\I)I‘q()\j — )\2 +1-— 9) Pq()\j + )\1 +’l})Fq(>\j + )\z +ov+4+1-— 0)
(2.3)

Here Zy is a normalization constant (called the partition function), v is such that
¢ = wu, and w(z;N) is a weight function, which is assumed to be positive for
x € UF_ [a;(N), B; (N)]. We recall

7

o0

L) =(1- q)lf"”% where (a;¢)oo = H(l — ag®) and it satisfies
(4" 9)oo Pt
Fy(x+1) _1-g ' (2.4)
Lg(x) l—gq

Let us remark on a couple of properties of Py. Firstly, the measure Py when v = 0
was considered in [15]. Specifically, our measure agrees with equation (82) of that paper
with \; replaced with ¢; and w(/;; N) replaced with w(£;; N) - ¢~ W =D%  In addition,
from [2, Theorem 10.2.4]

Iy(z+ )

) =(1 —q)_"‘(qw;iq)Oo ~(1-¢) “1-y)*asq—1 and ¢“ =y €[0,1)

(¢*T ) oo
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i

and setting ¢~ = y; for i = 1,..., N we have

H(li, ) ~ (1 =)™y (1 =y, D> (L =gy 'y > = (1= )70 (4 — )%,
(2.5)

which is why we view Py as a discretization of the general 5 = 26 log-gas to a quadratic
lattice. The latter is particularly obvious when 6 = 1, since then we have

9 N(N— N
Pn(l1,....4N) = u —q)ZjVN(N i . H (¢; féi)QHw(éi;N).

1<i<j<N i=1

The above connection to log-gases motivates our choice to work with the particles
(¢1,...,¢xn) and not for example (A, ..., Ax), although most results can be formulated
in terms of the latter.

Remark 2.1.2. One way to understand the interaction H (¢;,¢;) in (2.3) is that it is an
integrable extension of the interaction (£; —¢;)? to general @ > 0. This should be viewed as
an analogue to how (1.2) is a general 6 > 0 version of (\; — \;)2, and the integrability of
that extension can be traced to discrete Selberg integrals and Jack symmetric polynomials,
where analogous expressions appear, see [15, Section 1]. One source of motivation for why
H(¢;, ;) is the correct generalization of (¢; — ¢;)? in the setting of a quadratic lattice
comes from a connection to Macdonald—Koorwinder polynomials [49] as we detail below.

Following the notation in [63] we let K,Sn) (5 ¢, t; to, t1, ta, t3) denote the BC,,-symmetric
Koorwinder polynomial in n variables. In addition, if g C (m)"™ we define i C (n)™
through ji; = n — p;n7j+1. Taking the product of K,(Ln) and Kém) at the principal and
dual principal specializations (such products appear in the dual Cauchy identity for
Koorwinder polynomials [55]) gives

KM (1" o3 ¢, to, 1, taut) - K™ (0™ Ttost, g3 to, 1, o, t) =

n 2.6
Cln,m,0)- [ H.6)-[]wW), (26)
1<i<j<n i=1

where H((;,¢;) is as in (2.3) with t = ¢%, u = ¢” = totitats/q and C(n,m,0) is a
p-independent constant. As before we have £; = ¢~ +ug™ and \; = fin_it1+ (i—1)-6
(notice that \’s are indexed in increasing order, while u’s are indexed in decreasing order
as is typical for partitions). In addition, we have

14 —Ai+1 —1 s 1 —1),,.
+A 7q'm Ai+1460(n )7 q>\ +m+1+0(n )’LL, q)oo

q(n—m—l/Z))\ﬁ-)\?/?
(15 q) o ’

W(t) = (1 - ¢ u)l

where (a1,...,ar;¢)oc = [[—;(ak; @)oo The obvious parallel between (2.6) and (2.3)
is one of the main reasons we view H(¢;,¢;) as the correct integrable generalization to
6> 0.
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2.2. Scaling and regularity assumption

We are interested in obtaining asymptotic statements about Py as N — oo. This
requires that we scale our parameters 6,q,u, M in some way and also impose some
regularity conditions for the interval endpoints a;(N), 5;(N) and the weight functions
w(x; N). We list these assumptions below.

Assumption 1. We assume that we are given parameters § > 0, q € (0,1), M > 1, and
u € [0,1). For future reference we denote the set of parameters q,M,u that satisfy the
latter conditions by P and view it as a subset of R? with the subspace topology. In
addition, we assume that we have a sequence of parameters ¢y € (0,1), My € N and
uy € [0,1) such that

My > N — 1, max (NQ-‘qN—ql/N

,|MN_NM|,N.|uN_u|) < Ay,

for some A; > 0. (2.7)

The measures Py will then be as in (2.3) for ¢ = gn,u = uy, M = My,6 and N.

Assumption 2. We require that for each i =1,...,k as N — oo we have for some Ay > 0
la;(N) — a;| < Ay - N~ log(N), 1Bi(N) — bi| < Ay - N~tlog(N), where
1+u<a < 131 <O <---<ap < Bk < q_M_(H'1 +qu+9_1.

In addition, we assume that w(z; N) in the intervals [a;(N),8; (N)], ¢ = 1,...,k has

1
the form

w(z; N) =exp (—NVn(x)),

for a function Vi that is continuous in the intervals [a;(N), 8;

(N)] and such that
[V (s) = V(s)] < A3 - N~ 'log(N), where V is continuous and |V (s)] < A4,  (2.8)

for some constants Az, A4 > 0. We also require that V(s) is differentiable and for some
As >0

k

V'(s)] < As- |1+ Z llog |s — ]| + | log|s — b|||, for s € [14+u,q ™" +ug"™? 1.
i=1

(2.9)

Remark 2.2.1. We believe that one can take more general remainders in the above two
assumptions, without significantly influencing the arguments in the later parts of the
paper. However, we do not pursue this direction due to the lack of natural examples.
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Let us denote o4(z) = q~* + uq” and observe that the latter is a bijective diffeomor-
phism from [0,M+ 60 — 1] to [1 +u,q " " +ug"t0~1]. Let f4(z)
that fg is positive on the interval [0, M].

= %aq (%) and note

Assumption 3. Set 72;,(N) = # for:=1,..., k. We will often suppress the dependence
of ; on N and we assume that for sufficiently large N these sequences satisfy

Ag <y <070 [0 (b)) — 05 (@0)| — A,
where Ag is some positive constant. In our future results it will be important that the
remainders are uniform over 7;, satisfying the above conditions.

Remark 2.2.2. The above assumptions will be sufficient to obtain our law of large num-
bers for Py. We stated the one-cut § = 1 case of this law in Theorem 1.2.1. In general,
if one assumes that 7;(N) = v; + O(N!log(N)) for some positive constants v; for
i=1,...,k, then the sequence of empirical measures py := % Zf\il d(¢;) converges to a
deterministic measure pu, called the equilibrium measure. The precise statement detailing
this convergence is given in Theorem 3.1.1, and the equilibrium measure turns out to be
the maximizer of a certain variational problem — see Lemma 3.1.2. It depends on q,u, 6,
the limiting potential V', the endpoints a;, b; from Assumption 2 and the limiting filling
fractions v; fori =1,...,k.

We next isolate the assumptions we require for establishing our central limit theorem,
starting with the analytic properties of the weight w(x; N).

Assumption 4. We assume that we have an open set M C C\ {0, £/u}, such that for
large N

—a;(N)=N;_1-06  —b;(N)—(N;—=1)-60
({q]l\/ ™ ' » AN M= Y }
i=1

0 [y O g g

In addition, we require for all large N the existence of analytic functions @E, o, on M
such that

wlon(1N) (g2 — unah) (2 = un) 05 (2
N

(2.10)

wlon(anz)iN) - (gf2? —un)(a52* — un) Py (2)’

whenever on(z),0(qnz) € UF_;[a;(N), B; (N)] where on(2) = 2z + uyz~1. Moreover,

Py(2) = @7 (2) + ¢y (2) + O (N7?) and DX (2) = @7 (2) + 9 (2) + O (N77),
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where @2 (2) = O(N~') and the constants in the big O notation are uniform over z in
compact subsets of M. All aforementioned functions are holomorphic in M.

The next assumption we require is about the equilibrium measure p, which was dis-
cussed in Remark 2.2.2. A convenient way to encode p is through its Stieltjes transform

G(z) = / plw)dz (2.11)

Z—X
R

The following two functions R, (z), Q,(z) naturally arise from our discrete loop equations
(see Section 4.2) and play an important role in our further analysis

Ru(z) = 3 (2) - 0 108@ 0z NG (40s") | gt () . o0 lom(@ (v Gu(4uz )

2.12
Qu(z) _ CIF(z) . 66 log(q)(zfuzfl)G,L(z+uzfl) _ ‘I)+(Z) . 670 log(q)(zfuzfl)G,L(eruz’l) ( )

In Section 4.2 we show that R,(z) is analytic, while @, (2) is a branch of a two-valued
analytic function, given by the square root of a holomorphic function on M. Our as-
sumption on p is expressed through @, as follows.

Assumption 5. For each N let ji be the equilibrium measure p discussed in Remark 2.2.2
for the parameters g, u, endpoints ai,b; as in Assumptions 1-2 and filling fractions
v; = f; = ny(N)/N, i = 1,...,k. Observe that iy depends on N only through the
filling fractions, in particular in the one-cut case it does not depend on N.

Let Qu, be as in (2.12) for the measure fiy. Then we require that for all large N
there exist real numbers r;(N), s;(N) and functions Hy(z) on M such that

e 4; < 1r(N) < 8(N) < b;, and there are constants a; < 7; < & < b; such that
ri(N) — 7 = O(N"tlog(N)) = si(N) — 8; fori = 1,..., k.

e Q) = Hn() Ty v/ Fue T — (W) TuzT = (W), with Hy(z) £ 0
in M.

Remark 2.2.3. Assumption 5 is the analogue of Assumption 4 in [15, Section 3] for our
setting and as discussed there it does not describe a general case. In particular, it implies
that p(z) has a single interval of support inside each interval [&i,l;i]. To the authors’
knowledge there are no simple conditions on the potential V' that ensure that u has this

property.

We will further impose a vanishing condition for the functions @ﬁ. We believe that it
can be relaxed, but introduce it to simplify our arguments in the text.

Assumption 6. If a;(N),b;(IN), N; are as in Section 2.1 then for all i = 1,..., k we have

—bi—(N;—1)0 —( —a;—N;_1-6 i—14+N;_1-0
‘I’JJ(/@N ( )):‘I’N(qz\ra 1>:‘I’JJ5(“NQ?V " 1)
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=dy (qu?\}fH(N”’*l)'e) =0.

Finally, we state an assumption, under which one can find an explicit formula for the
density of u in Remark 2.2.2 in terms of R, and ®* as in (2.12) and Assumption 4, see
Lemma 4.2.2.

Assumption 7. We assume that V(s) is real analytic in a real open neighborhood of
Uk_, [ai,b;] and ®*(z),® (z) € R with ®t(z) - & (z) > 0 whenever z + uz~! €
UE_ (a4, by).

3. Law of large numbers

In this section we establish the law of large numbers for the empirical measures uy
associated to Py from Section 2. In Section 3.1 we provide a variational formulation of
the equilibrium measure p, which describes the limit of py. The convergence of uy to
1 is detailed in Theorem 3.1.1 and we reduce the proof of the latter to a concentration
inequality — see Proposition 3.1.3. This inequality is established in Section 3.2 using
arguments similar to [15], which in turn go back to [17] and [52].

3.1. Convergence of empirical measures

We continue with the same notation as in Section 2. With Py as in (2.3) we define
the empirical measures uy as

N
1 . .
ny = 221 5 (¢;) where (£1,...,4y) is Py-distributed.

The measures py satisfy the following law of large numbers.

Theorem 3.1.1. Suppose that Assumptions 1, 2 and 3 from Section 2.2 hold. In addition,
suppose that |i;—v;| < A7-N~1log(N) for some positive constants Ay and vy, i =1,...,k
such that ), v; = 1. Then there is a deterministic probability measure ju(x)dx, depending
on v; for 1 < i < k, such that py concentrate (in probability) near p. More precisely,
for each Lipschitz function f(x) defined in a real neighborhood of the interval UF_, [a;, b
and each € > 0 the random variables

N2e [ fopuy(ao) - [ fanteds (3.1)
R R

converge to 0 in probability and in the sense of moments.

The limiting measure p is defined as the maximizer of a certain variational problem,
described in the following section.
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3.1.1. Variational problem
Define the functional Iy [p] of a measure p supported in U¥_, [a;, b;] via

Wil =6+ [[ togle sl dp(a)dp(u) - [ Viz)dp(o) (3.2)
TH#y R
Lemma 3.1.2. Let © denote the set of absolutely continuous probability measures p(x)dx
supported on UE_, [a;,b;], whose denisty p(x) is between 0 and 6~ - folog M (x))™" and
such that
b;
/p(x)da: =0;, withl <: <k,

a;

q
(recall that oq and fq were defined in Section 2.2). Then the functional Iy has a unique

where 0 < D; < 671 [a;l(i)i) —071(&1-)}, i = 1,...,k are such that Zle v =1
mazimum i on O.

Proof. Observe that by our assumption on u and q we know that o4(y) is a strictly
increasing function, whose derivative fq(y) on [0,M] lies between (—logq)(l —u) and
(—logq)g "o+t

Let © be the same as ©, except that we restrict 0 < p(x) < WM. From the
above argument we conclude that © is a closed convex subset of ©’. It follows from the
proof of Lemma 5.1 in [15] that Iy [p] is a continuous strictly concave functional on ©’
and that the latter is compact. It follows that © is convex and compact, and hence Iy [p]
attains a unique maximum there. 0O

We call the measure ji from Lemma 3.1.2 the equilibrium measure. The significance of
[t is that it equals p from Theorem 3.1.1, when 7; = v; for 1 < i < k. Proving this fact
will be the focus of this and the subsequent sections.

For a measure p € © as in Lemma 3.1.2 define the effective potential F’ X () through

F;/(x) =20- /1og |z — t|p(t)dt — V (x).
R

~

Applying Theorem 2.1 in [28] to each interval [d;,b;] we know that there exist real
numbers f; for 1 < i < k such that

A

F/(z) = fi <0 forae zecS={a<z< bil0 < p(z) <0 faolog M (@)1},
FX(:}:) —fi>0 ifz € a;,b;] Nsupp(i).

(3.3)
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3.1.2. Proof of Theorem 3.1.1

Our approach to proving Theorem 3.1.1 is to reconstruct in our setup the arguments of
Section 5 in [15] and we begin by introducing some relevant notation. Take any two com-
pactly supported absolutely continuous probability measures with uniformly bounded
densities v(x)dz and p(x)dz and define D(v(x), p(x)) through

D2 w(o).pla)) = - [ [logle = sl(0(0) = pla))0ly) — plu))dady.  (3.)

There is an alternative formula for D(v(x), p(z)) in terms of Fourier transforms, cf. [6]:

D). pla)) = | [ 5| [ e telw(o) ~ pla))da] (3.5)

0 R

Fix a parameter p > 2 and let fixy denote the convolution of the empirical measure
pn with the uniform measure on the interval [0, N~P]. With the above notation we can
now state the main technical result we require for proving Theorem 3.1.1.

Proposition 3.1.3. Assume the same notation as in Theorem 3.1.1 and let fi be as in
Lemma 3.1.2 for 0; = v; fori=1,... k. There exists a constant C > 0 such that for all
z>0and N > 2

Py (D(fn, ft) > z) < exp (CNlog(N)* — 0 - 2°N?).

The constant C depends on the constants Aq,..., A7 in Theorem 3.1.1 and Assump-
tions 1, 2, 3, as well as q,M,u,0 and is uniform as the latter vary over compact subsets
of P.

The proof of Proposition 3.1.3 is the focus of Section 3.2 below. For now we assume
its validity and conclude the proof of Theorem 3.1.1. We start by deducing the following
corollary.

Corollary 3.1.4. Assume the same notation as in Proposition 3.1.5. For a compactly
supported Lipschitz function g(x) define

o - 9 1/2
—iSx glx) —gly
gl /2 = /Isl /e g@)de| ds| , llgllLip = sup M‘
— TEY r—=y

Fix any p > 2. Then for all a > 0, N > 2 and g we have
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e (| [ otetao) — [ o)t = algly o + 1

R R

< exp (CNlog(N)? — 20°a*N?) (3.6)
where the constant C' is as in Proposition 3.1.5.

Proof. From the triangle inequality we have

[ s@mstan) - [ g@mtan)| < | [ gwiuntis) - [ gla)intis)

R R R R

The first term is bounded by ”gj\‘f# and corresponds to such a term in (3.34). We will
thus focus on estimating the second term.

We denote by F[¢](€) := [ e *"*¢(x)dx the Fourier transform of a function ¢. Note
that g, i(z), in(z) all belong to L?(R) N LY(R) and so we can use Parseval’s formula
(see e.g. Theorem 7.1.6, in [35]) and the Cauchy—Schwarz inequality to get

1 Flan)(€) - FIAlE)
R/ (ViEZae) - e <
2m) " glly)e - / ¥ “‘N“ﬂ - FIIEE je — (20) gl - VED (i, 1)-
R

In the last equality above we used (3.5). What remains is to use Proposition 3.1.3. O

Proof of Theorem 3.1.1. Suppose that f and ¢ are as in the statement of the theorem,

= [1 from Proposition 3.1.3 and assume without loss of generality that € € (0,1/2). Fix
7 > 0 and let h be a smooth function, whose support is contained in a n-neighborhood
of UE_, [a;,b;] and h(z) = 1 on a 1/2-neighborhood of U¥_ | [a;, b;]. If we set

N”“/f ) (d) — /f (2)da],
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then to prove the theorem we need to show that for each & > 1 we have limy _, E [X 1’3,]
=0.

It follows from Corollary 3.1.4 that there exist positive constants c1,co and C' such
that for all @ > 0 and N > 2 we have

P (XN >c¢-a-NY2e 4y N*S) < exp(CNlog(N)? — 207%a*N?).

Using the above inequality and setting ay = 2co- N ~¢ we see that for any k > 1 we have

') an oo
E[Xy] = /SC’H P(Xy > z)dr = /I’H P(Xy > z)dz + /a:’H P(Xy > 2)dz <
0 0 an

k—1 2 k—1 _ mlg? N2
<ay-max(ay ,1)+exp(CNlog(N)“)- [ " " -exp | —0- dx
an

2c2
The last inequality implies that limy _ o E [X J’ﬁ,] =0. O
3.2. Proof of Proposition 3.1.3

We begin with a technical result about the asymptotics of the ratio of two ¢-Gamma
functions.

Lemma 3.1. Suppose that 6 > 0, q € (0,1) and gn € (0,1),an > 0 are sequences such
that |qN —q| < A- N1 and ay < A for some A > 0. Then for any x > 1 we have

Dyp (& ay +0)
FQN (‘r + aN)

(- (- e o N ) e

1—q%
where the constants in the big O notation depend on 6, A and q.

Proof. For convenience we drop the dependence on N from the notation. Recall from
(2.4) that

Ly(z + o +6) o (@™ 9w - k
—— = (1—gq -—————— where we have (a;q)s = 1—aqg®).
Fy(x + a) ( ) (g"TT0 q) oo (9 kl;[o( :

The first term matches the corresponding one in (3.7) and we focus on the second term.
We first observe that if ¢, B € (0,1) and s € [0, 1] then

s <o

The latter is equivalent to showing that
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f(s) :==slog(l — B) + Z log(1 — Bg**F) — Zlog(l — B¢*) > 0o0n [0,1],
k=0 k=0

which is immediate from the observations: f(0) = f(1) = 0 and f”(s) < 0 for s € (0,1).
We next note that

T+,

0] T4
(q aQ)oo _ H(l _qx-&-a-‘ri—l). (q + +L6J§Q)oo

(@t q)ee 15 (g™t q) o

[6]+1 zt+a+|0]+1.
T+o+i— (q totl )
= ] @ —gerh.
=1

Q)oo
(g*++8: q) oo

Combining the latter with (3.8) we conclude that

) 01— g*+)
1_ZEG< (q 7 4)0 <(1— m+a+00<1_a:6"
(1-4") _(qﬂaw;q)m_( q )< (1—¢")" -exp e |

where in the last inequality we used that ¢® < 1 and the trivial inequality (1+a)? < e,
for @ > 0. The latter tower of inequalities implies our desired estimate. 0O

In the remainder of this section we present the proof of Proposition 3.1.3, using
appropriately adapted arguments from [15]. For clarity we split it into several steps
and we outline them here. In Step 1 we relate the formula for Py to the value of the
functional Iy from Section 3.1.1 at the empirical measure ppy. In Steps 2, 3 and 4 we
obtain a lower bound for the partition function Zy. In the fifth step we replace the
empirical measure py with its convolution with the uniform measure on [0, N~P] with
p > 2, and reduce the statement of the proposition to establishing a certain upper
bound on Iy [un] — Iy [n]. In Steps 6,7 and 8 we establish the desired upper bound by
employing the variational characterization of i from Section 3.1.1.

Step 1. We recall for the reader’s convenience equation (2.3) below

N
Py(ly,....bn)=—— [[ H, ) JJwt;N), where

1<i<j<N i=1
H(l;,t;) =

200 La(Aj = A+ DEg(Aj = Ai +0) Tg(Aj + A + v+ D0 (A + A + v +6)
LaAj = X)TqNj = Xi+1—=0)Tq(N; + X +0)Tg(Nj+ N +v+1-0)]

(3.9)

where we drop the dependence on N from the notation. The goal of this section is to
show
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Prn(l1,... ) = Z5" - (1 — @) 2NN =D oxp (N2Iy [un] + O(Nlog(N))) . (3.10)

Notice that the definition of Iy in (3.2) makes sense for discrete (atomic) measures —
here it is important that we integrate over = # y as otherwise the integral would be
infinite, and so the RHS of (3.10) is well-defined and finite.

From Assumption 2 in Section 2.2, we know that w(¢;; N) = exp(—NV(¢;) +
O(log N)), and to conclude the proof of (3.10) what remains is to show that

I Ht)=0-9 YN0 ] (¢ —6)" exp[O(Nlog(N))]. (3.11)
1<i<j<N 1<i<j<N

From Lemma 3.1 we know that

-1
H H(l;, ) = (1—q)"2NW=D H (£;—£:)%-exp [O (1_]\;90_1))] , (3.12)

1<i<j<N 1<i<j<N
where we used that A\; — \; > 6 - (j — i) by assumption. On the other hand,
N

N1 1 EK1-¢ 1 1
Z < . Z < . Z < C - Nlog(N), (3.13)

— 0G0 =71 — 0 — .
1§i<j§N1 ¢"U=) T 1—gq “1—-q 1—q <0 Co

where ¢ > 0 is a universal lower bound of ¢V. Equations (3.12) and (3.13) imply (3.11).
Step 2. The goal of this and the next two steps is to obtain the following lower bound
Zn > (1—q) " NW=D Cexp (N2Iy [] + O(N log(N)?)) . (3.14)

In this step we construct a particular element /= (fl, e ,ZN) € ff?v that depends on [,
and then in view of (3.10) we have the immediate lower bound

Zn > (1—q) 2NWV=D L exp (N2IV [mes [@1, e ,fN}] + O(Nlog(N))) , (3.15)

where mes [@1, . ,@N] =+ Zi\;l 5(2y).
Let y;, i =1,..., N be quantiles of 0;1 o fi defined through

Since [aq_l ofi] (z) < 67" we have 0(y;41 —y;) > N~'. Arguing as in the proof of [15,
Proposition 5.6] we can find an element A= (5\1, .. ,:\N) € WY such that:

(1) if \; =a; + (’L - 1) -0, then a,(N) <z; < bi(N);
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(2) there is a constant U (independent of N) such that [Ny; — A;| < U forall 1 <i < N
except for O(log(N)) ones.

We then define ¢ through 0; = q_;\i +uq5‘i and note that the first condition above ensures
(e x4.

Step 3. The goal of this step is to show that
N1y [mes [+, in || = N*Iyv [i] + O(N 1og(N)?). (3.16)
Clearly, (3.16) and (3.15) give (3.14).

Setting on () = ¢~ + ug® we see that to show (3.16) it suffices to have the following
equalities

> log (UN(X]-)—UN = N? // log(t—s)u(t)i(s)dtds+O(N log(N)?), (3.17)

1<i<j<N pot
N A~
N> V(ien(A) = N2/V(t)ﬂ(t)dt+ O(N log(N)). (3.18)
=1 R

We defer the proof of (3.1 ) to Step 4 and focus on showing (3 18).
Set z; = og(y;) for i = 1,..., N and observe that f Tat)dt = N"Lfori=1,...,
N — 1. Then

<
/N
Q
2
>
N
Il
=
‘\ \
<
—
Q
2
>/>
N
t>

(t)dt + O(1). (3.19)

Let I be the set of indices such that O'N(S\i), 2i, zi+1 for ¢ € T are all inside U?Zl[&j, Bj]
and at least N~1 away from the complement of this set, and such that |Ny; — 5\Z| <U
from Step 2 holds. From Assumption 2 on aj, Ej we conclude that N — |I| = O(log N).
Note that for i € T

* z; = O'N(S\i) + O(N_l);
o V(z) =V (O’N(S\i)) = (z —on(M))V'(s) = O (N~'log(N)), where we used the

mean value theorem and V'(s) = O(log(N)) from Assumption 2.

In view of the above (3.19) implies

N Zi41

ZV( X) NZ/ (t)dt + O(log(N)). (3.20)

=1 i€l 2
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A second application of the mean value theorem leads to

N Zi+1

SV (on()) =N / (¢ = 2) V! (5(8))] ft)dt + O(log(N)),

i=1 el

Zi

where £(t) is a point inside U5_, [a;, b;] at least N~! from the complement of this set.
Arguing as before that V' (k(t)) = O(log(N)), we see that

Zi+1

SV (o) = NS [ [Vie)+ (si — 22) Olog(N)) ale)de + Ollog(V) =
i=1 el 2
Fitl O(log( N 2
Ny (O)f(t)dt + N0 g Z i1 — %) N/V(t)/l(t)dt+ O(log(N)).
el 2 =2 R

(3.21)

The second equality above follows from the definition of z; as quantiles of i, and the
last one follows from the fact that fi (User|2i, 2i41]) = [I|/N =1 — O(N~tlog(N)) and
V = O(1) on the support of fi. Clearly, (3.21) implies (3.18).

Step 4. In this step we prove (3.17) and start by showing that

> log (ow(hy) —on(h)) < N // log(t—8)i(t)ji(s)dtds+O(N log(N)?). (3.22)

1<i<j<N o

If I is as in Step 3 then we observe that
Z IOg (GN(;\j) —O'N(j\i)> =
1<i<j<N

3 log (aN(Xj) - oN(X,;)) + O(Nlog(N)?). (3.23)

i<ji,j€1

Indeed, the two sums differ by O(N log(/N)) summands, each of order O(log(N)).
As discussed in Step 3 we have that o ()\;) = z; + O(N~1) for i € I. Tt follows, that
we can find a positive constant C' such that

Z 1Og(UN(:\j)_0N(5\i)>§ Z log (zj — 2+ CN™') <

i<jii,jel i<jii,jel
zi Zj+1
NN / / log (t — s+ CN7) a(t)u(s)dtds = (3.24)
i<ji,j€l

Zi-1 Zj
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N? // log (£ — s + CN~1) t)ji(s)dtds + O(N log(N)?).

s<t

In going from the first to the second line we used that z; are quantiles of i and the
monotonicity of log. In going from the second to the third, we note that the set difference
over which the two integrals are taken has fi x fi measure O(N ~!log N) and the integrand
is O(log(N)) there.

We see that to conclude (3.22) it suffices to show that

Z // og (A oo — 0 (R

<w<b

The above is now immediate from the observation that for ¢ > 0 we have

b

b b
//log(w—v+c)dwdv:/[(b—v—l—c)(log(b—v—I—c)—1)—clog(c)—|—c]dv=

a

c?[1 — 2log(c)] + (r + c)?[2log(r + ¢) — 1]
4

c[l —log(c)]r + —br+7r?/24cr,
where r = b — a. The above identities show (3.22) and the reverse inequality can be
established in an analogous way, which proves (3.17).

Step 5. In this step we show that we can replace uy in (3.10) with its convolution
with the uniform measure on [0, N7P] with p > 2, denoted by jix. For that we extend
V to U;?:l[&j,i)j + N7 by setting V(z + b;) = V(b;) for z € [0, N"P] and take two
independent random variables , @ uniformly distributed on [0, N~?]. Then we have

vljin) = Eu [[ gle -+ u—y — alpx(dohun(dy) ~ B [ Vi +un(de) =
Iv[un] + % : Eu,ﬂ/IOg u— |y (dz) — By /[V(SE +u) = V()| (dz) (3.25)
+Bua [ tog [ (e (dy) = Ivl] + O(N ™ Hog(N),

zFy

where the last equality follows from the conditions on V' from Assumption 2. The above
shows that we can replace puy with iy in (3.10) without affecting the statement. Com-
bining the latter with the lower bound of Zy from (3.14), we conclude that there exists
a constant C’ > 0 such that

Py (fy,...,0n) < exp (C'Nlog(N)?) -exp (N*(Iy (in) — Iv (R))) - (3.26)
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We next claim that we have the following inequality

Ivlii] = Iv[i] < =0 D2(jin, 1) + O(N~" log(N)). (3.27)

We defer the proof of the above to the next step. In what follows we assume its validity
and finish the proof of the proposition. It follows from (3.26) and (3.27) that for some
C" > 0 we have

Py (ly,...,0n) < exp(C”Nlog(N)?) exp (—9 . NQDQ([AN,;})) .

Notice that the number of N-tuples ¢; < --- < fy in X% is at most (A;[\,N) Since
My = O(N) we see that for some C' > 0 and all > 0 we have

M
By (D(jin. ) > 7) < ( NN) exp (C"N log(N)? — 0 N?a?)
< exp (CNlog(N)* — 0 - 2>N?).
This is the desired estimate.

Step 6. In this and the next two steps we establish (3.27). By definition of D we have

Iy[in] - T[] = —0- D*(iin, / FY (a — ilw)) do =

i, (3.28)
=0 D)+ ) / — £l (fin (@) — ) dz + O(N " log(N),

where we recall that F;Y and f; were defined in Section 3.1.1. The extra O(N~!log(N))
comes from two sources. Firstly, there is additional mass of fiyy that lies outside of
U;?:l [a;, 13]] and we are excluding. The second source comes from the fact that the mass
of un and i on each [4d;, l;j] are not exactly the same (thus the integral over the constant
fi is not zero). The first issue is resolved by Assumption 2 on the endpoints a;(N), 5;(N),
which estimates the missing weight as O(N~!log(N)). The second issue is resolved by
our assumption that |f; — v;| = O(N~!log(N)).

We recall from Section 3.1.1 that S; = {a; <z < b;]0 < fi(z) < 071 fy(og (@)™ }
and also set S = {a; < z < b;li(z) = 0} and S7 ={a; <w < bla(z) = 6~
fq(aq’l(z))’l}. In view of (3.28) it suffices to show for each j =1,...,k that

/ FY (2) - £;] (in (x) — (z)) dz = 0, / FY (2) - £;) (in (x) — () dz < 0,

S;\S; s

J
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[ Fute) = ] Gix (@) — a)) do < 0+ O(N " Tog(N), (3.20)
SJ’"

In what follows we fix j € {1,...,k} and show (3.29), dropping the dependence on
j from all the notation. Let L be the subset of points [dj)] for which the Lebesgue
differentiation theorem for i holds. From (3.3) we know that a.e. on (S'\ S’) N L the
function FX (z) — f vanishes, this proves the first equality in (3.29), since L is of full
Lebesgue measure. We next observe that a.e. on S’ we have FX(x) —f<0and g(z)=0
— this proves the second inequality in (3.29).

Let us denote by R = {z € [a,b] : FY(x) > f} and observe that

/ FY () — f] (i () — fle)) di = / FY (2) — ) (in (@) — 071 folog ()"0) e

S RNS"

To see the latter we first observe that on S” we have fi(z) =6~ - fy(z)~*. In addition,
we know that a.e. point in S” belongs to the support of fi, and so by (3.3) a.e. on S” we
have that Fgf (x) — f > 0. Finally, we can remove the points of equality as they do not
contribute to the integral. Next,

/ FY (2) = f] (fin () — 07 - fylog (2)) da
RNS"

- / FY (2) — f) (in (@) — 071 folog (2))"0) da
R

The above follows from the fact that R N (S”)¢ has zero Lebesgue measure, which we
know from (3.3). We have thus reduced the proof of the proposition to establishing

JIEY @) = 1) () =07 foloy ) ) do <0+ OV log(N)). (330)
R

Step 7. In this and the next step we establish (3.30). We start by noting that if x = q~"~?
then because fi(z) is bounded we have

sup FY(z) - FIY(y)| =0 (N"'log(N)). (3.31)

o
z,yeR:|z—y|<kN~—1

In particular, the above implies that F X is continuous and so R is an open set. We denote

OgN (y) = q;;Ny + qu%y and perform the change of variables x = OgN (y) to rewrite the
LHS in (3.30) as

[ [ (s ) = 1] (avtony ) =07 o (o5 o 0) ) oyt

oy (R)
N
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We observe that by Assumption 1 we have

Ja (0510, @) ol () =1+ O(N ).

If we set O = aq_]& (R) and pn(y) = an(ogn(y)) - U;N (y) we may rewrite the LHS in
N N
(3.30) as

[ 15 (2 @) = 1] (wt0) - 07 ay + 0 ).
o

Since o,x(y) is an invertible diffeomorphism we know that O is an open subset
[cr “Ha), o ,\}( )] In particular, we can find a collection of disjoint open inter-

aN
vals (sl, ) € J with J countable such that O = U;cs(s;,t;), upto the endpoints

i
OO}

Since the sum of the lengths of these intervals is at most M— 146 we have finitely many
such that t;—s; > 0-N~1. Let us further subdivide such segments into segments of length
exactly - N~1, which are contained in (¢;, s;) as well as edge segments (s;, z], [y, t;) with
length at most 6- N 1. In this way we obtain a finite collection {K; := [r;,r; +60/Nl}ics,
and a countable collection {[c;, d;]}ic, of intervals such that

JIEY (o 0) = 1) (owl) 07 dy =

[0
> [Fﬁv (Uqgg (y)) - f} (An(y) —07") dy + (3.32)
zeJlKI
d;
S EY 00y @) — 1] (o) — 67 dy
i€ ]

and also d; — ¢; < 0/N, and at least one of the points ¢;,d; is a boundary point of O.
Our goal for the remainder is to show that the sums over J; and J, are both dominated
by 04+ O(N~!log(N)). This would conclude the proof of (3.30).

Notice that by the continuity of F (cr ~(y )) and the definition of O, we know that

on boundary points of this set we have that FX (aq% (y)) = f. In particular, for the sum
over Jy in (3.32)

5 (o) ~s| < s (1Y (g @) = B (i3 )]
oy <N

Since O';N (x) < 2k on [0,M + 0] for large N, we conclude from (3.31) that
N
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Y _FY
ngs’zlng‘Fﬂ (m;ﬁ(@) F; (Uq%(y))‘
le—y|<N~!
< swp o [F(@) - B (y)] = OV log(N)). (3.33)
z,y<
\I*yI;JQnN*l

We conclude that the sum over Js in (3.32) is bounded in absolute value by

d;
O(N""og(N)) - > [ (pn(y) +67") dy = O(N~"log(N)).
i€J2 ¢

We are left with estimating the sum over Jy, which we do in the next step.

Step 8. To conclude the proof what remains is to show

P +0/N
3 / [Fﬂv (aq% (y)) - f} (bn(y) — 071 )dy <0+ O(N'log(N)).  (3.34)

meJy T

We first recall that by definition jiy(z) = Zf\il NP~ 1[6;,4; + N7P](z), where
L= (l,....0N) € %5)\, and 1K stands for the indicator of the set K. In particular,

N
pr(y) = 3 NP 1Ai(y) - ol (y), where A = [\i/N, o d (¢ + N77)]
=1

and \; are such that £; = ¢ + ungy-
Since Aj4+1 — A; > 0, we know that each interval K, = [rm,rm + 0/N] intersects at
most two of the intervals A;. If it intersects at most one we know that

PN (Km) < /ﬁN(y)dy =1/N.
A;

If it intersects two then they must be A; and A;;1 for some i such that A\; 11 — \; = 6.

Let us note that (T:]N (y) = U;N()\i/N) + O(N~1) whenever y € [\;/N, (\; +20)/N]. In
N N

addition, we have

o x(li+ N7P)=X/N+NP. [dio—q;} (£;) + O(N~?") and
N T AN

0’;1\}(&+1 +N7P) =Xy /N+N7P. [%UQA}} (¢;) + O(N—P7H).

Combining the above estimates, and setting v = NP - [%aq_%l] (£;), we see that
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AN (Km) = / NPT 1Ai(y) + 1Ai (y)] - o (y)dy =
Km

/ NPTHLA/N A /N +91(y) + 11 /N, A1 /N + ()] - opx (X /N)dy + O(N7?).
" (3.35)

The key observation is that the integral in the second line of (3.35) is precisely o7 v (Ai/N)-
N

NP=1.~ = N~1. Consequently, we obtain the estimate
pn(Km) < N7+ O(N™?) for each m € Jj.

Combining the latter with the fact that F ;Y (aq% (rm)) > f we see that

J 15 (oux@) = 1 (o) =07 dy <

K
/ [F‘lv (U‘J%(y)) - Fy (%%(Tm))} (pn(y) — 0 1) dy+O(N?) <
K

|0<_;%l<%\4/+€ 2N~ ’F:‘/ (Uqlz\\; (x)> o Fly (Oq% (y)) ‘ + O(N_Q) =

O(N~?log(N)),

where the last equality follows from (3.33). Combining the above estimates over m € J;
we get

S [ [ (0n®) - 7] (on() 07 dy < 0+ OV log(V)) - 4.

mEJle
The above implies (3.34) since (6/N) - |J1| <M+ 6 — 1.
4. Nekrasov’s equations

In this section we present the main algebraic component in our arguments, which we
call the Nekrasov’s equations — Theorem 4.1.1. In Section 4.2 we study the asymptotics
of this equation and explain how it gives rise to a functional equation for the equilibrium
measure from Section 3.

4.1. Formulation

As explained earlier the measure Py in (2.3) can be understood as a discretization
of the continuous § log-gas to shifted quadratic lattices. In [15] the authors consider
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a different discretization (called discrete 3-ensembles) where the particles occupy (ap-
propriately shifted) integer lattices. They manage to obtain results about the global
fluctuations of these particle systems and their analysis is based on appropriate discrete
versions of the Schwinger—Dyson equations, which they also call the Nekrasov’s equa-
tions. More recently, in [33] the same Nekrasov’s equations were used to prove rigidity
and edge universality for the models in [15].

Motivated by the success of the Nekrasov’s equations for the discrete S-ensembles,
we develop appropriate g-analogues that are applicable for the measures (2.3). The key
result is given below and can be understood as a version of the Nekrasov’s equation for
shifted quadratic lattices.

Theorem 4.1.1. Let Py be a probability distribution on X% as in (2.3). Let M C C be
open and

k
U ([qpaﬁzv,;_l.o’qu,;f(zviq).e} U |:uqbi+(N7¢71)~0’uqai71+N7¢_140:|> c M.
=1

Suppose there exist two functions ®*(z) and ®~(z) that are analytic in M and such that

w(o(2);N)  (¢?2% —ug?) (22 — u)®T(2)

k . —
w(o(gz); N) — (¢722 — u)(¢?2% — )P~ (2)’ whenever o(2),0(q2) € Uia[ai, 57 ],

(4.1)
where 0(2) = z +uz"t. We also assume that ®* satisfy for eachi € {1,... k}
o+ (q—bi—(N,i—1)0> —$- (q—ai—Ni,lﬂ) — ot (uqai—1+N,i,1-e)
=&~ (ugh D) g, (4.2)
If we define
R(z) = ®(2) - Eg, lﬁl%w +®F(2) Es,, [ll"_v[l ”gql el ] (4.3)

then R(z) is analytic in the same complex neighborhood M. Moreover, if ®*(z) are
polynomials of degree at most d, then so is R(z).

Proof. As usual, see (2.2) we set ¢~ +ug* = ¢; for i = 1,..., N. Then we have

o(¢%2) —t; 1 0 —Xiy (0 Ai 1 1
o(z) =i ¢°(g™ —ug™) (2= Ndz ~ur) | = g 2= ugh
o(g'=%2) — ¢

o(a?) =1, = (4.4)
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0

q P SIS VAN B SN ¥ 1 _ 1
(@ — ug) (@72 —q )@ "% —ug )(qz_qxi qz_uqxi)

From the above we see that the possible singularities of R(z) in M are simple poles at

points ¢—™ and ug™ whenever \; = m in the first line of (4.4) and \; = m — 1 in the
second line of (4.4).
We will separately compute the residue contribution coming from each i =1,..., N,

which we fix for the remainder. We also let j € {1,...,k} be the unique index such that
Nj_1 +1 <i < Nj;. By definition, we know that \; varies in the set {C,C +1,...,D},
where C = (i—1)-0+ajand D =(i—1)-0+b; — 1. If m liesin {C,C'+1,...,D}, we
see that the residue at ¢~ is given by

> AWim)+ Y B(ti,m), (4.5)

Lexy | ni=m eex | ni=m—1

where

e (™™ — ™) (™ — ug™) o™ — ¢
Al tim) = Pl —ug™) O] =7,

J#i

(I)Jr(qu)qaq(qpequ _ quJrl)(qlqufm _ uqul)

B(l,i,m) = (g~ —ugm—1)

PN(E)HM

ol b

Let us fix ¢1,...,0;—1 and £;i11,..., 0y and set 0T = ({1,... . bi1,q ™ +uq™, bive,- ..,
In), 07 = (b, by, g ™ g™t liyq, ..., £n) — notice that £F, ¢~ are not neces-
sarily in X%;. We claim that A(¢*,i,m) + B(¢~,i,m) = 0, where we set A and B to be
zero if the argument is not in X%,. If true, we would obtain that the sum in (4.5) is zero
and so R is analytic near ¢—™. The latter statement is clear if both ¢+ ¢ %‘]9\,, hence we
assume at least one of them belongs to the state space.

If m =a;+ (i —1)-6 then B({~,i,m) = 0 since \; = a; — 1+ (i —1) -0 (and so
0= ¢ X%). In addition, A(¢*,i,m) = 0, since either i = N;j_; + 1 and then ®~(¢~™) =
@ (g4 Ni-1%) = 0 ori > N;_; + 2 and then \;_1 = aj + (i — 2) - 0 so that the
factor (U(q‘g—m) —éi_l) vanishes. Similarly, we have B({™,i,m) = 0 = A({T,i,m) if
m =bj+(i—1)-0.If \;_1 = m—0, we know that B({~,i,m) = 0, since £~ ¢ X%, but also
A(fT,i,m) = 0 as it has the factor (U(qa_m) - éi_l). Similarly, we have B({~,i,m) =
0= A(l*,i,m)if \j11 = m+60. We may thus assume that \;_1 <m—1—0 < m+1+6 <
Xit1, a; +1 <m—(i—1)0 < b; — 1 and that o+ 6%?\[.

We next observe that

("™ —a"™)(a’q"™ —ug™) (@™ —ug™ ) _
a®(¢~™ — ug™) * g g — ) (¢ g —ugm )
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(¢°2% —u)(¢°2* — )
(¢222 — ug?) (22 — u) lz=¢g—m"

Therefore, from the definition of ® and ®~ we get

Aty iym)  Pn(EHw(o(g"™ );N) I [O(tzem) 4 alg'™) ¢ } (4.6)
B im)  Pn(wlole i N) ik o™ — 6 algm - 6]
Our goal for the remainder is to show that the right side in (4.6) is equal to —1.

In view of (2.3) we have that Pgli‘glif;‘é‘?(;fﬁ)l%) equals

H q_29qu(m — N+ Dlg(m—XA+0) 220 m=1) Ly(m =N —1)lg(m — A —0)
Ly(m—A)Te(m—XN+1-0) Lyim—X)Tg(m =X\ +6—1)

Tgm+ N —14+v)l(m+ A +v—10)
Fq(m—l—)\l—l—v)Fq(m—l—)\l—l—v—i—H—l)

1<i<i

H Lym+XN+v+1)T(m+N+v+0
Lym+XN+o)Tym+N+v+1-—

)

1<i<i )
H q—29>\ I ()‘ m—l—l)F( —m+0) qge)\ Le(Aj —m+1)Ty ()\~—m+2—9)
Lg(Aj —m)Tg(Nj —m+1—-196) LgAj —m+2)T4(A\; —m+1+0)

i<j<N
H FgAj+m+o+ DA+ mtv+60) Dg(Aj+m—1+40)0g(Nj+m+v—0)
LyAj+m+o)L,Aj+m+v+1-0) TgA\j+m+o)lgAj+m+ov+60—1)

(4.7)

i<j<N

Using (2.4) and that ¢¥ = u we can rewrite (4.7) as

H o (1L=g™ )1 —gm Nt y (1 — ug™ )(1 — ugm++o-1)
1<i<i (I —gm A=) (1 —gm=2=0) " (1 —ugmth=1)(1 — ugm+ri=9)
i (4.8)
(1 — qufm)(l — q)\j*erlf@) (1 _ uq)\j+m)(1 _ quj+m+179)

X .
AL o) * T e @ — g

We next observe that for [ < ¢ we have

Lap (L= g™ M)A =g M) (1 —ug™ M) (L — ug™ MO
(= qm AT — g3 0) " (1= ugm (T = g
(" =)@ =) (=g g )
(@ — g )@ =g ) (L= ugm (1 ugn )
lo(g™™) —olg™)] - [o(q"="~™) —o(g™™)]
lo(g" =) = o(q=2)] - [o (") = a(g™)]

where we used that (z +uz™! —t —ut™!) = (2 — t)(1 —uz"1t71h).
One similarly establishes that for i < j7 we have

(1—gb ™A —gh 10 (1 —ught™) (1 —ughtmti=0)
(= (T — 770 " (1= ugh T ugh )
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(@Y =g ™) (g =g (L —ugh ) (1 — ugh )

(™ = (g =) (1= ugh I = g )

[o(g) —alg™)] - [o(g™™) —o(g" ™))
[o(g=) —a(g=™)] - [o(g7) —a(g?—™)]

The last two calculations together with (4.8) show the right side of (4.6) is equal to —1
as desired. This proves that R is analytic near ¢~™. One can use analogous arguments
to show that R is also analytic near the points ug™ and so on all of M.

Notice that if ®*(z) are polynomials of degree at most d then R(z) is entire from the
first part of the theorem, which grows as O(|z|?) as |z| — oc. By Liuoville’s theorem
R(z) is a polynomial of degree at most d. O

Remark 4.1.2. Theorem 4.1.1 also holds if u = 0, where (4.1) is replaced with ww((qu;.NN)) =
0. it—gg and the second two equalities in (4.2) are removed. In this case (4.4) only

produces possible poles at z = ¢~"". From here the proof proceeds in the same way and
can be found as [15, Theorem 4.2].

4.2. Asymptotics of the Nekrasov’s equations

In this section we derive some properties of the equilibrium measure p and R, @,
from (2.12) using the asymptotics of the Nekrasov’s equation (4.3) as N — oo under
Assumptions 1-4 and 6-7. We assume the same notation as in Section 2.2.

Lemma 4.2.1. Suppose that Assumptions 1-4 and 6 from Section 2.2 hold. Then the
functions R, and Qi from (2.12) are analytic on M. If @ﬁ are polynomials of degree
at most d then so is R, and Qi is a polynomial of degree at most 2d. If Assumption 7
also holds then R,, and Qi are real analytic on M NR.

Proof. We observe that by Assumptions 4, and 6, the Nekrasov’s equation (4.3) holds
and so

ﬁ on(g%2) — 4

By (2) = @y (2) - Eey on(z) =4

N 1-0.y _ p.
+84(2) Bry [1_1 %] (@9)

=

defines an analytic function on M. For pn as in Section 3.1 define

N (dz)

d R —1

R
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One readily observes that

N
[T B8~ g st () + OV )
N

H O'N(qN 2) E& — exp [—06?\,(7;) + O(Nfl)] ’

=1 ON QNZ
where the constants in the big O notation are uniform as z varies over compact subsets
of M\ {Ule[&i, 51]} In addition, by Theorem 3.1.1 we know that &4,(2) converges in
probability to G, (z + uz~!). An application of the Bounded convergence theorem and
Assumption 4 implies that

lim Ry(z) = Ru(2), (4.10)

N—o00

where the convergence is uniform over compact subsets of M \ { i 1[al,bz]}. Since

Ry (2) are analytic in M we conclude the same is true for R, (z). Next, since Qi (2) =
R2(z) — 497" (2)®" (z), we conclude from Assumption 4 that Q2 (z) is also analytic in
M. The real analyticity of R, and Qi is a consequence of the one assumed for ®* in
Assumption 7.

If @ﬁ are polynomials of degree at most d then by Theorem 4.1.1 we know that so
is Ry(z). The uniform convergence of Ry(z) over compact sets in M\ < UF_ [a;, 131]} is
equivalent to the convergence of the coefficients of the polynomials, and so R,(z) is a
polynomial of degree at most d. Finally, the same argument shows ®*(z) are polynomials
of degree at most d and Q7 (z) = R.(z) — 4®*(2)®~ (2) is a polynomial of degree at
most 2d. O

Our next goal is to give a formula for the equilibrium measure p in Theorem 3.1.1
in terms of the functions R, and &+ but we first introduce some notation that will be
useful. From Assumption 7 we know that V is real analytic in an open neighborhood of
U¥_ [as, b;] and from [51] we conclude that p has a continuous density on each interval
[és, b;]. Borrowing terminology from [4], each of the intervals [a;,b;] is split into three
types of regions:

(1) Maximum (with respect to inclusion) closed intervals where p(xz) = 0 are called
voids.

(2) Maximal open intervals where 0 < p(x) < 07" fq(og ' (x)) " are called bands (recall
fq was defined in Section 2.2).

(3) Maximal closed intervals where p(x) = 67" - fo(o ' ()" are called saturated re-
gions.
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Lemma 4.2.2. Suppose that Assumptions 1—4 and 6-7 from Section 2.2 hold. Then u has
density’

uyp b = 1 - arccos R#(yo)
P %0 = (@m0 — g ) (2 <1>—<yo><b+<yo>)’ ey

for yo > 1 such that yo +uyo € UL, [a;, IA)Z] and 0 otherwise.

Proof. We will assume that u > 0, the case u = 0 is simpler and can be handled similarly.
As discussed earlier, Assumption 7 implies p(z) is continuous on each interval [a;, i)l]
By assumption there are unique d; > ¢ > 1 such that o(¢;) = a; and a(cii) = b; for
i=1,...,k where 0(z) = z + uz~'. Consequently, o~ ([és, b;]) = [é&,d;] U [ud; *, ué; Y
fori=1,...,k and all 2k of the latter intervals are disjoint. Let

uloy) it ye Uiy {(end] Ulud; ! ue Y]

0 else.

Y(y) =

It follows from (2.11) that

d;
k 4 —-1

(z—uz HG,(z +uz” Z/w )(1—uy™?) [zzy_uzuzly} dy.

z:lA

Using that
ué71

SEE. - 1) and )(1—uy~2)dy = 1 we get
Ty L YW = an Z —uy?)dy = 1 we ge

Cz‘

0log(q)(z —uz ")G (2 +uz') = 0log(q) + F(2), where
Fl2) = / Olog(@v)ly —wy |,

2y

R
Using [34, Theorem 2.1] and [69, Chapter 5, Theorem 93] we conclude that F(xz + iy)
defines a regular function for y > 0 and

lim F(zx +ic) = f(z) —ig(z) for a.e. x € R, where f,g € L*(R) are given by

e—0t

4.
g(x) = Olog(q)7 - ¥(z)|x —uzr™!| and f(x) = —P/ tgﬂdx, (4.12)

R

3 Throughout the paper we denote by arccos(z) the function, which is 7 on (—oo, —1], 0 on [1, c0), and
the usual arccosine function on (—1,1).
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and P means that we take the integral in the principal value sense. Since g is continu-
ous on U¥_,[¢;,d;], we can apply [56, Chapter 4] and conclude that f is continuous on
UL (&5, ds).

Let us take 2z = yo + i with yo € U_,(é;,d;) and let € converge to 0T in (2.12). This
gives

R (yo) = @ (yo)e” 5@ - exp (f(yo) — ig(y0)) + 2T (yo) - "%V exp (= f(yo) +ig(yo)) -

The above defines a quadratic equation for exp (f(yo) — ig(yo)) and we conclude that

w(Yo) £ \/32 D~ (y0) @™ (v0)
B e ’

{exp (f(yo) £ig(yo))} = (4.13)

where the square root is with respect to the principal branch and assumed in H for
negative values.
& d _Rul) o (_ ()
Suppose that yo € (¢;,d;) and 5 G T © (—1,1). Then the numbers in (4.13)
are complex conjugates with non-zero imaginary part, and we have

R, (yo) + i\/—Rﬁ(yo) + 49~ (yo)®* (yo)
20 (yo)ef loe(@

exp (f(yo) +ig(yo)) = , since both lie in H.

Taking the argument on both sides of the above equation we see that

= ar S R/t(yO) -
9(yo) = arcco (2 @—(yo)<1>+(yo)> € (0,7). (4.14)

The above computation also shows that

_ . " 7. . Rt(yO)
1 i
Yo +uy,  belongs to a band of p in [d,, b;] if and only if € (-1,1).
@~ (y0)®* (o)
(4.15)
. A, Ru(y()) .
If yo € (&,d;) and NGO > 1 then the numbers in (4.13) are real and so

g(yo) = 0 or m, i.e. yo + uyy - belongs to a void or saturated region in [a,b;] for the
measure p, which we denote by [s,#]. Notice that [s,#] # [a;,b;] by our assumption on
the filling fractions v;. This implies that there is a band of p in [d,, EZ} either ending at
s+us~ ! or starting from ¢ + ut~!. By continuity of g and (4.15) we see that g(s) = 0
or ¢g(t) = 0, which implies that g(yo) = 0. A similar argument shows that g(yo) = 7
if yo € (&,d;) and 5 \/@(*;fj?;i?;rw —1. Combining the above statements with the
definition of g concludes the proof of the lemma. 0O
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We end the section by making a remark about the function &% (z) from the proof of
Lemma 4.2.1, whose exponent is the observable we obtain from the Nekrasov’s equation.

Remark 4.2.3. Let us assume for simplicity that £k = 1 and set

1 N
:—NZ +5uq ))

where )\; is such that ¢~ + ug™ = ¢; and we have dropped the dependence of ¢ and u
on N to ease notation. Then we have that

-1 pin (de) / (z —uz Y dy / z uz”!
_ = (dy) — .
(z—uz )/z+uz—1—x J z4uz"l —y —uy~ ¥ (dy) z—y uzl-y

y uy _ 2y - Y (dy)
R/l/JN(dy{ i ——— 1}—1+R/7z_y )

The above computation shows that, upto a constant and negligible error, the observ-
able &% (z) we obtain from the Nekrasov’s equation is the Stieltjes transform of the
(deformed) empirical measure

1 N 1 N
il i s )4
v ;Zlq (™) + N ;Zluq

In [15] the Nekrasov’s equation produced the exponent of the usual Stieltjes transform
for the underlying particle system as an observable and the vanishing conditions on ®*
the authors assumed, correspond to boundary conditions for that system. In our case,

—2i and ug™ and the

we see that in a sense we have two copies of particles sitting at ¢
vanishing assumptions in Theorem 4.1.1 play the role of boundary conditions for each
copy. The authors are not aware of such a phenomenon occurring in other systems and

would like to have a better conceptual understanding for its appearance.
5. Central limit theorem: Part I
Our goal in this and the next section is to study using Nekrasov’s equation the fluc-

tuations of the empirical measures up, for which we proved the law of large numbers in
Section 3. In Section 5.1 we introduce a 2m-parameter deformation of the measures Py
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and describe a certain map Y,. In Section 5.2 we state the main technical result of the
section — Theorem 5.2.1, and deduce some corollaries from it. In Section 5.3 we explain
how to employ Nekrasov’s equation for the deformed measures. In Section 5.4 we give
the proof of Theorem 5.2.1 modulo a certain asymptotic statement in equation (5.26),
whose proof is the focus of Section 6.

5.1. Deformed measure

We adopt the same notation as in Section 2.2 and assume that Assumptions 1-6 hold.
Introduce the usual random empirical measures py on R through

N
1
BN = o ; d(¢;), where (¢1,...,¢y) is Py-distributed. (5.1)

We also define the (continuous, deterministic) probability measures
fiy as in Assumption 5. (5.2)

It follows from Corollary 3.1.4 that uy — fiy converges weakly in probability to 0. Our
goal is to understand the fluctuations of un — fin.
Let us introduce the Stieltjes transforms of uy and finy through

G4 (2) :/M and G$(2) = /M. (5.3)

z—x z—x
R R

Observe that the above formulas make sense whenever z does not lie in the support of
the measures, and they define holomorphic functions there. Our study of uy — iy goes
through understanding G%(z) — G§/(z) as N — oo. For that we introduce a deformed
version of Py following an approach that is similar to the one in [15].

Take 2m parameters t = (t1,...,tm), v = (v1,...,Un) such that v, +t, —y # 0 for all
a=1,...,mand all y € U§:1[aj7 l;j], and let the deformed distribution IP’?\’,V be defined
through

N k ¢
PRV (.. ty) = Z(t,v) 7 ] (éi—zj)Qle(zi;N)H<1+ e )] (5.4)
1=1 a=1

Vg — ¥;
1<i<j<N @ v

If m = 0 we have ]P’g\’,V = Py is the undeformed measure. In general, IE”R’,V may be a
complex-valued measure but we always choose the normalization constant Z(t,v) so
that ), P%Y(¢) = 1. In addition, we require that the numbers t, are sufficiently close
to zero so that Z(t,v) # 0.

Let us denote

AGN(2) = N(G%(2) — G%(2)), where (¢4, ..., L) is PYY-distributed. (5.5)
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Abusing notation we will suppress the dependence on t,v of uy, G4 and AGx when
we replace Py with IP’;’[V in (5.1) and use the same letters. It will be clear from context,
which formula we mean.

The definition of the deformed measure P*V is motivated by the following observation.

Lemma 5.1.1. Let £ be a bounded random variable. For any m > 1 the mth mixed deriva-
tive

om
8t1 e atm EP';\}V [6] te=0,1<a<m (56)

is the joint cumulant of the m + 1 random variables &, NG% (v1),..., NG% (vy,) with
respect to Py.

Remark 5.1.2. The above result is analogous to Lemma 2.4 in [15], which in turn is based
on earlier related work in random matrix theory [30,54]. We present a proof below for
the sake of completeness.

Proof. One way to define the joint cumulant of m + 1 bounded random variables
&o, - ., &m is through

am—i-l m
T o o8 | Eexp | Dtk

=0

t;=0,0<i<m

Performing the differentiation with respect to ¢y we can rewrite the above as

om Eléexp (Do, ti&i)]
Oty Otm Elexp (312, ti&s)]

t;=0,1<i<m

Setting &y = € and & = NG% (v;) for i = 1,...,m and observing that

N
exp (tNG%(2)) = H (1 + . _t £i> +O0(t?*) ast — 0,

i=1

we obtain the desired statement. 0O

In the remainder of this section we introduce some notation from the theory of hy-
perelliptic integrals. We will require the latter to formulate our main result in the next

section.
Fix k simple positively oriented contours 7,...,7: such that each v; encloses the
segment [a;, b;] (and thus also [r;, s;] from Assumption 5) for j = 1,..., k. We assume

that -y; are pairwise disjoint and do not enclose each other.
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Let P(z) = po +p1z + - + pr_22""2 be a polynomial of degree at most k — 2, and
define

% z)dz % z)dz
Q:P(z) — ,..
2mi H Z_TJ)(Z_SJ ' 2mi H Z_TJ)(Z_SJ)
(5.7)
Notice that the sum of the integrals in (5.7) equals (minus) the residue of
P(z)dz

15, V(z—7)(z—s;)
(k — 1)-dimensional vector spaces. The map € is rather complicated, but it is known to

at infinity, which is zero. Therefore, () defines a linear map between

be an isomorphism of vector spaces for k > 2 (see [29, Section 2.1]).

Using ) we can now define a different map Y, as follows. The map T, is defined in
terms of the k contours ; and the points 7;,s; for j = 1,...,k. It is a linear map on
the space of continuous functions f(z) on v = U;?:ﬂj, whose integral over 7 is zero and
is given by

P(z)

[, VE—r)—s))

where P(z) is the unique polynomial of degree at most k—2 such that for each j = 1,...,k
we have

T.[f]= f(z) + (5.8)

ygrz[f]dz =0.

Vi

The polynomial P(z) can be evaluated in terms of the map Q via

p— o gﬁf g §£f . (5.9)

We emphasize that the map f — T,[f] does not depend on t,v.
We will require several properties of Y., which can easily be deduced from the above
definitions. We summarize them in the following proposition without proof.

Proposition 5.1. The function Y, satisfies the following properties:

(1) it is Lipschitz continuous in the uniform norm on the contours v;, j =1,...,k;
b(z) —0-
e |
(3) if Y is defined in terms of rj(N),s;(N) and rj(N) —r; = O(N~llog(N)) =
s;(N)—s; for j =1,...,k then for any f we have YV [f]—T.[f] = O(N~'log(N)).

(2) if P(z) is a polynomial of degree at most k — 2 then Y,
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5.2. Main result

At this time we isolate the main technical result we prove about AGy(z) and deduce
a couple of easy corollaries from it. We continue with the notation from the previous
section.

Theorem 5.2.1. Suppose Assumptions 1-6 in Section 2.2 hold. Let U := (C\{U?Zl [d;, Bj]U
{£2y/u}} and T = U?nyj C U, where each vy; is a positively oriented contour that

encloses the segment [, 13]] forj=1,...,k, v; are pairwise disjoint and do not enclose
each other. We set U" to be the single unbounded component of U\ T.
Fizm e N and vy, . ..,v, € U*. For m > 2 we have
_" g [AG N (v9)] = O(N'log(N)) (5.10)
82‘;1 T atm P;}V AT te=0,1<a<m B : , '
while for m =1
9 .
—E]Pt,v [AGN(’U())] = O(N 10g(N))+
atl N =0
A (5.11)
1 %H Z*?“J)(Z*Sj)dz
4071 - ] 1\/ ) (vo — §5) (z —v1)?(z —vo)
In the above T, is as in (5.8) for the contours v; and the points 7;,8; forj=1,...,k as
in Assumption 5. Finally, the constants in the big O notation are uniform as vg,v1,. ..,V

vary over compact subsets of U™.

Remark 5.2.2. We will prove Theorem 5.2.1 for the case u > 0. The case u = 0 can be
handled with minor modifications of the argument.

Theorem 5.2.3. Assume the same notation as in Theorem 5.2.1. As N — oo, the ran-
dom field N(G%(z) — Epy [G%(2)]), 2z € U, converges (in the sense of joint moments,
uniformly in z in compact subsets of U) to a centered complex Gaussian random field
with second moment

lim N2 (Epy [G%(21)G% (22)] — Epy [G%(21)] Epy [G%(22)]) =: Co(21, 22), where

N—o0

(5.12)

Cg(Zl, 22) = 071 . TZ2

(5.13)
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Remark 5.2.4. Since Gy (z) = Gy (Z), we can use (5.13) to completely characterize the
asymptotic covariance of the (recentered) random field Gy (z).

Remark 5.2.5. When m = 1 the covariance Cy(z1, 22) can be written down explicitly as

C@(Zl, 22) ==

s (1 () 8) + (2~ F) (e — B) > |
2(21 _22)2 2\/(2:1 —fl)(zl —§1)\/(22 —fl)(ZQ —§1)

When m = 2 one can also find an explicit form for Cy(z1, z2), involving the values of
complete elliptic integrals, but we do not pursue it here, cf. [7].

Remark 5.2.6. In the continuous log-gas setting the covariance has the same form as
(5.13), cf. [17,39,64]. A similar result also holds for the discrete S-ensembles in [15].

Proof. Fix vg,...,v, € U and I" as in Theorem 5.2.1 so that vy, ..., v, € U". Setting
& = AGpN(v) in Lemma .1.1 we know that the joint cumulant of AGN(vO) NG% (vy1),
.y NG% (v, is given by

am

G0ty ot s [AGN ()]

ta0,1<a<m

Since cumulants remain unchanged under constant shifts, we see that the above formula
is also the joint cumulant of N(G%(v;) — Ep, [G%(vi)]) for i = 0,...,m. From Theo-
rem 5.2.1 we see that as N — oo all 3rd and higher order cumulants vanish, which proves
the asymptotic Gaussianity of the field N(G% (z) — Ep, [G%(2)]).

As N(G%(2) — Epy [G%(2)]) are centered for each N so is the limiting field. From
(5.11) we also have the following formula for the limiting covariance (which is the sec-
ond joint cumulant) of N(G% (z1) — Ep, [G%(21)]) and N(G%(22) — Ep, [G% (22)]) for
21,29 € U

1 ygﬂleT

4077 - H \/22—7“] Zo — §5) (z—21)%(z — 22)

z2

Evaluating and adding the (minus) residues at z = z; and z = zo we obtain (5.13). O

Theorem 5.2.7. Assume the same notation as in Theorem 5.2.1. Form > 1 let f1,..., fm
be real analytic functions in U and define

Lfi:N/fj(ac),uN(dx)—NEpN /fj(x)uN(dx) fori=1,....,m
R R

Then the random wvariables Ly, converge jointly in the sense of moments to an
m-dimensional centered Gaussian vector X = (Xy, ..., X;n) with covariance
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Cov(X;,X;) = e ¢¢f1 $)fi(t)Co(s,t)dsdt with Cy(s,t) as in (5.13).
Z

Proof. Observe that when f is real analytic in U we have for all large N
- y§f (G () — Bry [Gr(2)])dz
where I' is as in Theorem 5.2.1. Therefore, for any joint moment of L, we have
Epy |:£f1'1 o "Cfik:| =

k k
(27rli)k %"'%EE”N [H N(Gn(zm) = Eoy [Gn )| [] fin (zr)dzm. (5.14)
r T m=1 m=1

Since cumulants of centered random variables are linear combinations of moments and
vice versa, we conclude that all third and higher order cumulants of L, vanish as N — oo
(here we used Theorem 5.2.3, which implies the third and higher order joint cumulants of
N(Gn(z) — Epy [Gn(%)]) vanish uniformly when z; € I'). This proves the Gaussianity
of the limiting vector X. Since Ly, are centered for each N the same is true for X. To
get Cov(X;, X;) we can set k =2, i1 =14 and i = j in (5.14) and send N — oc. In view
of (5.12) we conclude that

Cov(X;, X;) = §£§I§f1 5)f;(t)Co(s,t)dsdt, where Cy(s,t) is asin (5.13). O

(21

5.8. Application of Nekrasov’s equation

In this section we begin the proof of Theorem 5.2.1 emphasizing the contribution of
the Nekrasov’s equation. In what follows we use the same notation as in the previous
section and Section 2.2, dropping the dependence on N from parameters.

The first key observation we make is that IP’;}V satisfies Nekrasov’s equation with

s

OV (2) = 04 (2) [ ] [(va + ta — on(2)) (va — on(a2))],

- (5.15)
Oyt (2) = 5 (2) [ [(va + ta — o (92)) (0 — o (2))], where

®% are as in Assumption 4 and we recall that o (2) = z + uz~'. Notice that @ﬁ’t"v(z)
are also analytic in M. Denoting the RHS of the Nekrasov’s equation for the measure
PV by Ry (2) we see from Theorem 4.1.1 that Ry (z) is analytic in M.
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j[Using ¢=q"N +O(N~2) and u = u+ O(N~') we obtain asymptotic expansions for
(I)N,t,v

O (2) = [05(2) + U (2)] [] [(va + ta = 0(2))(va — 0(2))] + Rem; ¥ (2),
a=1

Ms

- logg/N) (z —uz!) — (u—u)z~? (w—u)z"t
Uh(2) = ok(z) - [ — o) ETr— U(Z)] :

a=1

Ms

Uy (2) = pn(z) —

(logq/N) (z —uz™!) — (w—wu)z™t  (u—wu)z"?
Vg +tq — 0 (2) v —o(z) |’

a=1

(5.16)

where o(z) = 2z +uz! and Remf}%’v(z) = O(N~2) uniformly over compact subsets
of M.

The second important observation is that we have the following asymptotic expansion

qz) — 4
[[2 5 = exp [065 (2) + 0AG y (2) + Wy (2) + Remy y(2)] ,
oo (
1; (5.17)
_ Ei
I1 "Z = oxp [~08% () — 0AG N (2) + Wi (2) + Remy v (2)] ,
i=1
where (’S(Iiv/c(z) =Nlogq- (2 —uz™')- Gjl\,/c(z +uz™h), (5.18)
ABN(2) = 8% (2) — 8% (2) with G and G% as in (5.3); .
Wy (2) = 0logq [2(9/2) 0.6% (2) + (u—u)N
. {@Gf\;(z +uzl) - 271G (2 + uzfl)H ,
(5.19)
W () = 0log | (6/2 ~ 1)0.6% ()
—(u—u)N {@Gf\,(z +uz™) - 271G (2 + uz_l)” .
The remainders Rem; ~(2) = O(N72%) are uniform in z on compact subsets of O,

which is the inverse image of U under the map z — z + uz~!. Explicitly, if éj,dAj
are the points in [1,q7" with ¢ + ué_l = a; and cfj + ucfj_1 = Ej then O :=
A3 Uge!
C\ {{0, va, —va} UL 65, dj] U U [ud; ! e '
The third observation we require comes from Assumption 5 and Lemma 4.2.1, which
imply:
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If Ry(z) := @*(Z)e%?v(z) + @+(z)€79@5«\,(z)’

Qn(z) =B (2)efN () — ot (2)e 00N (=)
(5.20)

then Ry is analytic in M and Qn(z) = Hy(2) - H \/(O’(Z) —r;) (o(z) — s5),

Jj=1

where Hp is analytic and non-vanishing in M.
We detail the consequence of the above three observation. Nekrasov’s equation for
P4V reads

ﬁ on(q?z) — ¢

t,.v —,t,v
) =o - Ept,v
Ry (2) = @™ (2) - By on(z) =&

,tv
+BLNY(2) - Epe

II—V[ on(q'%2) — fz‘] _

i=1 1 on(ez) =4

Combining the above with (5.16), (5.17) and (5.20) we conclude that

m

RY(2) = Remy” (2) + [ [l(va +ta — 0(2)) (va — o(2))] x {Epgy [0AGN(2)] - QN (2)
a=1
+ U (2)e?®VE) L UL (2)e7 0% L TN (2) + RN(Z)} , where (5.21)

Wi (2) = @7 (2)e?O Wy (2) + 07 (2)e 8" W (2), with
W&(z) =0logq [z(9/2)8z05§\[(z) + (u—u)N - [@Gﬁv(z +uz ) — 2GS (2 + uz_l)ﬂ ,
W () = 0log [ 2(6/2 — 1)0.85,(2) -

(u—u)N [0.GX(z +uz!) =27 'GY (2 + uz_l)” )

t +,t a 0((102) — 4
Rem]\’, (Z) = Reml,’N’ (Z)E]vav £[1 W +
b on(q'%2) — 4
Rernl,N (Z)]E]P’;}" |: O'N((JZ) iy
[[l(wa + ta = 0(2))(va — 0(2))] x [Ax + By + C + Dy] and (5.22)
a=1

N
H O'N(qaz) -4 _ IABN()H085(2) _ 06%(2) . W&(z)

Av =27(2) .EPEV on(z) =4

i=1

1-0
+0.) . on(g™"2) — 4 L OABN(2)—065(2) _ —06%(2)  1i+
7 (2) - Epev [—UN(qz) s e N N e PONE W ()|,

— T, d P C (s ~
By = &~ (2)Wy (2) - By [¢"O8(5) — PO @t ()7 (2)

By [6796%@ _ e—eesmz)}
N

)
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Oy = & (2) - P08 By [#20N) —gABN(2) 1) +
Dt (z) - e 00N “Ept v {e“‘m@”(z) +0AGN(2) — 1] ,
N

6
_ on(qz) — ¥¢; c (s
Dy =03 (2) B | SR - o5t

FUE(2)-E ﬁ on(@' 'R —li o eeqie)
z) - Eptv —_— —e¢ .
N P P on(gz) — ¢;
Let 41,...,7 be as in the statement of the theorem and wvy,...,v,, lie outside of
= U?:l"}/j. We let v}, vj for j =1,...,k be a positively oriented contours such that for

each j=1,...,k

* 7; encloses the interval [¢;, d;] and excludes the points £/ and 0,
o(v;) is contained in the bounded component of C \ v;,

u

vj = w(v}), where w(z) = ,
i }é’?:l are all disjoint and contained in M.

The existence of such contours is ensured by our assumptions on ;. Observe that by
construction 'y§’ is a positively oriented contour that also excludes the points ++/u and
0, and encloses the interval [ucfjfl,ué;l]. For convenience we let 'y = U%_;~} and I'y =

uk_ A~
=175 "
We divide both sides of (5.21) by

25+ (o0 = 0(2) - ][00 +ta = o) (ta = ()] Hv(2)

and integrate over I := T'; U T'y. Note that R%Y(2) and Ry(2) are both holomorphic
inside the contours I'1, 'y and so the integrals of the corresponding terms vanish. From

the rest we get

1 Hy(2)7t27tQn(2) B
% Vo — O’(Z) E]P’?(,V [9AQ§N(2)] dz =
1—‘/

1 [ Hy(z) 'z Mz Remy”(2)
2m' vg — o (z) [10 [(va + ta — 0(2)) (va — 0(2))]

(5.23)

H 1 _1d c c ~
zm§'§ VEN 22 [ ()6 1w (e ) 4 ()]

Equation (5.23) can be viewed as the main output of our application of the Nekrasov’s
equation. In the following section we use it to deduce Theorem 5.2.1.
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5.4. Concluding the proof of Theorem 5.2.1

In this section we present the remainder of the proof of Theorem 5.2.1. Our arguments
below will require a certain asymptotic bound — see (5.26), which will be established in
Section 6. For clarity we split the proof into several steps.

Step 1. Our goal in this step is to rewrite (5.23) into a form that is more useful for our
analysis.

Using the formula for @y from (5.20) and that ABy(2) = log q-(z—uz"1)AGN(0(2))
from (5.18) we see that the RHS of (5.23) equals

logqﬁﬂj 1V (0(2) = 1) (0(2) — ;)

2mi vg — o (z) (1w Epey [0AGN(o(2))] dz

We perform a change of variables o(z) = w to rewrite the RHS of (5.23) as

logqygnj 1\/ w—rj) 5j>.
vy

271

where we used that o(v}) = o(7}) are contained v; and we can deform the image to the
latter without affecting the value of the integral by Cauchy’s theorem.

Note that Epe.v [AG N (w)] is analytic outside of the contour of integration and decays
like 1/w? when |w| — oo. Therefore, we can compute the integral as (minus) the residues
at w = vy and z = co. The residue at vy is given by

k
—2-loggq - H \/(vo —1;) (vo — s5) “Epev [OAG N (v9)] s

while the residue at oo is a polynomial PK}V(”UO) of degree at most k — 2 in vy, whose
coefficients are rational functions in t,v. Substituting the above in (5.23) we obtain the
formula

NPYY(v) = N —Dn(vo)~'dz
Dy (vo) 2 J zHn (2)(vg — 0(2))

Rem%Y(2)
WE(2)

Epev [BAG y (v0)] = +

(5.24)
N —DN(Uo)_le

TMF/ zHn (2)(vg — 0(2))

(03 ()85 4 W (2)e ) 4 1W(2)]

where
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%
Dy(v) = 2Nloqu \/(v—rj)(v—s;) and
j=1

m

Wi (2) = [[1(va + ta = 0(2)) (va — o(2))].

a=1

(5.25)

Step 2. In this step we isolate an asymptotic estimate that we require to finish the proof.

Fact 5.4.1. For each m > 0 we have

om 1 D “1d RemY”
e § = | W —ON?), (5.20)
1 m 2T J zHN(z)(vo —o(2 Wai¥ (2) L—01<a<m
where the constant in the big O notation is uniform as vg, vy, ..., v, vary over compacts

in U%.

The proof of Fact 5.4.1 will be presented in Section 6. In the remainder of the section
we assume its validity and finish the proof of Theorem 5.2.1.

Step 3. Let us fix m > 1, differentiate both sides of (5.24) with respect to ¢1,. .., ¢, and
set to =0 for a =1,...,m. Using (5.26) we get

Or, -+ 01, Epe [0AGN (v0)]

te=0,1<a<m

NP5 (v) Lyg —Dn(vo) " tdz
Dy (vo) 2wt ] zHNn(2)(vg — 0(2))

Ingd

(5.27)

X {N\I/&(z)eaqs?\’(z) + NUL (2)e 90V 4 WN(Z)} +O(N™h).

tqe=0,1<a<m

The only functions in (5.27), which depend on t are Py;"(v), W5 (), see (5.16). Since
any mixed partial derivatives of \Ilﬁ(z) vanish, we conclude that for m > 2 we have

Or, -+ Or, Eprs [BAG y (v0)

te=0,1<a<m

Npt,v
=0 - O, #(U)O)] +O(N7h). (5.28)
Nivo teo=0,1<a<m
We may now apply T2 from (5.8) for the contours 1, ..., and the points r;, s; for

j=1,...,k to both sides of the above equation. Indeed, we notice that the integral of
G4 around +; is deterministic and equals n;(N)/N. On the other hand, the integral of
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GS; around +; equals the total mass of iy (z) inside +;, which is n;(N)/N by assumption.
We conclude that the integral of AG(v) around each loop ~; vanishes. The integral over
the first term on the right side vanishes by Property (2) in Proposition 5.1. By linearity,
we see that the integral over the term represented by O(N 1) over I' must also vanish.
Applying Tfj\g and using Property (1) in Proposition 5.1 we get

te=0,1<a<m

8t1 e 8tmE[P"J°\}V [AGN (U())]

which proves the case m > 2.

Ifm=1
t,v o 1
OB [IAGN(00)] | = O(N) + 0, N (wo) | =Dw(vo) yéf(z)dz,
N DN('U()) 211
t1=0 T/
where f(z) :=

& (2)efOn ) [(1 —uer=?)logq — (u—u)z 2] — @F(2)e 0N (u — u)z~2
Hy(2)(vo — o(2)) (01 — 0(2))? '
(5.29)

Applying (5.20) we obtain

—Di(vo) ™" _
Ll f s -
]

—Dn(vo)~t 55 27 logq[Rn(2) + Qn(2)](1 —uz™2) — (u— u)z*2RN(z)dZ
ori Hy(2)(vo — 0(2)) (01 — 0(2))? '

Ind

Notice that the terms with Ry(z) integrate to 0 by analyticity, and so we may remove
them. Substituting Qn(z) from (5.20) and Dy (vp) from (5.25) we get

—DN 1}0 -1
o 2mi ygf ~H§:1 \/(Uo—rj)(vo—sj)x
¢HJ 1V (0(2) =75) (0(2) — s5)

vo — 0(2))(v1 — a(2))?

(1 —uz"?)dz.

We perform the change of variables w = o(z) and deform the resulting contours to I' to

obtain
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1

OB 0AGN(0)]| = O(N"1) + — »
PN t1=0 4mi - H?:l V (vo —75) (vo — 55)
. (5.30)
%H] LV (w _TJ ZSj)dw—i—BthPA; (vo)
— o) (v1 — w) Dy (vo) Lo

As before we can apply Tf)\g to both sides of the above equation. The only difference
with respect to the m > 2 case is the second term on the right side. Notice that it

is analytic in the unbounded component of I' and decays like |vg|~*~!

as |vg| — oo.
Consequently, there is no residue at infinity and the integral over I is zero. Arguing as

in the case m > 2 we get

OBy [PAGN(v0)] | = O(N"Y)+

t1=0
TN 1 %H] 1\/ _TJ _Sj)d’l,U
Y A H?:l \/(UO —vp)(v1 — w)?

Finally, we can replace r;j,s; with #;,3; and Tj\g with T,,, which produces an error
O(N~1log(N)) by Assumption 5 and Property (3) in Proposition 5.1.

6. Central limit theorem: Part II

In this section we will prove (5.26), which is the missing ingredient necessary to com-
plete the proof of Theorem 5.2.1. In what follows we will continue to use the same
notation as in Section 5. Before we go into the main argument we introduce a bit of ad-
ditional notation and isolate a basic result, which will be used several times throughout.

If X1,..., X, are bounded random variables, we denote by M.(X1,..., X,,) their joint
cumulant. From Lemma 5.1.1 we know that for any bounded random variable £ we have

O B[]
ETR T = M(¢,N N
o O| (& NGN(v1),..., NGN(vn))

= M.(&,AGx(v1),. .., AGN(vn)), (6.1)

where the second equality follows from the fact that cumulants are unchanged under
shifts. To ease notation later in the text we set for a subset A = {ay,...,ax} C {1,--- ,n}

My (€|va, A) :== M(&,AGN (Vay )y .-, AGN(Vg,,))-
6.1. Estimating the remainders

In this section we reduce (5.26) to the following statement, whose proof is given in
Section 6.2.
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Proposition 6.1.1. Assume the notation from Theorem 5.2.1. If I > 1 and v,...,v; € U
then
1
EIP’N H |AGN(va)|] = O(l)’ (62)
a=1
where the constant in the big O notation is uniform as vy,...,v; vary in compact subsets

of U.

We assume the validity of Proposition 6.1.1 and proceed with the proof of (5.26). Our
goal is to prove that for m > 0 we have

o N?.Rem%”
ot ot te\Ian (Z)] =0(1) (6.3)
! m W™ (2) ta=0,1<a<m
uniformly as z and vy, ..., v, vary over I and compacts in U respectively. This implies

(5.26).
In view of (5.22) we have

N2 Rem}yY(2)
vy = By
Wii™ () N

Ept,v [en(z;t,v)] + Ept v [y (258, v) - AGNn(0(2))] -

[6v(2) - AGN (9(2))] + Bpyr [€n(2) - 0:AGN (0(2))] + (6.4)

In (6.4) £En(2), &N (2) are random analytic functions in z, which do not depend on t,v
and that are O(1) uniformly over compacts in ONM and N, recall that O is the inverse
image of U under the map z — z +uz~'. In addition, cy(z;t,v), cy(2;t,v) are linear
combinations of random analytic function in z, independent of t, v, that are also O(1)
uniformly over compacts in @ N M. The coefficients of these linear combination are
infinitely differentiable functions in ¢;, whose derivatives, evaluated at t; = --- = t,,, = 0,
are all uniformly bounded as v1, ..., v,, vary over compacts in U, z varies over compacts
in ONM and |o(z) —v;| for i = 1,...,m are bounded away from 0.

We now fix m > 1 and differentiate both sides of (6.4) with respect to ti,...,tn,
and set t; = -+ = t,, = 0 (the case m = 0 will be treated separately). For the terms
involving random variables we use (6.1) to rewrite the result as a cuamulant. Observe that
we need to apply Leibniz rule when we differentiate Epe v [cn (231, v)] or Epev [cy (25 £, v)];
therefore, we will obtain a sum depending on how many times we differentiated one of
the coefficients in ¢y (z;t,v) or ¢/y(z;t,v) and how many times the expectations EP;\;V.
We obtain the following result

6m
Oty -+ Oty

= My (En(2)AGN(0(2))?|va, {1, ..., m}) +

te=0,1<a<m

N2 Rem¥Y(2)
Wai¥ (2)
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Mn (&V(z)azAGN(J(Z))lvau{17"‘vm}) + Z [MN (aAcN(Z§OaV)|va7AC) +
AcAl,...,m}

My (0acn(20,v) - AGN(0(2))|va, A%)]. (6.5)

Using that cumulants are linear combinations of moments and Proposition 6.1.1, we
conclude that each term in (6.5) is O (1) uniformly as vy, ...,v,, vary over compacts in
U, z varies over compacts in ONM, |o(z) — v;| for i = 1,...,m are bounded away from
0 and N — oo. One might be cautious about the term involving 9,AG y(0(z)); however,
by Cauchy’s Theorem the uniform moment bound we have for AGy(o(z)) implies one
for its derivative.

Since I € O N M we conclude (6.3) for the case m > 1. If m = 0, then (6.4) reads

N?:Remy(2) = Epy [En(2) - AGN(0(2))°] + Epy [En(2) - 0:AGN(0(2))] +

(6.6)
Epy [en(2)] + Epy [y (2)AGN(0(2))] -

Combining that £x(2), &N (2), en(z) and ¢y (%) are uniformly bounded over compacts in
O N M with Proposition 6.1.1 we conclude that (6.6) is O(1) as N — oo. This proves
(6.3) for all m > 0.

6.2. Self-improving estimates and the proof of Proposition 6.1.1

In this section we prove Proposition 6.1.1. For clarity we split the proof into several
steps.

Step 1. In the first step we derive a weak a priori estimate on Ep, [[]-, |AGN (va)]],
which will be iteratively improved in the steps below until we reach the desired estimate
of the proposition. More precisely, we show that for each n € N, compact subset K C U
and vy,...,v, € K we have

By |[[IAGN (v:)]

=1

-0 (N”/2+1/2) : (6.7)

where the constant in the big O notation depends on K and n.
Recall from Section 5.1 that AGy(v) = N (G%(v) — G4 (v)), where

G (v) :/M and G5, (v) :/M.

v—x v—x
R R

Using Holder’s inequality, we can reduce (6.7) to showing that for all v € K we have

Ep, [N" 1G4 (v) — va(v)\”} ~0 (N"/2+1/2) (6.8)
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Fix n > 0 small enough so that the n neighborhood of S = U;?:l[&j, BJ] is disjoint from
K. Let h(zx) be a smooth function, whose support is inside the n-neighborhood of S,
and such that h(x) = 1 on an n/2-neighborhood of S. Note that for all N sufficiently
large we have that uy and iy are both supported in the n/2-neighborhood of S. Setting
g(z) = (v —2)~! we have

G4 (v) - Gy (v) = / o(2)h(z)pu (d) — / o(2)h(z)u(dz).

R R

We can apply Corollary 3.1.4 for the function g - h with @ = r - N'/?*=1/2 1 > 0 and
p =3 to get

By (|G (0) — GR ()] = cxrV /241720 4 o) <
exp (CN log(N) — 297r2r2N1+1/") :
which implies (6.8).

Step 2. In this step we reduce the proof of the proposition to the establishment of the
following self-improvement estimate claim.

Claim: Suppose that for some n, M € N we have that

Ep, :O(1)+O(Nm/2+1_M/2) form=1,...,4n + 4, (6.9)

H |AGN(va>|

where the constants in the big O notations are uniform as v, vary over compact subsets
of U for a=1,...,4n + 4. Then we have

Ep,

[]12GN ()| =0() +0 (Nm/2+1—<M+1)/2) form=1,...,4n.  (6.10)
a=1

The proof of the above claim will be established in the following steps. For now we
assume its validity and conclude the proof of the proposition.

Notice that (6.7) implies that (6.9) holds for the pair n = 2] and M = 1. The
conclusion is that (6.9) holds for the pair n = 2] — 1 and M = 2. Iterating the argument
an additional ! times we conclude that (6.9) holds with n =1 — 1 and M = [+ 2, which
implies the proposition.

Step 3. In this step we prove that

My (AG (v0)[vas {1,.....m}) = O(1) + O (N™/2+1-M/2)
(6.11)
form=1,...,4n+ 2 and Ep, [AGN(v9)] = O(1) + O (leM/Q) , where
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the constants in the big O notation are uniform over vy, . .., v,, in compact subsets of U.

We start by fixing a compact subsets V C U, which is invariant under conjugation
and let IV = T'; UT, be as in Section 5.3 with ¢(T';) and the bounded components of
U\ o(T'y) disjoint from V. For m = 1,...,4n + 2, we differentiate both sides of (5.24)
with respect to t1,...,¢, and set t; = --- = ¢, = 0. Combining (6.1), (5.28) and (5.30)
the result we obtain is

NPy (vo) Lim=1} o
Dn(vo)  4mi - H§:1 V/(vo —7;) (vo — s;)

MN(AGN(UO)h}aa {17 s am}) =

py _ -1 ) m
% HJ ! \/ 3 oo 4.~ (w0) 75 N Remf()dz o
— g ( - v1)2 2mi 2Hy (2)(vo — 0(2))
o(T1) X
(6.12)
o™ Rem%yY(2)
Rem?(z) = — Py (vo)
oty - 0ty, Wi (2) f—0.1<a<m
8m t,v
R — e .1
te=0,1<a<m

By the same arguments following (5.30) we may apply the map Tf)\g from (5.8) for the
contours o(7}),...,0(7;) and the points r;,s; for j =1,...,k to both sides of (6.12) to
get

]\4]\7(AG’N(’UO)|’Ua7 {1, R ,m}) = Yf)\é

—DN(UO)_lyg N -Rem’(2)dz N

2w J zHN(2)(vo — on(2))
(6.14)

dw

SN Lim=1y yg H] 1\/ —s5)

T'U
| 4mi - H?Zl V(o —rj) (v — (1)1 - w)2

Combining (6.14) and an application of Tf}g to both sides of (5.24) we get

My (AGN(v0)|ve, {1,...,m}) =0(1) + Tf)\g

Dt R
21 J zHy(2)(vo —o(2)) |’

Vo

o) [P N Remy (i
Epy [AGN(v0)] = O(1) + T o f zHy (2)(vo — 0(2))

(6.15)

The constants in the big O notation are uniform over vy, vy, ..., v, in compact subsets
of V.
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At this time we recall (6.5), which states that for m =1,...,4n 4+ 2 we have
N?-RemR(z) = Y [My(9acn(2;0,V)|va, A%)
AcA{1,...,m}
+ My (8acy(2;0,v) - AGn(0(2))|va, A9)]
+ My (én(2)AGN(0(2))?|va, {1,...,m})
+ My (E5(2)0.AGN (0(2))|va, {1,...,m}).

Recall that &n(2), En(2), Oacn(2;0,v) and Oacy(2;0,v) are all O(1) if vq,...,v, €V
and z € I'". The latter and (6.9) imply

RemR(z) =0 (N7?) + O (Nm/27M/2> ,form=1,...,4n+ 2. (6.16)

By combining (6.6) and (6.9) we get that (6.16) holds for m = 0 as well. Finally, (6.15),
(6.16) and Property (1) in Proposition 5.1 together imply (6.11).

Step 4. In this step we will establish the validity of (6.10) except for a single case, which
will be handled separately in the next step.
Notice that by Holders inequality we have

m

11 AGN(%)I] < sup Epy (IAGN ()[™],

a=1

sup  Ep,
v

and so to finish the proof it suffices to show that for m =1,...,4n we have
Ep, [|[AGN ()™ = O(1) + O (NWZH/Q*M”) . (6.17)

Since centered moments are linear combinations of products of joint cumulants, we
deduce from the first line in (6.11) that for m =1,...,4n + 2 we have

m—1
sup  Ery | [T (AGN(0a) — Ery[AGN (0)]) | = O(1) + O (NUm=D/2H1-00/2)
V05 yUm—1EV a—0
(6.18)
Combining the latter with the first and second lines of (6.11) we see that
m—1
sup  Ep, H AGn(ve)| =0O(1)+ O (N(m_l)/2+1_M/2) . (6.19)
VO yeeeyUm—1EV a—0
If m = 2m; then we can set vg = -+ Uy, —1 = v and vy, = +++ = Vg, —1 = U in (6.18),

which yields
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sup s, | AG(v)]") = O(1) +0 (Nm/2+1/2_M/2) for m = 2,4,6,....4n+2 . (6.20)
ve

We next let m = 2m; + 1 be odd and notice that by the Cauchy—Schwarz inequality
and (6.20)

sup Ep,, [\AGN(U)F"““} <
veEV

sup [, [|AGN(v)|2m1+2”1/ ° [Ez, [|AGN(U)\2’”1”” g (6.21)

veY

O(1) + 0 (Nm1+17M/2> ) (Nm1/2+3/47M/4) .

We note that the bottom line of (6.21) is O(1) + O (Nm1+1_M/2) except when M =
2mq + 2, since

1—-M/2 hen M <2 1
m1/2+3/4M/4§{m1+ / when M < 2mg + 1,

when M > 2mq + 3.

Consequently, (6.20) and (6.21) together imply (6.17) except when M = 2m; + 2 and
m = 2my + 1. We will handle this case in the next step.

Step 5. In this last step we will show that (6.17) holds even when M = 2my +
2 and 4n > m = 2my; + 1. In the previous step we showed in (6.20) that

sup,cy Epy [|AGN(v)|2m1+2} = O (N'/?), and below we will improve this estimate to
sup e, {|AGN(U)\2”“+2} = 0(1). (6.22)
ve

The trivial inequality 2™ %2 4+ 1 > |z|*™1F! together with (6.22) implies

supEp,, [|AGN (o)™ | = 0(1).
veV

Consequently, we have reduced the proof of the claim to establishing (6.22).
Let us list the relevant estimates we will need

2m1+4 2mi+2

Eey | [T 18GN(wa) —0(N3/2),EH»N[H AGN (W)l | =0 (NY2),
a=1 a=1
J 2mi1+3

Ery | [ IAGN(va)l| = O(1) for 0 < j < 2my, Bpy | [[ 1AGN(va)l| =O(N).
a=1 a=1

(6.23)
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The above identities follow from (6.20) and (6.21). All constants are uniform over v, € V.
Below we feed the improved estimates of (6.23) into Steps 3 and 4, which would ultimately
yield (6.22).

In Step 3, we note that we have the following version of (6.16)
Rem)y(z) = O (N™') whenever 0 < m < 2my + 1. (6.24)

The latter statement follows from (6.5) for 2m; +1 > m > 1 and (6.6) for m = 0,
combined with

m+2
Ep, lH AGN(UQ)|1 =O(N) form=0,...,2m; + 1,

a=1

the latter being a consequence of (6.23). Using (6.24) instead of (6.16) in Step 3, we
obtain the following improvement over (6.11)

M (AGN(w),...,AGN(vp)) =0(1), form=1,...,2m; + 1 and

(6.25)
Ep, [AGN(v)] = O(1).

We next repeat the arguments in Step 4, and note that by using (6.25) in place of
(6.11) we obtain the following improvement over (6.19)

2mi+1
sup  Ep, l 11 AGN(UG)] =0(1). (6.26)
a=0

V0, V2my +1 €V
Setting vp = -+ Uy, = v and Uy, 41 = -+ = Vo, +1 = U in (6.26) we get (6.22).
7. g-Racah tiling models and ensembles

As discussed in Section 1 our main motivation for studying discrete log-gases on shifted
quadratic lattices comes from the g-Racah tiling model that was introduced in [16]. In
Section 7.1 we give a formal definition of the model and in Section 7.2 we state the
main results we prove about it in Theorems 7.2.2 and 7.2.4. In Section 7.3 we explain
how the model is related to a certain random particle system that we call the ¢g-Racah
ensemble and state a law of large numbers and central limit theorem for the latter as
Theorems 7.4.4 and 7.4.5 in Section 7.4.

7.1. The q-Racah tiling model
7.1.1. Lozenge tilings

Denote by Q,xpxc the set of all tilings of a hexagon with side lengths a, b, ¢ by rhombi
(or alternatively boxed plane partitions), see Fig. 4. Denote the horizontal rhombi by
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b

Fig. 4. Tiling of a 3 X 3 X 3 hexagon.

<> and introduce coordinate axes (i,7). Given two parameters ¢ and x we define the
probability of an element 7 € Q,xpx through

_ w(T)
= 225€Q0 e W(S)

’LU(<>) _ K:quf(c+1)/2 - q7j+(c+1)/2.

, where w(T) = H w(<>), and
<>eT (7.1)

In the above formula the product is over all horizontal lozenges <> that belong to 7 and
j denotes the j-th coordinate of the topmost point of <>. We call the probability measure
in (7.1) the g-Racah tiling model.

It was shown in [16] that the partition function (the sum of all weights w(7T) or
the normalization term in (7.1)) has a nice product form, which generalizes the famous
MacMahon formula for the number of boxed plane partitions [67]. Note that the number
of horizontal rhombi in all tilings of a given hexagon is the same, hence P is invariant
under multiplication of w(<>) by a constant.

In order for (7.1) to define an honest probability measure, one requires that the weights
w(T) be non-negative. This imposes certain restrictions on the parameters ¢, x and there
are three possible cases that lead to positive weights:

(i) 4maginary q-Racah case: q is a positive real number and & is a purely imaginary
number;

(ii) real g-Racah case: q is a positive real number and k is a real number that cannot lie
inside the interval [g~+1/2, ¢(+e=1/2] if ¢ > 1 or the interval [¢(®te=1/2 gla=1)/2]
ifg<1;

(iii) trigonometric q-Racah case: q and k are complex numbers on the unit circle, i.e.
q= e, k= e where a, B must be such that —a(b+c—1)/24 6 and a(a—1/2)+3
must lie in the same interval of the form [7k,n(k + 1)], k € Z.

The names of the above cases are related to those of the classical orthogonal polynomials
that appear in the analysis. In this paper, we will only consider the real g-Racah case
with ¢ € (0,1) and & € [O, q(b+c_1)/2) although most of our arguments can be extended
to other cases.
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T=b+c

Fig. 5. Affine transformation of lozenges.

If we let k — 0 then we get the g-Hahn case w(<>) = ¢~7. In this case the probability

V. where V denotes the wolume of the plane

of a plane partition is proportional to ¢
partition, i.e. the number of cubes that it contains. If we send Kk — oo we get that the
probability of a partition is proportional to ¢¥. In this sense, one can view our model as
an interpolation between the models ¢* and ¢~V. Finally, if one sends £ — 0 and ¢ — 1,

one recovers the uniform measure on boxed plane partitions.

7.1.2. Particle configurations

In what follows we describe an alternative formulation of our model that is more
suitable for stating our results. We perform a simple affine transformation of the hexagon
and lozenges, detailed in Fig. 5.

Let us introduce new parameters N, T,S that are related to a,b,c through N = a,
T =b+4 cand S = c. Each tiling in Q,xpx. naturally corresponds to a family of IV
non-intersecting up-right paths as shown in Fig. 6. For each 0 < ¢ < T we draw a vertical
line through the point (¢,0) and denote by z% < a} < --- < ' the intersection of the
line with the IV up-right paths. We interpret the intersection points as particles and will
typically use the same letter to refer to a particle and its location. In this way, we can
view a tiling as an N-point (or particle) configuration, which varies in time t =0, ..., 7.
Observe that when ¢ = 0 the configuration consists of the points {0,1,..., N — 1} and
when t = T the configuration consists of the points {S,5+1,...,5+ N —1}.

Given a random configuration {z}} we define the random height function

1
h:Z>g x <Z+§> — Zso as h(t,s) = {k€{1,...,N} : 2k < s}|. (7.2)

In terms of the tiling in Fig. 6 the height function is defined at the vertices of rhombi,
and it counts the number of particles below a given vertex. The latter definition is in
agreement with the standard three-dimensional interpretation of the tiling as a stack of
boxes [43].
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y

S =N

t=3

Fig. 6. Modified hexagon and up-right path configuration (in purple). The yellow dots are the particles at
time t = 3 and we have zf = 1,2 = 3 and z} = 4. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)

7.2. Main results for the q-Racah tiling model

Our results are about the global fluctuations of a random lozenge tiling with distri-
bution (7.1) when the parameters ¢, x and the sizes of the hexagon N, T, S scale in a
particular fashion that we detail below.

Definition 7.2.1. We assume that we are given real numbers N, T, S, q and k such that
N,T,8,9q>0, k>0, q<l1, N<T, S<T, kq <L

Given such a choice of parameters and ¢ € (0, 1) we let P, be the probability measure in
(7.1) with

q=q +0(?), N =Ne"' +0(1), T=Te '+ 0(1),
S =31+ 0(1), k=k+ O(e).

7.2.1. Limit shape

Our first result concerns the hydrodynamic limit of the height function h, with dis-
tribution P., under the parameter scaling in Definition 7.2.1 when ¢ converges to zero.
On a macroscopic scale the random height function concentrates around a deterministic
limit shape, i.e.

e-h(lze™, lye™' +1/2) — h(z,y) as e — 0T, (7.3)

where (z,y) are the new global continuous coordinates, fz(x,y) is the function whose
graph is the limit shape and the convergence is in probability. The new coordinates
(z,y) are assumed to belong to the limiting hexagon P, which is parametrized by N, S, T
the same way that our discrete hexagon was parametrized by N, S,T; see the central
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e

Fig. 7. The left part shows a simulation of a tiling. The middle part shows the hexagon P and the liquid
region D is the region inside the gray curve. The right part denotes the image of P and D under the map
(z,y) = (@77, a7 ¥ +k?q~577FY),

part of Fig. 7. The limit shape can then be understood as a continuous function on P
and we describe it next.
With parameters as in Definition 7.2.1 we define ¢ as

2V AB
A= (qu _ qfst) (qu _ k2q7T) (qu _ qufN) (qu _ qu—y—S) ;

B— q72N7T (qfa: _ 1) (qu _ k2q7t+N) (qu _ quferT) (qu _ k2qfs+N) _

—N _ (1 = —N-—-T —2x k2 —y—S 2 A B
o(x,y) = arccos <(q )(1-q ) (q d ) tAT ) , where

If the expression inside the arccosine is greater than 1, then we set ¢ = 0 and if it less
than —1, then we set ¢ = m. In terms of the above function ¢ we define the limit shape
h as

~

h(l‘,y) =

3|

/(b(x,u)du, for (z,y) € P. (7.4)

With the above notation we can state our limit shape result.

Theorem 7.2.2. Suppose that N,T,S,q, k and P, are as in Definition 7.2.1 and that h is
distributed according to P.. Then for any (z,y) € P and n > 0 we have

tim B (|le b (la="), lye™) +1/2) = he.)| > n) =0 (75)
e—

Remark 7.2.3. The formula for ¢(z,y) was derived in Theorem 8.1 in [16]. We remark
that while an explicit formula for the limit shape was obtained in [16], it was not proved
that the height function actually converges to it. Theorem 7.2.2 constitutes a proof of
this fact.
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An important feature of our model is that the limit shape develops frozen facets where
the function iL((ﬂ, y) is linear. In terms of the tiling a frozen facet corresponds to a region
where asymptotically only one type of lozenge is present. In addition, there is a connected
open liquid region D C P, which interpolates the facets. Explicitly, the liquid region D
is given by the set of points (z,y) € P where the expression inside the arccosine in the
definition of ¢ is in (—1,1), i.e.

D= {(a:,y) eP: [(q‘N 1) (1= (e~ kg V) A+ Br < 4AB} :

If (x,y) € D then the limiting height function h is curved near (z,y): asymptotically
inside the liquid region one observes all three types of lozenges, see e.g. [25,43,44] for
further discussion regarding frozen and liquid regions in related contexts. In addition, the
local distribution of the tiling near (z,y) € D is described asymptotically by a certain
ergodic translation-invariant Gibbs measure on lozenge tilings of the whole plane. Such
a measure is unique up to fixed proportions of lozenges of all three types [65], and these
proportions depend on the slope of & at the point (z,y). We refer the reader to [16] for a
more detailed discussion of this fact for the model we consider, and also to [43,45,59,65]
for analogous results in general dimer models.

7.2.2. Central limit theorem

Before stating our central limit theorem for the measures P. we introduce a transfor-
mation of our particle configuration from Section 7.1. This transformation is (in some
sense) the natural way to view the particle system, and it allows us to identify its global
asymptotic fluctuations with a 1D section of the two-dimensional Gaussian free field
(GFF for short).

Given a point configuration {(¢,z%)} we define a new point configuration {(U,V)}
through

Ut,k) =q " and V(t, k) = ¢ % + x2¢"+ 5" for 0<t < T and 1 < k < N. (7.6)
Similarly to before, we define a random height function for the new particle system

H:{" ¢ ..., e T} xR—Zsgas H(g ", v)=[{ke{l,...,N}: V(t,k) < v}
(7.7)

One can formulate an equivalent statement to Theorem 7.2.2 for the height function H.
Le. there will be asymptotically a deterministic limiting height function 7, near which H
concentrates with high probability. Moreover, if we set o4(z,y) = (q~%, q ¥ +k?q 5771V)
then we have the explicit relationship h(z,y) = H (o4(x, ).

The function o4 maps the liquid region D bijectively to a new region D', parametrized
through
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D' = {(u,v) € R? : Q(u,v) < 0},

where Q(u,v) = Au? + Bv? + Cuv + Du+ Ev+ F, and A, B,C, D, E, F are explicitly
computable constants that depend on g, S, T,N and k. Consequently, D’ is an ellipse, see
the right of Fig. 7.

Our next goal is to define a complex structure on the limit shape surface — this is a
bijective diffeomorphism  : D’ — H. The significance of this map is that the fluctuations
of H will be asymptotically described by the pullback of the GFF on H under the map 2.
The function Q(u,v) is algebraic and it satisfies the following quadratic equation

a2Q% + a1Q + ap = 0, where (7.8)

as, a1, aq are explicit linear functions of u and v and are such that a% —4dasag = q2N .

Q(u,v) (see Section 8.2 for the details). Whenever (u,v) € D’ the polynomial (7.8) has
two complex conjugate roots and we define Q(u,v) to be the one that lies in H.

We are now ready to state our main theorem for the g-Racah tiling model, giving the
asymptotics of the global 1D fluctuations of P, in terms of the two-dimensional Gaussian
free field. In Section 8.1 we recall the definition and basic properties of the GFF.

Theorem 7.2.4. Suppose that N, T, S, q, k and P, are as in Definition 7.2.1 and that H is
as in (7.7) for the distribution P.. Fizu € (1,q7") and let t(¢) be a sequence of integers
such that ¢ = u 4 O(e). Then the centered random height function

vV (Mgt v) — Es, [H(g ", v)])

converges to the 1d section of the pullback of the Gaussian free field with Dirichlet bound-
ary conditions on the upper half-plane H with respect to the map Q2 in the following sense:
For any set of polynomials f; € R[z] fori=1,...,m the joint distribution of

/ﬁ (H(qit,v) — Ep, [H(qft,v)]) fi(v)dv, i=1,...,m, (7.9)

converges to the joint distribution of the similar averages

b(u)
a(u)

of the pullback of the GFF. In the above formula a(u),b(u) are the v-coordinates of the
two points where the vertical line through u intersects the ellipse Q(u,v) =0.

Equivalently, the variables in (7.9) converge jointly to a Gaussian vector (X1, ..., Xm)
with mean zero and covariance
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b(u) b(u)
E[X;X;] = / / fi(@)fi(y) <—% log gEZ’g :SEZ’ Z?j; D dzdy. (7.10)
a(u) a(u) ’ ’

As discussed in Section 1 the GFF is assumed to be a universal scaling limit in tiling
models, which motivates its appearance in our setup. Another reason one might expect
to see the GFF in our tiling model comes from its connection to the g-log gas with g = 2.
We will elaborate this idea later in Section 9, but essentially there is a natural way to
view the particle configuration on a fixed vertical slice as a discrete log-gas on a quadratic
gases. Log-gases appear naturally in random matrix theory, and in that context there
are several models that are known to converge to the GFF [10,11,14].

We end the section by remarking that Theorem 7.2.4 admits a natural two-dimensional
generalization, which we formulate as Conjecture 8.4.1 in Section 8.4. At this time our
methods only provide access to the global fluctuations at fixed vertical sections of the
model, and so we cannot establish the full 2D result. Nevertheless, we provide some
numerical simulations that give evidence for the validity of the conjecture.

7.8. The q-Racah ensemble

In this section we define the ¢-Racah ensemble.

Definition 7.3.1. Let ¢ € (0,1), M € Z>o, o, 3, § € R and v = ¢ ™~!. For z €
{0,1,..., M} we introduce the following weight function

B64,74,70¢; @) (1 —~og**t)
wi(z) = (ag, 3 , 7.11
(=) (g, = 1vdq, B~1vq,0q; q)2 (afq)*(1 — vdq) (7.11)

where (y1,..., ¥ @)k = Wik Wis Ok, and (y;)x = 1 —y)(1 —yq)--- (1 — yg" 1)
is the g-Pochhammer symbol.

Remark 7.3.2. The weight w?% is the weight function of the g-Racah orthogonal polyno-

mials, see e.g. [48, Section 3.2]. One can more generally have a = ¢~ ™~ or 36 = ¢~ M1

instead of v = ¢=™~1. Our choice is dictated by the fact that under the substitutions

v =¢q ™M~1 and § = 0 the ¢-Racah weight reduces to the g-Hahn weight.

With the above notation we can define the g-Racah ensemble as follows.

Definition 7.3.3. Fix N € N and let «,3,7,d,q and M be as in Definition 7.3.1 with
M > N — 1. Denote by X the collection of N-tuples of integers

X={(A\,... ., AN)E€ZYN :0< A <Ay <--- <Ay < MY,

The ¢-Racah ensemble is a probability measure P77 on the set ¥, given by
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N

1 s a2

PO AN = g a g L (@) —al@™)) - TTw ),
) ) ) ?’77 7q 1§Z<]SN 121

(7.12)

1

where o(z) = z+ vdqz~' and Z is a normalization constant that makes the sum over X

equal to 1.

Observe that for general choice of parameters the expressions in (7.12) need not be
non-negative. Consequently, we need to restrict the space of parameters so that P% is
an honest probability measure. We isolate one possible choice that accomplishes this in
the following definition.

Definition 7.3.4. We assume that the parameters «a, 8,7,0,q¢ € R and M, N € Z are such
that

M>N-1>0,1>¢>0, a,8>0,0>0, v=¢ ™M1, 1>p8 8>~, a>~.

One readily verifies that the above choice of parameters makes (7.12) non-negative on
all of X.

We end this section by detailing the connection between P47 and the measure on
tilings from Section 7.1 in the following theorem.

Theorem 7.3.5. Fix a,b,c > 1 and set N = a, T = b+ c and S = c. Let P denote
the probability distribution of (7.1) with parameters ¢ € (0,1) and k € [O,q(Tfl)p).
Fiz t € {0,1,...,T} and let (z%,...,2Y%) denote the random N-point configuration of
Section 7.1.2. We have that

(1) ift < S andt < T—S then the distribution of (z%, ..., a%) is P with M = t+N—1,
a=q SN B=¢5 TN o= gtN gnd § = i2q~ SN

(2) if S—1 <t <T—S+1 then the distribution of (x%,...,2%) is P4 with M =
S+N—-1,a= q—t—N7 8= qt—T—N) v = q—S—N and § = H2q_t+N,‘

(3) if T —S+1<t<S then the distribution of (T —t—S+z},...., T —t—S+aY)
is PR with M =T — S+ N —1,a=q TNt g =gt N, ~=¢g TNt5 gnd
§ = k2q-THHN

(4) if S—1 <t and T—S—1 < t then the distribution of (T—t—S+a!,..., T—t—S+az¥)
is PR with M =T —t+N—1,a=q TIN5 3 =¢ 5N ~=¢g TNt gnd

S =k q—T+S+N.

In all cases the parameter q in the definition of P1T is the same as the one that is given.

Proof. This is essentially [16, Theorem 4.1] and we refer to the same paper for the
details. O
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7.4. Global asymptotics for q-Racah ensembles

In this section we state a law of large numbers and a central limit theorem for the
g-Racah ensembles — Theorems 7.4.4 and 7.4.5 below.
We begin by explaining how we are scaling the parameters in the g-Racah ensemble.

Definition 7.4.1. We assume that we have parameters a, b, c,d, q and M such that
1>q>0,abM>0,d>0,1>bd, c=q ", b>c,a>c, cq> 1.

For future reference we denote the set of parameters a,b, c,d,q and M that satisfy the
above conditions by P and view it as a subset of RS with the subspace topology.

In addition, we assume that we have a sequence of parameters ay, By, Vv, 0N, ¢y and
M that satisfy the conditions in Definition 7.3.4 and such that for some constant A > 0
we have

max (N ’qN — ql/N

7‘aN_a|a|5N_b|7|7N_C|a|6N_d|7|N_1MN_M‘) SAN_I'

We let Py be the measure from Definition 7.3.3 with parameters ay, By, YN, N, qN, M N
and N.

Definition 7.4.2. Suppose we are given parameters a, b, ¢, d and ¢ such that
1>¢>0, a,b,c>0,d>0,1>0bd, b>c, a>c, cq>1.
We define the following polynomials

Ot (2) = (2 — a)(z — bd)(z — ¢)(z — cd), P (2) =(z—1)(az — cd)(bz — ¢)(z — d)
R(2) = ®T(2)+ @ (2) — (abg—1)(¢~ ' — 1) (2% —cd)?, Q(2)? = R(2)? —49™ (2)® 7" (2).

With the above data we define

L - arccos ( Rlg ") ) when z € (0, —log,(c)),

p(z) = 2/~ (q=*)®F (¢~ *) (7.13)

o

otherwise.

If the expression inside the arccosine is bigger than 1 we set 4 = 0 and if it is less than
—1 we set ;1 = 1. The square root is the usual one as on (0, —log,(c)) both ®~(¢~*) and
®T(g™*) are positive.

We also isolate the following fact.

Lemma 7.4.3. The polynomial Q? from Definition 7.4.2 factors completely over R. If we
enumerate its roots in increasing order x1,...,Ts we get
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T =29 = —Ved, d<ux3<uxy4<cd, r5 =26 = Ved, 1<z, <zg<ec.
(7.14)
Moreover, we have x3 = % and T4 = ;—f.

Proof. One readily checks that

2P Q(2)? = (z — cdz_1)2 - Qo (z + cdz_l) , where Qo(z) = as2?® + a1z + ag, with
(7.15)

o ay = (abg® — 1)?

o a1 = —2q(a?b?dq® + ab®cdq® + a*b?q® + abeq® + ab®dq® + abedq? + a?bq?® — 2ab*dq —
2abcdg + abeq? — 2a2bg — 2abeq — 2abdq — 2bedq + abd — 2abg — 2acq + bed + ab + ac +
bd + cd + a + ¢),

o ap = 4a?b?cdq® —4a?b?cdg +4ab®cd? P +a?b>d? ¢? +4a’b?dqd +4abedq® — 2ab* cd® ¢ +
dab?®cdq® +4abcdg® +b2 2 d% % —2a%b%dq? — 2a2bedg® +4a’beg® —2ab?cdg?® — 2ab?d? ¢ —
2abc?dq? — 2abed?q? + dabedg® — 2b%cd?q? — 2bc?d?¢? + a?b%q? — 2a2beg? — 2a2bdg? +
a’c?q? —2ab%dq?® —16abcdq® —2ac*dq? +b%d? q? — 2bd? dq? — 2bcd? ¢ + c*d? % — 2a%bg® —
2a%cq? + dabedgq — 2abeg® — 2abeq® — 2ac’q? — 2acdq? + 4bed?q — 2bedq? — 2¢%dg® +
a?q? + 4abdq + dacdq — 2acq® + 4bedq + 4c%dq + c2q® + 4acq + 4edg — 4ed.

Consequently, what remains is to show that Qg has two real roots y; and y- such that
1+cd <y1 <ys < c+d. Indeed, if the latter is true we would have that z +cdz™! =y
(resp. z + edz™! = y5) has two real roots z3,zs (resp. x4, 27) and these satisfy the
conditions of the lemma.

A direct calculation shows that the discriminant of @y equals

D = ai —4agaz = 16(¢q —1)(bg —1)(bdg —1)(cq —1)(ag — 1)(ag — d)(abg — 1) (abg — ) > 0.

Thus @ indeed has two real roots and to show that they both lie in the interval [1 +
cd, ¢ + d] it suffices to show that Q((1 + ed) < 0 and Qj(c + d) > 0. We notice that

F1 =Q((1+cd) =2as(1+cd) +a1(1+cd) and Fy = Q((c+d) = 2az(c+d) +ai(c+d)

are both linear functions of 4 and by assumption ¢=! < ¢ < min(a, b). In particular, it
suffices to check that F; < 0 when ¢ = ¢! and ¢ = b, while F» > 0 when ¢ = ¢! and
c=a.

When ¢ = ¢~! we have that

Fy =2(1—q¢ Y)(bg — 1)(abg* — 1)(ag — d) < 0 and
Fy =2(1— ¢ ")(ag - 1)(abg® — 1)(bdg — 1) > 0.

When ¢ = b we have
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Fy = 2(bqg — 1)(aq — 1)G; where G| = ab®*dq* + abq® — 2abq — 2bdq + bd + 1,
while when ¢ = a we have
Fy = 2(bqg — 1)(aq — 1)Go where Gy = a*bq® + abdq® — 2abdq — 2aq + a + d.

What remains is to show that G; < 0 and G5 > 0. Note that G; and G» are linear
functions in d and d € [0,b~1). Thus, it suffices to check that G; < 0 and G5 > 0 when
d=0and d=b"1.

When d = 0 we have G; = abq(q — 1) + (1 — abg) < 0 and G2 = ag(abg — 1) +
a(l —q) > 0. When d = b~! we have G; = 2(q — 1)(abg — 1) < 0 and G, =
b~! ((abg — 1)* + ab(qg — 1)?) > 0. O

The formula for @@ that we will use in the paper is

Q(z) = (abg — ¢~ 1) - (z* = cd) - /(2 — w3) (2 — 2a) - V(2 — w7) (2 — ) (7.16)

7.4.1. Law of large numbers

In this section we state a law of large numbers theorem for the ¢-Racah ensembles as
Theorem 7.4.4 below. Its proof will be established in Section 9.2. We assume we have
the same parameters and measures Py as in Definition 7.4.1 and define the empirical
measures [y

N
1 i : -
IN = ;:1 ) (N) where (A1,...,An) is Py-distributed. (7.17)

Theorem 7.4.4. Under the assumptions in this section, we have that the measures pn
concentrate (in probability) near p(x)dx, where p(x) is as in Definition 7.4.2 with pa-
rameters a = a,b=b,c = c,d =d and ¢ = q. More precisely, for each Lipschitz function
f(z) defined in a real neighborhood of the interval [0,M] and each € > 0 the random
variables

N1/ / f (@) (de) / f(@)le)de
R R

converge to 0 in probability and in the sense of moments.

7.4.2. Central limit theorem

In this section we state a central limit theorem for the ¢-Racah ensembles as The-
orem 7.4.5 below. Its proof will be established in Section 9.2. We assume the same
parameters and measures Py as in Definition 7.4.1. It turns out that to better see the
Gaussian structure of the g-Racah ensemble it is convenient to consider a transformed
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particle system, given by (yi,...,yn) with y; = on(gy) and oy (2) = z +ynOngn 2"

Then the transformed empirical measure of the system is given by

N N
1 . L.
N = ;5@ = Z:: (aN qN ) where (A1,...,An) is Py-distributed.
(7.18)

Theorem 7.4.5. Take m > 1 polynomials f1,..., fm € Rlz]. Let py be as in (7.18) and
define

Cfi:N/fj(m)pN(dm)fNEpN /fj(x)pN(dx) fori=1,....m
R

R

Then the random wvariables Ly, converge jointly in the sense of moments to an
m-dimensional centered Gaussian vector X = (X1,..., X,,) with covariance

Cov(Xi, X;) 515 yf £i(s)f;()C(s, t)dsdt,

where T is a positively oriented contour, which encloses the interval [1 + cd, c +d]. The
covariance kernel C(s,t) is given by

0 ma)—a)tl-a)(s—a)
€)=~ (l Ms—a><s—a+>¢<t—a><t—a+>>’ (719

where a_ = 3+ 28, ay = T4+ a7 and x1,...,xs are the ordered roots of the polynomial
Q(2)? from Definition 7./.2 with parameters a = a,b = b,c = ¢,d = d and q = q, cf.
Lemma 7.4.5.

8. Global asymptotics for the g-Racah tiling model

As discussed in Section 7.2 the 1D global fluctuations of our model are asymptotically
described by an appropriate pullback of the Gaussian free field in H. In Section 8.1 we
provide some preliminaries on the two-dimensional Gaussian free field. In Section 8.2
we describe the complex structure © on the liquid region D’ of our tiling model and
show that € defines a bijection between D’ and H. In Section 8.3 we give the proof of
Theorems 7.4.4 and 7.4.5. Finally, in Section 8.4 we state our 2D conjecture.

8.1. Gaussian free field

In this section we briefly recall the formulation and some basic properties of the
Gaussian free field (GFF). Our discussion will follow the exposition in [14, Section 4.5]
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and for a more thorough background on the subject we refer to [66], [29, Section 4], [36,
Section 2], and the references therein.

Definition 8.1.1. The Gaussian free field with Dirichlet boundary conditions in the upper
half-plane H is a (generalized) centered Gaussian field F on H with covariance given by

11ngw

— 1o —
2 zZ—W

E[F(z)F(w)] = , z,w € H. (8.1)

We remark that F can be viewed as a probability Gaussian measure on a suitable
class of generalized functions on H; however, one cannot define the value of F at a given
point z € H (this is related to the singularity of (8.1) at z = w).

Even though F does not have a pointwise value; one can define the (usual distribu-
tional) pairing F(¢), whenever ¢ is a smooth function of compact support, and the latter
is a mean zero normal random variable. In general, one can characterize the distribution
of F through pairings with test functions as follows. If {¢y } is any sequence of compactly
supported smooth functions on H then the pairings {F(¢x)} form a sequence of centered
normal variables with covariance

Z—wW

B0 (6] = [ on(a)on(u) (~o 1o

Z‘“’D |dz|?|dw|?.

An important property of F that will be useful for us is that it can be integrated
against smooth functions on smooth curves v C H. We isolate the statement in the
following lemma.

Lemma 8.1.2. [1/, Lemma 4.6] Let v C H be a smooth curve and p a measure on H,
whose support is vy and whose density with respect to the natural (arc length) measure on
v is a given by a smooth function g(z) such that

JJ st (-5 o

FXY

Z—w

D dzdw < 0. (8.2)

z

Then

}{]—‘dﬂzv/}"(u)g(u)du

is a well-defined Gaussian centered random variable of variance given by (8.2). Moreover,
if we have two such measures 1 and ps (with two curves vy and vy and two densities g
and gz), then Xy = f"/l F(u)gr(u)du, Xo = fm F(u)gz(u)du are jointly Gaussian with

covariance
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B = [ oo (~5 tos

z—w
— D dzdw.
z—wW
Y1 X772
Another property of F that we require is that it behaves well under bijective maps,
which leads to the notion of pullback.

Definition 8.1.3. Given a domain D and a bijection €2 : D — H, the pullback F o Q is a
generalized centered Gaussian field on D with covariance

Integrals of F o ) with respect to measures can be computed through

[F o= H/ Faip),

D

where dQ(u) stands for the pushforward of the measure p.
The above definition immediately implies the following analogue of Lemma 8.1.2.

Lemma 8.1.4. [1/, Lemma 4.8] In the notation of Definition 8.1.3, let u be a measure
on D whose support is a smooth curve v and whose density with respect to the natural
(length) measure on v is given by a smooth function g(z) such that

// 01(2)ga(w) (;ﬂ log ‘WD dzdw < oo. (8.3)

YXy

Then

JF o= [ Fow)gdn

D bl

is a well-defined Gaussian centered random variable of variance given by (8.3). Moreover,
if we have two such measures p1 and po (with two curves 1 and 2 and two densities g,
and g2), then X1 = [ F(Qu)gr(u)du, Xz = [ F(Q(u))gz(w)du are jointly Gaussian
with covariance

e = [ nlanto) (5 o

1 X772

We end this section by remarking that the Gaussian free field is conformally invariant:
if ¢ is an automorphism of H (i.e. ¢(z) = %ﬂ; with a,b,¢,d € R and ad — bc = 1) then
the distributions of F and F o ¢ are the same.
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8.2. Complex structure

In this section we adopt the same notation as in Section 7.2 and formulate the map

Q. We first observe that if (z,y) € P then we have that ¢(z,y) = 7 - u(y/N), where u

is as in Definition 7.4.2 for the parameters ¢ = q", a = q7 5V, b= g% TV, ¢ = q7= ¥

and d = k2q 3V, If we have that R,Q,®* are as in Definition 7.4.2 with the same
parameters then the liquid region D is given by

D={(z,y) €P:Q(q¥)? <0} ={ze(0,T)and y € (—logy(x7), —logy(xs))}, (8.4)

where 27, xg stand for the two roots of Q2 in (1,¢) — see Lemma 7.4.3. From (7.15) we
know

2P Q(2)? = (z — cdz_1)2 - Qo (Z + cdz_l) ,
and if we set u =q® and v = q~¥ + k2q~5"*1¥ then we see that
Qo (q7Y +cdg?) = Q(u,v) = Au? + Bv* + Cuv + Du + Ev + F,

where A, B,C, D, E. F are explicit constants that depend only on q,S,N, T and k? and
not on x,y. Combining the last two observations, we see that

D' = {(u,v): Q(u,v) <0} = {(u,v) :u€ (1,q77) and v € (z7 + cda; ', 25 + cdag )},
(8.5)

where we recall from Section 7.2 that D’ is the image of D under the map oq(x,y) =
(@7%,q7Y + k2q~5~%*¥). In particular, we have that D’ is an ellipse.
We next consider the quadratic equation

P(w;u,v) := az(u,v)w? + a1 (u, v)w + ao(u,v) = 0, where as = q"(v — 1 — k*q 5u),

a1 =vq"(@ "= 1)+ (u(@®—q") —q ¥ —q " +2q") + uk’q"(q7 "+ q 5" —297577)

+x°q T (q® —q") and ap = (u = 1)(q7T = q")(q7° = 1)(1 — k*q ).
(8.6)

For the above equation one calculates a3 — 4asag = q*"- Q(u, v) and so for (u,v) € D’ we

have that the equation has two complex conjugate roots. We define the map Q : D' — H
as

Q(u,v) = w(u,v) such that P(w(u,v);u,v) =0 and w(u,v) € H for (u,v) € D' (8.7)

and from our earlier discussion {2 is well-defined and algebraic.
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In the remainder of this section we show that €2 defines a bijective diffeomorphism be-
tween D’ and H satisfies an important property that is used in the proof of Theorem 7.2.4
in the next section.

For convenience we denote

Aa=(1-q")1-%q")(q°—q"),

Ao = k2" (q—S—T g g q—T) g S 44,
M =—(qT=q")(1-%*q ") (q7® ~ 1) and
M=—(@q"=1(@ " —q")(1-kq ") (q % -1).

Also we define the map f : H — R? through f(r +is) = (f1(r, s), f2(r, s)) with

A3(r? + s?)
)\2(7“2 + 82) + 2T)\1 + )\0
Kq"(@* -1)@ " a0 -%¥q) Mz +Kq S N(q T +2r — 1))
Ao qN/\2(>\2(’l"2 =+ 82) + 2rA; + /\())

filr,s) =1+ , fa(r,s) =1+%q "+

(8.8)

+

We observe that

_ 4. 721\1)\2)\2 2
Q(fl(ra S)an(T7S)) = _(>\2(7"2 +(:2) _;'_:;T;\j + )\0)2

<0,

and so f maps H in D’. One directly checks that f o Q and Qo f are the identities on
D’ and H respectively, which shows that Q has our desired properties.

Remark 8.2.1. Let us give some ideas about how the formula for 2 was discovered.
Once the appropriate physical coordinates u, v for the system are found, which lead to
the liquid region D’ being an ellipse, one suspects that the map € should be given by
the solution in H of some quadratic equation asw? + a;w + ag, whose discriminant D =
a3 —4apas is negative precisely on D’. In particular, we expect that a2 —4agay = )\Q(u, v)
for some positive parameter A.

In [62] the complex structure for the uniform tiling case (this is Kk = 0 and ¢ = 1
in our model) was given by a quadratic equation, whose coefficients are linear in the
coordinates of the system. By analogy we guess that a; = a}u + a?v + a2 for i =1,2,3
in our case as well, where the new coefficients do not depend on u and v. This gives us
a nine parameter system.

When searching for a map 2 one has a choice of which point of the boundary of D’
should be sent to infinity. In our case, we choose the boundary point at (u, 1 + uk?q~%)
with u = 1+A3-\; ' to be sent to infinity, which gives us 2 equations for our 9 parameters.
In addition, the relationship a? — 4aga; = AQ(u,v) gives an additional 6 equations
(comparing the coefficients in front of u‘v7) and an extra parameter \. Overall we have
a ten parameter system with eight equations.
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The resulting system has a 2-parameters set of solutions. The extra freedom comes
from multiplying as,a1,a9 by the same positive constant and also from multiplying
as and dividing ag by the same positive constant. Observe that the resulting complex
structures are all equivalent modulo a multiplication by a positive constant, which is an
automorphism of H. Our particular, choice for the parameters is dictated by the product
form of the coefficient ag in (8.6).

Remark 8.2.2. As mentioned in Section 1.1.2 there is a natural complex coordinate one
can define on the liquid region D, called complex slope. Let us explain how to construct
it briefly — see [42,44] for more details. Suppose (z,y) € D and set (p1,p2,ps) to be
the normal vector to the limit shape h at (z,y) such that p; + pa + p3 = 1. Then the
complex slope z(z,y) is the unique point in H such that the triangle (0,1, z) has angles
(mp1, P2, mp3). In the case of the uniform tilings of the hexagon (and more general
domains) it is known that there is an algebraic relationship between z(x,y) and the
complex structure (z,y), whose pullback establishes the connection with the GFF on
H, [44,62]. For the g-Racah tiling model an expression for z(z,y) was obtained in [16,
Section 8.1] and it is related to Q(x,y) from (8.7) as follows. If we set

—S+2y

_ _z(x,y)q" — kg

U= U(l'v y) T 1_ Z(J}, y)kgq_s_i_zy_x
CaF-g)+ (@%@ T-q) -k (Q+q T -V Qg +q " —q ")

Q" +q T=g")(Q2+q5-1)-k2q" T[(q 5 - ")+ (@ T—q") (g5~ 1)]

and Q = Q(z,y) then

We end the section with the following result that will be required in the next section.

Lemma 8.2.3. Suppose that u,vi,ve € R are such that (u,v1), (u,ve) € D'. Then we have

V(1 —a)(b—wvz) + /(v —a)(b—v1)
V(v —a)(b—wvz) — /(v —a)(b—v1)

“log Qu,v1) — g(u,vg)
Q(U,’Ul) - Q(U’U2

= log ) (8.9)

where a < b denote the intersection points of the vertical line through u with the ellipse

Q(u,v) = 0.

Proof. Note that if ¢(z) is an automorphism of H, i.e. ¢(z) = "Zj—_tl" with m,n, k,l €

R and ml— nk = 1, then the LHS of (8.9) is the same upon replacing Q(u,v;) with
d(Q(u,v;)) for i = 1,2. Set

_ aV(a~T—1 1
m— ai +Uzq (q )’ n—=— /QGQ(U,'Ui), k = _— | = 0, (810)

2a0(u, v;) 2a0(u,v;)

and observe that the above do not change if we take ¢ = 1 or 2. Moreover, by
our choice of parameters we know that m,n,k,[ satisfy the earlier conditions and we
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let ¢ denote the automorphism corresponding to this quadruple. Setting D(u,v;) =
a1 (u,v;)? — 4ag(u,v;)az(u,v;) we see that

(a1 +viq'(q™" — Ui(lfl\/%\/D(Uv’Ui)) —dagar _ vig(qT — 1) — VD,

where in the second equality we multiplied the numerator and denominator by —a; —v'D

and used that a?> — D = 4agay. Recalling that \/D(u,v;) = q"/Q(u,v;) = q"(q~T —
D/ (v; —a)(v; — b)7 where a,b are as in the statement of the lemma, we see that

P(Qu, v5)) =

Qu,v1) = Qu,v2) (01 —v2) + /(01 — @) (v1 —b) — /(v2 — a) (v2 — b)

u,v1) = Au,v2) (01 —v2) + /(01 — @) (01 = b) + /(v2 — @) (vz — b)

Taking absolute value on both sides above and squaring we get

Qu, v1) — Qu,va) | _

Q(u, v1) — Qu, v2)

(b—v1)(v2 — a) + (b—v2)(v1 — a) — 2¢/(v1 — a) (b — v1)(v2 — a)(b — v2)
(b—1)(v2 — a) + (b= v2) (01 — a) +2¢/(v1 — @) (b — v1)(v2 — @) (b — va)

If we take logarithms on both sides of the above and multiply the result by —1/2 we get
(8.9). O

8.3. Proof of Theorems 7.2.2 and 7.2.

8.3.1. Proof of Theorem 7.2.2

We suppose that we have a sequence e, which converges to 0% and also sequences
q(ex), N(ex), T(ex), S(ex) and k(ex) as in Definition 7.2.1. Let us define t(g3) = |ze;. |
and observe that in this notation we have for all large k that

ex-h(lep '), lyen '] +1/2) =ex - N - / freve? it (dr), (8.11)

where yut = N—1 Zf\il 8 (z¢/N). By possibly passing to a subsequence we may assume
that the parameters ¢, .5, T fall into one of the four cases in Theorem 7.3.5. These cases
need to be handled separately, but as the arguments are analogous we assume that we
are in the case t < min(S,T — 5).

It follows from Theorem 7.3.5, (8.11) and the definition of A that for large k we have

p(en) = Pey ([en - (Lo ), Ly ] +1/2) = hiw,y)| > 1) =

y (8.12)
B {en ¥ [ 1y oyt = [uemdr| > ).
R 0
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where Py, pun are as in the statement of Theorem 7.4.4 for the parameters qN = q,

SN and

—x—N

My =t+N-1,an =¢y° N, By =3 ", w = ¢ " and 6y = r%qy
1 is as in Definition 7.4.2 for the parameters ¢ = q", a = q 5V, b=g¢>"T ", c=q
and d = k2q SV,

For 6 > 0 we let f5 be a smooth function, such that f5 = 1 on [0, y/N], its support lies
n (—8,y/N+9), f5(z) € [0,1] for all z. Then choosing & sufficiently small we have for
all large k that

plex) < Py | |- / F5(r)un(dr) N / F5)ur)dr| > 2 |

R R

where we used that N = Nei ' + o(1), f5(z), u(x) are both in [0,1] and we performed a
change of variables for the integral involving p. From Theorem 7.4.4 we know that the
RHS above converges to 0 as kK — oo, which proves the theorem.

8.83.2. Proof of Theorem 7.2.4

We suppose that we have a sequence e, which converges to 0" and also sequences
q(ex), N(ex), T(er), S(ex) and s(gx) as in Definition 7.2.1. In addition, we assume that
R; are real polynomials such that R}(z) = fi(x) fori=1,...,m.

Observe that for all large k we have

R
[ (a0~ e, (a0 oo = [ (Ba0) = e, [ 0)]) Aoy
R 1
(8.13)
where R = q7 57" 4+ k2q~5~T 4 1. The latter truncation is allowed since a.s. all particles

will have v-coordinate in [1, R], which makes the height function H deterministic outside
this interval and the above integrand zero there. In addition, we observe that

R N Vin N
/”H (0o =3 / J fiw)do = =3 Ri(V)) + NRi(R), (8.14)
4 =1y, j=1

where V; = V(t,j) for j =1,...,N (see (7.6)) and Vyy41 = R. Combining (8.13) and
(8.14) we conclude that for all large k& we have

(8.15)



3146 E. Dimitrov, A. Knizel / Journal of Functional Analysis 276 (2019) 3067-3169

where p! = ~ Z =1 d (V}). By possibly passing to a subsequence we may assume that
the parameters ¢, S, T fall into one of the four cases in Theorem 7.3.5. These cases need
to be handled separately, but as the arguments are analogous we will assume that we
are in the first case t < min(S,T — S).

It follows from Theorem 7.3.5 that p' under law P, has the same distribution as px
under law P, where py is as in (7.18) and Py is as in Definition 7. 1 1 for the parameters

gv =¢, My =t+N—1,an = qy° N, By =5 "N, v = ¢y and 6y = k2q 5TV,
If we denote by X * the RHS of (8.15) for i = 1,...,m we conclude from Theorem 7.4.5
that X * converge as k — oo to a Gaussian vector (Xi, ..., X,,) which has zero mean

and covariance

E[X;

X;]
2¢¢R1 ( 14 —a)(wa —b) + (v2 —a)(v1 — )>dv1dv2,

(2mi 2(v1 — vg)? 2/v1 — av/v1 — by/vs — a/va — b

where v is a positively oriented contour, which encloses the interval [1 +uk?q =5, uq™" +
k2q~5*"] and the square roots are defined with respect to the principal branch of the
logarithm. In deriving the above we implicitly used Lemma 7.4.3 and (8.5). To complete
the proof it suffices to show

R;( (v1 —a)(v2 = b) + (v2 — a)(v1 — b) _
271'2 %% 2(v1 — v2)? <_1 + 2/v1 — av/v1 — by\/vs — av/va — b ) dvidvy =
/b/bR'»(sc)R’»(y) (—i log 2w, ) = Hu,y) D dxdy, where ) is as in (8.7)
J ]ORN g =00 ) &

We start with the LHS of (8.16) and deform the vy contour so that it traverses the
segment [a, b] once in the positive and once in the negative direction. Observe the square

(8.16)

roots are purely imaginary and come with opposite sign when we approach [a,b] from
the upper and lower half-planes. On the other hand, the term m cancels when we
integrate over [a,b] in the positive and negative direction. By Cauchy’s theorem we do
not change the value of the integral during the deformation and so from the Bounded
convergence theorem we see that the LHS of (8.16) equals

(v1 = @)(v2 = b) + (12 — @) (11 — b)
27m yg/ (v1 — v2) 2 : 2o = N N N dvadvy .

We integrate by parts in the vy variable and change the order of the integrals, which
leads to the following expression for the LHS in (8.16)
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R’ 1/—7 N
iy /55 iR v2) Vor—avb v, o (8.17)
T

(v — v9) \/Ul —avvy — b

At this time we claim that for each vo € (a,b) we have

b
Ri(v1) \/112——a\/—y2 .
[QIOg (\/(Ul —a)(b—v2) + /(v2 — a)(b— 01)) —log |v1 — va| — log(b— a)] o,
(8.18)

We will prove (8.18) below. For now we assume its validity and finish the proof of (8.16).
From (8.17) and (8.18) we see that to show (8.16) it suffices to have

—log

=210g (/{1 — a)(b— v2) + /(02 — @) (b—v1)) - oo

—log|v — vo| — log(b — a).

From (8.9) we know that

)

V(2 —a)(b—v1) +/(v1 — a)(b—v2) .
V(wa —a)(b—wv1) — /(01 —a)(b—v2)

= log

log Qu,v1) — Qu, v2)
Qu,v1) — Qu, vo

In addition, one readily checks that log|v; — va| + log(b — a) is equal to

log |v/{e2 — a)(b— 1) + V(o1 — )b~ va)| +

log‘\/(vg —a)(b—v1) — /(v —a)(b—vg)‘.

The last two statements imply (8.19), which concludes the proof of (8.16).

In the remainder of the section we establish (8.18). Fix vy € (a,b) and let € > 0 be
such that (v2 —e,v3 +¢€) C [a,b]. For 6 € (0,¢) we define the contour I's . as follows.
I'se starts from the point b — id and follows the circle centered at b with radius 4
counterclockwise until the point b + 4§, afterwards it goes to the left along the segment
connecting the points b + id and vy + € 4 i9; it follows the circle centered at vy + i6
and radius € counterclockwise until the point vy — ¢ + 7§ and goes to the left along the
segment connecting v, — ¢ + 1 and a + i6; it then follows the circle centered at a with
radius ¢ counterclockwise until the point @ — 49 and then goes to the right along the
segment connecting a —id and vy — € — i4; finally, it follows the circle centered at vo — @6
and radius € counterclockwise until the point vy — e — ¢§ and goes to the right along the
segment connecting v — & — 40 and b — 6, see Fig. 8.
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R

N
(@ : 5
N

2¢e

Fig. 8. The contour I's ..

By Cauchy’s theorem we see that

yg Ri(v1) \/1)2——0m — Ri(v1) \/112——&\/—7?12 (8.20)
( .

v — vg) Vo1 — avu — (v1 — U2) VU1 — ayvr —

el Ts,e

We next let 6 go to 0T and see that

lim yg(Rz'(vl) mm

U1 — 2) \/m——a\/vl— = Ti(e) + Tx(e) + Ts(e), where

FS,E

_ iv27€ Ri,(’U1) \/’L)Q*(l\/bf’l)g
Tie) =2 /(”1_”2) Vo1 —avb —Ul

a

b
o Ri(vi) vz —avb— v2
Ty(e) = 2i [E (01 —vs) Vor—a /71) —

= [ A Jetthon,, [ Bl vBoobow,,

A (v1 — vg) VU1 — avug — - v —V2) U1 — avur —
C (v2 Cs (va
(8.21)

with CF (v2), O (v2) being positively oriented half-circles of radius e around vs in the
upper and lower half-planes respectively. In deriving the above expression we used the
Bounded convergence theorem and the fact that the square roots are purely imaginary
and come with opposite sign when we approach [a,b] from the upper and lower half-
planes.

We next integrate by parts the integrals in T3 (e) and Th(e) to get

Vo —E€

Ti(e) = —2i / Ri(u)Gy(v1)dvy + 2i - [Ri(v2 — )G, (v2 — €) — Ri(a)Gy,(a)],

a

b
T2(€) e / R;(Ul)sz (Ul)d’Ul + 27 - [Ri(b)Gw (b) — Ri(’Ug + E)GU2 (Uz + 6)], where

va+e
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Gy, (v1) = —21og (\/(’Ul —a)(b—v2) + /(v2 —a)(b— ’Ul)) + log |v; — val. (8.22)

We observe that G,,(a) = —log(b — a) = G,,(b) and R;(va — €)Gy, (v2 — €) — R;i(va +
£)Gy,(v2 +¢) = O (eloge™). The latter statements together with the Dominated con-
vergence theorem imply that

b
lim Ty (c) + Ta(e) = —2i / R(v1) G, (v1)dvy — 2ilog(b — a) - [R(b) — R(a)]. (8.23)

e—0+
a

We next turn to T3(e) and parametrize CF(v) through vy = vy + €€’ with 0 € (0,7)
and CZ (v) through vy = vy + g€t with § € (—m,0). This leads to

( \/g—a\/ — V2 -

/ i (vg + ee'?)df
\/8619 + vy — av/eet® + vy — b

i (v + ee')df ]

/ \/66“94—112 —a\/e€ei? + vy — b

We can let € converge to 01 above, which by the Bounded convergence theorem implies

0
. (UQ)de Rl(vg)dG
lim T =4/U3 —a\/b — | =0
s—1>r(r)1+ 3(2) vz a N —a\/b—vg \/’Ug —av/b— vy ’
(8.24)

where the sign change came from the fact that we are approaching the real line from the
upper and lower half-planes in the two cases. Combining (8.20), (8.21), (8.23), (8.24) we
conclude that

b

515 Ri(v1) Voo —avb = “2 = 2 / R}(01)Gl, (v1)dvy —2i log(b—a)- [R(b) — R(a)).
(v1 — U2) VU1 — aVur —

v a

The latter is equivalent to (8.18) once we use that R(b) — R(a) = ff R/ (v1)dv;.

8.4. Conjectural 2d fluctuations

In this section we isolate the following two-dimensional (conjectural) extension to
Theorem 7.2.4.

Conjecture 8.4.1. Assume the same notation as in Theorem 7.2.). Then the centered
random height function
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NZs (’}-[(q_t, v) — Ep, [H(q_tﬂ v)])

converges to the pullback of the Gaussian free field with Dirichlet boundary conditions
on the upper half-plane H with respect to the map ) in the following sense: For any set
of polynomials f; € Rlx], numbers u; € (1,q77) and sequences t;(¢) such that ¢ () =
u; + O(e) fori=1,...,m the joint distribution of

/\/7_T (H(q_t",v) — Ep, [H(q_t'i7v)]) fi(v)dv, i=1,...,m, (8.25)
R

converges to the joint distribution of the similar averages

b(u:)
[ FOw i, =t
a(uq)
of the pullback of the GFF. In the above formula a(u),b(u) are the v-coordinates of the
two points where the vertical line through u intersects the ellipse Q(u,v) =0.

Equivalently, the variables in (8.25) converge jointly to a Gaussian vector (Xi,...,
X)) with mean zero and covariance

b(u;) buj)
IE[XZ-XJ-]:/ /fi(x)fj(y) (-%bg

a(ui) a(uj)

ISEZ g :gEZj ‘;/; D dady. (8.26)

Remark 8.4.2. We emphasize that our methods only allow us to study the global fluc-
tuations of the tiling model for a single vertical section, and in order to establish the
above statement one needs to be able to study the joint distribution of the particles on
several vertical slices.

9. Connection to log-gases on a quadratic lattice

In this section we explain how our model fits into the framework of a discrete log-gas
on a quadratic lattice as in Section 2. The latter will allow us to deduce Theorems 7.4.4
and 7.4.5 as consequences of Theorems 3.1.1 and 5.2.7 respectively.

9.1. Asymptotics of the weight function

We first consider with the weight function w9f(z) of the g-Racah ensemble defined
by (7.11). We are interested in understanding the asymptotic behavior of w?%(x) when
the parameters a, 3,7, 6, ¢ scale as in Definition 7.4.1. In order to do this we will need
the following technical lemma.
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Lemma 9.1.1. Let a,b € (0,1) and q € [a,b] be given. Suppose that xn,qn for N € N
are sequences such that ’qN — ql/N| < AN~2 and xy € [0,qn], where A is a positive
constant. Then we have

Li(xN)
log(q)

(25 4 )oo = exp (N - e <1og<N>>) 7 (9.1)

where Li(z) = Y 1o, ?—: is the dilogarithm function and the constant in the big O notation
depends on a, b and A.

Proof. Taking logarithm of [[;2,(1 — 2n¢k ') and power expanding log(1 — y) for 0 <
y < 1 gives

= zk 1 1 = zk 1—gn
log [(zn;n)oe] = = ) = - = - = =An + By + (O,
where
1 =zk [1- 1 1 = zk Li
Ay =7 Zx—N[ qj,f——},BN:— oy My
—gn ik [l-qy kK l—qn = k log(q)
CN _ Li(xN).
log(q)

What we need to show is that Ay and By are both O (log(N)).
Notice that

1 N
1—gn —log(q)

|By| = Li(xN)'— ‘< Li(1) + O(1),

where we used that zx € [0,1] and 1 — ¢y = —log(q)/N + O(N~2). This proves that
By = O(1) and we focus on Ay for the remainder.

Combining }:Zﬁ’ — % > 0 with 2y € [0, gn] we conclude
N

1 gk [1- 1
_ ZqN|:1 Z]:_E:|ZANZO~
— YN

Since 1 — gy = —log(q)/N + O(N~2), we see that what remains to be shown is that
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Siipotw) e

Suppose that 7#&({) > g > 0 is sufficiently small so that when € € [0, — log(q)eg] we
1-— 1
have 1—e~¢ > e—2¢2 > £/2. Using the latter together with the inequality 1 QN % >0
— g5

we see that

N 1—gn 1 af [1—gv 1
2 k[_@/N)log(q)_210g<q)2<k/1v>2 k]z 2 % Lqﬁfv k}z("

k<eoN k<eoN

As 1—gn = —log(q)/N +O(N~2) the above statement implies that for sufficiently large
C' we have

¢
N o —log(q) 1
IN IN B S
Z + Z k { klog(q) — 2log(q)?k?N-1t k| —

k<soN k<eoN
> el
k<eoN — N
Notice that
—log(q) 1 1 1
klog(q) + 2log(q)2k2N—1 k  k+2log(q)k?N-1 &k
2log(q)N !

- —41 -1
T3 2log(qkN—T = Hos(@N

where the last inequality holds since kN L <egg < — The latter estimates show

1
4log(q)”
that for some (possibly different than before) constant C' > 0 we have

I I LD

k<eoN k<eoN l—q

Since >y, N % < —log(1 — gn) = O(log(N)) we conclude that

sAfEEots) e

k<eoN l—q

We next have that

I—QN Z qN Z qN — N> Z %[l_qg—%}zo.

1-— 1—
k>50N k>eqN q k>eoN N

Since 1 —gy = O(N~") and 7,5 n % < —log(1 —gn) = O(log(N)) we conclude that
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i %{1—%_%]:0(%), (9.4)

1 —
k>eo N N

Combining (9.3) and (9.4) we conclude (9.2), which proves the lemma. O
In addition, we require the following alternative formula for the weight w?%(z).

Lemma 9.1.2. Suppose that we have parameters «, 3,7, 9,q and M as in Definition 7.5.4.
Then we have

8q, vO
WP (z) = (B99,79¢; @)oo : DR (z), where
(g, a7 1vdq, B~ 1vq, 0q, 071, v L g) oo
W (x) =
(/8)7¢" 1 —76g* ! (¢ a tyoq™ L, B g™ 6¢" T a7 v T ) o

1 —~dq (Boq=TL, vdq" L ) oo
(9.5)

Proof. We recall the definition of w?%(x) from Definition 7.3.1 for the reader’s conve-
nience.

(0q,300,74,70¢: @)= (1 —79¢*" )

qR
w@) = (¢, 90q, B7174,6q:9)x  (aBq)*(1 — 7q)

Observe that

(ag;q)e = [[(1 = ag') = ¢V 2 (=) - [[(1 —a "¢
=1 1=1

x(ac+1)/2aac<_1):c ( -1 _—z

=q a g Q).

Similarly, we have (vq;q), = ¢*@tD/24%(=1)* . (y"1¢~%;¢),. Substituting the latter
identities and performing a bit of cancellation we arrive at

Wi () = (a7'q™",8q,7" ¢, 70¢; @) (1 — 79¢> ) (/B
(¢, vdq, B71vq,0¢; Q) (1 —~dq)

Observe that for a € [0, 1) we have (a;q), = ((EZ - Substituting the latter identity

in the above expression we see that w%(z) equals

(g™, Boq, v a7, v0q; @)oo (¢, a1 0", B g™ 6g" T ) oo

(g, = 1y0q, B~1vq,0¢; ¢) o (a1, Bog* 1, y=1, vd¢" 1 ) o
1— 75q2”+1 .
W ~(v/B)*q

From here (9.5) is immediate. O
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The main statement of this section is the following.

Lemma 9.1.3. Assume that we have the same notation as in Definition 7.4.1 and let
w?VR(x) be as in (9.5) with parameters an, By, YN,ON,qn. Then, for x € {0,..., My}
we have the following asymptotic expansion of w?VR(x)

x

@ (x) = exp (—NV (N, a,b,c, d) + 0 (log(N))) , where

[Li(qs) + Li(a~'cdq®) + Li(b~'cq®) + Li(dg®)+

V(s;a,b,c,d) =
—logq

+ Li(a='q™®) + Li(c'q™*) — Li(bdq®) — Li(cdq®) + log(q)%s? + slog(q) log(c/b)}
(9.6)

and the constant in the big O notation depends on the parameters A and a,b,c,d, q,M
and is uniform as the latter vary over compact subsets of P (recall that A and P were
given in Definition 7.4.1).

Proof. Using Lemma 9.1.1 we have that

21 — 75(]2‘7”1

~qR _ x x
@a) = (/)
+ Li(B7 g™ ™) + Li(0¢g" ™) + Li(a™'q™") + Li(y"'¢™") — Li(B6¢" ") —

- Li('yéqmﬂ)] - O(log(N)))7

N
- exp (— [Li(q“"“) + Li(a™'ydg" ") +
log q

where for brevity we suppressed the dependence of the parameters on N. Since ¢/b =
v/B+ O(N1), ¢ =q'/N + O(N—?) and ~dq is bounded away from 1 we see that

2x+1

21 —~6
() B)r g L0

T z?
i exp (N- N -log(c/b) + N - N2 -log(q) + O(U) :

This handles the first factor in w97 (x) and we only need to match the dilogarithms with
We claim that if 2,y € [0,1] and C > 0 are such that |z —y| < CN~! then
. . log(N)+1 1
L —L <C - ———F—+ —. 9.7
[Li(e) ~ Lify)| < 0 00 4 (97)
It is clear that applying (9.7) to each of the dilogarithms in @w?%%(z) we can match the
corresponding ones in (9.6) upto an error of order log(NN). Thus, to prove the lemma it
suffices to show (9.7).
Without loss of generality suppose that * < y and set € = y — z. Then we have

osm(ypm@):iwgil—ii;s)k,
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where we used that the functions y* — (y — €)¥ are increasing on [¢,1] for k¥ > 1. In
addition,

N N o)

1—(1—e)* ke log(N) +1 1—(1—e)*
ZTSZk_SC.Tand Z k2
k=1 k=1 k=N+1

<1 Tdr 1
2z
< P
< > k2—/z ¥
k=N+1 &

Combining the above inequalities we conclude (9.7) and hence the lemma. O
9.2. Proof of Theorems 7.4.4 and 7.4.5

Our first task is to verify that Py(A1,...,An) from Definition 7.4.1 satisfy Assump-
tions 1-4 and 6-7 in Section 2.2. In view of (9.5) we have the following alternative
representation for Py (A1,...,An)

Pn(A1, ..., AN) =

L(0<r <ra<<An<My) ( Y YN
= = on(an™) —onlq "))
Z(NvMNvanﬁNa’yNu(sN) 1§21;_!:§N N o

T (M), (98)

—

I
-

K2

where Z is a new normalization constant, on(z) = z + unz~! with uy = yndngn and
u??VR is as in (9.5) for the parameters ay, v, YN, dn, gy and My.

If we set ¢; = q;{\i + quj\V" for i = 1,..., N then we see that the induced law on
particles ¢; for i = 1,..., N from (9.8) agrees with (2.3) for § = 1. Specifically, we are in
the single-cut case with a; (N) = 0, b1(N) = My — N +2 and setting w(l;; N) := ”LD?VR(Ai)
we have

N

]P)N(fh...,é]v) :ngl -1{(417“.7@\,)6}:}\]} . H (fl —Zj)2Hw(€2,N) (99)
1<i<j<N i=1

It is clear that Assumptions 1 and 3 in Section 2.2 are satisfied in this case. In
addition, in view of Lemma 9.1.3, we know that Assumption 2 holds for the function
V(z) = V(o;l(x);a,b,c,d), where V(-;a,b,c,d) is as in (9.6) and og(z) = q~* + uq®
with u = cd.

Let @}, ® 'y be as in Definition 7.4.2 with parameters a = an,b = fn,c=yn,d = 0N

and ¢ = q%. Observe that @ﬁ satisfy Assumptions 4 and 6 in Section 2.2. In particular,
+

~, Where the latter are as in Definition 7.4.2 for the

we have that @ﬁ converge to @
parameters a = a, b=b, c = ¢, d = d and ¢ = gq". With the same choice of parameters
we also define Ry, and Qo as in that definition and (7.16). Finally, one checks that

Assumption 7 holds from the definition of V and ®=.
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Since Assumptions 1-4 and 6 hold we can apply Theorem 4.1.1 and obtain that the
function Ry on the right side of (4.3) is a degree 4 polynomial. We isolate the following
asymptotic statement about Ry, which will be used here and whose proof is the focus
of Section 10.

Fact 9.2.1. (see (10.30)) If R, and Ry are as above then for all z € C

lim R (z) — Ry(z) =0. (9.10)

N—o0

Proof. (Theorem 7.4.4) As discussed earlier we know that Py (¢1,...,¢x) in (9.9) satisfies
Assumptions 1-4 and 6-7 in Section 2.2. We conclude from Theorem 3.1.1 that the
empirical measures

1 N
pn =~ >0 (on(ay™))
=1

converge to a limiting measure p, which by Lemma 4.2.2 has density

! -arccos Py (90) for yo € [1,¢]. (9.11)

p(yotuy, ) = log(@)m (yo — ugy 1) 21/ D (y0) P (o)

Combining (4.10) and (9.10) we conclude that R, = R.. The latter implies that the
measures gy in Theorem 7.4.4 satisfy the conditions in that theorem for the measure

p = poog ', which in view of (9.11) agrees with Definition 7.4.2. O

Proof. (Theorem 7.4.5) From the proof of Theorem 7.4.4 we know that R, = R, and
s0 Q3 = R2 — 49} &, = Q2. The formula for Qo in (7.16) implies that Q, satisfies
Assumption 5 for r1 = a_, 51 = ay and H(z) = 2(2? — cd)(abg" — qV). Overall, the
measures (9.9) satisfy Assumptions 1-6 in Section 2.2 and so Theorem 7.4.5 follows from
Theorem 5.2.7 and Remark 5.2.5. O

10. Proof of Fact 9.2.1

The goal of this section is to prove Fact 9.2.1, which is the missing ingredient necessary
to complete the proofs of Theorems 7.4.4 and 7.4.5. We summarize some basic facts about
discrete Riemann—Hilbert problems and g-Racah orthogonal polynomials in Section 10.1.
In Section 10.2 we introduce a matrix-valued function Ay (z) and derive some of its
properties. Section 10.3 contains some asymptotic results about Ay (z), which suffice to
show Fact 9.2.1.
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10.1. Discrete Riemann—Hilbert problems and orthogonal polynomials

10.1.1. Discrete Riemann—Hilbert problems

In this section we relate solutions of discrete Riemann—Hilbert problems (DRHP) for
jump matrices of a special type to orthogonal polynomials. Our exposition closely follows
that in [12, Section 2], which in turn dates back to [8,9].

Let X be a finite subset of C such that card(X) = M +1 < oo and w : X — Mat(2,C)
be any function. We say that an analytic function

m: C\ X — Mat(2,C)

solves the DRHP (X, w) if m has simple poles at the points of X and its residues at these
points are given by the jump (or residue) condition

Res m(¢) = lim m(Qw((), = € X. (10.1)

=z (—x

We will assume that the matrix w(x) depends on a function w : ¥ — C and has the form

0 w(x)
= . 10.2
w(z) [0 : ] (10.2)

Recall that a collection {P,(¢)})_, of complex polynomials is called the collection of
orthogonal polynomials associated to the weight function w if

e P, is a polynomial of degree n for all n =1,..., M and Py = const;
o if m#n then Yy Pp(z)Py(7)w(z) = 0.

We will always take P, to be monic, i.e. P,(x) = 2"+ lower terms.
We consider the following inner product on the space C[(] of all complex polynomials:

(f(¢).9(0), = D Fla)g(x)w(x).

reX

It is clear that there exists a collection of orthogonal polynomials { P, (¢)}M associated
to w such that (P,, Py,), # 0 for all n = 0,..., M if and only if the restriction of
(-,)w to the space C[¢]=¢ of polynomials of degree at most d is non-degenerate for all
d=0,...,M. If this condition holds we say that the function w is nondegenerate, and
then it is clear that the collection {P,(¢)}*, is unique. For convenience we isolate the
following notation

en = (Pa, Pn),, Hn(g);:ZM, n=0,...,M. (10.3)
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M

The connection between the orthogonal polynomials {P,(¢)}, L, and solutions to

DRHP (X, w) is detailed in the following statement.

Theorem 10.1. [12, Lemma 2.1 and Theorem 2.4] Let X be a finite subset of C such that
card(X) = M +1 < 0o and w be as in (10.2) with w: X — C a nondegenerate weight
function. Then for any k = 1,2,..., M the DRHP(X,w) has a unique solution mx((),
satisfying an asymptotic condition

¢ho

mx(C) - [ 0 Ck] =I14+0((") as¢— oo, (10.4)

where I is the identity matriz. This solution is explicitly given by

P(C) H}(C)

mx(¢) = i Pe1(C) et He-1(Q)

] , with ¢n, H, as in (10.3)

and satisfies detmx(¢) = 1.

10.1.2. q-Racah polynomials

In this section we recall and establish some basic properties of the g-Racah orthogonal
polynomials, cf. [47, Section 3.2]. Recall from Definition 7.3.1 that the g-Racah weight
function is defined on X = {¢% +vd¢*tt : 2 =0,..., M} as

(aq, B6q, ¥4, 70q; @) (1 — vog>* 1)
(¢, 70q, B717q,0¢; q)2 (afq)*(1 — vdq)

w!(q™" + 76" ) = (10.5)

We assume the parameters are as in Definition 7.3.4. It is well known that w?® is a
nondegenerate weight function and the orthogonal polynomials {P,(¢)}M , associated
to it are the g-Racah orthogonal polynomials. Explicitly, they are given by

. ety _ 7 (a7 " aBg" T g7 ot
Pn(q + 75(1 ) - 4¢3 < aq, Baq’ vq q:9 ), where
u . (10.6)
46[;3 (a17a2,a3,a4‘q.z> _ Z (alaa27a3aa4;Q)k <
b1,b2,03 |* (b1,b2,b3;0)k (¢ @)k

n=0

The g-Racah polynomials P, satisfy the following orthogonality relation.
M
D Wi (g +70¢" ) Pr(q" + 70¢" ) Palq ™" + 70" ) = ¢ - 6y, where
=0
(v9¢* o' By, a710, 7 g)oe (1= aBg)(v09)" (g.Bg. @0 q, 0By g3 q)n

(a™176q, B~ vq,0q, a7 f71q7 1 q)0e (1 —aBg® ) (afq,aq, B¢, V¢ q)n
(10.7)
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In addition, setting y(z) = P,(¢~*+v5¢* ') we have the following g-Difference equations

"1 =g —afg" M y(x) =
B(x)y(z +1) — [B(z) + D(x)]y(x) + D(x)y(z — 1) where
(z) = (L= 0q" (= B3 (1 = 5g™ (1 — 7dq" ")
(1 —v6g?*+1)(1 — vdg>*+2)
D) = q(1 —¢")(1 = 0¢")(B — 74" )( — 7vdq")
(1 —~0¢%)(1 — vdg>=+1) '

We next prove a couple of easy facts about the g-Racah polynomials. For convenience

, and

(10.8)

we set 0(2) = 2z +uz~! with u = vdq.

Proposition 10.2. Each P, (¢) with M > n > 0 has n roots in the interval (1 +u,q~ ™ +
M

ug™).

Proof. Let m be the number of roots of P, (¢) in the interval [1+u, ¢~ +ug™] counted
with multiplicities. Since deg(P,) = n, we know that m < n. If m <nlet z1,..., 2., be
an enumeration of these roots in some order. By (10.7) we know that

M m
S Pal 4 ug )™+ ug®) - [+ ug — ) = 0. (10.9)
z=0 i=1

Note that the polynomial P,(¢) - [[i~, (¢ — z;) does not change its sign on [1+u,¢~ M +
ug™] and so all of the above summands must be zero. But then P, (¢~ + uq®) = 0 for
z=0,...,M and so M + 1 < m < n, contradicting M > n. We conclude that m = n.

Let x1,..., 2y be the roots of P,(¢) that are not equal to 1 + u. By our work above
we know that z; € (1 +u,q~ ™ +ug™] for i = 1,...,m. If again we suppose that m < n
then P,(¢) - [T/~ (¢ — x;) does not change its sign on [1 + u,¢~™ + ug™] and so all
the terms in the analogous sum (10.9) must be zero, implying P, (¢~* + ug*) = 0 for
xz =0,...,M. We conclude that P,, has roots at ¢~ + uq¢® for x = 0,..., M. But this
is impossible, since M > n leading to too many roots of P,. We reach a contradiction,
which arose from our assumption that 1+ is a root of P,(¢). A similar argument shows
¢ M + ugM is also not a root of P,(¢). O

Lemma 10.3. Let M > n > 1 be given. If t > 1 is such that P,(c(t)) = 0 then
Pa(o(q™'t)) #0.

Proof. Suppose that oy, ..., a, are the roots of P,(z). Then (10.8) can be written as
[A(2) + B(2) + Cu(2)] Qu(2) = ¢" A(2)Qn(q™"2) + ¢~ "B(2)Qu(qz), where

Hz — iz +u), A(2) = (2 — aq)(z — Bdq)(z — vq)(z — ¥dq) (2> — ~0),
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B(z) = q(z = 1)(2 = 0)(28 — 7)(2c = 70)(2* = 70¢%),
Cn(2) = (2% = 740) (22 —740q) (2% — v6¢*) (¢ — 1)(1 — aBg" ™). (10.10)

From Proposition 10.2 we know that a; € (1 +u,q~™ + ugM) for i = 1,...,n. Conse-
quently, 22 — oz + u has two real roots ¢~™ > 3; > 1 and 1 > uﬁ;l > 0.

Suppose that P,(c(t)) = 0 for some ¢t > 1. Let k¥ > 1 be the maximal integer such
that P,(o(tg~")) =0 for i =0,...,k — 1 and assume for the sake of contradiction that
k > 2. Then we know that tg~**! is a root of Q,(z) and Q,(qz). From the top line
in (10.10) we conclude that A(tqg~**1)Q,(t¢~*) = 0. By the maximality of & we must
have A(tqg~**!) = 0. Since t¢g~¥*! > 1 we conclude that tg=**! = aq and then as
tqg 1t = B; for some n > j > 1 we conclude that ¢ ™ > aq or v > a. This contradicts
Definition 7.3.4 and so k = 1 as desired. O

We end this section with a lemma, which classifies the bounded degree polynomials
A(z), B(2),C(z) that satisfy the ¢-Difference equation (10.10).

Lemma 10.4. Fiz M > n > 7 and suppose that A(z), B(z),C(z) are polynomials, each of
degree at most n — 7 or zero and such that

[[l(z) + B(z) + C(2)] Pa(o(2)) = A(2)Po(0(q712)) + B(2) P, (0(qz)). (10.11)

Then

B(2)A(2) = B(2)A(2) and B(2)C,(z) = B(2)C(2), (10.12)
where A(z), B(z),Cpn(z) are as in (10.10).

Proof. Using the notation from the proof of Lemma 10.3 we can alternatively rewrite
(10.11) as

[A(2) + B(2) + C(2)] Qu(2) = ¢" A(2)Qn(q"'2) + ¢ " B(2)Qn(q2).

We multiply the above by B(z) and subtract it from the top line of (10.10) multiplied

by B(z)

[B(2)(A(2) + Cu(2)) = B(2)(A(2) + C(2))] Qn(2) = ¢"[B(2)A(2) = B(2) A(2)|Qn(q"2).

As discussed in the proof of Lemma 10.3 we know that @, (z) has n roots 81,...,8, > 1
and neither is a root of @, (¢~ 'z). This implies that [[}"_,(z — §;) divides B(z)A(z) —

B(z)A(z) and as the latter is of degree at most n — 1 or zero, we conclude that it must
be zero. This suffices for the proof. 0O
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10.2. The matriz An(z)

We go back to the notation of Section 10.1.1. Let w be as in (10.2) with w = w?® as
in (10.5). From Theorem 10.1 we know DRHP (X, w) has a unique solution my(¢) with

¢M oo

0 (N :I+O(C_1) as ( — oo.

mn(C) - [

For the sequel we let 0(z) = z + uz~! with u = vdq and define the following matrix-
valued function that will play a central role in the arguments that follow

Ax(z) = my (o(a)) - D(=) - (0(2)) . where D(z) = [‘I’O(Z) q)f(z)] . where
(10.13)
B+(2) = (2 ) 2 = B8)(= = )= = 16) and & (=) = (= = )(az = 16)(3= — 7)(= = ).
(10.14)

The significance of the functions ®* is as follows. If Py denotes the measure P?% as
in Definition 7.3.3 then Py satisfies the Nekrasov’s equation, Theorem 4.1.1, for the
functions ®*, 0 =1, k=1 and a; =0, by = M — N + 2. In particular, if R is given by

R(z) = 0 (2) - E [NLZ)_& 2.
2) = (2)-Epy |[] + @7 (2) - Epy

= oo(z) =4

N
oz) -t
Z.1;[1 o(gz) — Ei‘| ) (10.15)

then R is a degree four polynomial. Fact 9.2.1 concerns the asymptotic behavior of R
when the parameters «, 3,7, 6, q¢ and M scale as in Definition 7.4.1 and we can relate it
to the matrix Ay through the following result.

Lemma 10.5. If Ax(z) and R(2) are as in (10.13) and (10.15) respectively then

Tr(An(2)) = R(2). (10.16)

Proof. We first recall from [3, Theorem 2.13] that

Hy-1(y) Hn(y)
PNfl(x) PN(Q?>

with ¢,, H,, P, as in (10.3), (10.6) and (10.7).

= cNaldet

[N Qi—éi
]EIF’N H 9

i ¥~

Combining the above with (10.15) we obtain
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R(z) =cyL, - @ (2) - [Hn-1(0(2)) Pn(0(g2)) — Hn(0(2)) Py-1(0(q2))] +

1 (10.17)
oy @7 (2) - [Hy-1(0(g2)) Pn(0(2)) — Hy(0(g2)) Py-1(0(2))] -
On the other hand, from (10.13) and Theorem 10.1 we know
An(z) = Py (o(g2)) Hy(o(gz)) o) 0
N1 Pn-1(o(qz)) eyt Hn-1(c(qz)) 0 ®t(2)
(10.18)

cno1Hn-1(0(2))  —Hy(0(2))
—eyi Py-i(o(2))  Pa(o(2) |’

where we also used that det my(¢) = 1. The trace in (10.18) matches the rights side in
(10.17). O

In the remainder of this section we establish several properties about the matrix Ay.
Proposition 10.6. The matriz An(z) is entire.

Proof. The result and its proof are analogous to [12, Proposition 3.3]. Appealing to
(10.18) it is clear that the only possible singularities of Ay (2) are simple poles at z = ¢~%
forx=0,1,...,. M +1and z = uqg? fory=—-1,0,..., M.

From (10.1) we have for z near ¢ * and z =1,...,M + 1

—x

my(0(q2)) = Fi(2) <I + ¢

—xz+1 r—1
D age D) (s q_r)w (q + ug )) , (10.19)

where F(z) is an analytic, invertible matrix-valued function defined in a neighborhood
of ¢=®. By definition of w we have w(q! +ug~1) = 0 and so (10.19) holds near z = 1 as
well.

x

For z near ¢ and z =0, ..., M we can similarly write

—X

mt o) = (1=

T —ugm)(z — qim)w(q_z + UQT)) Fy(z), (10.20)

where Fy(z) is an analytic, invertible matrix-valued function defined in a neighborhood
of ¢=®. By definition of w we have w(¢~™~1 4+ ug™*1) = 0 and so (10.20) holds near
z=q M1 as well.

Overall, to show that the matrix Ay(2) is analytic at ¢=* for x = 0,1,..., M + 1 it

suffices for

x6= (14 o age e =g e

x D(z) (I - ( w(x)> ,

(% —ug®)(z —q7%)
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to be analytic near those points. Since

“(x # x) - 4 wiB(o(qx 7quRo—x “(z
X(2) = [q) © o (P10 e gy ) — e )>]

0 ot (x)

and @) _ (a7 —ug")w ™ (o(gz))

(I)‘f‘(.’l,’) wqR(O-(x))(q—(x—l) _ uq(x—l))’

we conclude that X (z) is indeed analytic near ¢~ for x =0,1,..., M.
One verifies the analyticity of Ax(z) at the points ug? for y = —1,0,..., M analo-
gously. O

Proposition 10.7. Let AE\J[(Z) denote the entry of An(z) at the i-th row and j-th column.
Then AN} (), A?\,Q(z) are degree four polynomials and AR2(2), A% (2) are degree three poly-
nomials. If A% (z) = Y, a%y 2" then

ang =B, = abq N, aiy = cytien[—¢NaB+q ] aX s = [V ap - ¢V
(10.21)

Proof. From equation (10.18) we have

AN (2) =cnty [Py(0(g2))Hy—1(0(2)) @7 (2) — Hy(0(q2)) Pv-1(0(2))®7 (2)] ,

AR (2) =enty [P ) N(0(2))®7(2) + Hy-1(0(g2)) Pn(0(2)) @7 (2)] ,

AN (2) =cyty [=Pn(o(g2)) H (0(2))@7 (2) + Hy(0(g2)) Pr(0(2)) 07 (2)]

AN (2) =cnty [Py-1(0(g2))Hn—1(0(2))®7 (2) — Hy-1(0(g2)) Py -1(0(2))®7 (2)] .
(10.22)

We know from Proposition 10.6 that A% (z) are all entire functions. In addition, by
Theorem 10.1 we know that cy' Py (0(q2))Hy_1(0(2)) = [(0(q2)) N Pn(o(q2))] -
[(0(2))N ey Hy-1(0(2)] - [(0(2))"N(o(g2))N] ~ ¢" as |2|] — oco. Analogous argu-
ments show that

ey Hy-1(0(qz))Pr(0(2)) ~ g7,
Hy(0(q2))Pn-1(0(2)) = O (|2|7%) = Px_1(0(q2))Hn (0 (2)).

The above show that A (2) = O(]z|*) = A%?(2) and by Liouville’s theorem we conclude
that they are at most degree 4 polynomials. Our work above also shows that as |z| — oo
we have

AN (2) ~ aBgN 2t and A%3(2) ~ afqg N 21,

which establishes the first two equations in (10.21).
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Also as a consequence of Theorem 10.1 we have that A% (2) = O(|z]3) = A3l(2),
which by Liouville’s theorem implies that they are at most degree three polynomials.
What remains is to show that their leading coefficients are as in (10.21).

We first note by definition

M P —x z\, ,qR(,—x T
(o) = vy U )

=0

M
=Y Prlg" +ug”)w (g + ug”)
=0

1, [a7" + ug”] la=" + ug”]" N2
Using (10.7) we get

M .
ZPN(q*I +ug®)w® (7" + ug®)[g"* +ug®)' =0 for i =0,...,N — 1 and
z=0
M

—x T qR( —x T —x 1N __
> Pa(g™" +ug”)w™ (g + ug®) (g +ug) =
z=0

N
> Pnla +ug®)w (g +ug) = e
=0
The above implies that as |z| — co we have

Py (0(g2))Hn(0(2)) = [(0(q2)) ™ Px(a(2))] - [(0(2))Y Hn (0(2))]
[(0(2)) N (0(g2))"] ~ 2 eng”.
Analogously, Hy(0(qz))Pn(c(2)) ~ 27 Yeng™, Py_1(0(q2))Hn_1(0(2)) ~ 2 ten_1 X

g Nt Hy 1(0(q2))Pn_1(0(2)) ~ z7ten_1¢V 1. The latter identities and (10.22)
imply

ans =cy_i[—engdVaB +eng V] and aif 5 = eyt [en—1a N aB — en1g™ 7Y,
which establishes the last two equations in (10.21). O

We end this section by relating Ay(z) and the polynomials A(z), B(z),Cp(z) in
the g¢-Difference equation (10.10). From (10.13) we know that Ayx(z) - my(c(2)) =

mpy(o(gz)) - D(z), and identifying the left two entries of the 2 x 2 matrices on both
sides we arrive at
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AN (2)Py(0(2)) + eyl AN (2)Py—1(0(2)) = @7 (2)Pr(0(g2)),

91 1 499 I (10.23)
Ay (2)Pn(0(2)) + ey 1 AN (2)Pr-1(0(2)) = ey @7 (2) Py -1(a(g2))-

Expressing 0;[1,1PN71(') from the first equation and substituting it in the second we
obtain

A%}(Z)PN(O'(Z)) + A?\?(Z) |:¢’_(Z)PN(O'(QZ)) — AN (Z)PN(U(Z)):|

ANG) (10.24)
o (2) - |:(I>(QZ)PN(O'(Q22)) — AN (qz)PN(o(qz))}
AR (gz) '

1

Replacing z with ¢~ "z, and reorganizing terms we obtain

PN(O’(q*lz)) |:A?V2 qlz)A}\}(qjl,}g\;(;/llivj(qlz)A%}(qlz):| N

Py (0(¢2)) [%} .

Note that the first numerator of the second line above is detAx (g~ '2), which we know
to equal ®+ (¢ 12)®~ (¢ 12) (recall that detmy = 1 by Theorem 10.1). Making the
substitution, and multiplying both sides by A (2)A(¢712) - @~ (¢ '2)~! we arrive at

Py (o(2)) [AR (a7 12) AR () + AR (47" 2) AN (2)] =

(10.25)
Py(o(q7"2)) AR (2)@7 (¢ 1 2) + Pn(0(g2)) AN (a7 2)@7 (2).

If we alternatively express cy'  Pn(-) from the second equation in (10.23), substitute
it into the first and perform the same steps we will arrive at

Py_1(0(2)) [AV () AN (07 2) + AN () AN (¢7'2)] =

-1 21 +(,—1 21/, —1 - (10.26)
Py_1(o(q 2)) AN (2)27 (¢ 2) + Pn-1(0(q2)) Ay (¢ 2)®7 (2).

In the remainder we assume that N > 14. Then applying Lemma 10.4 to (10.25) we
conclude

4z = 1)(z = 6)(26 — 7) (20 — 18)(% — 73¢%) - AR ()" (¢12) =
(z = aq)(z — Boq)(z — 1) (z — ¥6q)(2* — 76) - AN (¢ '2) @ ().

Replacing the formulas for ®* from (10.14) and canceling common terms we arrive at

¢ (2% —70¢%) - AN (2) = (2" — 70) - AN (a7 2).
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The above and Proposition 10.7 imply
AR (2) = et en[=dVaB + ¢ N - 2(2% — 76). (10.27)

If we alternatively apply Lemma 10.4 to (10.26) and repeat the same argument we arrive
at

AN (2) = [ "B — ¢V - 2(22 = 70). (10.28)
10.3. Asymptotics of An(z)

We now assume that «,3,7,0,q and M all depend on N and scale as in Defini-
tion 7.4.1. For this choice of parameters we denote R in (10.15) by Ry and ®* by
L.

Our first goal is to show that under the above parameter scaling Ay (z) converges, to
a fixed matrix-valued function as N — oo. Let us first consider the off-diagonal entries
AR (2), A%} (2). In view of (10.27) and (10.28) we know that

AR(2) = et jen[—aNanBn + a3 - 2(22 — yndn) and

AN (2) = [y TanBy —an ' 22" = yvon)
Using (10.7) we have

enesl = M1 —anBrg Y
S e

. (1—¢)(1 = BngY) (6N — angd)(1 — anBng TN+

Consequently, we see that

lim cyey' | = ¢(1 —q)(1 —bg)(d — ag)(l — abgc™") -
N—o0 N-1 (1 —abq)(1l —aq)(l —bdq)(1 —cq)

(10.29)

From the above work we conclude that

lim AN (z) = Mg~ —qab] - 2(2? —cd) and lim A3 (z) = [q 'ab —q] - 2(2* — cd).
N —o0 N—o0

Next, we know that detAy(z) = % (2)®y(2) converges to (2 — a)(z — bd)(z — c)(z —
cd)(z—1)(az—cd)(bz—c)(2—d) as N — oo, while from (10.16) and (4.10) we know that
TrAx(z) converges to some degree four polynomial Ry, (z). This implies that AL (2) and
A%2(z) converge to some degree four polynomials A%l(z) and A%2(z).

We end this section by proving Fact 9.2.1. From Lemma 10.4 applied to (10.25) we
have that
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B(2) [AR} (a5 2) AN (2) + AN (4" 2) AN (2)] = AR (an'2)@7 (2)-[A(2) + B(2) + On(2)].
Taking the limit as N — oo on both sides we get

(z—1)(z — d)(zb — c)(za — cd) (2> — cd)A[q " — qab] - 2(2* — cd) - [A22(2) + ALL(2)] =
Mg ™! — qablz(2% — cd) - (2 — 1)(az — cd)(bz — c)(z — d) x

[(z —a)(z —bd)(z — c)(z — cd)(2® — cd) + (z — 1)(z — d)(2b — c)(2a — cd)(2? — cd) +
(2% — c)(q — 1)(1 - abg)].

Canceling common factors and utilizing (10.16) we see that

lim Ry(z) = 1\}51100 TrAn(2) = A22(2) + ALL(2) = (z — a)(z — bd)(z — ¢)(z — cd) +

N—oco

(z—1)(z —d)(zb —c)(za — cd) + (2% — cd)?*(q~* — 1)(1 — abg), (10.30)
which concludes the proof of Fact 9.2.1.

Remark 10.3.1. We presented the computation in the g-Racah case but the same ideas
would work for other families of classical orthogonal polynomials.
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